Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber.
Singkhornart, Sasathorn; Lee, Seul Gi; Ryu, Gi Hyung
2013-09-01
The effect of feed moisture content and screw speed in the extrusion process with and without chemical pretreatment of corn fiber was investigated. Different chemical pretreatment methods (NaOH and H2 SO4 solution) were compared. The improvement of reducing sugar, soluble arabinoxylans (SAX) content and the yield of corn fiber gum was measured. A high reducing sugar content was obtained in the filtrate fraction from the extruded destarched corn fiber (EDCF) with H₂SO₄ pretreatment. Feed moisture content most effectively improved both reducing sugar and SAX content of filtrate. Increasing feed moisture content and screw speed resulted in a higher SAX content in the filtrate of the EDCF with NaOH pretreatment. The SAX content of the residual solid from the EDCF with NaOH pretreatment was higher compared to H₂SO₄ pretreated and unpretreated samples and significantly increased with decreasing feed moisture content. The screw speed did not have a major impact after enzyme hydrolysis. The yield of corn fiber gum was increased by 12% using NaOH pretreatment combined with extrusion process as compared to the destarched corn fiber. The results show the great potential of the extrusion process as an effective pretreatment for disruption the lignocelluloses of corn fiber, leading to conversion of cellulose to glucose and hemicelluloses to SAX and isolation of corn fiber gum. © 2013 Society of Chemical Industry.
You, Ilhwan; Yoo, Doo-Yeol; Kim, Soonho; Kim, Min-Jae; Zi, Goangseup
2017-01-01
This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state. PMID:29109388
You, Ilhwan; Yoo, Doo-Yeol; Kim, Sooho; Kim, Min-Jae; Zi, Goangseup
2017-10-29
This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.
A study on friability, hardness and fiber content analysis of fiber enriched milk tablet
NASA Astrophysics Data System (ADS)
Suzihaque, M. U. H.; Irfan, M. H.; Ibrahim, U. K.
2017-06-01
This study was performed to analyze the friability, hardness and fiber content of fiber enriched milk tablet derived from five different local fiber sources such as carrot, spinach, dragon fruit, mango and watermelon. Cow milk was mixed to complement with the tablet as a protein source. The powder were spray dried at 100°C, 120°C and 140°C and freeze dried at -60°C. The mixture of fruits and milk were made into equal ratio with the addition of 15 maltodextrin as a carrier. Tablets formed were used for friability and hardness test while dried powder were used for fiber content analysis. Dragon fruit tablet dried at 140°C have the highest friability with 11. 42 of weight loss. The second highest friability was spinach tablet dried at 100°C and 120°C drying temp erature with 9.30 and 9.28 respectively. The lowest friability was exhibited by carrot, mango and watermelon tablet at 100°C and dragon fruit at 120°C while carrot and spinach at 140°C. In contras t, none of the freeze dried tablets showed any weight loss hence they are not friable. For hardness test, all of the freeze dried showed to have higher tensile strength than spray dried, where carrot showed to be the highest at 2.27 Newton and the lowest were spray dried mango at 0.16 Newton. In fiber content analysis, freeze dried mango have the highest fiber content followed by freeze dried carrot and 140°C s pray dried carrot. It can be concluded that the higher the spray dry temperature, the more friable is the tablet. While, high friability leads to lower hardness of tablets. In terms of fiber content, the higher the spray dry temperature, the lower the fiber content found.
NASA Astrophysics Data System (ADS)
Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.
Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.
Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products.
Verardo, Vito; Riciputi, Ylenia; Messia, Maria Cristina; Vallicelli, Melania; Falasca, Luisa; Marconi, Emanuele; Caboni, Maria Fiorenza
2011-05-01
The coarse fraction obtained by air classification of barley flour, rich in dietary fiber and flavan-3-ols, was utilized to develop functional biscuits. The flavan-3-ol content, antioxidant activity and oxidative stability of biscuits were measured during storage under retail conditions for 1 year. The replacement of 60% (w/w) refined wheat flour with barley coarse fraction increased the ash, fiber and flavan-3-ol contents significantly. Biscuit samples enriched with barley coarse fraction had a significantly higher amount of fiber compared with the control sample (six times higher). The β-glucan content in enriched samples was 15 times higher than control samples. The flavan-3-ol loss in biscuits after baking was about 67%. The initial content of flavan-3-ols increased from 0.6 to 4.3 mg/100 g in biscuits formulated with barley coarse fraction and showed improved antioxidant properties. Lipid oxidation increased during the shelf-life; the enriched biscuit showed the higher lipid oxidation status, but the level reached during the shelf-life was lower than the limit of acceptance reported for bakery products and, for this reason, does not compromise the safety.
Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro
2017-07-26
The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.
Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs.
Patrás, P; Nitrayová, S; Brestenský, M; Heger, J
2012-12-01
Eight gilts (29.9 ± 1.7 kg initial BW) were used to evaluate effects of dietary (crude) fiber on N excretion via feces and urine at 2 levels of dietary CP. Pigs were fed 4 dietary treatments according to a double 4 × 4 Latin square. Treatments were low (14%) CP and low (3.25%) (crude) fiber (LPAA), low CP and high (4.46%) fiber (LPAABP), high (18.8%) CP and low fiber (HP), and high CP and high fiber (HPBP). Diets were based on soybean (Glycine max) meal, wheat (Triticum aestivum), and maize (Zea mays) and were supplemented with crystalline AA. High fiber diets contained 15% dried beet (Beta vulgaris) pulp. Pigs were housed in metabolic cages and fed 2 equal meals at 0700 and 1700 h at a daily rate of 90 g/kg BW(0.75). Water was offered ad libitum. Each experimental period consisted of a 6-d adaptation followed by a 4-d collection of feces and urine (bladder catheters). Data were analyzed using ANOVA. Differences between means (P < 0.05) were assessed using Fisher's LSD procedure. The N intake, fecal N excretion and absorption, and N retention increased (P < 0.05) in pigs fed high-CP diets with added fiber (HP vs. HPBR). With added fiber, urinary N excretion (g/d) was reduced (P < 0.02) only for the low-CP diet. Urinary N as a percentage of N intake was reduced (P < 0.01) in both groups fed high-fiber diets irrespective of dietary CP content. Dietary fiber level did not affect DMI. Fecal DM excretion (g/d) was higher (P < 0.02) in pigs fed diets with high CP and high fiber content than in pigs fed diets with high CP and low fiber content. In conclusion, beet pulp fiber added to diets increased fecal N and reduced urinary N and in diets with higher CP content increased overall N retention.
Native Cellulose: Structure, Characterization and Thermal Properties
Poletto, Matheus; Ornaghi Júnior, Heitor L.; Zattera, Ademir J.
2014-01-01
In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations. PMID:28788179
Boutrup, Rasmus Jentoft; Farup, Jean; Vissing, Kristian; Kjaer, Michael; Mikkelsen, Ulla Ramer
2018-06-01
To investigate satellite cells (SCs) and myonuclei characteristics in patients with rheumatoid arthritis (RA). Resting biopsies from m. vastus lateralis were obtained from thirteen RA patients and thirteen matched healthy controls (CON). Muscle biopsies were immunohistochemically stained and analyzed for fiber type specific content of SCs (Pax7 + ), proliferating SCs (Pax7 + /MyoD + ) and differentiating SCs (myogenin + ). Furthermore, we quantified fiber type specific content of myonuclei and myofiber cross-sectional area (CSA). Finally, newly formed/regenerating fibers expressing neonatal MHC (nMHC + ) were determined. The fiber type specific number of SCs did not differ between RA patients and CON, nor did the content of proliferating or differentiating SCs. In contrast, the content of myonuclei per fiber was higher in RA patients than CON for both type I (2.01 ± 0.41 vs. 1.42 ± 0.40 myonuclei/fiber, p < 0.01) and type II fibers (2.01 ± 0.41 vs. 1.37 ± 0.32 myonuclei/fiber, p < 0.01). No differences were observed in fiber composition, fiber type specific CSA or content of nMHC + fibers. Our results indicate an increased propensity for myogenic differentiation of SC leading to an elevated myonuclear content in the skeletal muscle of RA patients. It is hypothesized that this could be a compensatory regulatory response related to the chronic inflammation in these patients.
Tracking cotton fiber quality throughout a stipper harvester: Part II
USDA-ARS?s Scientific Manuscript database
Cotton fiber quality begins to degrade naturally with the opening of the boll and mechanical harvesting processes are perceived to exacerbate fiber degradation. Previous research indicates that stripper harvested cotton generally has lower fiber quality and higher foreign matter content than picker ...
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
Anomalous rheological behavior of long glass fiber reinforced polypropylene
NASA Astrophysics Data System (ADS)
Kim, Dong Hak; Lee, Young Sil; Son, Younggon
2012-12-01
Dynamic rheological properties of PP-based long glass fiber-reinforced thermoplastics (LFT) were investigated. Weight fractions of the glass fibers investigated in the present study ranged from 0.15 to 0.5, which are higher than those of previous studies. We observed very abnormal rheological behavior. Complex viscosity (η*) of the LFT increased with the glass fiber content up to 40 wt. %. However, the η* with a weight fraction of 0.5 is observed to be lower than that of LFT with a weight fraction of 0.4 in spite of higher glass fiber content. From various experiments, we found that this abnormal behavior is analogous to the rheological behavior of a lyotropic liquid crystalline polymer solution and concluded that the abnormal rheological behavior for the LFT is attributed to the formation of a liquid crystal- like structure at high concentrations of long glass fibers.
Pereira, Anirene Galvão Tavares; Ramos, Eduardo Mendes; Teixeira, Jacyara Thaís; Cardoso, Giselle Pereira; Ramos, Alcinéia de Lemos Souza; Fontes, Paulo Rogério
2011-12-01
The effects of mechanically deboned poultry meat (MDPM) and levels of collagen fibers on comminuted, cooked sausage quality characteristics were investigated using the central composite rotatable design of response surface methodology (RSM). Use of collagen fiber as an additive affected the sausage characteristics, but the effect depended on the amount of the MDPM used. While MDPM additions resulted in higher cooking loss and darker and redder frankfurters, the addition of collagen fibers improved cooking yields and contributed to the lightness of the final product. Higher collagen fiber content was also accompanied by a significant increase in frankfurter hardness regardless of the MDPM content. Use of collagen fibers countered the negative effects of MDPM on sausage quality attributes, especially on cooking yields and final product color. Copyright © 2011 Elsevier Ltd. All rights reserved.
Breeding for improved potato nutrition: High amylose starch potatoes show promise as fiber source
USDA-ARS?s Scientific Manuscript database
Potato starch is composed of approximately 75% amylopectin and 25% amylose. We are interested in breeding for higher amylose content, which would increase the fiber content of potato and decrease glycemic index. In order to make progress in a breeding program, we have developed a high throughput ass...
Shen, L Y; Luo, J; Lei, H G; Jiang, Y Z; Bai, L; Li, M Z; Tang, G Q; Li, X W; Zhang, S H; Zhu, L
2015-11-13
The myosin heavy chain (MyHC) composition, glycolytic potential, mitochondrial content, and gene expression related to energy metabolism were analyzed in eight muscles from Tibetan pigs, to study how meat quality develops in different muscle tissues. The muscles were classified into three clusters, based on MyHC composition: masseter, trapezius, and latissimus dorsi as 'slow-oxidative-type'; psoas major and semimembranosus as 'intermediate-type'; and longissimus dorsi, obliquus externus abdominis, and semitendinosus as 'fast-glycolytic-type'. The 'slow-oxidative-type' muscles had the highest MyHC I and MyHC IIA content (P < 0.01); 'intermediate-type' muscles, the highest MyHC IIx content (P < 0.01); and 'fast-glycolytic-type' muscles, the highest MyHC IIb content (P < 0.01). The pH values measured in 'slow-oxidative-type' muscles were higher than those in the other clusters were; however, the color of 'fast-glycolytic-type' muscles was palest (P < 0.01). Mitochondrial content increased in the order: fast-glycolytic-type < intermediate-type < slow-oxidative-type. In the 'slow-oxidative-type' muscles, the expression levels of genes related to ATP synthesis were higher, but were lower for those related to glycogen synthesis and glycolysis. Mitochondrial content was significantly positively correlated with MyHC I content, but negatively correlated with MyHC IIb content. MyHC I and mitochondrial content were both negatively correlated with glycolytic potential. Overall, muscles used frequently in exercise had a higher proportion of type I fibers. 'Slow-oxidative-type' muscles, rich in type I fibers with higher mitochondrial and lower glycogen and glucose contents, had a higher ATP synthesis efficiency and lower glycolytic capacity, which contributed to their superior meat quality.
Properties of cellulose/Thespesia lampas short fibers bio-composite films.
Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada
2015-01-01
Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Easy preparation of dietary fiber with the high water-holding capacity from food sources.
Yamazaki, Eiji; Murakami, Kazumi; Kurita, Osamu
2005-03-01
Dietary fibers were prepared as alkali- and acid-insoluble fractions with chemical phosphorylation from Tossa jute (Corchorus olitorius), defatted soybean (Glycine max), and Shiitake (Lentinula edodes). The dietary fiber fractions treated with alkaline solution containing sodium metaphosphate had the lower protein content and higher total dietary fiber content than those of the preparations without phosphorylation. Alkaline extraction followed by phosphorylation led to a 1.5-fold increase in the water holding capacity of dietary fiber compared with no phosphorylation, whereas the binding capacity to bile acids of dietary fiber was almost the same. The alkali- and acid-insoluble extraction with phosphorylation provided an efficient preparation of water-insoluble dietary fiber with high-water holding capacity from various food sources.
Soncu, Eda Demirok; Kolsarıcı, Nuray; Çiçek, Neslihan; Öztürk, Görsen Salman; Akoğlu, Ilker T; Arıcı, Yeliz Kaşko
2015-01-01
This study was designed to determine the usability of lemon fiber (LF-2%, 4%, 6%) and carrot fiber (CF-2%, 4%, 6%) to produce low-fat beef hamburgers. To that end, a certain amount of fat was replaced with each fiber. The proximate composition, pH value, cholesterol content, cooking characteristics, color, texture profile, and sensory properties of low-fat beef hamburgers were investigated. LF increased moisture content and cooking yield due to its better water binding properties, while CF caused higher fat and cholesterol contents owing to its higher fat absorption capacity (p<0.05). LF resulted in a lighter, redder, and more yellow color (p<0.05). Hardness, gumminess, springiness, and chewiness parameters decreased when the usage level of both fibers increased (p<0.05). However, more tender, gummy, springy, and smoother hamburgers were produced by the addition of CF in comparison with LF (p<0.05). Moreover, hamburgers including CF were rated with higher sensory scores (p<0.05). In conclusion, LF demonstrated better technological results in terms of cooking yield, shrinkage, moisture retention, and fat retention. However it is suggested that CF produces better low-fat hamburgers since up to 2% CF presented sensory and textural properties similar to those of regular hamburgers.
Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M, Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B; Shukor, Nor Aini Ab
2015-06-01
Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3-1.52 ng g(-1) fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants.
Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M., Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B.; Shukor, Nor Aini Ab.
2015-01-01
Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3–1.52 ng g−1 fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants. PMID:26175614
Effects of exposure to dietary chromium on tissue mineral contents in rats fed diets with fiber.
Prescha, Anna; Krzysik, Monika; Zabłocka-Słowińska, Katarzyna; Grajeta, Halina
2014-06-01
This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5% cellulose (CEL), 5% pectin (PEC), or 2.5% cellulose and 2.5% pectin (CEL+PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL+PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL+PEC+Cr diet compared to the rats fed FF+Cr diet. The rats consuming the PEC+Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.
Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar
2018-03-01
The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Jeong, Jong-Youn; Chung, Hai-Jung; Kim, Cheon-Jei
2010-03-01
The effects of substituting olive, grape seed, corn, canola, or soybean oil and rice bran fiber on the chemical composition, cooking characteristics, fatty acid composition, and sensory properties of low-fat frankfurters were investigated. Ten percent of the total fat content of frankfurters with a total fat content of 30% (control) was partially replaced by one of the vegetable oils to reduce the pork fat content by 10%. The moisture and ash content of low-fat frankfurters with vegetable oil and rice bran fiber were all higher than the control (P<0.05). Low-fat frankfurters had reduced-fat content, energy values, cholesterol and trans-fat levels, and increased pH, cooking yield and TBA values compared to the controls (P<0.05). Low-fat frankfurters with reduced-fat content plus rice bran fiber had sensory properties similar to control frankfurters containing pork fat. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Yu, Sang-Hui; Cho, Hye-Won; Oh, Seunghan; Bae, Ji-Myung
2015-06-01
No study has yet evaluated the strength of complete dentures reinforced with glass fiber meshes with different content and structures. The purpose of this study was to compare the reinforcing effects of glass fiber mesh with different content and structures with that of metal mesh in complete dentures. Two types of glass fiber mesh were used: SES mesh (SES) and glass cloth (GC2, GC3, and GC4). A metal mesh was used for comparison. The complete dentures were made by placing the reinforcement 1 mm away from the tissue surface. A control group was prepared without any reinforcement (n=10). The compressive properties were measured by a universal testing machine at a crosshead speed of 5 mm/min. The results were analyzed with the Kruskal-Wallis test and the Duncan multiple range test (α=.05). The fracture resistance of the SES group was significantly higher than that of the control, GC4, and metal groups (asymptotic P=.004), but not significantly different from the GC2 and GC3 groups. The toughness of the SES and GC3 groups was significantly higher than that of the others (asymptotic P<.001), but not significantly different from that of the GC4 group. SES and GC3, which have different structures but similar volume content, were the most effective in reinforcing complete dentures. The content of the glass fiber mesh seemed more important than the structures. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Panwar, Priyankar; Dubey, Ashutosh; Verma, A K
2016-06-01
Five elite varieties of barnyard (Echinochloa frumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, α-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of biological functions were analyzed and found that barnyard millet contained the higher amount of polyphenols, tannins and ortho-dihydroxy phenol content compared to finger millet. Among antinutitional compounds barnyard millet contained lower phytic acid content compare to finger millet whereas no significant difference in trypsin inhibition activity of barnyard millet and finger millet varieties were found. Barnyard millet contained higher acid phosphatase, α-galactosidase and α-amylase inhibitor activity compared to finger millet. Finger millet seeds contained about 10-13 folds higher calcium content and double amount of manganese content in comparison to barnyard millet seeds. Present study suggests that barnyard millet varieties studied under present investigation were found nutritionally superior compared to finger millet varieties.
Contreras-Padilla, Margarita; Gutiérrez-Cortez, Elsa; Valderrama-Bravo, María Del Carmen; Rojas-Molina, Isela; Espinosa-Arbeláez, Diego Germán; Suárez-Vargas, Raúl; Rodríguez-García, Mario Enrique
2012-03-01
Chemical proximate analysis was done in order to determine the changes of nutritional characteristics of nopal powders from three different maturity stages 50, 100, and 150 days and obtained by three different drying processes: freeze dried, forced air oven, and tunnel. Results indicate that nopal powder obtained by the process of freeze dried retains higher contents of protein, soluble fiber, and fat than the other two processes. Also, freeze dried process had less effect on color hue variable. No changes were observed in insoluble fiber content, chroma and lightness with the three different drying processes. Furthermore, the soluble fibers decreased with the age of nopal while insoluble fibers and ash content shows an opposite trend. In addition, the luminosity and hue values did not show differences among the maturity stages studied. The high content of dietary fibers of nopal pad powder could to be an interesting source of these important components for human diets and also could be used in food, cosmetics and pharmaceutical industry.
Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs).
Zhang, Xiaoxin; Ruiz, Gonzalo; Tarifa, Manuel; Cendón, David; Gálvez, Francisco; Alhazmi, Waleed H
2017-11-05
Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC) have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10 -3 mm/s (quasi-static) to 2.66 × 10³ mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end) and contents (volume ratios), 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.
Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs)
Tarifa, Manuel; Cendón, David; Gálvez, Francisco; Alhazmi, Waleed H.
2017-01-01
Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC) have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static) to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end) and contents (volume ratios), 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is. PMID:29113095
Al-Farsi, Mohamed; Alasalvar, Cesarettin; Morris, Anne; Baron, Mark; Shahidi, Fereidoon
2005-09-21
Three native sun-dried date varieties grown in Oman, namely, Fard, Khasab, and Khalas, were examined for their proximate composition, sugars, dietary fiber, minerals, and organic acids as well as sensory characteristics. The study was conducted on sun-dried dates due to their higher consumption compared with fresh dates. All results are expressed as mean value +/- standard deveiation (n = 3) on a fresh weight basis except for sensory analysis. Date varieties were found to be low in fat and protein, but rich in sugars, dietary fiber, and minerals. They were found to be a good source of energy (278-301 kcal/100 g), due to the high sugar content. Total sugar content ranged from 56.1 to 62.2 g/100 g, being lowest in Khasab and highest in Khalas. Total dietary fiber content of dates varied from 6.26 to 8.44 g/100 g, of which 84-94% was insoluble fiber. Twelve minerals were studied in dates, among which the major minerals were potassium, calcium, magnesium, and phosphorus. Date varieties were also found to be an excellent source of selenium (ranging from 0.36 to 0.53 mg/100 g). Six organic acids were positively identified, among which malic acid predominated in all varieties. Differences (p < 0.05) in the contents of dietary fiber, organic acids, and certain minerals were observed among the three date varieties examined. Descriptive sensory analysis showed that among the nine sensory attributes studied, only the attributes color and desirability were rated as being of significantly (p < 0.01) higher intensity in Fard than in Khasab, whereas flesh firmness was lower (p < 0.01). Thus, these results suggest that although all three dates serve as a good source of vital nutrients, the Khalas variety, which is considered as premium quality, had significantly higher contents of sugar and selenium and a significantly higher energy value than the other varieties studied.
Physiochemical Characteristics and Molecular Structures for Digestible Carbohydrates of Silages.
Refat, Basim; Prates, Luciana L; Khan, Nazir A; Lei, Yaogeng; Christensen, David A; McKinnon, John J; Yu, Peiqiang
2017-10-18
The main objectives of this study were (1) to assess the magnitude of differences among new barley silage varieties (BS) selected for varying rates of in vitro neutral detergent fiber (NDF) digestibility (ivNDFD; Cowboy BS with higher ivNDFD, Copeland BS with intermediate ivNDFD, and Xena BS with lower ivNDFD) with regard to their carbohydrate (CHO) molecular makeup, CHO chemical fractions, and rumen degradability in dairy cows in comparison with a new corn silage hybrid (Pioneer 7213R) and (2) to quantify the strength and pattern of association between the molecular structures and digestibility of carbohydrates. The carbohydrate-related molecular structure spectral data was measured using advanced vibrational molecular spectroscopy (FT/IR). In comparison to BS, corn silage showed a significantly (P < 0.05) higher level of starch and energy content and higher degradation of dry matter (DM). Cowboy BS had lower feeding value (higher indigestible fiber content and lower starch content) and lower DM degradation in the rumen compared to other BS varieties (P < 0.05). The spectral intensities of carbohydrates were significantly (P < 0.05) correlated with digestible carbohydrate content of the silages. In conclusion, the univariate approach with only one-factor consideration (ivNDFD) might not be a satisfactory method for evaluating and ranking BS quality. FT/IR molecular spectroscopy can be used to evaluate silage quality rapidly, particularly the digestible fiber content.
2016-01-01
The effects of reducing pork fat levels from 20% to 15% or 10% by partially substituting pork back fat with wheat sprout fiber in reduced-fat chicken patties were investigated. Approximate composition, energy value, pH, color, cooking loss, reduction in diameter, reduction in thickness, shear force, and sensory properties were determined. Moisture content, ash contents, yellowness of uncooked and cooked reduced-fat chicken patties with wheat sprout were higher than those in the control, while displaying fat content, calorie content, and pH of uncooked and cooked lower in reduced-fat chicken patties than in the control. Cooking loss, reduction in diameter, and reduction in thickness were the highest in the reduced-fat chicken patties with 10% fat level. Cooking loss, reduction in diameter, and reduction in thickness were decreased when fat levels and wheat sprout levels were increased. Control samples without wheat sprout dietary fiber had significantly (p<0.05) higher color and flavor scores compared to reduced-fat chicken patties containing wheat sprout dietary fiber. The overall acceptability of the control and treatment with 15% fat and 2% wheat sprout dietary fiber (T3) was the highest. Therefore, 15% fat level in reduced-fat chicken patties with the addition of 2% wheat sprout dietary fiber can be used to improve the quality and sensory characteristics of regular-fat chicken patties containing 20% fat level. PMID:28115892
Soncu, Eda Demirok; Kolsarıcı, Nuray; Çiçek, Neslihan; Öztürk, Görsen Salman; Akoğlu, ilker T.; Arıcı, Yeliz Kaşko
2015-01-01
This study was designed to determine the usability of lemon fiber (LF-2%, 4%, 6%) and carrot fiber (CF-2%, 4%, 6%) to produce low-fat beef hamburgers. To that end, a certain amount of fat was replaced with each fiber. The proximate composition, pH value, cholesterol content, cooking characteristics, color, texture profile, and sensory properties of low-fat beef hamburgers were investigated. LF increased moisture content and cooking yield due to its better water binding properties, while CF caused higher fat and cholesterol contents owing to its higher fat absorption capacity (p<0.05). LF resulted in a lighter, redder, and more yellow color (p<0.05). Hardness, gumminess, springiness, and chewiness parameters decreased when the usage level of both fibers increased (p<0.05). However, more tender, gummy, springy, and smoother hamburgers were produced by the addition of CF in comparison with LF (p<0.05). Moreover, hamburgers including CF were rated with higher sensory scores (p<0.05). In conclusion, LF demonstrated better technological results in terms of cooking yield, shrinkage, moisture retention, and fat retention. However it is suggested that CF produces better low-fat hamburgers since up to 2% CF presented sensory and textural properties similar to those of regular hamburgers. PMID:26761851
All-silica fiber with low or medium OH-content for broadband applications in astronomy
NASA Astrophysics Data System (ADS)
Ferwana, Saleh; Eckhardt, Hanns-Simon; Simon, Thorsten; Klein, Karl-Friedrich; Haynes, Roger; Khalilov, Valery K.; Nelson, Gary W.
2004-09-01
For astronomical applications, different types of step-index all-silica fibers with high-transparency in the whole spectral region from UV (300 nm) to NIR (1100 nm) will be introduced. The light-guiding core-material consists of high-purity silica, especially with low or medium OH-content. In UV region, the losses are mainly influenced by Rayleigh scattering, while the losses in the IR region are limited by traces of OH-groups (in the order of approx. 2 ppm) and fundamental vibration-bands. Due to processing, typical UV-defects below 280 nm can be suppressed significantly within fibers with medium or low OH-content. Especially, one fiber-type with low-OH content in the core possess high resistance against UV radiation in the DUV-region down to 200 nm, which is comparable to high-OH all-silica fibers specially developed for UV-application below 250 nm. In addition, a medium-OH will be presented. The properties of these new fibers in respect to basic attenuation and spectral damage in the UV-region will be discussed, in comparison to high-OH fibers, based on the same measurement-technique. In addition, first results on focal ratio degradation (FRD) and additional loss related to higher propagation angles will be shown, in comparison to standard high-OH fibers.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1996-01-01
Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.
Amiri, Reza; Sasani, Shahryar; Jalali-Honarmand, Saeid; Rasaei, Ali; Seifolahpour, Behnaz; Bahraminejad, Sohbat
2018-02-01
Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012-2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.
NASA Astrophysics Data System (ADS)
Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.
1997-02-01
The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.
Effect of Dietary Fiber Enrichment and Different Cooking Methods on Quality of Chicken Nuggets.
Pathera, Ashok K; Riar, C S; Yadav, Sanjay; Sharma, D P
2017-01-01
The effect of dietary fiber enrichment (wheat bran) and cooking methods (oven, steam and microwave) on functional and physico-chemical properties of raw nuggets formulation as well as nutritional, color and textural properties of chicken nuggets were analyzed in this study. Among different cooking methods used for nuggets preparation, steam cooked nuggets had significantly ( p <0.05) higher water holding capacity (56.65%), cooking yield (97.16%) and total dietary fiber content (4.32%) in comparison to oven and microwave cooked nuggets. The effect of cooking methods and wheat bran incorporation was also noticed on textural properties of the nuggets. Hardness, firmness and toughness values of oven and steam cooked nuggets were significantly ( p <0.05) higher than microwave cooked nuggets. Among nuggets prepared by different cooking methods, cohesiveness of microwave cooked nuggets was found to be significantly ( p <0.05) highest, whereas, oven cooked nuggets had significantly ( p <0.05) highest gumminess and chewiness values. Steam cooked nuggets were found to be better among all nuggets due to their higher cooking yield and dietary fiber content.
Effect of Dietary Fiber Enrichment and Different Cooking Methods on Quality of Chicken Nuggets
Yadav, Sanjay; Sharma, D. P.
2017-01-01
The effect of dietary fiber enrichment (wheat bran) and cooking methods (oven, steam and microwave) on functional and physico-chemical properties of raw nuggets formulation as well as nutritional, color and textural properties of chicken nuggets were analyzed in this study. Among different cooking methods used for nuggets preparation, steam cooked nuggets had significantly (p<0.05) higher water holding capacity (56.65%), cooking yield (97.16%) and total dietary fiber content (4.32%) in comparison to oven and microwave cooked nuggets. The effect of cooking methods and wheat bran incorporation was also noticed on textural properties of the nuggets. Hardness, firmness and toughness values of oven and steam cooked nuggets were significantly (p<0.05) higher than microwave cooked nuggets. Among nuggets prepared by different cooking methods, cohesiveness of microwave cooked nuggets was found to be significantly (p<0.05) highest, whereas, oven cooked nuggets had significantly (p<0.05) highest gumminess and chewiness values. Steam cooked nuggets were found to be better among all nuggets due to their higher cooking yield and dietary fiber content. PMID:28747827
Muscle Characteristics and Substrate Energetics in Lifelong Endurance Athletes
Dubé, John J.; Broskey, Nicholas T.; Despines, Alex A.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Goodpaster, Bret H.; Amati, Francesca
2015-01-01
Purpose The goal of this study was to explore the effect of lifelong aerobic exercise (i.e. chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared to non-competitive recreational younger (YA) athletes matched by frequency and mode of training. Methods Thirteen OA (64.8±4.9 yo) exercising ≥ 5 times/week were compared to 14 YA (27.8±4.9 yo) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase (SDH) and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. Results V̇O2peak was lower in OA than YA. OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, while type II fibers were smaller in OA compared to YA. Both groups had similar SDH content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, CHO-ox was lower in OA but with similar Fatox. Conclusion Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older to younger athletes matched by exercise mode and frequency. PMID:26460630
Amini, Samira; Mortazavi, Farhad; Sun, Jun; Levesque, Martin; Hoemann, Caroline D; Villemure, Isabelle
2013-01-01
Mechanical environment is one of the regulating factors involved in the process of longitudinal bone growth. Non-physiological compressive loading can lead to infantile and juvenile musculoskeletal deformities particularly during growth spurt. We hypothesized that tissue mechanical behavior in sub-regions (reserve, proliferative and hypertrophic zones) of the growth plate is related to its collagen and proteoglycan content as well as its collagen fiber orientation. To characterize the strain distribution through growth plate thickness and to evaluate biochemical content and collagen fiber organization of the three histological zones of growth plate tissue. Distal ulnar growth plate samples (N = 29) from 4-week old pigs were analyzed histologically for collagen fiber organization (N = 7) or average zonal thickness (N = 8), or trimmed into the three average zones, based on the estimated thickness of each histological zone, for biochemical analysis of water, collagen and glycosaminoglycan content (N = 7). Other samples (N = 7) were tested in semi-confined compression under 10% compressive strain. Digital images of the fluorescently labeled nuclei were concomitantly acquired by confocal microscopy before loading and after tissue relaxation. Strain fields were subsequently calculated using a custom-designed 2D digital image correlation algorithm. Depth-dependent compressive strain patterns and collagen content were observed. The proliferative and hypertrophic zone developed the highest axial and transverse strains, respectively, under compression compared to the reserve zone, in which the lowest axial and transverse strains arose. The collagen content per wet mass was significantly lower in the proliferative and hypertrophic zones compared to the reserve zone, and all three zones had similar glycosaminoglycan and water content.Polarized light microscopy showed that collagen fibers were mainly organized horizontally in the reserve zone and vertically aligned with the growth direction in the proliferative and hypertrophic zones. Higher strains were developed in growth plate areas (proliferative and hypertrophic) composed of lower collagen content and of vertical collagen fiber organization. The stiffer reserve zone, with its higher collagen content and collagen fibers oriented to restrain lateral expansion under compression, could play a greater role of mechanical support compared to the proliferative and hypertrophic zones, which could be more susceptible to be involved in an abnormal growth process.
The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries
NASA Astrophysics Data System (ADS)
Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof
Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.
NASA Astrophysics Data System (ADS)
Barani, Hossein; Haji, Aminoddin
2015-01-01
The aim of this study was to investigate the influence of oxygen plasma procedure at different time treatments on wool fiber using the micro-Raman spectroscopy as a non-destructive vibrational spectroscopic technique and Fourier transform infrared spectroscopy. The amide I and III regions, Csbnd C skeletal vibration region, and Ssbnd S and Csbnd S bonds vibration regions were analyzed with the Raman microscope. The Fourier transform infrared spectroscope analysis was employed to find out the effect of oxygen plasma treatment on the cysteic acid residues content of the wool fiber sample. The results indicated that the α-helix structure was the highest component content of wool fiber. Moreover, the protein secondary structure of wool fibers was transformed from α-helical arrangement to the β-pleated sheet configuration during the oxygen plasma treatment. Also, the disulphide bonds content in the treated wool fiber reduced because they were fractured and oxidized during oxygen plasma treatment. The oxygen plasma treated samples presented higher cysteic acid compared to the untreated wool samples due to produce more cleavage of disulfide linkages.
The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries.
Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J; Nilvebrant, Nils-Olof
2007-04-01
Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.
Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise.
De Bock, K; Derave, W; Ramaekers, M; Richter, E A; Hespel, P
2007-01-01
The effect of carbohydrate intake before and during exercise on muscle glycogen content was investigated. According to a randomized crossover study design, eight young healthy volunteers (n = 8) participated in two experimental sessions with an interval of 3 wk. In each session subjects performed 2 h of constant-load bicycle exercise ( approximately 75% maximal oxygen uptake). On one occasion (CHO), they received carbohydrates before ( approximately 150 g) and during (1 g.kg body weight(-1).h(-1)) exercise. On the other occasion they exercised after an overnight fast (F). Fiber type-specific relative glycogen content was determined by periodic acid Schiff staining combined with immunofluorescence in needle biopsies from the vastus lateralis muscle before and immediately after exercise. Preexercise glycogen content was higher in type IIa fibers [9.1 +/- 1 x 10(-2) optical density (OD)/microm(2)] than in type I fibers (8.0 +/- 1 x 10(-2) OD/microm(2); P < 0.0001). Type IIa fiber glycogen content decreased during F from 9.6 +/- 1 x 10(-2) OD/microm(2) to 4.5 +/- 1 x 10(-2) OD/microm(2) (P = 0.001), but it did not significantly change during CHO (P = 0.29). Conversely, in type I fibers during CHO and F the exercise bout decreased glycogen content to the same degree. We conclude that the combination of carbohydrate intake both before and during moderate- to high-intensity endurance exercise results in glycogen sparing in type IIa muscle fibers.
Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei
2015-01-01
This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (p<0.05), and increased with increasing the concentrations of SFM-1 and SFM-2. The addition of SFM-1 and SFM-2 had no significant effect on the pH of the samples. The lightness value of uncooked chicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets. PMID:26761796
Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei
2015-01-01
This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (p<0.05), and increased with increasing the concentrations of SFM-1 and SFM-2. The addition of SFM-1 and SFM-2 had no significant effect on the pH of the samples. The lightness value of uncooked chicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets.
Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers
Nuruddin, Muhammad Fadhil; Shafiq, Nasir
2014-01-01
The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202
Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.
Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina
2014-01-01
The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.
Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jeon; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Cheon-Jei
2015-01-01
In this study, we evaluated the effects of dietary fiber extracted from Algelica keiskei Koidz on the chemical composition, cooking characteristics, and sensory properties of chicken patties. The chicken patties with Algelica keiskei Koidz dietary fiber had significantly higher moisture and ash content, and yellowness than the control sample (p<0.05). Energy value, cooking loss, reduction in diameter, reduction in thickness, lightness, redness, hardness, cohesiveness, gumminess, and chewiness of the control samples was significantly higher than chicken patties with Algelica keiskei Koidz dietary fiber (p<0.05). The sensory evaluation indicated that the greatest overall acceptability in chicken patties was achieved at Algelica keiskei Koidz dietary fiber levels of 1% and 2%. Chicken patties supplemented with 2% Algelica keiskei Koidz dietary fiber had improved quality characteristics.
2012-01-01
The aim of this study was to compare the quality characteristics and mineral content of the fiber from male and female cashmere goats raised under different management systems. Male and female Raeini cashmere goats (<1.5 years of age, n = 48) were selected from flocks raised at a government breeding station or raised commercially under either rural or nomadic conditions. The staple length, cashmere fiber diameter, coefficient of variation for fiber diameter, percentage of cashmere in a fleece, percentage of guard hair in a fleece and cashmere tenacity averaged 4.6 ±0.1 cm, 18.0 ±0.1 μm, 20.9 ± 0.4%, 66.1 ± 1.5%, 33.8 ± 1.5% and 1.8 ± 0.2 gf/tex, respectively. The sulfur, copper and zinc content of the cashmere averaged 2.8 ± 0.1%, 0.00065 ± 0.00002% and 0.01276 ± 0.00025%, respectively. Rearing method significantly affected staple length, coefficient of variation of fiber diameter, cashmere tenacity and copper content. Males had a higher coefficient of variation of fiber diameter and cashmere tenacity than females (P < 0.05). PMID:22958733
Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.
2017-12-01
Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.
Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Jeon, Ki-Hong
2015-01-01
In this study, we evaluated the effects of dietary fiber extracted from Algelica keiskei Koidz on the chemical composition, cooking characteristics, and sensory properties of chicken patties. The chicken patties with Algelica keiskei Koidz dietary fiber had significantly higher moisture and ash content, and yellowness than the control sample (p<0.05). Energy value, cooking loss, reduction in diameter, reduction in thickness, lightness, redness, hardness, cohesiveness, gumminess, and chewiness of the control samples was significantly higher than chicken patties with Algelica keiskei Koidz dietary fiber (p<0.05). The sensory evaluation indicated that the greatest overall acceptability in chicken patties was achieved at Algelica keiskei Koidz dietary fiber levels of 1% and 2%. Chicken patties supplemented with 2% Algelica keiskei Koidz dietary fiber had improved quality characteristics. PMID:26761844
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-06-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-01-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
Owens, Tammy J; Larsen, Jennifer A; Farcas, Amy K; Nelson, Richard W; Kass, Philip H; Fascetti, Andrea J
2014-07-01
To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus. Cross-sectional survey. Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets. Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined. Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus. Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.
Finite element analysis on flexural behavior of high ductility of fiber reinforced concrete beam
NASA Astrophysics Data System (ADS)
Zhou, Mohan; Chi, Cuiping; Pei, Changchun
2017-03-01
In this paper, finite element software is used to simulate and analyze ECC beams. With the ratio of water-binder, fiber content and the content of fly ash as variables, the initial cracking moments, the yield moments, the initial cracking deflections, and the yield deflections of the ECC beams are studied. The results show that the lower the water-binder ratio is, the better the beam performance is; When the fiber content is 13kg/m3, the mechanical properties of the ECC beams are the lowest, and then strengthen; When the content of fly ash increase, the bending moment of the specimen beam becomes smaller and the deflection tends to increase, however the deflection of the fly ash decreases when the content of fly ash is higher than 1300kg/m3 in the initial cracking. According to the formula of ordinary concrete ultimate load capacity, the formula of yield capacity of ECC beam is deduced.
Lestienne, Isabelle; Caporiccio, Bertrand; Besançon, Pierre; Rochette, Isabelle; Trèche, Serge
2005-10-19
In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.
Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum
Segura-Campos, Maira Rubi; Ciau-Solís, Norma; Rosado-Rubio, Gabriel; Chel-Guerrero, Luis; Betancur-Ancona, David
2014-01-01
Chia (Salvia hispanica L.) constitutes a potential alternative raw material and ingredient in food industry applications due to its dietary fiber content. Gum can be extracted from its dietary fiber fractions for use as an additive to control viscosity, stability, texture, and consistency in food systems. The gum extracted from chia seeds was characterized to determine their quality and potential as functional food additives. The extracted chia gum contained 26.2% fat and a portion was submitted to fat extraction, producing two fractions: gum with fat (FCG) and gum partly defatted (PDCG). Proximal composition and physicochemical characterization showed these fractions to be different (P < 0.05). The PDCG had higher protein, ash, and carbohydrates content than the FCG, in addition to higher water-holding (110.5 g water/g fiber) and water-binding capacities (0.84 g water/g fiber). The FCG had greater oil-holding capacity (25.7 g oil/g fiber) and water absorption capacity (44 g water/g fiber). In dispersion trials, the gums exhibited a non-Newtonian fluid behavior, specifically shear thinning or pseudoplastic type. PDCG had more viscosity than FCG. Chia seed is an excellent natural source of gum with good physicochemical and functional qualities, and is very promising for use in food industry. PMID:26904622
Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Kraitchman, M. D.
1985-01-01
The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.
Laxative effects of agarwood on low-fiber diet-induced constipation in rats.
Kakino, Mamoru; Tazawa, Shigemi; Maruyama, Hiroe; Tsuruma, Kazuhiro; Araki, Yoko; Shimazawa, Masamitsu; Hara, Hideaki
2010-11-15
Agarwood (Aquilaria sinensis), well known as incense in Southeast Asia, has been used as a digestive in traditional medicine. We investigated the laxative effects of an ethanol extract of agarwood leaves (EEA) in a rat model of low-fiber diet-induced constipation. A set of rats was bred on a normal diet while another set was placed on a low-fiber diet to induce constipation. The laxative effect of agarwood was then investigated on both sets of rats. Pretreatment of normal rats with single dose of EEA (600 mg/kg, p.o.) significantly increased frequency and weight of stools. Also, treatments with EEA (300 and 600 mg/kg, p.o.) for 14 days caused a significant increase in stool frequency and weight. Feeding of the animals with a low-fiber diet resulted in a decrease in stool weight, frequency, and water content and also delayed carmine egestion. A single treatment with EEA (600 mg/kg) or senna (150 and 300 mg/kg) significantly increased stool frequency, weight, and water content and also accelerated carmine egestion in the model rats. Once daily administrations of EEA (150 mg/kg), for 14 days, caused a significant increase in water content of stools. The higher doses of EEA (300 and 600 mg/kg) significantly increased frequency, weight, and water content of the stools while accelerating carmine egestion in the constipated rats. Senna (150 and 300 mg/kg) produced similar effect as the higher doses of EEA but, in addition, induced severe diarrhea. These findings indicate that EEA has a laxative effect, without causing diarrhea, in a rat model of low-fiber diet-induced constipation. These findings suggest that EEA may be highly effective on constipation as a complementary medicine in humans suffering from life style-induced constipation.
Gramza-Michałowska, Anna; Kobus-Cisowska, Joanna; Kmiecik, Dominik; Korczak, Józef; Helak, Barbara; Dziedzic, Krzysztof; Górecka, Danuta
2016-11-15
This paper presents a study on development of functional food products containing green and yellow tea leaves. The results indicated that green and yellow tea are significant tools in the creation of the nutritional value, antioxidative potential and stability of the lipid fraction of cookies. Tea-fortified cookies showed considerably higher contents of dietary fiber, especially hemicellulose and insoluble fractions, and were characterized by significantly higher antioxidant potential associated with their phenolics content. Results of ABTS, DPPH, ORACFL and PCL assay showed significantly higher antioxidant potential of tea cookies, highest for yellow tea. The antioxidative potential of applied teas was significant in terms of the inhibition of hydroperoxide content, while formation of secondary lipid oxidation products was less spectacular. It is concluded that tea leaves could be widely used as a source of polyphenols with high antioxidative potential, as well as fiber; thus introducing numerous health benefits for the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Is the feeding type related with the content of microplastics in intertidal fish gut?
Mizraji, Ricardo; Ahrendt, Camila; Perez-Venegas, Diego; Vargas, Juan; Pulgar, Jose; Aldana, Marcela; Patricio Ojeda, F; Duarte, Cristian; Galbán-Malagón, Cristobal
2017-03-15
Microplastics pollution is a growing global concern that affects all aquatic ecosystems. Microplastics in the environment can be in the form of fibers and/or particles, being the former the most abundant in the marine environment, representing up to 95% of total plastics. The aim of this work was to compare the content of microplastics among intertidal fish with different feeding type. Our results show that omnivorous fish presented a higher amount of microplastic fibers than registered in herbivores and carnivores. Moreover, lower condition factors (K) were found in omnivorous specimens with higher microplastic content. We hypothesized that the type of feeding resulted in different microplastic ingestion, with species with wider range of food sources as omnivores with higher rates. Futures studies carried out to evaluate the biological impacts of microplastics on marine organisms, and microplastics cycling on the marine environment should consider the type of feeding of the studied species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bozzetto, Lutgarda; Prinster, Anna; Annuzzi, Giovanni; Costagliola, Lucia; Mangione, Anna; Vitelli, Alessandra; Mazzarella, Raffaella; Longobardo, Margaret; Mancini, Marcello; Vigorito, Carlo; Riccardi, Gabriele; Rivellese, Angela A
2012-07-01
To evaluate the effects of qualitative dietary changes and the interaction with aerobic exercise training on liver fat content independent of weight loss in patients with type 2 diabetes. With use of a factorial 2 × 2 randomized parallel-group design, 37 men and 8 women, aged 35-70 years, with type 2 diabetes in satisfactory blood glucose control on diet or diet plus metformin treatment were assigned to one of the following groups for an 8-week period: 1) high-carbohydrate/high-fiber/low-glycemic index diet (CHO/fiber group), 2) high-MUFA diet (MUFA group), 3) high-carbohydrate/high-fiber/low-glycemic index diet plus physical activity program (CHO/fiber+Ex group), and 4) high-MUFA diet plus physical activity program (MUFA+Ex group). Before and after intervention, hepatic fat content was measured by (1)H NMR. Dietary compliance was optimal and body weight remained stable in all groups. Liver fat content decreased more in MUFA (-29%) and MUFA+Ex (-25%) groups than in CHO/fiber (-4%) and CHO/fiber+Ex groups (-6%). Two-way repeated-measures ANOVA, including baseline values as covariate, showed a significant effect on liver fat content for diet (P = 0.006), with no effects for exercise training (P = 0.789) or diet-exercise interaction (P = 0.712). An isocaloric diet enriched in MUFA compared with a diet higher in carbohydrate and fiber was associated with a clinically relevant reduction of hepatic fat content in type 2 diabetic patients independent of an aerobic training program and should be considered for the nutritional management of hepatic steatosis in people with type 2 diabetes.
Sreerama, Yadahally N; Neelam, Dennis A; Sashikala, Vadakkoot B; Pratape, Vishwas M
2010-04-14
Milled fractions of chickpea ( Cicer arietinum L.) and horse gram ( Macrotyloma uniflorum L. Verdc.) were evaluated for their nutritional and antinutritional characteristics. Crude protein content of these fractions ranged from 22.6-23.8 g 100(-1) g in cotyledon to 7.3-9.1 g 100(-1) g in seed coat fractions. The fat content of chickpea fractions (1.6-7.8 g 100(-1) g) was higher than that of horse gram fractions (0.6-2.6 g 100(-1) g). Crude fiber content was higher in seed coat fractions of both legumes than embryonic axe and cotyledon fractions. Seed coat fractions had high dietary fiber content (28.2-36.4 g 100(-1) g), made up of mainly insoluble dietary fiber. Most of the phytic acid and oligosaccharides were located in the cotyledon fractions, whereas phenolic compounds in higher concentrations were found in seed coats. Significantly higher concentrations of proteinaceous and phenolic inhibitors of digestive enzymes were found in cotyledon and seed coat fractions, respectively. The kinetic studies, using Michaelis-Menten and Lineweaver-Burk derivations, revealed that seed coat phenolics inhibit alpha-amylase activity by mixed noncompetitive (chickpea) and noncompetitive (horse gram) inhibition mechanisms. In the case of trypsin, chickpea and horse gram seed coat phenolics showed noncompetitive and uncompetitive modes of inhibition, respectively. These results suggest the wide variability in the nutrient and antinutrient composition in different milled fractions of legumes and potential utility of these fractions as ingredients in functional food product development.
Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.
Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker
2014-02-15
Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mechanical properties of kenaf composites using dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Loveless, Thomas A.
Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.
Tejeda, L; Dębiec, M; Nilsson, L; Peñarrieta, J M; Alvarado, J A
2012-01-01
The objective of this study was to evaluate the proximal composition, as well as Total Antioxidant Capacity (TAC) and Total Phenols (TPH) in meals that represent a complex food matrix, from different hospitals in Bolivia and Sweden. Protein, fat, ash, dietary fiber and carbohydrate contents were measured in 29 samples: 20 from two Bolivian hospitals and 9 from the university hospital in Lund, Sweden. The antioxidant capacity was measured by three spectrophotometric methods: the ferric reducing antioxidant power (FRAP) method, the 2, 2'- azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) method and Total Phenolic Compounds (TPH) using the Folin-Ciocalteu reagent. The results show that fat, protein, carbohydrate and dietary fiber in Bolivian and Swedish hospital meals are following internationally established recommendations. Regarding the main courses, TPH contents in both countries were in the same range. However, TAC and dietary fiber content were higher in Swedish meals than in Bolivian meals and the TAC was far lower, in both cases, in comparison with the value obtained from individual food items reported from literature. The results show that antioxidant levels can be easily overestimated by considering only individual uncooked ingredients. An interesting consideration is, the fiber content in the meals, which can be an important source of antioxidants and non-extractable phenolic compounds.
Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon.
Gorinstein, S; Zemser, M; Haruenkit, R; Chuthakorn, R; Grauer, F; Martin-Belloso, O; Trakhtenberg, S
1999-06-01
Recent studies have shown that dietary fiber and polyphenols of vegetables and fruits improve lipid metabolism and prevent the oxidation of low density lipoprotein cholesterol (LDL-C), which hinder the development of atherosclerosis. The goal of this study was to measure the total polyphenol and dietary fiber contents of some tropical fruits (i.e., pineapple, wax apple, rambutan, lichi, guava, and mango) and compare the results to the content of these substances in the better characterized persimmon. It was found that lichi, guava, and ripe mango (cv. Keaw) have 3.35, 4.95, and 6.25 mg of total polyphenols in 100 g fresh fruit, respectively. This is significantly higher than in persimmon, pineapple, wax apple, mature green mango, and rambutan [P < 0.0005 for pineapple (Smooth Cayene variant), wax apple, persimmon, rambutan, mature green mango (cv. Keaw); the value of P < 0.001 is found only for pineapple (Phuket, Queen variant)]. The same relationship was observed for the contents of gallic acid and of dietary fiber. It can be supposed that among the studied fruit, lichi, guava, and ripe mango may be preferable for dietary prevention of atherosclerosis.
Yan, Hui; Potu, Ramesh; Lu, Hang; Vezzoni de Almeida, Vivian; Stewart, Terry; Ragland, Darryl; Armstrong, Arthur; Adeola, Olayiwola; Nakatsu, Cindy H.; Ajuwon, Kolapo M.
2013-01-01
Obesity leads to changes in the gut microbial community which contribute to the metabolic dysregulation in obesity. Dietary fat and fiber affect the caloric density of foods. The impact of dietary fat content and fiber type on the microbial community in the hind gut is unknown. Effect of dietary fat level and fiber type on hindgut microbiota and volatile fatty acid (VFA) profiles was investigated. Expression of metabolic marker genes in the gut, adipose tissue and liver was determined. A 2×2 experiment was conducted in pigs fed at two dietary fat levels (5% or 17.5% swine grease) and two fiber types (4% inulin, fermentable fructo-oligosaccharide or 4% solka floc, non-fermentable cellulose). High fat diets (HFD) resulted in a higher (P<0.05) total body weight gain, feed efficiency and back fat accumulation than the low fat diet. Feeding of inulin, but not solka floc, attenuated (P<0.05) the HFD-induced higher body weight gain and fat mass accumulation. Inulin feeding tended to lead to higher total VFA production in the cecum and resulted in a higher (P<0.05) expression of acyl coA oxidase (ACO), a marker of peroxisomal β-oxidation. Inulin feeding also resulted in lower expression of sterol regulatory element binding protein 1c (SREBP-1c), a marker of lipid anabolism. Bacteria community structure characterized by DGGE analysis of PCR amplified 16S rRNA gene fragments showed that inulin feeding resulted in greater bacterial population richness than solka floc feeding. Cluster analysis of pairwise Dice similarity comparisons of the DGGE profiles showed grouping by fiber type but not the level of dietary fat. Canonical correspondence analysis (CCA) of PCR- DGGE profiles showed that inulin feeding negatively correlated with back fat thickness. This study suggests a strong interplay between dietary fat level and fiber type in determining susceptibility to obesity. PMID:23573202
USDA-ARS?s Scientific Manuscript database
“Energycane” is a term that is used to describe sugarcane grown solely for the production of renewable energy. A Type I energycane has somewhat lower sugar content (10-14%) and higher fiber content (14-20%) than a commercial sugarcane cultivar bred for sugar production. In contrast, a Type II energy...
García-Magaña, María de Lourdes; García, Hugo S; Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; de Oca, Miguel Mata-Montes
2013-09-01
Several reports have focused on utilization of post-harvest residues of crops, while neglecting those residues produced by mango processing. These residues represent a waste of nutrients and a source of environmental contaminants. Such by-products could be valuable sources of dietary fiber (DF), antioxidant compounds, and single carbohydrates. The aim of this study was to evaluate some functional properties (FP), and the content of DF and polyphenols (PP) of the peel and coarse material obtained from residues during the industrial processing of Ataulfo and Tommy Atkins mangoes. The total dietary fiber (TDF) content was about 225 mg/g and 387 mg/g (dry weight) for the coarse material and the peel, respectively, from which soluble dietary fiber represented 23 and 42%, respectively. The main neutral sugar identified was rhamnose, especially in peels; the klason lignin (KL) content was 92 mg/g, which highlights the Ataulfo peel (Ataulfo-P) and the Tommy Atkins peel (Tommy Atkins-P). The extractable PP content in Ataulfo-P was higher than in Tommy-Atkins-P, and interesting data for non-extractable PP were obtained in the residues. FP as swelling, water holding, oil holding, and glucose absorption in the residues was studied, obtaining better functional properties when compared to cellulose fiber. The results show that mango industrial by-products, mainly from the Ataulfo-P variety, could be used as ingredients in food products because of their functional properties as well as their DF and PP content.
NASA Astrophysics Data System (ADS)
Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Saarah, A. B.; Fadzol, O. M.
2016-11-01
The development of lamina intraply composite is a novel approach that can be adopted to address the challenges of balance mechanical properties of polymer composite. This research will focuses on the effects of weave designs on the mechanical behavior of a single ply or also known as lamina intraply composite. The six (6) specimens of lamina intraply composites were made by kenaf fiber as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno and leno weave. The vacuum infusion technique was adopted due to advantages over hand lay-up. It was found that the plain, twill and satin weave exhibited better mechanical properties on tensile strength. The fiber content of the specimen was 40% and the result of the resin content of the specimen was 60% due to the higher permeability of natural fiber.
Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Kim, Hyun-Wook; Lee, Ju-Woon; Chung, Hai-Jung; Kim, Cheon-Jei
2010-01-01
The effects of reducing pork fat levels from 30% to 20% and partially substituting the pork fat with a mix of grape seed oil (0%, 5%, 10% and 15%) and 2% rice bran fiber were investigated based on chemical composition, cooking characteristics, physicochemical and textural properties, and viscosity of reduced-fat meat batters. For reduced-fat meat batters containing grape seed oil and rice bran fiber the moisture and ash contents, uncooked and cooked pH values, yellowness, cohesiveness, gumminess, chewiness, and sarcoplasmic protein solubility were higher than in the control samples. The reduced-fat samples with increasing grape seed oil concentrations had lower cooking loss, emulsion stability, and apparent viscosity. The incorporation of grape seed oil and rice bran fiber successfully reduced the animal fat content in the final products while improving other characteristics.
Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites
NASA Astrophysics Data System (ADS)
Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun
2016-03-01
Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.
Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber
Damião Xavier, Franklin; Santos Bezerra, Gustavo; Florentino Melo Santos, Sharline; Sousa Conrado Oliveira, Líbia; Luiz Honorato Silva, Flávio; Joice Oliveira Silva, Aleir; Maria Conceição, Marta
2018-01-01
Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such as sugarcane bagasse. A pretreatment with dilute acid and low temperatures was conducted in order to obtain the hemicellulose fraction. The highest xylose contents (0.132 g·g−1 of sisal fiber) were obtained at 120 °C with 2.5% (v/v) of sulfuric acid. The yeast Candida tropicalis CCT 1516 was used in the fermentation. In the sisal fiber hemicellulose hydrolysate, the maximum production of xylitol (0.32 g·g−1) and of ethanol (0.27 g·g−1) was achieved in 60 h. Thus, sisal fiber presents as a potential biomass for the production of ethanol and xylitol, creating value with the use of hemicellulosic liquor without detoxification and without the additional steps of alkaline pretreatment. PMID:29320469
del Río, José C; Rencoret, Jorge; Gutiérrez, Ana; Nieto, Lidia; Jiménez-Barbero, Jesús; Martínez, Ángel T
2011-10-26
The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.8% in the fibers and 29.0% in the shives. Analysis by Py-GC/MS indicated a H:G:S molar ratio of 13:72:15 in the milled wood lignin (MWL) isolated from flax fibers and a molar ratio of 5:87:8 in the MWL isolated from flax shives. In addition, 2D-NMR showed a predominance of β-O-4' aryl ether linkages, followed by β-5' phenylcoumaran and β-β' resinol-type linkages in both MWLs, with a higher content of condensed linkages in flax shives. Thioacidolysis (followed by Raney nickel desulfurization) gave further information on the lignin units involved in the different linkages and confirmed the enrichment of G units. The thioacidolysis dimers released were similar from both lignins, with a predominance of the β-5' followed by β-1' and 5-5' structures.
Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H
2018-04-01
The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH 2 )) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content ( p =0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively ( p >0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.
Huang, Y N; Ao, Q W; Jiang, Q Y; Guo, Y F; Lan, G Q; Jiang, H S
2016-07-14
Bama Xiang and Landrace pigs are the local fatty and lean breeds, respectively, in China. We compared differences in carcass traits, meat quality traits, and myosin heavy chain (MyHC) types in the longissimus dorsi muscles between Bama Xiang and Landrace pigs. This was done in pigs of the same age, using real-time PCR, to investigate the relationship between MyHC fiber types and carcass characteristics, meat quality traits, and the key factors regulating muscle fiber type. Bama Xiang pigs exhibited smaller size and slower growth than Landrace pigs (P < 0.01). We found that the superior meat quality, especially the high intramuscular fat (IMF) content in Bama Xiang pig, was related to elevated type I oxidative muscle fiber content (P < 0.01). In contrast, Landrace pig muscle had a higher glycolytic type IIb muscle fiber content (P < 0.01). MyHC I gene expression was significantly positively correlated with backfat thickness and IMF content (P < 0.01). MyHC IIb was significantly negatively correlated with IMF content (P < 0.05), and positively correlated with carcass yield (P < 0.05). AMP-activated protein kinase and peroxisome proliferator-activated receptor-g coactivator-1a are suggested to be the two key factors regulating muscle fiber type in pigs. Our results indicate that muscle fiber composition is one of the key differences leading to the differences of meat quality between Bama Xiang and Landrace pigs. These results may provide a theoretical basis for further studies of the molecular mechanism underlying the excellent meat quality of the Bama Xiang pig.
NASA Astrophysics Data System (ADS)
Li, Wendong; Liu, Wanfu; Ni, Zhaopeng; Wang, Lu; Gao, Bo
2018-03-01
Cotton is an inflammable substance that can be ignited by a weak ignition source. Since, cotton fiber is typically removed from cottonseed, compressed into bales and stored in the warehouse for extended periods of time, the moisture content is a very important characteristic of cotton. In this study, the effect of moisture content on cotton smoldering combustion was studied experimentally by characterizing cotton samples with different moisture contents. The results showed that the higher moisture content of cotton delayed the smoldering combustion process of cotton and prolonged the duration of high temperature of cotton smoldering. And we could find that when the moisture content is higher than 10%, the characteristics of smoldering change obviously.
NASA Astrophysics Data System (ADS)
He, Liping; Li, Wenjun; Chen, Dachuan; Yuan, Jianmin; Lu, Gang; Zhou, Dianwu
2018-05-01
The microscopic mechanism of amino silicone oil (ASO) modification of natural fiber was investigated for the first time using molecular dynamics (MD) simulation at the atomic and molecular levels. The MD simulation results indicated that the ASO molecular interacted with the cellulose molecular within the natural fiber, mainly by intermolecular forces of Nsbnd Hsbnd O and Osbnd Hsbnd N hydrogen bonds and the molecular chain of ASO absorbed onto the natural fiber in a selective orientation, i.e., the hydrophobic alkyl groups (sbnd CnH2n+1) project outward and the polar amino groups (sbnd NH2) point to the surface of natural fiber. Consequently, the ASO modification changed the surface characteristic of natural fiber from hydrophilic to hydrophobic. Furthermore, the modification effects of the ASO modification layer with different amino group contents (m:n ratio) were also evaluated in this study by calculating the binding energy between the ASO modifier and natural fiber, and the cohesive energy density and free volume of the ASO modification layer. The results showed that the binding energy reached a maximum when the m:n ratio of ASO was of 8:4, suggesting that a good bonding strength was achieved at this m:n ratio. It was also found that the cohesive energy density enhanced with the increase in the amino group content, and the higher the cohesive energy density, the easier the formation of the ASO modification layer. However, the fraction free volume decreased with the increase in the amino group content. This is good for improving the water-proof property of natural fiber. The present work can provide an effective method for predicting the modification effects and designing the optimized m:n ratio of ASO modification.
Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1993-01-01
Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.
Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns
NASA Astrophysics Data System (ADS)
Xu, Zongnan; Wang, Tao; Wang, Weilun
2018-04-01
The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.
Ethanol extraction of phytosterols from corn fiber
Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.
2010-11-16
The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.
Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing
2015-11-05
Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fiber moisture content measurements of lint and seed cotton by a small microwave instrument
USDA-ARS?s Scientific Manuscript database
The timely and accurate measurement of cotton fiber moisture content is important, as deviations in moisture fiber content can impact the fiber quality and processing of cotton fiber. The Mesdan Aqualab is a small, modular, microwave-based fiber moisture measurement instrument for samples with mode...
He, L W; Meng, Q X; Li, D Y; Zhang, Y W; Ren, L P
2015-04-01
The effects of dietary fiber sources on the meat quality, oxidative stability, and blood parameters of growing Graylag geese (28-112d) were investigated. The birds were randomly allocated into 4 treatments, of which dietary fiber was mainly from corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS). No influence (P>0.05) on the basic chemical components, oxidative stability, or organoleptic traits of muscle were observed, except that birds fed SECS had a higher (P<0.05) protein proportion than those fed CSS or SERS, and CSS increased (P<0.01) the cholesterol content when compared to SEWS or SERS. Regarding fatty acid profile in meat, CSS and SECS increased (P<0.01) the proportion of C18:2n6t and decreased that of C21:0 and C22:0 when compared to the others. The birds fed SERS had a higher (P<0.05) proportion of C20:0 and C22:0 than the others, a higher proportion of C20:5n3, n-3 fatty acids, Δ-9 desaturase (18) index compared to those fed CSS or SECS, and a lower (P<0.01) proportion of C20:1n9 than those fed SECS or SEWS. Additionally, SEWS resulted in a higher (P<0.01) proportion of C20:2 when compared to the others. In conclusion, these fibers affect just the protein proportion, cholesterol content, and fatty acid profile of breast muscle, along with the concentration of TG and MDA in blood, but not the other characteristics. No superior fiber source exists with respect to meat quality, suggesting that Graylag geese feeding should make the most economically of the convenient fiber source with appropriate pretreatment. © 2015 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.
2015-05-01
The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.
NASA Astrophysics Data System (ADS)
Ginting, Nurzainah; Pase, E.
2018-03-01
This study aims to examine the effect of incubation times of sago waste by local microorganism (MOL) “Ginta” to the crude protein and crude fiber content in relation to finding a cheap and good quality ruminants feed alternative. Incubation times were 0 hours to 144 hours. The data obtained were analyzed using Completely Randomize Design consisting of seven treatments and three replications. The result showed that the duration of incubation of sago waste by local microorganism (MOL) “Ginta” caused pH reduction, improved crude protein and crude fiber content. pH reduction was from 7.03 at 0 hour to 4.05 at 144 hours incubation. The highest increased in crude protein was H6U3 (5.58%) : 144 hours incubation and the lowest was H0U2 (3.22%) : 0 hour incubation while the highest crude fiber was H0U1 (19.99%) : 0 hour incubation and the lowest was H6U3 (18.23%) : 144 hours incubation. It can be concluded that incubation of sago waste triggered lower pH, higher crude protein and lower crude fiber than uninoculated. A recommendation could be given on using MOL ‘Ginta” in order to produce a cheap and good quality ruminans feed alternative.
Balasubramanian, Vimal Kumar; Rai, Krishan Mohan; Thu, Sandi Win; Hii, Mei Mei; Mendu, Venugopal
2016-01-01
The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality. PMID:27679939
Trujillo, Ana I; Bruni, María; Chilibroste, Pablo
2017-06-01
The present study aimed to compare wet sorghum distiller's grain (WSDG) with sorghum grain (SG) in terms of: (i) chemical composition; (ii) in situ rumen degradation kinetics of organic matter (OM) and neutral detergent fiber (NDF); (iii) crude protein (CP) sub-fractions; (iv) in situ disappearance at 12 and 48 h; and (v) energy values. The WSDG intestinal digestibility (ID) of undegradable crude protein (UCP) was compared to soybean meal (SBM). Compared to SG, WSDG exhibited: (i) lower (P < 0.01) dry matter and non-fiber carbohydrate content, whereas the other chemical components were higher (P < 0.01); (ii) higher (P < 0.01) degradation rates of OM and NDF and lower (P < 0.01) degradable fraction of OM and NDF; (iii) lower (P < 0.05) contents of CP sub-fractions A, B1 and B2, and higher (P < 0.05) contents of B3 and C; (iv) lower (P < 0.05) protein disappearance at 12 and 48 h and higher UCP; and (v) lower (P < 0.05) energy content. The ID of UCP for WSDG was lower (P < 0.05) compared to SBM. The WSDG as a supplement provides a good source of energy. To enable its use as a protein supplement, further studies should be performed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Impacts of Cellulose Fiber Particle Size and Starch Type on Expansion During Extrusion Processing.
Kallu, Sravya; Kowalski, Ryan J; Ganjyal, Girish M
2017-07-01
Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 μm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion. © 2017 Institute of Food Technologists®.
Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H.
2018-01-01
Abstract The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH2)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (p=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (p>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%. PMID:29805281
Protease and Hemicellulase Assisted Extraction of Dietary Fiber from Wastes of Cynara cardunculus
Santo Domingo, Cinthia; Soria, Marcelo; Rojas, Ana M.; Fissore, Eliana N.; Gerschenson, Lía N.
2015-01-01
The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0–200 μL and hemicellulase amounts of 0–200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol. PMID:25809605
NASA Astrophysics Data System (ADS)
Fauziyyah, F.; Panunggal, B.; Afifah, D. N.; Rustanti, N.; Anjani, G.
2018-02-01
Goat milk kefir fortified with vitamin D3 is expected to benefit individual with insulin resistance. Different vitamin D3 fortification time allegedly effect microbiological characteristic and nutrition quality of goat milk kefir due to its microbial growth curve, thus this study aimed to analyze those parameters. This study was an experimental research. This study contains five treatments (vitamin D3 fortification at 0, 6, 12, 18, or 24 hours of fermentation) and a group of control. Total lactic acid bacteria, vitamin D3, protein level, fat contain, crude fiber, viscosity, and pH was analyzed by Total Plate Count, spectrophotometry, Bradford method, Babcock method, gravimetric analysis, Ostwald method, and pH meter respectively. Time of vitamin D3 fortification significantly effect vitamin D3 content (p=0,021), fat content (p=0,001), crude fiber (p=0,0001), viscosity (p=0,010), and total lactic acid bacteria (p=0,048). The highest vitamin D3 content was found on the group fortified at 6 hours of fermentation. All treatment groups has lower fat content and crude fiber content than control group. Total LAB in all group meet the Codex standard (≥ 107 CFU/ml). Control group and fortification group at 24 hours of fermentation have higher viscosity than other groups. There was no significant difference found in goat milk kefir protein level (p=0,262) and pH (p=0,056) despite the difference of fortification time. Vitamin D3 fortification time effect vitamin D3 content, fat content, crude fiber, viscosity, and total lactic acid bacteria of goat milk kefir, but did not effect protein content and pH of goat milk kefir.
Mechanical properties of glass fiber-reinforced endodontic posts.
Cheleux, Nicolas; Sharrock, Patrick J
2009-10-01
Five types of posts from three different manufacturers (RTD, France, Carbotech, France and Ivoclar-Vivadent, Liechenstein) were subjected to three-point bending tests in order to obtain fatigue results, flexural strength and modulus. Transverse and longitudinal polished sections were examined by scanning electron microscopy and evaluated by computer-assisted image analysis. Physical parameters, including volume % of fibers, their dispersion index and coordination number, were calculated and correlated with mechanical properties. The weaker posts showed more fiber dispersion, higher resin contents, larger numbers of visible defects and reduced fatigue resistance. The flexural strength was inversely correlated with fiber diameter and the flexural modulus was weakly related to coordination number, volume % of fibers and dispersion index. The interfacial adhesion between the silica fibers and the resin matrix was observed to be of paramount importance.
Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung
Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less
NASA Astrophysics Data System (ADS)
Aseer, J. R.; Sankaranarayanasamy, K.
2017-12-01
Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.
Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.
Feng, Hongjie; Tian, Xinhui; Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie
2013-01-01
As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.
Iñiguez-Covarrubias, G; Díaz-Teres, R; Sanjuan-Dueñas, R; Anzaldo-Hernández, J; Rowell, R M
2001-04-01
The leaves of the agave plant are left in the field after harvesting the heads for tequila production. Different types of agave leaves were isolated, classified, and their content in the total plant determined. The usable fractions were collected and their properties determined. Of the total wet weight of the agave plant, 54% corresponds to the agave head, 32% corresponds to materials which could be usable for sugar and fiber production which leaves 14% of the wet plant without apparent utility. The fractions with higher total reducing sugars (TRS) content were the fresh fraction of partially dry leaves stuck to the head and the leaf bases with a TRS content of 16.1% and 13.1%, respectively. The highest TRS concentration (16-28%) is in the agave head which is used for tequila production. The leaves are 90-120 cm long and 8-12 cm wide and contain fiber bundles that are 23-52 cm long and 0.6-13 mm wide. The ultimate fiber length is approximately 1.6 mm with an average width of 25 microns. There are several types of leaf fibers that can be utilized depending on what part of the plant they come from and what product is desired. Agave leaf fibers were pulped using a soda pulping process and the pulp was hand formed into test sheets. Test sheets made from pulped agave leaf fibers had a breaking length comparable to paper made from both pine and eucalyptus fibers, but the tear index and burst index were lower than the other two papers.
Rakszegi, Marianna; Molnár, István; Lovegrove, Alison; Darkó, Éva; Farkas, András; Láng, László; Bedő, Zoltán; Doležel, Jaroslav; Molnár-Láng, Márta; Shewry, Peter
2017-01-01
Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata . This study showed that the addition of chromosomes 2U g , 4U g , 5U g , 7U g , 2M g , 5M g , and 7M g of Ae. geniculata and 3U b , 2M b , 3M b , and 7M b of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1U g and 1M g increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1U b and 6U b led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5U g , 7U g , and 1U b while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6U g , and 2M b . Chromosomes 5U g and 7M b also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.
Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping
2006-02-01
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.
2005-01-01
(Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Fermented pigeon pea (Cajanus cajan) ingredients in pasta products.
Torres, Alexia; Frias, J; Granito, M; Vidal-Valverde, C
2006-09-06
Pigeon pea (Cajanus cajan var. aroíto) seeds were fermented in order to remove antinutritional factors and to obtain functional legume flour to be used as pasta ingredients. Fermentation brought about a drastic reduction of alpha-galactosides (82%), phytic acid (48%), and trypsin inhibitor activity (39%). Fermented legume flours presented a notable increase of fat and total soluble available carbohydrates, a slight decrease of protein, dietary fiber, calcium, vitamin B2, vitamin E, and total antioxidant capacity, and a decrease of soluble dietary fiber, Na, K, Mg, and Zn contents. No changes were observed in the level of starch and tannins as a consequence of fermentation. The fermented flour was used as an ingredient to make pasta products in a proportion of 5, 10, and 12%. The supplemented pasta products obtained had longer cooking times, higher cooking water absorptions, higher cooking loss, and higher protein loss in water than control pasta (100% semolina). From sensory evaluations, fortified pasta with 5 and 10% fermented pigeon pea flour had an acceptability score similar to control pasta. Pasta supplemented with 10% fermented pigeon pea flour presented higher levels of protein, fat, dietary fiber, mineral, vitamin E, and Trolox equivalent antioxidant capacity than 100% semolina pasta and similar vitamins B1 and B2 contents. Protein efficiency ratios and true protein digestibility improved (73 and 6%, respectively) after supplementation with 10% fermented pigeon pea flour; therefore, the nutritional value was enhanced.
NASA Astrophysics Data System (ADS)
Buteica, Dan; Borbath, Istvan; Nicolae, Ionel Valentin; Turcu, Rodica; Marinica, Oana; Socoliuc, Vlad
2017-12-01
The use of magnetite nanoparticles to produce magnetic paper has a severe effect on the color of the paper, which is worth searching means to alleviate. Multicore-shell Fe3O4-SiO2 magnetic nanocomposites were synthesized. The nanocomposite powder was dispersed in cellulose pulp and paper was produced by dehydration on a Rapid Kothen machine. The nanocomposite retention efficiency was investigated in correlation with nanocomposite shell thickness, the resinous vs. deciduous fiber content of the cellulose pulp, the long and short fibers' grinding degree, the cationic starch and polymeric retention agent content of the pulp. The whiteness and magnetization was measured for all paper samples. It was proved that the use of multi-core shell magnetic nanocomposites leads to weaker paper coloring. This effect is enhanced by increasing the polymeric retention agent content of the pulp, in spite of higher composite content.
NASA Astrophysics Data System (ADS)
Pandey, Pankaj
The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.
NASA Astrophysics Data System (ADS)
Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia
2014-04-01
In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.
2013-01-01
Background Molecular markers allow rapid identification of biologically important germplasm/s having desired character. Previously we have reported a genotype specific molecular marker, Balco1128 [GenBank ID EU258678] of Bambusa balcooa containing an ORF (375 bp) having high similarity with receptor like cytoplasmic kinase of Arabidopsis and Oryza. Balco1128 was found to be associated only with bamboo genotypes endowed with high cellulose and low lignin contents of fibers. Under the above backdrop, it was necessitated to characterize this genetic marker for better understanding of its biological significance in context of superior quality fiber development. Results The full length cDNA (3342 bp) of BbKst, a serine-threonine protein kinase was isolated from B. balcooa comprising of six LRR domains at the N-terminal end and a kinase domain at the C-terminal end. Bacteria-expressed BbKst-kinase domain (3339 bp long) showed Mg2+ dependent kinase activity at pH 7.0, 28°C. Bioinformatics study followed by phospho-amino analysis further confirmed that BbKst-kinase belongs to the serine/threonine protein kinase family. Transcript analysis of the BbKst gene following RNA slot blot hybridization and qPCR revealed higher expression of BbKst during initiation and elongation stages of fiber development. Tissue specific expression studies showed much higher expression of BbKst transcript in stems and internodes of B. balcooa than in leaves and rhizomes. Southern analysis revealed single copy insertion of BbKst in most of the Agrobacterium mediated transgenic tobacco plants. Real-time PCR detected 150-200 fold enhanced expression of BbKst in different T1 tobacco lines than that of the vector transformed plants. Heterologous expression of BbKst under control of 35S promoter in transgenic tobacco showed high cellulose deposition in the xylem fibers. Number of xylary fibers was higher in transgenic T0 and T1 plants than that of empty-vector transformed tobacco plants offering enhanced mechanical strength to the transgenic plants, which was also substantiated by their strong upright phenotypes, significantly higher cellulose contents, flexibility coefficient, slenderness ratio, and lower Runkel ratio of the fibers. Conclusions This finding clearly demonstrated that BbKst gene (GenBank ID JQ432560) encodes a serine/threonine protein kinase. BbKst induced higher cellulose deposition/synthesis in transgenic tobacco plants, an important attribute of fiber quality bestowing additional strength to the plant. PMID:24015925
Cantalapiedra-Hijar, G; Lemosquet, S; Rodriguez-Lopez, J M; Messad, F; Ortigues-Marty, I
2014-01-01
Five mid-lactation multicatheterized Jersey cows were used in a 4×4 Latin square design to investigate whether the increase in milk N yield associated with diets rich in starch versus fiber could originate from changes in the splanchnic AA metabolism and if these changes depended upon the dietary crude protein (CP) content. Four isoenergetic diets were formulated to provide 2 different carbohydrate compositions [diets rich in starch (350g of starch and 310g of neutral detergent fiber/kg of dry matter) versus rich in fiber (45g of starch and 460g of neutral detergent fiber/kg of dry matter)] crossed by 2 different CP contents (12.0 vs. 16.5% CP). At the end of each treatment period, 6 hourly blood samples were collected from the portal and hepatic veins as well as the mesenteric artery to determine net nutrient fluxes across the portal-drained viscera (PDV), liver, and total splanchnic tissues. Dry matter and calculated energy intake as well as total absorbed energy were similar across treatments. However, the net portal appearance (NPA) of acetate, total volatile fatty acids, and β-hydroxybutyrate were higher with diets rich in fiber versus starch, whereas that of oxygen, glucose, butyrate, and insulin were lower. Concomitant to these changes, the percentage of N intake recovered as total AA (TAA) in the portal vein was lower for diets rich in fiber versus starch (42.3 vs. 51.4%, respectively), without, however, any difference observed in the NPA of the main AA used as energy fuels by the PDV (Glu, Gln, and Asp). Despite a higher NPA of TAA with starch versus fiber diets, no differences in the net hepatic flux of TAA, essential and nonessential AA were observed, resulting in a higher (+22%) net splanchnic release of AA and, hence, a greater (+7%) milk N yield. The net hepatic flux and hepatic fractional removal of none of the individual AA was affected as the main carbohydrate changed from fiber to starch, except for Gly and Lys, which were higher for the latter. After correcting for differences in NPA of TAA, the net hepatic uptake of TAA tended to be lower with starch versus fiber diets. The higher transfer of N from feed to milk with diets rich in starch is not the consequence of a direct sparing AA effect of glucogenic diets but rather the result of lower energy requirements by the PDV along with a higher microbial N flow to the duodenum. A better AA use by peripheral tissues with starch versus fiber diets was also hypothesized but more studies are warranted to clarify this issue. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Application of dietary fiber method AOAC 2011.25 in fruit and comparison with AOAC 991.43 method.
Tobaruela, Eric de C; Santos, Aline de O; Almeida-Muradian, Ligia B de; Araujo, Elias da S; Lajolo, Franco M; Menezes, Elizabete W
2018-01-01
AOAC 2011.25 method enables the quantification of most of the dietary fiber (DF) components according to the definition proposed by Codex Alimentarius. This study aimed to compare the DF content in fruits analyzed by the AOAC 2011.25 and AOAC 991.43 methods. Plums (Prunus salicina), atemoyas (Annona x atemoya), jackfruits (Artocarpus heterophyllus), and mature coconuts (Cocos nucifera) from different Brazilian regions (3 lots/fruit) were analyzed for DF, resistant starch, and fructans contents. The AOAC 2011.25 method was evaluated for precision, accuracy, and linearity in different food matrices and carbohydrate standards. The DF contents of plums, atemoyas, and jackfruits obtained by AOAC 2011.25 was higher than those obtained by AOAC 991.43 due to the presence of fructans. The DF content of mature coconuts obtained by the same methods did not present a significant difference. The AOAC 2011.25 method is recommended for fruits with considerable fructans content because it achieves more accurate values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gong, Lingxiao; Cao, Wenyan; Gao, Jie; Wang, Jing; Zhang, Huijuan; Sun, Baoguo; Yin, Meng
2018-04-01
The gut microbiota has recently become a new route for research at the intersection of diet and human health. The aim of this study was to investigate whether whole Tibetan hull-less barley (WHB) and refined Tibetan hull-less barley (RHB) caused differentiation of the fecal microbiota in vitro. The microbiota-accessible ingredients in the 2 barley samples were studied using an in vitro enzymatic digestion procedure. After in vitro digestion, insoluble dietary fiber, phenolic compounds, proteins, and β-glucans were 93.2%, 103.4%. 18.8%, and 10.2% higher provided by WHB flour as compared with RHB flour based on the same mass amount. However, due to the significantly higher content of insoluble dietary fiber, WHB digesta had lower percentage contents of fast fermentable substrates including dietary fiber and starch as compared with RHB digesta. The results of Next-generation sequencing of the bacterial 16SrRNA gene showed that both WHB and RHB fermentation had significantly promoted the growth of Bifidobacterium and inhibited the growth of pathogenic bacteria such as Dorea, Escherichia, Oscillopira, and Ruminococcus. Moreover, in response to WHB fermentation, the relative abundance of Bifidobacterium increased by 78.5% and 92.8% as compared with RHB and fructo-oligosaccharides (FOs). Both WHB and RHB are good sources of fermentable dietary fiber with the ability to yield high concentration of short chain fatty acids (SCFAs) as compared to FOs. However, the higher fraction of soluble fiber in RHB digesta increase higher amounts of SCFA compared with WHB digesta. Our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. Until now, only few reports have regarded the impact of in vitro digestion in components of whole grain with complex food matrix. Moreover, our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. © 2018 Institute of Food Technologists®.
Fat content in individual muscle fibers of lean and obese subjects.
Malenfant, P; Joanisse, D R; Thériault, R; Goodpaster, B H; Kelley, D E; Simoneau, J A
2001-09-01
To examine skeletal muscle intracellular triglyceride concentration in different fiber types in relation to obesity. Skeletal muscle fiber type distribution and intracellular lipid content were measured in vastus lateralis samples obtained by needle biopsy from lean and obese individuals. Seven lean controls (body mass index (BMI) 23.0+/-3.3 kg/m(2); mean+/-s.d.) and 14 obese (BMI 33.7+/-2.7 kg/m(2)) individuals; both groups included comparable proportions of men and women. Samples were histochemically stained for the identification of muscle fiber types (myosin ATPase) and intracellular lipid aggregates (oil red O dye). The number and size of fat aggregates as well as their concentration within type I, IIA and IIB muscle fiber types were measured. The cellular distribution of the lipid aggregates was also examined. The size of fat aggregates was not affected by obesity but the number of lipid droplets within muscle fibers was twice as abundant in obese compared to lean individuals. This was seen in type I (298+/-135 vs 129+/-75; obese vs lean, P<0.05), IIA (132+/-67 vs 79+/-29; P<0.05), and IIB (103+/-63 vs 51+/-13; P<0.05) muscle fibers. A more central distribution of lipid droplets was observed in muscle fibers of obese compared to lean subjects (27.2+/-5.7 vs 19.7+/-6.4%; P<0.05). The higher number of lipid aggregates and the disposition to a greater central distribution in all fiber types in obesity indicate important changes in lipid metabolism and/or storage that are fiber type-independent.
Cui, Wenguo; Li, Xiaohong; Zhu, Xinli; Yu, Guo; Zhou, Shaobing; Weng, Jie
2006-05-01
This study was aimed at assessing the potential use of electrospun fibers as drug delivery vehicles with focus on the different diameters and drug contents to control drug release and polymer fiber degradation. A drug-loaded solvent-casting polymer film was made with an average thickness of 100 microm for comparative purposes. DSC analysis indicated that electrospun fibers had a lower T(g) but higher transition enthalpy than solvent-casting polymer film due to the inner stress and high degree of alignment and orientation of polymer chains caused by the electrospinning process. Inoculation of paracetanol led to a further slight decrease in the T(g) and transition enthalpy. An in vitro drug release study showed that a pronounced burst release or steady release phase was initially observed followed by a plateau or gradual release during the rest time. Fibers with a larger diameter exhibited a longer period of nearly zero order release, and higher drug encapsulation led to a more significant burst release after incubation. In vitro degradation showed that the smaller diameter and higher drug entrapment led to more significant changes of morphologies. The electrospun fiber mat showed almost no molecular weight reduction, but mass loss was observed for fibers with small and medium size, which was characterized with surface erosion and inconsistent with the ordinarily polymer degrading form. Further wetting behavior analysis showed that the high water repellent property of electrospun fibers led to much slower water penetration into the fiber mat, which may contribute to the degradation profiles of surface erosion. The specific degradation profile and adjustable drug release behaviors by variation of fiber characteristics made the electrospun nonwoven mat a potential drug delivery system rather than polymer films and particles.
Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fiber of Upland Cotton
Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie
2013-01-01
Backgroud As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Experimental Design Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3′H, and GhF3′5′H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. Result The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Conclusions Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers. PMID:23527031
Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Kim, Hyun-Wook; Jeong, Jong-Youn; Kim, Cheon-Jei
2011-05-01
The technological effects of rice bran fiber on pork salt-soluble meat proteins in a model system were investigated. Rice bran fiber at levels of 0% (control), 0.1%, 0.5%, 1%, and 2% was added at the same time as salt-soluble meat protein to maintain similar moisture levels in all samples. Samples with increasing amounts of added rice bran fiber had higher pH, yellowness, sarcoplasmic and total protein solubilities. The moisture content, myofibrillar protein solubility and water holding capacity were the highest in the treatments containing with 1% rice bran fiber. However, the lightness and redness, textural properties decreased with increasing rice bran fiber levels. SDS gel electrophoresis did not reveal any changes in proteins regardless different rice bran fiber levels. The apparent viscosity indicated that improvements in water holding capacity and decreased texture due to added rice bran fiber. Copyright © 2010 The American Meat Science Association. All rights reserved.
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Bain, James L. W.; Haas, Arthur L.; Ellis, Stanley
1988-01-01
Solid-phase immunochemical methods were employed to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscles. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.
Kristensen, Marlene D.; Bendsen, Nathalie T.; Christensen, Sheena M.; Astrup, Arne; Raben, Anne
2016-01-01
Background Recent nutrition recommendations advocate a reduction in protein from animal sources (pork, beef) because of environmental concerns. Instead, protein from vegetable sources (beans, peas) should be increased. However, little is known about the effect of these vegetable protein sources on appetite regulation. Objective To examine whether meals based on vegetable protein sources (beans/peas) are comparable to meals based on animal protein sources (veal/pork) regarding meal-induced appetite sensations. Design In total, 43 healthy, normal-weight, young men completed this randomized, double-blind, placebo-controlled, three-way, cross-over meal test. The meals (all 3.5 MJ, 28 energy-% (E%) fat) were either high protein based on veal and pork meat, HP-Meat (19 E% protein, 53 E% carbohydrate, 6 g fiber/100 g); high protein based on legumes (beans and peas), HP-Legume (19 E% protein, 53 E% carbohydrate, 25 g fiber/100 g); or low-protein based on legumes, LP-Legume (9 E% protein, 62 E% carbohydrate, 10 g fiber/100 g). Subjective appetite sensations were recorded at baseline and every half hour using visual analog scales until the ad libitum meal 3 h after the test meal. Repeated measurements analyses and summary analyses were performed using ANCOVA (SAS). Results HP-Legume induced lower composite appetite score, hunger, prospective food consumption, and higher fullness compared to HP-Meat and LP-Legume (p<0.05). Furthermore, satiety was higher after HP-Legume than HP-Meat (p<0.05). When adjusting for palatability, HP-Legume still resulted in lower composite appetite scores, hunger, prospective consumption, and higher fullness compared to HP-Meat (p<0.05). Furthermore, HP-Legume induced higher fullness than LP-Legume (p<0.05). A 12% and 13% lower energy intake, respectively, was seen after HP-Legume compared to HP-Meat or LP-Legume (p<0.01). Conclusion Vegetable-based meals (beans/peas) influenced appetite sensations favorably compared to animal-based meals (pork/veal) with similar energy and protein content, but lower fiber content. Interestingly, a vegetable-based meal with low protein content was as satiating and palatable as an animal-based meal with high protein content. PMID:27765144
Kristensen, Marlene D; Bendsen, Nathalie T; Christensen, Sheena M; Astrup, Arne; Raben, Anne
2016-01-01
Recent nutrition recommendations advocate a reduction in protein from animal sources (pork, beef) because of environmental concerns. Instead, protein from vegetable sources (beans, peas) should be increased. However, little is known about the effect of these vegetable protein sources on appetite regulation. To examine whether meals based on vegetable protein sources (beans/peas) are comparable to meals based on animal protein sources (veal/pork) regarding meal-induced appetite sensations. In total, 43 healthy, normal-weight, young men completed this randomized, double-blind, placebo-controlled, three-way, cross-over meal test. The meals (all 3.5 MJ, 28 energy-% (E%) fat) were either high protein based on veal and pork meat, HP-Meat (19 E% protein, 53 E% carbohydrate, 6 g fiber/100 g); high protein based on legumes (beans and peas), HP-Legume (19 E% protein, 53 E% carbohydrate, 25 g fiber/100 g); or low-protein based on legumes, LP-Legume (9 E% protein, 62 E% carbohydrate, 10 g fiber/100 g). Subjective appetite sensations were recorded at baseline and every half hour using visual analog scales until the ad libitum meal 3 h after the test meal. Repeated measurements analyses and summary analyses were performed using ANCOVA (SAS). HP-Legume induced lower composite appetite score, hunger, prospective food consumption, and higher fullness compared to HP-Meat and LP-Legume ( p <0.05). Furthermore, satiety was higher after HP-Legume than HP-Meat ( p <0.05). When adjusting for palatability, HP-Legume still resulted in lower composite appetite scores, hunger, prospective consumption, and higher fullness compared to HP-Meat ( p <0.05). Furthermore, HP-Legume induced higher fullness than LP-Legume ( p <0.05). A 12% and 13% lower energy intake, respectively, was seen after HP-Legume compared to HP-Meat or LP-Legume ( p <0.01). Vegetable-based meals (beans/peas) influenced appetite sensations favorably compared to animal-based meals (pork/veal) with similar energy and protein content, but lower fiber content. Interestingly, a vegetable-based meal with low protein content was as satiating and palatable as an animal-based meal with high protein content.
A randomized controlled trial of low carbohydrate and low fat/high fiber diets for weight loss.
Baron, J A; Schori, A; Crow, B; Carter, R; Mann, J I
1986-01-01
Among 135 overweight subjects, we conducted a three-month randomized controlled trial of two sets of dietary advice, each providing approximately 1,000 calories per day but differing in fiber, carbohydrate, and fat content. Information on weight and eating habits, as well as measures of lipoprotein and glucose metabolism were obtained at entry and one and three months later. We found that dieters given low carbohydrate/low fiber dietary advice tended to lose more weight than those given a higher carbohydrate/higher fiber regimen (5.0 vs 3.7 kg on average at three months). This pattern was particularly marked among women, and among participants who were under age 40 or of lower social class. There were no differences between the diet groups in the proportion complaining of hunger but, in general, members of the low carbohydrate group complained of more problems in dieting. There were only minor differences in the serum lipoprotein patterns during the diet period. In view of these results, we believe previous claims of the benefits of fiber for weight loss may have been overstated. PMID:3021006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, G.J.; Brown, G.G.; Waterman, D.D.
The feasibility of prestressing commercial boron/epoxy and graphite/epoxy prepreg material to higher strengths and lower property dispersions is demonstrated. Its practical application as an on-line process for improving quality levels is possible with minor modifications to current experimental practice. The mechanics of the bendstressing method affects a controlled alteration in the fiber defect content to the extent that composite improvements can be achieved approaching the inherent fiber quality with dispersions in properties reduced to the 1 to 2% range. (Author, modified-PL)
16 CFR 303.43 - Fiber content tolerances.
Code of Federal Regulations, 2010 CFR
2010-01-01
... as to fiber content percentages if the percentages by weight of any fibers present in the total fiber... stated on the label in excess of 3 percent of the total fiber weight of the product. For example, where... fiber present may vary from a minimum of 37 percent of the total fiber weight of such product to a...
Wang, Hong Liang; Shi, Meng; Xu, Xiao; Ma, Xiao Kang; Liu, Ling; Piao, Xiang Shu
2017-07-01
Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg) were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg) were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05) than those in French barley but did not differ from Australian barley. Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.
Nielsen, Lone V; Kristensen, Marlene D; Klingenberg, Lars; Ritz, Christian; Belza, Anita; Astrup, Arne; Raben, Anne
2018-01-16
Higher-protein meals decrease hunger and increase satiety compared to lower-protein meals. However, no consensus exists about the different effects of animal and vegetable proteins on appetite. We investigated how a meal based on vegetable protein (fava beans/split peas) affected ad libitum energy intake and appetite sensations, compared to macronutrient-balanced, iso-caloric meals based on animal protein (veal/pork or eggs). Thirty-five healthy men were enrolled in this acute cross-over study. On each test day, participants were presented with one of four test meals (~3550 kilojoules (kJ) 19% of energy from protein), based on fava beans/split peas (28.5 g fiber), pork/veal or eggs supplemented with pea fiber to control for fiber content (28.5 g fiber), or eggs without supplementation of fiber (6.0 g fiber). Subjective appetite sensations were recorded at baseline and every half hour until the ad libitum meal three hours later. There were no differences in ad libitum energy intake across test meals ( p > 0.05). Further, no differences were found across meals for hunger, satiety, fullness, prospective food consumption, or composite appetite score (all p > 0.05). Iso-caloric, macronutrient-balanced, fiber-matched meals based on vegetable protein (fava beans/split peas) or animal protein (veal/pork or eggs) had similar effects on ad libitum energy intake and appetite sensations.
Nielsen, Lone V.; Kristensen, Marlene D.; Klingenberg, Lars; Belza, Anita
2018-01-01
Higher-protein meals decrease hunger and increase satiety compared to lower-protein meals. However, no consensus exists about the different effects of animal and vegetable proteins on appetite. We investigated how a meal based on vegetable protein (fava beans/split peas) affected ad libitum energy intake and appetite sensations, compared to macronutrient-balanced, iso-caloric meals based on animal protein (veal/pork or eggs). Thirty-five healthy men were enrolled in this acute cross-over study. On each test day, participants were presented with one of four test meals (~3550 kilojoules (kJ) 19% of energy from protein), based on fava beans/split peas (28.5 g fiber), pork/veal or eggs supplemented with pea fiber to control for fiber content (28.5 g fiber), or eggs without supplementation of fiber (6.0 g fiber). Subjective appetite sensations were recorded at baseline and every half hour until the ad libitum meal three hours later. There were no differences in ad libitum energy intake across test meals (p > 0.05). Further, no differences were found across meals for hunger, satiety, fullness, prospective food consumption, or composite appetite score (all p > 0.05). Iso-caloric, macronutrient-balanced, fiber-matched meals based on vegetable protein (fava beans/split peas) or animal protein (veal/pork or eggs) had similar effects on ad libitum energy intake and appetite sensations. PMID:29337861
Optimizing the use of bamboo biomass for energy and fiber from small-scale plantations in Thailand
NASA Astrophysics Data System (ADS)
Darabant, András; Haruthaithanasan, Maliwan; Atkla, Wanida; Phudphong, Tepa; Thanavat, Eakpong; Haruthaithanasan, Kasem
2014-05-01
Farmers in Thailand have recently started to establish bamboo plantations on marginal land, aiming at utilizing them for bioenergy and fiber. On two sites in eastern Thailand, first-year yield data of Bambusa beecheyana and Dendrocalamus membranaceus plantations indicated vast differences between sites (1 vs. 18 t*ha-1*a-1), but none between species. In terms of feedstock quality for power plants, High Heating Values (19.2 to 19.5 MJ*t-1) did not, but culm moisture contents did differ between species (51% for B. beecheyana vs. 45% for D. membranaceus), and culm sections (38% wet base at top vs. 55% at bottom). This gradient was stronger in D. membranaceus, which additionally showed significantly higher moisture content in internodes, as compared to nodes (46% vs. 43%). Analysis of fiber yield and quality indicated better suitability of D. membranaceus as opposed to B. beecheyana to be used in the textile industry. Our results provide guidance on increasing value addition to bamboo biomass by optimizing the allotment of different species and biomass compartments to different uses (bioenergy, fibers).
Natural cellulose fibers from soybean straw.
Reddy, Narendra; Yang, Yiqi
2009-07-01
This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.
Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G
NASA Technical Reports Server (NTRS)
Tavakol, Morteza; Roy, Roland R.; Kim, Jung A.; Zhong, Hui; Hodgson, John A.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Edgerton, V. Reggie
2002-01-01
BACKGROUND: Fiber atrophy and an increase in the percentage of fast fibers have been observed in Rhesus leg muscles after spaceflight. Hypothesis: Hypergravity will result in muscle fiber hypertrophy and an increase in the percentage of slow fibers. METHODS: Open muscle biopsies were obtained from Rhesus soleus, medial gastrocnemius (MG), and tibialis anterior (TA) muscles before and after 14 d of centrifugation (2 G) and in time-matched controls. Cage activity levels were measured by telemetry. RESULTS: Based on monoclonal antibody binding for myosin heavy chains (MHC), the fastest region of soleus contained a higher proportion of type I+II (27 vs. 13%) and had a tendency for a lower proportion of type I (38 vs. 61%, p = 0.10) fibers after than before centrifugation. There was a higher proportion of type I+II fibers in post- vs. pre-2 G (10 vs. 0.6%) MG biopsies. Fiber type distribution and MHC composition were unaffected in the TA. Overall, mean fiber sizes were unaffected by centrifugation. Average cage activity levels were 36% lower during than before 2 G. CONCLUSIONS: Our hypothesis was rejected. The changes in the proportion of fibers expressing type I MHC are the reverse of that expected with chronic loading of extensors and, paradoxically, are similar to changes observed with chronic unloading, such as occurs during spaceflight, in this primate model. The data are consistent with the observed decrease in total daily activity levels.
Chin-Yin Hwang; Chung-Yun Hse; Elvin T. Choong
1999-01-01
Chemical compositions and fiber measurement of virgin and recycled fibers from three sources were determined. Results revealed that virgin southern pine fiber had highest alcohol-benzene extractive and lignin contents and lowest holo- and alpha-cellulose content among the three fiber types. Fiber length distribution of virgin fiber was less sensitive to disintegration...
Wang, Nuohan; Ma, Jianjiang; Pei, Wenfeng; Wu, Man; Li, Haijing; Li, Xingli; Yu, Shuxun; Zhang, Jinfa; Yu, Jiwen
2017-03-01
Lysophosphatidic acid acyltransferase (LPAAT) encoded by a multigene family is a rate-limiting enzyme in the Kennedy pathway in higher plants. Cotton is the most important natural fiber crop and one of the most important oilseed crops. However, little is known on genes coding for LPAATs involved in oil biosynthesis with regard to its genome organization, diversity, expression, natural genetic variation, and association with fiber development and oil content in cotton. In this study, a comprehensive genome-wide analysis in four Gossypium species with genome sequences, i.e., tetraploid G. hirsutum- AD 1 and G. barbadense- AD 2 and its possible ancestral diploids G. raimondii- D 5 and G. arboreum- A 2 , identified 13, 10, 8, and 9 LPAAT genes, respectively, that were divided into four subfamilies. RNA-seq analyses of the LPAAT genes in the widely grown G. hirsutum suggest their differential expression at the transcriptional level in developing cottonseeds and fibers. Although 10 LPAAT genes were co-localised with quantitative trait loci (QTL) for cottonseed oil or protein content within a 25-cM region, only one single strand conformation polymorphic (SSCP) marker developed from a synonymous single nucleotide polymorphism (SNP) of the At-Gh13LPAAT5 gene was significantly correlated with cottonseed oil and protein contents in one of the three field tests. Moreover, transformed yeasts using the At-Gh13LPAAT5 gene with the two sequences for the SNP led to similar results, i.e., a 25-31% increase in palmitic acid and oleic acid, and a 16-29% increase in total triacylglycerol (TAG). The results in this study demonstrated that the natural variation in the LPAAT genes to improving cottonseed oil content and fiber quality is limited; therefore, traditional cross breeding should not expect much progress in improving cottonseed oil content or fiber quality through a marker-assisted selection for the LPAAT genes. However, enhancing the expression of one of the LPAAT genes such as At-Gh13LPAAT5 can significantly increase the production of total TAG and other fatty acids, providing an incentive for further studies into the use of LPAAT genes to increase cottonseed oil content through biotechnology.
Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days
NASA Technical Reports Server (NTRS)
Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.
1998-01-01
The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.
Konokhova, Yana; Spendiff, Sally; Jagoe, R Thomas; Aare, Sudhakar; Kapchinsky, Sophia; MacMillan, Norah J; Rozakis, Paul; Picard, Martin; Aubertin-Leheudre, Mylène; Pion, Charlotte H; Bourbeau, Jean; Hepple, Russell T; Taivassalo, Tanja
2016-01-01
Low mitochondrial content and oxidative capacity are well-established features of locomotor muscle dysfunction, a prevalent and debilitating systemic occurrence in patients with chronic obstructive pulmonary disease (COPD). Although the exact cause is not firmly established, physical inactivity and oxidative stress are among the proposed underlying mechanisms. Here, we assess the impact of COPD pathophysiology on mitochondrial DNA (mtDNA) integrity, biogenesis, and cellular oxidative capacity in locomotor muscle of COPD patients and healthy controls. We hypothesized that the high oxidative stress environment of COPD muscle would yield a higher presence of deletion-containing mtDNA and oxidative-deficient fibers and impaired capacity for mitochondrial biogenesis. Vastus lateralis biopsies were analyzed from 29 COPD patients and 19 healthy age-matched controls for the presence of mtDNA deletions, levels of oxidatively damaged DNA, mtDNA copy number, and regulators of mitochondrial biogenesis as well the proportion of oxidative-deficient fibers (detected histologically as cytochrome c oxidase-deficient, succinate dehydrogenase positive (COX(-)/SDH(+) )). Additionally, mtDNA copy number and mitochondrial transcription factor A (TFAM) content were measured in laser captured COX(-)SDH(+) and normal single fibers of both COPD and controls. Compared to controls, COPD muscle exhibited significantly higher levels of oxidatively damaged DNA (8-hydroxy-2-deoxyguanosine (8-OHdG) levels = 387 ± 41 vs. 258 ± 21 pg/mL) and higher prevalence of mtDNA deletions (74 vs. 15 % of subjects in each group), which was accompanied by a higher abundance of oxidative-deficient fibers (8.0 ± 2.1 vs. 1.5 ± 0.4 %). Interestingly, COPD patients with mtDNA deletions had higher levels of 8-OHdG (457 ± 46 pg/mL) and longer smoking history (66.3 ± 7.5 years) than patients without deletions (197 ± 29 pg/mL; 38.0 ± 7.3 years). Transcript levels of regulators of mitochondrial biogenesis and oxidative metabolism were upregulated in COPD compared to controls. However, single fiber analyses of COX(-)/SDH(+) and normal fibers exposed an impairment in mitochondrial biogenesis in COPD; in healthy controls, we detected a marked upregulation of mtDNA copy number and TFAM protein in COX(-)/SDH(+) compared to normal fibers, reflecting the expected compensatory attempt by the oxidative-deficient cells to increase energy levels; in contrast, they were similar between COX(-)/SDH(+) and normal fibers in COPD patients. Taken together, these findings suggest that although the signaling factors regulating mitochondrial biogenesis are increased in COPD muscle, impairment in the translation of these signals prevents the restoration of normal oxidative capacity. Single fiber analyses provide the first substantive evidence that low muscle oxidative capacity in COPD cannot be explained by physical inactivity alone and is likely driven by the disease pathophysiology.
Rocha-Estrada, J G; Córdova-Murueta, J H; García-Carreño, F L
2010-10-01
Functional properties of protein from mantle and fin of the jumbo squid Dosidicus gigas were explained based on microscopic muscle fiber and protein fractions profiles as observed in SDS-PAGE. Fin has higher content of connective tissue and complex fiber arrangement, and we observed higher hardness of fin gels as expected. Myosin heavy chain (MHC) was found in sarcoplasmic, myofibril and soluble-in-alkali fractions of mantle and only in sarcoplasmic and soluble-in-alkali fractions of fin. An additive effect of salt concentration and pH affected the solubility and foaming properties. Fin and mantle proteins yielded similar results in solubility tests, but significant differences occurred for specific pH and concentrations of salt. Foaming capacity was proportional to solubility; foam stability was also affected by pH and salt concentration. Hardness and fracture strength of fin gels were significantly higher than mantle gels; gels from proteins of both tissues reached the highest level in the folding test. Structural and molecular properties, such as MHC and paramyosin solubility, arrangement of muscle fibers and the content of connective tissue were useful to explain the differences observed in these protein properties. High-strength gels can be formed from squid mantle or fin muscle. Fin displayed similar or better properties than mantle in all tests.
NASA Astrophysics Data System (ADS)
Chella Gifta, C.; Prabavathy, S.
2018-05-01
This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.
Wang, Hong; Wang, Junhong; Qiu, Caisheng; Ye, Yutong; Guo, Xinbo; Chen, Gu; Li, Tong; Wang, Yufu; Fu, Xiong; Liu, Rui Hai
2017-01-01
Flaxseed (Linum usitatissimum L.) is a rich source of nutritive and bioactive compounds. The research evaluated the disparity in phytochemical profiles along with total and cellular antioxidant activities between oil and fiber flaxseeds. There were significant differences in total phenolics, total flavonoids and antioxidant activities among the six cultivars of fiber and oil flaxseed, respectively. Four phytochemical compounds including caffeic acid, p-coumaric acid and ferulic acid, and secoisolariciresinol diglucoside (SDG) were identified and quantified in the cultivars of oil and fiber flaxseed by HPLC analysis. Notably, the average of total phenolic and flavonoid contents, along with total antioxidant activities between fiber and oil flaxseeds were not different significantly; even the cellular antioxidant activity of fiber flaxseed was superior to oil flaxseed. These results suggest that fiber flaxseeds would be valuable candidates as functional products and dietary supplements production owing to the higher bioactive values as well as oil flaxseeds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gouspillou, Gilles; Sgarioto, Nicolas; Norris, Brandon; Barbat-Artigas, Sébastien; Aubertin-Leheudre, Mylène; Morais, Jose A.; Burelle, Yan; Taivassalo, Tanja; Hepple, Russell T.
2014-01-01
PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles. PMID:25121500
Fracture behavior of glass fiber reinforced polymer composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avci, A.; Arikan, H.; Akdemir, A
2004-03-01
Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less
Braga, Monick Cristina; Vieira, Ellen Caroline Silvério; de Oliveira, Tatianne Ferreira
2018-11-01
This study evaluated the physicochemical characterization of Curcuma longa L. leaves with respect to proximate composition, mineral content, the presence of antinutritional factors, content of bioactive compounds and antioxidant capacity, and color measurements of leaves in natura and leaves subjected to microwave drying, oven drying, and freeze-drying methods. The proximate composition showed appreciable levels of protein (39.5 g.100 g -1 ), carbohydrates (44.74 g.100 g -1 ), total fiber (34.47 g.100 g -1 ), soluble fiber (22.65 g.100 g -1 ), insoluble fiber (11.81 g.100 g -1 ), ash (13.81 g.100 g -1 ), and low lipid contents (2.47 g.100 g -1 ). No cyanogenic compounds were detected in both samples. Freeze-drying stood out as the method that led to the greatest reductions of the bioactive compounds (33.12-73.86%, dry basis) and antioxidant capacity when compared to the leaves in natura. Microwave drying was the preservation method that produced dry leaves with higher content of bioactive compounds and antioxidant capacity. Therefore, microwave drying produced dehydrated Curcuma longa L. leaves with the highest bioactive compounds and antioxidant activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kamphayae, Sukanya; Kumagai, Hajime; Bureenok, Smerjai; Narmseelee, Ramphrai; Butcha, Patima
2017-04-01
This study aimed to evaluate the effect of liquid brewer's yeast (LBY) addition on chemical composition and fermentation quality of mixture of LBY and cassava pulp (CVP) with rice straw (RS) in different ratios during preservation periods. Four mixtures of LBY, CVP and RS were made, that is mixture ratio of LBY : CVP : RS of 0% LBY, 20% LBY, 35% LBY and 50% LBY were 0:70:30, 20:50:30, 35:35:30 and 50:20:30 as fresh matter, respectively. The bags were opened at weeks 0, 1, 2, 4 and 8 after storage. The contents of dry matter, organic matter, crude protein (CP), ether extract (EE), neutral detergent fiber and acid detergent fiber ranged 36.4-40.0, 88.9-90.8, 4.0-12.0, 1.1-1.3, 58.8-61.6 and 37.6-40.0, respectively, and the contents of CP and EE increased and the other components decreased in proportion to LBY inclusion (P < 0.01). 50% LBY had the highest (P < 0.05) pH (4.81) and ammonia nitrogen per total nitrogen (NH 3 -N/TN) (7.40%) and the lowest V-score (90.3). Propionic and butyric acid contents were 0.01% or lower in each mixture and storage period. There were rapid pH decrease and NH 3 -N/TN increase during the first week of the storage period. The increases of NH 3 -N/TN and acetic acid content and decreases of pH, lactic acid content and V-score during the preservation were more drastic as LBY inclusion increased. Although higher proportion of LBY produced higher CP and lower fiber contents in the mixture, attention should be paid for the reduction of fermentation quality during longer storage periods. © 2016 Japanese Society of Animal Science.
Adrian, Julie Ann Luiz; Arancon, Norman Q; Mathews, Bruce W; Carpenter, James R
2012-10-24
The nutrient composition of common guava, Psidium guajava L., and strawberry guava (waiwi), Psidium cattleianum var. lucidum, tree parts and fruits was determined during three seasons for six locations in Hawaii to assess guava as a potential feed for cattle. All guava plant parts were higher (p < 0.001) in crude protein than waiwi, but there were no differences in the fiber and energy densities for bark, shoots, and branches. Guava leaves were higher in fiber and had lower energy densities (p < 0.05) than waiwi. Ripe and breaker stage fruits were lower (p < 0.05) in fiber, similar in protein (CP), and higher (p < 0.05) in energy density than immature fruits. Guava fruits were higher in CP (p < 0.05) and organic matter (p < 0.001) and lower in ash (p < 0.001) than waiwi fruits. The primary nutritional concern with guava is low in vitro organic matter digestibility as compared to tropical forage grasses; therefore, it is not recommended as a feedstock for livestock.
Luo, Gang; Angelidaki, Irini
2013-04-01
Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease of bicarbonate concentration were related with the increase of the H2 flow rate. The CH4 content increased from 78.4 % to 90.2 % with the increase of the H2 flow rate from 930 to 1,440 ml/(l day), while the pH in the reactor remained below 8.0. An even higher CH4 content (96.1 %) was achieved when the H2 flow rate was increased to 1,760 ml/(l day); however, the pH increased to around 8.3 due to bicarbonate consumption which hampered the anaerobic process. The biofilm formed on the HFM was found not to be beneficial for the process since it increased the resistance of H2 diffusion to the liquid. The study also demonstrated that the biofilm formed on the membrane only contributed 22-36 % to the H2 consumption, while most of the H2 was consumed by the microorganisms in the liquid phase.
Nutritive value and fermentation quality of palisadegrass and stylo mixed silages.
da Silva, Juliana S; Ribeiro, Karina G; Pereira, Odilon G; Mantovani, Hilário C; Cecon, Paulo R; Pereira, Rosana C; Silva, Janaina de L
2018-01-01
The nutritive value and fermentation quality of palisadegrass (Brachiaria brizantha cv. Xaraes) and stylo (Stylosanthes capitata × S. macrocephala cv. Campo Grande) mixed silages were evaluated. The experiment was analyzed in a factorial scheme (5 × 2) in a completely randomized design using increasing levels of stylo (0, 25, 50, 75 and 100% on a fresh matter basis) on palisadegrass silages, with and without microbial inoculants (MI). With the increased ratio of stylo in mixed silages, dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and lignin content increased in silages. The presence of MI promoted lower DM content, and higher neutral detergent fiber corrected for ash and protein, ADF and lignin content. The acid detergent insoluble nitrogen content and the lactic acid bacteria populations were not affected by treatments. The in vitroDM digestibility was affected by the interaction of levels of the stylo and MI. The pH, NH 3 -N/total nitrogen and butyric acid concentrations decreased with increasing levels of stylo. Better nutritive value and quality of fermentation was found in the silage containing higher proportions of this stylo mixed with palisadegrass. The microbial inoculant evaluated did not alter the nutritive value or quality of the fermentation of the silages in this experiment. © 2017 Japanese Society of Animal Science.
Özkaya, H; Özkaya, B; Duman, B; Turksoy, S
2017-07-19
Fermentation and hydrothermal methods were tested to reduce the phytic acid (PA) content of oat bran, and the effects of these methods on the dietary fiber (DF) and total phenolic (TP) contents as well as the antioxidant activity (AA) were also investigated. Fermentation with 6% yeast and for 6 h resulted in 88.2% reduction in PA content, while it only resulted in 32.5% reduction in the sample incubated for 6 h without yeast addition. The PA loss in autoclaved oat bran sample (1.5 h, pH 4.0) was 95.2% while it was 41.8% at most in the sample autoclaved without pH adjustment. In both methods, soluble, insoluble, and total DF contents of samples were remarkably higher than the control samples. Also for TP in the oat bran samples, both processes led to 17% and 39% increases, respectively, while AA values were 8% and 15%, respectively. Among all samples, the autoclaving process resulted in the lowest PA and the greatest amount of bioactive compounds.
Kirkham, R.R.
1984-08-03
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Bustamante-García, Marifé; Martinez-Feliu, Montserrat; Servan, Karin; Mayta-Tristán, Percy
2015-10-01
To assess supply and nutritional composition of the salads offered as an entrée main course in the food courts of the shopping centers in Lima, Peru. The menus of all food franchises present in the food courts of the eleven shopping centers of Lima were reviewed. The nutritional composition of salads offered as an entrée were calculated for calories, protein content, carbohydrates, fats, cholesterol, fiber and sodium, and the adequacy of intake for a dinner (30% of a diet of 2000 kcal). Salads as entrées accounted for 4.7% of the supply, and only 7 out of 17 franchises offered at least one salad. The average cost of the salads was higher than the other dishes ($5.3 vs $4.7; p<0.001). The average calorie content was 329 kcal and 2.7 g fiber; in relation to a dinner, we found a high percentage of adequacy for protein (172.9%), cholesterol (121.0%), and low adequacy for calories (54.8%), carbohydrates (23.1%) and fiber (36.4%). The salads that are offered in food courts in the shopping centers of Lima are scarce and more expensive, have little fiber content and are high in cholesterol. Strategies should be reviewed to improve the accessibility of quality salads offered in areas where only fast food is offered.
NASA Astrophysics Data System (ADS)
Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.
2016-04-01
In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.
Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber
USDA-ARS?s Scientific Manuscript database
The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...
Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza
2011-09-14
Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process.
McMillan, Elliott M; Quadrilatero, Joe
2011-03-01
Increased skeletal muscle apoptosis has been associated with a number of conditions including aging, disuse, and cardiovascular disease. Skeletal muscle is a complex tissue comprised of several fiber types with unique properties. To date, no report has specifically examined apoptotic differences across muscles or fiber types. Therefore, we measured several apoptotic indices in healthy rat red (RG) and white gastrocnemius (WG) muscle, as well as examined the expression of several key proteins across fiber types in a mixed muscle (mixed gastrocnemius). The protein content of apoptosis-inducing factor (AIF), apoptosis repressor with caspase recruitment domain (ARC), Bax, Bcl-2, cytochrome c, heat shock protein 70 (Hsp70), and second mitochondria-derived activator of caspases (Smac) were significantly (P < 0.05) higher in RG vs. WG muscle. Cytosolic AIF, cytochrome c, and Smac as well as nuclear AIF were also significantly (P < 0.05) higher in RG compared with WG muscle. In addition, ARC protein expression was related to muscle fiber type and found to be highest (P < 0.001) in type I fibers. Similarly, AIF protein expression was differentially expressed across fibers; however, AIF was correlated to oxidative potential (P < 0.001). Caspase-3, -8, and -9 activity, calpain activity, and DNA fragmentation (a hallmark of apoptosis) were also significantly higher (P < 0.05) in RG compared with WG muscle. Furthermore, total muscle reactive oxygen species generation, as well as Ca(2+)-induced permeability transition pore opening and loss of membrane potential in isolated mitochondria were greater in RG muscle. Collectively, these data suggest that a number of apoptosis-related indices differ between muscles and fiber types. Given these findings, muscle and fiber-type differences in apoptotic protein expression, signaling, and susceptibility should be considered when studying cell death processes in skeletal muscle.
Chitosan Nanofibers for Transbuccal Insulin Delivery
Lancina, Michael G.; Shankar, Roopa Kanakatti; Yang, Hu
2017-01-01
Purpose In this work, we aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Methods Chitosan was electrospun into nanofibers using poly (ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Results Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Conclusions Taken together, our work demonstrates chitosan based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. PMID:28000386
NASA Astrophysics Data System (ADS)
Abdullah, Alida; Jamaludin, Shamsul Baharin; Anwar, Mohamed Iylia; Noor, Mazlee Mohd; Hussin, Kamarudin
This project was conducted to produce a cement panel with the addition of treated and untreated coconut fiber in cement panel. Coconut fiber was added to replace coarse aggregate (sand) in this cement panel. In this project, the ratios used to design the mixture were 1:1:0, 1:0.97:0.03, 1:0.94:0.06, 1:0.91:0.09 (cement: sand: coconut fiber). The water cement ratio was constant at 0.55. The sizes of sample tested were, 160 mm x 40 mm x 40 mm for compression test, and 100 mm x 100 mm x 40 mm for density, moisture content and water absorption tests. After curing samples for 28 days, it was found that the addition of coconut fiber, further increase in compressive strength of cement panel with untreated coconut fiber. Moisture content of cement panel with treated coconut fiber increased with increasing content of coconut fiber whereas water absorption of cement panel with untreated coconut fiber increased with increasing content of coconut fiber. The density of cement panel decreased with the addition of untreated and treated coconut fiber.
Radočaj, Olga; Dimić, Etelka; Tsao, Rong
2014-03-01
A mixture, simplex centroid, 2 components experimental design was used to evaluate the addition of hemp seed oil press-cake and decaffeinated green tea leaves, as functional ingredients to assess nutritional characteristics and antioxidant properties of gluten-free crackers. All samples with added hemp flour had much better nutritional qualities than the brown rice flour crackers in terms of higher protein, crude fibers, minerals, and essential fatty acids content. Likewise, all samples with added decaffeinated green tea leaves had much better antioxidant properties than crackers with no added green tea leaves. All crackers with added hemp flour had a significantly increased fiber content (39% to 249%) and decreased carbohydrate content (8.4% to 42.3%), compared to the brown rice flour crackers. All samples had antioxidant properties, even without the addition of green tea leaves. Optimization of the responses was conducted based on the maximized values for protein, fibers, omega-3 fatty acids content, as well as for the antioxidant activity and overall score. The suggested values for the addition of the hemp oil press-cake was 20% (total flour weight) with 4 g of decaffeinated green tea leaves that would provide protein content of 14.1 g/100 g; fibers content of 8.4 g/100 g; omega-3 fatty acids content of 3.2 g/100 g; antioxidant activity measured via 2,2-diphenyl-1-picrylhydrazyl value of 30.3 μmol TE/g d.w.; and an overall score of 8.9. This formulation has demonstrated potential application in the baking industry and marketing of these gluten-free crackers as a value-added functional product. Hemp seed oil press-cake as a by-product of cold-pressed oil processing and brown rice flour were used to design a functional gluten-free snack-type product-savory crackers. All crackers were high in minerals, fibers, and omega-3 fatty acids with a desirable omega-6/omega-3 fatty acids ratio. Green tea leaves were added to improve antioxidant activity, which greatly contributed to their functional properties. This qualified the crackers as a healthy snack with a minimal content saturated fatty acids and an abundance of polyunsaturated and monounsaturated fatty acids that originated from chia seeds residual oil present in the hemp flour. © 2014 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi
2017-12-01
Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.
Yan, Huitong; Kerr, William L
2013-04-01
Apple pomace is a waste material from apple juice processing, and contains significant amounts of dietary fiber and phytochemicals. Many of these compounds may be degraded post-pressing and during drying operations. Continuous vacuum-belt drying (VBD) was studied as a means of drying and maintaining quality of apple pomace. The color and chemical properties of samples dried by vacuum-belt drying at different temperatures were evaluated including total phenolics content (TPC), monomeric anthocyanins (TMA) and dietary fiber content (TDF). VBD powders were pale golden yellow, and those dried at 80°C did not differ in L*, a* and b* values from freeze-dried powders. VBD pomace had 44.9 to 51.9 g gallic acid equivalents kg(-1) TPC, with greatest retention for pomace dried at 80 and 95°C. TPC for pomace dried at 80 or 95°C was not significantly different from that for freeze-dried pomace. TMA levels (74.0 mg C3G kg(-1), where C3G is cyanidine 3-O-glucoside equivalents) were highest in pomace vacuum dried at 80°C. TDF ranged from 442 to 495 g kg(-1) in vacuum-dried pomace and was not significantly different from TDF of freeze-dried poamce (480 g kg(-1)). In all cases, TPC, TMA and TDF were higher in VBD pomace than in freeze-dried whole apple, while VBD pomace prepared at 80 or 95°C had fiber and phytochemical levels similar to freeze-dried powders. © 2012 Society of Chemical Industry.
Composition and consumer acceptability of a novel extrusion-cooked salmon snack.
Kong, J; Dougherty, M P; Perkins, L B; Camire, M E
2008-04-01
The objectives of this study were to develop a value-added jerky-style snack from salmon flesh and to minimize loss of healthful lipids during processing. Three formulations were extruded in a laboratory-scale twin-screw extruder. The base formulation included Atlantic salmon (82%, w/w), sucrose (4%), pregelatinized starch (3%), modified tapioca starch (3%), salt (2%), and teriyaki flavoring (2%). Three oil binding agents (tapioca starch, high-amylose cornstarch, oat fiber) were each studied at the 4% level. Barrel temperature, from feed to die, was 65, 155, 155, and 80 degrees C. Screw speed was 250 rpm. Feed rate was 220 g/min. Extrudates were convection-dried at 93 degrees C for 40 min. A texture analyzer was used to evaluate textural properties. Sixty-three consumers evaluated the hedonic attributes of the snacks. Extrusion cooking did not adversely affect content of omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in Atlantic salmon. The oat fiber formulation had the highest lipid (17.49%) content. The other formulations had higher moisture content. A serving (28 g) of the oat formulation provides 0.6 g EPA + DHA. Snacks containing oat fiber had the highest CIE L* and b* values. Snacks containing oat fiber required greater force to bend, cut, and puncture. The oat fiber formulation had the lowest overall acceptability. This portable snack could appeal to consumers who are interested in the health benefits of fish and omega-3 fatty acids and provide salmon processors with a value-added solution for processing by-products.
The melt-recrystallization behavior of highly oriented α-iPP fibers embedded in a HIPS matrix.
Ye, Liwei; Li, Huihui; Qiu, Zhaobin; Yan, Shouke
2015-03-21
The melt-recrystallization behavior of α-iPP fibers embedded in an amorphous HIPS matrix has been studied by means of optical microscopy. The amorphous HIPS serving as a supporter of iPP fibers does not become involved in the nucleation and crystallization process of the molten highly oriented iPP fibers. It also does not provide any birefringence under the optical microscope with crossed polarizers. This enables the study of orientation-induced β-iPP crystallization through a control of the melting status of the fibers. Through melting the fibers at different temperatures above 175 °C and subsequent recrystallization, some β-iPP crystals were always produced. The content of the β-iPP crystal depends strongly on the melting temperature and melting time of the iPP fibers. It was confirmed that melting the iPP fibers at relatively lower temperature, e.g. 176 °C, less amount of β-iPP crystals were observed. The content of β-iPP crystal enhances first with increasing melting temperature and then decreases with further increase of the fiber melting temperature. The β-iPP crystallization is found to be most favorable upon melting the fibers at 178 °C for 2 min. This demonstrates the requirement of a certain chain or chain segment orientation for generating β-iPP crystallization on the one hand, while higher orientation of the iPP chains or chain segments encourages the growth of iPP crystals in the α-form on the other hand. This has been further confirmed by varying the melting time of the fiber at different temperatures, since relaxation of the iPP molecular chains at a fixed temperature is time dependent. Moreover, the complete transformation of α-iPP fibers in some local places into β-iPP crystals implies that the αβ-transition may not be required for the orientation-induced β-iPP crystallization.
Fiber optic moisture sensor with moisture-absorbing reflective target
Kirkham, Randy R.
1987-01-01
A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.
Fiber-optical sensor with intensity compensation model in college teaching of physics experiment
NASA Astrophysics Data System (ADS)
Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu
2017-08-01
Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.
Gerrits, Martin F; Ghosh, Sujoy; Kavaslar, Nihan; Hill, Benjamin; Tour, Anastasia; Seifert, Erin L; Beauchamp, Brittany; Gorman, Shelby; Stuart, Joan; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen
2010-08-01
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.
Gerrits, Martin F.; Ghosh, Sujoy; Kavaslar, Nihan; Hill, Benjamin; Tour, Anastasia; Seifert, Erin L.; Beauchamp, Brittany; Gorman, Shelby; Stuart, Joan; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen
2010-01-01
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success. PMID:20332421
Velázquez-López, Lubia; Muñoz-Torres, Abril Violeta; García-Peña, Carmen; López-Alarcón, Mardia; Islas-Andrade, Sergio; Escobedo-de la Peña, Jorge
2016-01-01
Objective. To assess the association of dietary fiber on current everyday diet and other dietary components with glycated hemoglobin levels (HbA1c), glucose, lipids profile, and body weight body weight, in patients with type 2 diabetes. Methods. A cross-sectional survey of 395 patients with type 2 diabetes was performed. HbA1c, fasting glucose, triglycerides, and lipids profile were measured. Weight, waist circumference, blood pressure, and body composition were measured. Everyday diet with a semiquantitative food frequency questionnaire was evaluated. ANOVA, Kruskal-Wallis, chi-square tests and multivariate logistic regression were used in statistical analysis. Results. Higher fiber intake was associated with a low HbA1c, high HDL-c levels, low weight, and waist circumference. The highest tertile of calories consumption was associated with a higher fasting glucose level and weight. The highest tertile of carbohydrate consumption was associated with a lower weight. The lowest tertile of total fat and saturated fat was associated with the highest tertile of HDL-c levels, and lower saturated fat intake was associated with lower weight (p < 0.05). Conclusions. A higher content of fiber in the diet reduces HbA1c and triglycerides, while improving HDL-c levels. Increasing fiber consumption while lowering calorie consumption seems to be an appropriate strategy to reduce body weight and promote blood glucose control.
López-Barrera, Dunia Maria; Vázquez-Sánchez, Kenia; Loarca-Piña, Ma Guadalupe Flavia; Campos-Vega, Rocio
2016-12-01
Spent coffee grounds (SCG), rich in dietary fiber can be fermented by colon microbiota producing short-chain fatty acids (SCFAs) with the ability to prevent inflammation. We investigated SCG anti-inflammatory effects by evaluating its composition, phenolic compounds, and fermentability by the human gut flora, SCFAs production, nitric oxide and cytokine expression of the human gut fermented-unabsorbed-SCG (hgf-NDSCG) fraction in LPS-stimulated RAW 264.7 macrophages. SCG had higher total fiber content compared with coffee beans. Roasting level/intensity reduced total phenolic contents of SCG that influenced its colonic fermentation. Medium roasted hgf-NDSCG produced elevated SCFAs (61:22:17, acetate, propionate and butyrate) after prolonged (24h) fermentation, suppressed NO production (55%) in macrophages primarily by modulating IL-10, CCL-17, CXCL9, IL-1β, and IL-5 cytokines. SCG exerts anti-inflammatory activity, mediated by SCFAs production from its dietary fiber, by reducing the release of inflammatory mediators, providing the basis for SCG use in the control/regulation of inflammatory disorders. The results support the use of SGC in the food industry as dietary fiber source with health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Application of Coconut Fiber as Dissipative Silencer
NASA Astrophysics Data System (ADS)
Madlan, M. A.; Ghazali, M. I.; Zaman, I.; Kasron, M. Z.; Ying, T. C.
2017-01-01
Heat ventilation air conditioning system (HVAC) is one of the ducting systems that broadly applied in the building. There are HVAC silencers in the market, however the sound absorptive material commonly used is mineral wool. In this research study, a sound absorptive material made of coconut fiber was tested to identify its performance as a potential replacement of green material for ducting silencer. The experiment was carried out in a testing apparatus that follows the BS EN ISO 11691:2009 standard. Different configurations of sound absorptive material and contents of coconut fiber were investigated in the study. The trend of insertion loss at 1/3 octave frequency was identified where at frequency below 3000Hz, the insertion loss of dissipative silencer is observed high at certain frequency with a very narrow range. At 3000Hz, the insertion loss of 4dB to 6dB is constant until 4000Hz and drops until 5000Hz before it increases again steadily up to 13dB at 10000Hz. A similar trend was observed for different configuration of sound absorptive material. Despite the configuration different, the outcome shows that the insertion loss is increasing with higher content of coconut fiber.
DOT National Transportation Integrated Search
2004-07-01
The objectives of this study were to evaluate the effects of soil density, moisture content, fiber content, and confining pressure on the shear strength of the clayey-fiber matrix, and of soil moisture content and confining pressure on the interface ...
NASA Astrophysics Data System (ADS)
Saputra, Asep Handaya; Putri, Rizky Anggreini
2017-05-01
Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.
Effect of test meals of varying dietary fiber content on plasma insulin and glucose response.
Potter, J G; Coffman, K P; Reid, R L; Krall, J M; Albrink, M J
1981-03-01
To assess the effect of dietary fiber on glucose tolerance four different meals of varying fiber content but identical protein fat and carbohydrate content were fed to eight healthy men aged 22 to 45. Each meal provided 75 g of carbohydrate as liquid glucose formula, as brown rice, pinto beans, or All Bran. The mean plasma glucose and insulin responses were highest following the formula, and least for All Bran and pinto beans. Rice produced nearly as great a rise in insulin and glucose as did the formula. The rank of each meal by content of neutral detergent fiber was nearly the inverse of the rank by magnitude of the insulin response evoked, fiber content being greatest in All Bran (18 g) and pinto beans (16.2 g), low in rice (2.8 g) and absent from the formula. It was concluded that dietary fiber dampened the insulin response to a high carbohydrate meal.
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.
2002-01-01
Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.
NASA Astrophysics Data System (ADS)
Niitsu, G. T.; Lopes, C. M. A.
2013-08-01
The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.
Performance of high lignin content cellulose nanocrystals in poly(lactic acid)
Liqing Wei; Umesh P. Agarwal; Laurent Matuana; Ronald C. Sabo; Nicole M. Stark
2018-01-01
High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger...
Hwang, Young-Hwa; Joo, Sung-Hyun; Bakhsh, Allah; Ismail, Ishamri; Joo, Seon-Tea
2017-01-01
The objective of this study was to investigate the relationship between muscle fiber characteristics and fatty acid composition of four major muscles in Korean native black goat (KNBG). Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), and gluteus medius (GM) were obtained from five male KNBGs of 36 mon of age and subjected to histochemical analysis and to determine fatty acid composition and meat quality traits. There were significant ( p <0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these four muscles. PM had the highest FNP of type I and the lowest FNP of type IIB, while SM had the highest FNP of type IIB. The highest fat content was observed in LL while SM had the lowest fat content. The proportions of SFA and MUFA were significantly ( p <0.05) different among four muscles due to differences in the majority of fatty acids such as oleic (C18:1) and palmitic (C16:0) acids. The PUFA/SFA ratio was significantly ( p <0.05) different among four muscles, and the highest PUFA/SFA ratio was observed in PM. Results suggested that LL and PM might be healthful because of higher desirable fatty acid value and PUFA/SFA ratio, respectively. Also, data showed that correlations between muscle fiber types and fatty acids proportion of goat muscles were reversed with those of cattle muscles.
Allen, George; Rector, Lisa; Butcher, Thomas; ...
2017-07-31
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, George; Rector, Lisa; Butcher, Thomas
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
NASA Astrophysics Data System (ADS)
Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.
2014-05-01
Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.
Kehlet, Ursula; Kofod, Josephine; Holst, Jens J; Ritz, Christian; Aaslyng, Margit D; Raben, Anne
2017-09-01
Background: The development of high-protein, fiber-rich foods targeting appetite control could be an efficient tool in obesity prevention. Objectives: We investigated whether ad libitum energy intake (EI), appetite, and metabolic markers in a meal context were affected by 1 ) fiber addition (rye bran and pea fiber) to pork meatballs, 2 ) the food matrix of the fiber (fiber meatballs compared with fiber bread), or 3 ) the protein source (animal compared with vegetable protein patties). Methods: In a crossover design, 40 healthy men [mean ± SD: body mass index (BMI; in kg/m 2 ), 22.2 ± 1.9; age, 23.3 ± 2.9 y] consumed 4 test meals: a low-fiber meal consisting of pork meatballs plus wheat bread (LF meal); pork meatballs plus fiber bread; fiber meatballs plus wheat bread, and vegetable patties with a natural fiber content plus wheat bread (∼3000 kJ; protein ∼18% of energy, carbohydrate ∼50% of energy, fat ∼30% of energy; 13 g fiber in the fiber meals). Ad libitum EI after 4 h was the primary endpoint. Moreover, appetite sensations and postprandial responses of glucose, insulin, glucagon-like peptide-1, peptide YY 3-36, and plasma amino acids were measured. Results: Ad libitum EI did not differ significantly between the meals. Satiety and fullness increased 11% and 13%, respectively, and hunger and prospective intake decreased 17% and 15%, respectively, after the meal of fiber meatballs plus wheat bread compared with the LF meal ( P < 0.01). Hormonal and metabolic responses did not differ between the meals. In general, plasma amino acid concentrations were higher after the fiber-rich meals than after the LF meal. Conclusions: Meals based on meatballs and bread with differences in the fiber content, food matrix of fiber, and protein source had similar effects on ad libitum EI in healthy men. However, fiber addition to pork meatballs favorably affected appetite sensations but without changes in hormonal and metabolic responses. Moreover, animal- and vegetable-protein-based, fiber-matched meals had similar effects on appetite regulation. This trial was registered at clinicaltrials.gov as NCT02521805. © 2017 American Society for Nutrition.
Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro
2018-02-21
The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Siegal-Willott, Jessica L; Harr, Kendal; Hayek, Lee-Ann C; Scott, Karen C; Gerlach, Trevor; Sirois, Paul; Reuter, Mike; Crewz, David W; Hill, Richard C
2010-12-01
Free-ranging Florida manatees (Trichechus manatus latirostris) consume a variety of sea grasses and algae. This study compared the dry matter (DM) content, proximate nutrients (crude protein [CP], ether-extracted crude fat [EE], nonfiber carbohydrate [NFC], and ash), and the calculated digestible energy (DE) of sea grasses (Thalassia testudinum, Halodule wrightii, and Syringodium filiforme) collected in spring, summer, and winter, and an alga (Chara sp.) with those of romaine lettuce (Lactuca sativa var. longifolia). Neutral-detergent fiber (NDF), acid-detergent fiber (ADF), and lignin (L) measured after ash-extraction were also compared. Results of statistical tests (C = 0.01) revealed DM content was higher in aquatic vegetation than in lettuce (P = 0.0001), but NDF and ADF were up to threefold greater, EE (P = 0.00001) and CP (P = 0.00001) were 2-9 times less, and NFC (P = 0.0001) was 2-6 times lower in sea grass than in lettuce, on a DM basis. Chara was lower in NDF, ADF, L, EE, CP, and NFC relative to lettuce on a DM basis. Ash content (DM basis) was higher (P = 0.0001), and DE was 2-6 times lower in aquatic vegetation than in lettuce. Sea grass rhizomes had lower L and higher ash contents (DM basis) than sea grass leaves. Based on the nutrient analyses, romaine lettuce and sea grasses are not equivalent forages, which suggests that the current diet of captive Florida manatees should be reassessed.
Lessire, M; Klein, S; Même, N; Peyronnet, C; Quinsac, A; Duclos, M J; Narcy, A
2018-01-01
Abstract Two experiments were conducted on broilers to assess the effect of dietary fiber from 00-rapeseed meal (RSM) on phosphorus (P) and calcium (Ca) apparent ileal digestibility (AID) and retention (AR) during the growing (Exp1: 10 to 21 d) or finishing period (Exp2: 21 to 31 d) in diets supplemented or not with microbial phytase. Each experiment involved 144 male Cobb 500 fed one of 8 diets. Fiber content was modulated by incorporating whole RSM, RSM from dehulled rapeseeds, either raw or supplemented with 2 levels of defatted rapeseed hulls. Diets were supplemented or not with 750 phytase units of microbial phytase per kg. Excreta were collected from d 14 to d 17 (Exp1) and from d 27 to d 30 (Exp2) to measure AR. At the end of experiments, digestive tracts were sampled and weighed. The distal ileum and tibias were collected to measure AID and bone mineralization, respectively. Age did not significantly alter the response of birds to the addition of dietary fiber. Inclusion of hulls decreased growth performance (P < 0.05). The weight of the proventriculus-gizzard (PG) increased with the dietary fiber content in Exp1: The decreased weight observed using dehulled RSM was reversed following the inclusion of hulls. In both trials, while the presence of phytase increased the AID of P (P < 0.001) but not Ca, the inclusion of hulls with phytase improved the AID of P and Ca [linear (Lin), P < 0.05]. This effect could depend on the effect of fiber on PG development and physiology. Hulls decreased the moisture content of excreta (P < 0.01), suggesting higher water retention or lower water consumption with fiber. The AR of P was lower than AID of P with hulls, contrary to Ca, suggesting a metabolic imbalance. The decrease of AR together with the decrease of bone characteristics indicates a lack of Ca in diets with hulls and suggests that P and Ca provision should be adapted to the level and the origin of fiber inclusion. PMID:29506047
Bournazel, M; Lessire, M; Klein, S; Même, N; Peyronnet, C; Quinsac, A; Duclos, M J; Narcy, A
2018-05-01
Two experiments were conducted on broilers to assess the effect of dietary fiber from 00-rapeseed meal (RSM) on phosphorus (P) and calcium (Ca) apparent ileal digestibility (AID) and retention (AR) during the growing (Exp1: 10 to 21 d) or finishing period (Exp2: 21 to 31 d) in diets supplemented or not with microbial phytase. Each experiment involved 144 male Cobb 500 fed one of 8 diets. Fiber content was modulated by incorporating whole RSM, RSM from dehulled rapeseeds, either raw or supplemented with 2 levels of defatted rapeseed hulls. Diets were supplemented or not with 750 phytase units of microbial phytase per kg. Excreta were collected from d 14 to d 17 (Exp1) and from d 27 to d 30 (Exp2) to measure AR. At the end of experiments, digestive tracts were sampled and weighed. The distal ileum and tibias were collected to measure AID and bone mineralization, respectively. Age did not significantly alter the response of birds to the addition of dietary fiber. Inclusion of hulls decreased growth performance (P < 0.05). The weight of the proventriculus-gizzard (PG) increased with the dietary fiber content in Exp1: The decreased weight observed using dehulled RSM was reversed following the inclusion of hulls. In both trials, while the presence of phytase increased the AID of P (P < 0.001) but not Ca, the inclusion of hulls with phytase improved the AID of P and Ca [linear (Lin), P < 0.05]. This effect could depend on the effect of fiber on PG development and physiology. Hulls decreased the moisture content of excreta (P < 0.01), suggesting higher water retention or lower water consumption with fiber. The AR of P was lower than AID of P with hulls, contrary to Ca, suggesting a metabolic imbalance. The decrease of AR together with the decrease of bone characteristics indicates a lack of Ca in diets with hulls and suggests that P and Ca provision should be adapted to the level and the origin of fiber inclusion.
Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites
NASA Technical Reports Server (NTRS)
Ellis, David L.; Mcdanels, David L.
1991-01-01
The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.
Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites
NASA Technical Reports Server (NTRS)
Ellis, David L.; Mcdanels, David L.
1993-01-01
The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.
[Contents of flavonoids, tannins and fiber in some species of vegetative tea].
Berketova, L V; Kosheleva, O V
2010-01-01
The content of some biologically active substances such as flavonoids, tannins and soluble dietary fiber in various types of vegetative tea was analyzed. The results are shown that the content of flavonoids ranges from 0.28 to 9.87%, tannins--from 0.91 to 7.07% and soluble dietary fiber 0.37 up to 14.7%.
Griffith, C; Ribeiro, G O; Oba, M; McAllister, T A; Beauchemin, K A
2017-05-01
The objective of this experiment was to determine if partial replacement of cattle rumen contents with those from bison would increase in situ ruminal fiber degradation of various forages. The second objective was to examine individual variation among cattle in their ability to degrade forage and their responses to inoculation. In situ degradation of barley straw, canola straw, alfalfa hay, and timothy hay was measured in 16 ruminally cannulated heifers fed a barley straw-based diet before and after inoculation with combined rumen contents from 32 bison (performed twice, 14 d apart). Each feed was incubated in the rumen of each heifer for 0, 4, 8, 12, 24, 48, 96, and 120 h, and the degradation parameters were determined as washout fraction (), potentially degradable fraction (), rate of digestion of fraction (), and total potentially degradable fraction (). The of barley straw decreased ( = 0.04) after inoculation, whereas fraction of NDF increased ( = 0.03) and fraction of NDF and ADF decreased ( ≤ 0.02) by inoculation. In contrast, of alfalfa hay NDF and ADF decreased ( = 0.002) after inoculation, but fraction of NDF and ADF ( ≤ 0.02) increased. There were no major effects ( > 0.06) of inoculation on the fiber degradation of timothy hay or canola straw. The differential response between barley straw and alfalfa hay may have occurred because the cattle were previously adapted to a barley straw diet, whereas the bison were fed barley silage and oats. Some animals consistently ranked higher or lower for or across at least 3 of the 4 feeds incubated, but the rankings changed after inoculation. In conclusion, inoculation of cattle with bison rumen contents failed to improve degradation of fiber from barley straw, canola straw, or timothy hay in cattle well adapted to a barley straw diet, although there were small improvements in the extent of degradation of fiber from alfalfa hay. Cattle varied both in their ability to degrade various forages and in their responses to inoculation with bison rumen contents.
NASA Astrophysics Data System (ADS)
Liang, Yinzheng; Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Qiu, Yiping; Zhang, Xiangwu
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF 6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10 -3 S cm -1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF 6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g -1 and good cycling performance at 0.2 C rate at room temperature.
Thermoplastic-carbon fiber hybrid yarn
NASA Technical Reports Server (NTRS)
Ketterer, M. E.
1984-01-01
Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.
Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers
Mangun, C.L.; DeBarr, J.A.; Economy, J.
2001-01-01
A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.
Effect of storage temperature and time on the nutritional quality of walnut male inflorescences.
Zhang, Wen-E; Wang, Chang-Lei; Shi, Bin-Bin; Pan, Xue-Jun
2017-04-01
The objective of this study was to investigate the effect of storage temperature and time on nutrients, bioactive compounds, and antioxidant activities of walnut male inflorescences. The results showed that the moisture, saccharides, fat, protein, amino acids, ascorbic acid, phenolic and flavonoid compound contents, and antioxidant activities of walnut male inflorescences were markedly influenced by storage temperature, and different degrees of decrease in these parameters were observed during the entire storage period. Moreover, higher storage temperature had a more significant effect on the nutrients, bioactive compounds, and antioxidant activities of walnut male flowers, and the loss rate of these components at 25°C was higher than that determined at 4°C. However, the results also presented that the ash and mineral contents did not appear to be influenced significantly by the storage temperature, and slightly significant changes were observed in crude fiber throughout storage, which indicated that the influence of storage on the individual mineral and crude fiber content was minimal. Based on the findings in this study, in order to maximize nutrients concentration, walnut male inflorescences should be kept at 4°C for <6 days and be consumed as fresh as possible. Copyright © 2016. Published by Elsevier B.V.
Chitosan nanofibers for transbuccal insulin delivery.
Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu
2017-05-01
In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Ping; Yu, Qi; Ma, Keming; Ding, Zhenfeng
2014-06-01
The mixed O2/Ar plasma was employed to enhance mechanical properties of the PBO/bismaleimide composite. The interlaminar shear strength was improved to 61.6 MPa or by 38.1%, but the composite brittleness increased. The plasma gas compositions exhibited notable effects on the interfacial adhesion strength. XPS results suggested that the mixed plasma presented higher activation effects on the surface chemical compositions than pure gas plasmas and a larger number of oxygen atoms and hydrophilic groups were introduced on the fiber surface due to the synergy effect, but the synergy effect was considerably performed only within the O2 percentage range of 40-60%. The fibers surface was increasingly etched with growing the O2 contents in the plasma, deteriorating the fibers tensile strength. SEM micrographs demonstrated that the composite shear fracture changed from debonding to cohesive failure in the matrices, and the improving mechanisms were discussed.
Age hardening of 6061/alumina-silica fiber composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.
1994-12-31
Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regionsmore » close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.« less
USDA-ARS?s Scientific Manuscript database
Thinopyrum intermedium, commonly known as intermediate wheatgrass (IWG) is a perennial crop shown to have both environmental and nutritional benefits. We have previously shown that in comparison to wheat controls, IWG lines had higher protein and dietary fiber contents. However, a deficiency in hi...
Development of a new lactic acid bacterial inoculant for fresh rice straw silage.
Kim, Jong Geun; Ham, Jun Sang; Li, Yu Wei; Park, Hyung Soo; Huh, Chul-Sung; Park, Byung-Chul
2017-07-01
Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The NH 3 -N content decreased significantly in inoculant-treated silage (p<0.05) and the NH 3 -N content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH 3 -N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Qin, C. Z.; Xu, Z. Z.; Wu, Y. Q.
2018-01-01
The effect of different fibers on mechanical properties and ductility of alkali-activated slag cementitious material (AASCM) is studied. The research contents include: fiber type (plant fiber, polypropylene fiber), fiber content, mechanical property index, tensile stress-strain relationship curve, treating time. The test results showed that the compressive strength of two fibers reinforced AASCM was about 90 ~ 110MPa, and the tensile strength was about 3 ~ 5MPa. The reinforcement effect of polypropylene fiber is superior to that of plant fiber, and the mechanical properties of polypropylene fiber reinforced AASCM are superior to those of plant fiber, According to the comparison of SEM pictures, the plant fiber and polypropylene fiber are both closely bound with the matrix, and the transition zones are complete and close. Thus, it is proved that plant fiber and polypropylene fiber delay the crack extension and enhance the ductility of AASCM.
Díez-Pascual, Ana M; Naffakh, Mohammed
2013-07-26
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS₂) lubricant nanoparticles were used to manufacture PPS/IF-WS₂/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS₂ loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS₂ improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (T g ). IF-WS₂ contents higher than 0.5 wt % increased T g and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS₂ are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Díez-Pascual, Ana M.; Naffakh, Mohammed
2013-01-01
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites. PMID:28811429
Factors affecting miniature Izod impact strength of tungsten-fiber-metal-matrix
NASA Technical Reports Server (NTRS)
Winsa, E. A.; Petrasek, D. W.
1973-01-01
The miniature Izod and Charpy impact strengths of copper, copper-nickel, and nickel-base superalloy uniaxially reinforced with continuous tungsten fibers were studied. In most cases, impact strength was increased by increasing fiber or matrix toughness, decreasing fibermatrix reaction, increasing test temperature, hot working, or heat treating. Notch sensitivity was reduced by increasing fiber content or matrix toughness. An equation relating impact strength to fiber and matrix properties and fiber content was developed. Program results imply that tungsten alloy-fiber/superalloy matrix composites can be made with adequate impact resistance for turbine blade or vane applications.
Dietary Fiber Analysis of Four Pulses Using AOAC 2011.25: Implications for Human Health.
Chen, Yiran; McGee, Rebecca; Vandemark, George; Brick, Mark; Thompson, Henry J
2016-12-21
Chickpeas, common beans, dry peas, and lentils are pulse crops that have been a cornerstone of the human diet since the inception of agriculture. However, the displacement of pulses from the diet by low fiber protein alternatives has resulted in a pervasive deficiency referred to as the dietary fiber gap. Using an analytical method American Association of Analytical Chemists (AOAC) 2011.25 that conforms to the Codex Alimentarius Commission consensus definition for dietary fiber, the fiber content of these pulse crops was evaluated in seed types used for commercial production. These pulse crops have 2 to 3 times more fiber per 100 g edible portion than other dietary staples. Moreover, there is marked variation in fiber content among cultivars of the same crop. We conclude that pulse crop consumption should be emphasized in efforts to close the dietary fiber gap. The substantial differences in fiber content among currently available cultivars within a crop can be used to further improve gains in fiber intake without the need to change dietary habits. This provides a rationale for cultivar-based food labeling.
Dietary Fiber Analysis of Four Pulses Using AOAC 2011.25: Implications for Human Health
Chen, Yiran; McGee, Rebecca; Vandemark, George; Brick, Mark; Thompson, Henry J.
2016-01-01
Chickpeas, common beans, dry peas, and lentils are pulse crops that have been a cornerstone of the human diet since the inception of agriculture. However, the displacement of pulses from the diet by low fiber protein alternatives has resulted in a pervasive deficiency referred to as the dietary fiber gap. Using an analytical method American Association of Analytical Chemists (AOAC) 2011.25 that conforms to the Codex Alimentarius Commission consensus definition for dietary fiber, the fiber content of these pulse crops was evaluated in seed types used for commercial production. These pulse crops have 2 to 3 times more fiber per 100 g edible portion than other dietary staples. Moreover, there is marked variation in fiber content among cultivars of the same crop. We conclude that pulse crop consumption should be emphasized in efforts to close the dietary fiber gap. The substantial differences in fiber content among currently available cultivars within a crop can be used to further improve gains in fiber intake without the need to change dietary habits. This provides a rationale for cultivar-based food labeling. PMID:28009809
NASA Astrophysics Data System (ADS)
Li, C. D.; Chen, Z. F.; Zhou, J. M.
2016-07-01
In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.
Wang, Ning; Chen, Hong-Zhang
2013-07-01
In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.34% and 1.10% respectively. The α-cellulose content of cornstalk dissolving pulps was up to 93.10-97.10%, the viscosity was 14.37-23.96 mPas, and the yields of cornstalk dissolving pulps were from 10.11% to 12.44%. In addition, the fractionated short fiber was to be hydrolyzed by enzyme to build sugar platform. The constructed method of steam explosion coupling mechanical carding achieved the fractionation of cornstalk into long fiber and short fiber cleanly and effectively, and provided a new way for cornstalk integrated refinery. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ma, Yina; Wang, Youhua; Liu, Jingran; Lv, Fengjuan; Chen, Ji; Zhou, Zhiguo
2014-01-01
Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.
Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake.
Cupisti, Adamasco; D'Alessandro, Claudia; Gesualdo, Loreto; Cosola, Carmela; Gallieni, Maurizio; Egidi, Maria Francesca; Fusaro, Maria
2017-04-29
Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels.
Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake
Cupisti, Adamasco; D’Alessandro, Claudia; Gesualdo, Loreto; Cosola, Carmela; Gallieni, Maurizio; Egidi, Maria Francesca; Fusaro, Maria
2017-01-01
Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels. PMID:28468236
Gagani, Abedin I.; Echtermeyer, Andreas T.
2018-01-01
Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described. PMID:29641451
Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T
2018-04-11
Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.
Shear transfer in concrete reinforced with carbon fibers
NASA Astrophysics Data System (ADS)
El-Mokadem, Khaled Mounir
2001-10-01
Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.
High Temperature Si-doped BN Interphases for Woven SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurwitz, Frances; Yun, Hee Mann; Gray, Hugh R. (Technical Monitor)
2002-01-01
The hydrolytic stability of high-temperature deposited Si-doped BN has been shown in the past to be superior in comparison to "pure" BN processed at similar or even higher temperatures. This type of material would be very desirable as a SiC/SiC composite interphase that is formed by chemical infiltration into multi-ply woven preform. However, due to rapid deposition on the preform outer surface at the high processing temperature, this has proven very difficult. To overcome this issue, single plies of woven fabric were infiltrated with Si-doped BN. Three composite panels of different SiC fiber types were fabricated with Si-doped BN interphases including Sylramic, Hi-Nicalon Type S and Sylramic-iBN fiber-types. The latter fiber-type possesses a thin in-situ grown BN layer on the fiber surface. High Si contents (approx. 7 to 10 a/o) and low oxygen contents (less than 1 a/o) were achieved. All three composite systems demonstrated reasonable debonding and sliding properties. The coated Sylramic fabric and composites were weak due to fiber degradation apparently caused during interphase processing by the formation of TiN crystals on the fiber surface. The Hi-Nicalon Type S composites with Si-doped BN interphase were only slightly weaker than Hi-Nicalon Type S composites with conventional BN when the strength on the load-bearing fibers at failure was compared. On the other hand, the Sylramic-iBN fabric and composites with Si-doped BN showed excellent composite and intermediate temperature stress-rupture properties. Most impressive was the lack of any significant interphase oxidation on the fracture surface of stress-ruptured specimens tested well above matrix cracking at 815C.
Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou
2015-10-12
Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties.
Fernández-López, Juana; Lucas-González, Raquel; Viuda-Martos, Manuel; Sayas-Barberá, Estrella; Pérez-Alvarez, José Angel
2018-06-01
The aim of this work was to characterize the coproduct obtained from chia oil production (cold-pressing) with a view to its possible application in new food product development. For this characterization, the following determinations were made: proximate composition, physicochemical analysis, techno-functional properties, total phenolic and flavonoid content, polyphenolic profile and antioxidant capacity (using four different methods). Chia coproduct showed significantly higher levels of proteins and total dietary fiber and lower levels of fats than chia seeds, pointing to the promising nature of this coproduct as an ingredient of food formulations since it remains a source of high biological value proteins and total dietary fiber (as chia seeds themselves) but with a lower energy value. This chia coproduct presents similar techno-functional properties to the original chia seeds and significantly higher levels of polyphenolic compounds and, consequently, higher antioxidant activity.
Liu, Yongliang; Kim, Hee-Jin
2017-06-22
With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.
Sacco, Jocelyn E; Sumanac, Dunja; Tarasuk, Valerie
2013-01-01
To assess the nature of the guidance on fiber, a nutrient for which many Canadians' intakes are suboptimal, provided by manufacturers' use of front-of-package references on food in Canadian supermarkets. Survey of all prepackaged food sold in 3 large supermarkets in Toronto. Front-of-package references to fiber and other forms of nutrition-related marketing were recorded from all products. For a subsample of breads, Nutrition Facts table information was also collected. Descriptive statistics; t test. Front-of-package references to fiber were found on 6% of all foods, but large proportions of high fiber foods bore no front-of-package references to fiber. Many foods making a reference to fiber (17%) are "foods to limit," according to Canada's Food Guide. Front-of-package references to fiber were declared in at least 30 different ways, and 31% used unregulated language. Among breads, use of regulated language was associated with higher fiber content. Consumers may be faced with challenges in seeking out healthful sources of fiber in the grocery store, given the complexity of existing front-of-package nutrition-related marketing and limited references to fiber in some categories. This work suggests that current nutrition-related marketing cannot function as a substitute for nutrition education. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Quraishi, Umar Masood; Murat, Florent; Abrouk, Mickael; Pont, Caroline; Confolent, Carole; Oury, François Xavier; Ward, Jane; Boros, Danuta; Gebruers, Kurt; Delcour, Jan A; Courtin, Christophe M; Bedo, Zoltan; Saulnier, Luc; Guillon, Fabienne; Balzergue, Sandrine; Shewry, Peter R; Feuillet, Catherine; Charmet, Gilles; Salse, Jerome
2011-03-01
Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.
Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation.
McCarthy, M M; Yasui, T; Ryan, C M; Pelton, S H; Mechor, G D; Overton, T R
2015-05-01
The objective of this study was to evaluate the effect of dietary starch content and monensin (MON) on metabolism of dairy cows during early lactation. Before parturition, primiparous (n=21) and multiparous (n=49) Holstein cows were fed a common controlled-energy close-up diet with a daily topdress of either 0 or 400mg/d monensin. From d 1 to 21 postpartum, cows were fed a high-starch (HS; 26.2% starch, 34.3% neutral detergent fiber, 22.7% acid detergent fiber, 15.5% crude protein) or low-starch (LS; 21.5% starch, 36.9% neutral detergent fiber, 25.2% acid detergent fiber, 15.4% crude protein) total mixed ration with a daily topdress of either 0mg/d monensin (CON) or 450mg/d monensin (MON), continuing with prepartum topdress assignment. From d 22 through 63 postpartum, all cows were fed HS and continued with the assigned topdress treatment until d 63. Cows fed HS had higher plasma glucose and insulin and lower nonesterified fatty acids (NEFA) than cows fed LS during d 1 to 21 postpartum. Cows fed LS had elevated early-lactation β-hydroxybutyrate (BHBA) compared with cows fed HS. Cows fed HS had greater insulin resistance and increased plasma haptoglobin in the early lactation period. There was no effect of MON on postpartum plasma NEFA. Cows fed MON had higher plasma glucose compared with CON cows, which was driven by a MON × parity interaction in which primiparous cows fed MON had greater plasma glucose concentrations than cows fed CON. Cows fed MON had lower plasma BHBA compared with CON, which was contributed to by a MON × parity interaction in which primiparous cows fed MON had lower BHBA concentrations than CON. Starch treatment had no effect on overall liver triglyceride content. Primiparous cows fed MON had increased liver triglyceride content compared with CON primiparous cows, and multiparous cows fed MON had decreased liver triglyceride content compared with CON cows. Multiparous cows fed LS with MON had higher liver glycogen content than multiparous cows fed the LS without MON, with no effect of MON treatment for multiparous cows fed HS. There was no effect of starch or MON treatment on liver capacity to oxidize propionate to CO2, and effects of starch on gluconeogenesis were not significant. Cows fed MON tended to have greater capacity to convert propionate to glucose than CON. Supplementation with MON increased the ratio of glucose to CO2, which indicated that cows fed MON had a greater propensity to convert propionate to glucose. Overall, cows fed more propiogenic diets in early lactation (high starch or monensin) exhibited improved energy metabolism during early lactation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Naoumkina, Marina; Hinchliffe, Doug J; Fang, David D; Florane, Christopher B; Thyssen, Gregory N
2017-08-30
Xyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li 2 ) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth. Li 2 represents an excellent model system to study fiber elongation. To understand the role of xyloglucan in cotton fiber elongation we used the short fiber mutant Li 2 and its near isogenic wild type for analysis of xyloglucan content and expression of xyloglucan-related genes in developing fibers. Accumulation of xyloglucan was significantly higher in Li 2 developing fibers than in wild type. Genes encoding enzymes for nine family members of xyloglucan biosynthesis were identified in the draft Gossypium hirsutum genome. RNAseq analysis revealed that most differentially expressed xyloglucan-related genes were down-regulated in Li 2 fiber cells. RT-qPCR analysis revealed that the peak of expression for the majority of xyloglucan-related genes in wild type developing fibers was 5-16days post anthesis (DPA) compared to 1-3 DPA in Li 2 fibers. Thus, our results suggest that early activation of xyloglucan-related genes and down regulation of xyloglucan degradation genes during the elongation phase lead to elevated accumulation of xyloglucan that restricts elongation of fiber cells in Li 2 . Copyright © 2017. Published by Elsevier B.V.
Fiber-Content Measurement of Wool-Cashmere Blends Using Near-Infrared Spectroscopy.
Zhou, Jinfeng; Wang, Rongwu; Wu, Xiongying; Xu, Bugao
2017-10-01
Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.
Devitrification and shrinkage behavior of silica fibers
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1972-01-01
Devitrification and shrinkage of three batches of silica fibers were investigated in the temperature range of 1200 to 1350 C. Fibers with high water and impurity content devitrified rapidly to cristobalite and quartz and exhibited rapid, but the least amount of, shrinkage. A batch with low water and impurity content devitrified more slowly to cristobalite only and underwent severe shrinkage by the mechanism of viscous flow. A third batch of intermediate purity level and low water content devitrified at a moderate rate mainly to cristobalite but shrunk very rapidly. Completely devitrified silica fibers did not exhibit any further shrinkage.
Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.
Ibrahim, Hamdy; Farag, Mahmoud; Megahed, Hassan; Mehanny, Sherif
2014-01-30
The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min. SEM investigation showed strong adhesion between fibers and matrix. Density measurements showed very small void fraction (less than 0.142%) for composites containing up to 50 wt% fiber content. Increasing fiber weight fraction up to 50 wt% increased the composite static tensile and flexural mechanical properties (stiffness and strength). Composite thermal stability, water uptake and biodegradation improved with increasing fiber content. The present work shows that starch-based composites with 50 wt% fibers content have the optimum mechanical properties. The hybrid composite of flax and date palm fibers, 25 wt% each, has good properties and provides a competitive eco-friendly candidate for various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhu, Feng-Mei; Du, Bin; Li, Jun
2014-01-01
Wine grape pomace dietary fiber powders were prepared by superfine grinding, whose effects were investigated on the composition, functional and antioxidant properties of the wine grape pomace dietary fiber products. The results showed that superfine grinding could effectively pulverize the fiber particles to submicron scale. As particle size decrease, the functional properties (water-holding capacity, water-retention capacity, swelling capacity, oil-binding capacity, and nitrite ion absorption capacity) of wine grape pomace dietary fiber were significantly (p < 0.05) decreased and a redistribution of fiber components from insoluble to soluble fractions was observed. The antioxidant activities of wine grape pomace and dietary fiber before and after grinding were in terms of DPPH radical scavenging activity, ABTS diammonium salt radical scavenging activity, ferric reducing antioxidant power, and total phenolic content. Compared with dietary fiber before and after grinding, micronized insoluble dietary fiber showed increased ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content yet decreased DPPH radical scavenging activity. Positive correlations were detected between ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content.
Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content
2015-01-01
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature. PMID:25056606
Reversible hydrogel-solution system of silk with high beta-sheet content.
Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun
2014-08-11
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature.
Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Wang, Xiaoting; Li, Jianfeng; Wang, Haibo
2016-01-01
Background: More recently, a large amount of experimental and clinical discovered that dietary- fiber intake would decrease the susceptibility to allergic airway disease (AAD) and respiratory inflammation. Objective: To investigate whether a fiber-intake supplement is able to influence the induction of AAD and to elucidate the interactive relationship. Methods: AAD model mice and control mice were raised on a fundamental diet with standard 4% fiber content, whereas other mice were fed a 10% fiber-content diet in the high fiber-content group, along with a 25% fiber-content diet instead in very-high fiber-content group. All experimental mice were sensitized and challenged with ovalbumin to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD were examined in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, T-helper type 1 (Th1) to Th2 skewing of the immune response. Furthermore, to elucidate the interrelations, we generated 16S ribosomal DNA from fecal samples and further validated the variation of colony composition in each group. Results: The excessive high-fiber supplement induced a promoting effect rather than a suppressive effect, including a rise in nasal rubbing and sneezing, an increase in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, and promoted Th2 skewing of the immune response as well as the production of serum levels of ovalbumin-specific immunoglobulin E. Moreover, overconsumption of dietary fiber greatly altered the construction of bacterial flora in the intestinal tract, including an increased proportion of Firmicutes, Actinobacteria, and Proteobacteria, and a decreased proportion of Bacteroidetes. Conclusion: Our work indicated that, instead of a protecting impact, excessive fiber intake preformed a negative influence on the induction of AAD. Therefore, we suspected that an excessive supplement of dietary fiber might not be an advisable method for the prevention and treatment of AADs. PMID:28683248
Dirks, Marlou L; Tieland, Michael; Verdijk, Lex B; Losen, Mario; Nilwik, Rachel; Mensink, Marco; de Groot, Lisette C P G M; van Loon, Luc J C
2017-07-01
Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content. A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel. Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo. Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics. In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P < .01). Myonuclear domain size increased over time in both groups and fiber types (P < .001), with no significant differences between groups (P > .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy. Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Microwave moisture measurement of cotton fiber moisture content in the laboratory
USDA-ARS?s Scientific Manuscript database
The moisture content of cotton fiber is an important fiber property, but it is often measured by a laborious, time-consuming laboratory oven drying method. A program was implemented to establish the capabilities of a laboratory microwave moisture measurement instrument to perform rapid, precise and...
Beketova, N A; Kodentsova, V M; Vrzhesinskaia, O A; Kosheleva, O V; Pereverzeva, O G; Sokol'nikov, A A; Aksenov, I V
2014-01-01
The effect of 5% dietary wheat bran (WB) on the correction of combined vitamin deficiency by two doses of vitamins (physiological and enhanced) has been analyzed using a rat model (8 groups, n = 8/group). Vitamin deficiency in male weanling Wistar rats (58.1 ± 0.5 g) was induced by 5-fold reduction of vitamin mixture amount in the feed and complete vitamin E, B1 and B2 exclusion from the mixture for 30 days, then deficit was corrected within 5 days. Rats from control group were fed a complete semisynthetic diet containing microcrystalline cellulose 2%. Vitamin deficient diet for 35 days resulted in reduced (p < 0.05) levels of vitamin A in the liver by 25 fold, vitamin E and B1--2.0-2.3 fold, vitamin B2--by 40%, 25(OH)D blood plasma concentration--by 21% compared with the control. Feed consumption of the animals treated with vitamin deficient diet and WB was higher by 43% than in rats with vitamin deficit. Their rate of weight occupied the intermediate position between the rates of weight in deficit and in control animals, and they could not serve a full control to evaluate the WB impact on vitamin sufficiency. After filling the vitamin diet content to an adequate level vitamin E liver content was fully restored. To restore vitamins B1 and B2 liver level higher doses of vitamins (120-160% of adequate content) were required, and to restore the reduced levels of vitamin A in rat liver even 2-fold increased dose of vitamin A was insufficient. The diet enrichment with WB had no effect on vitamin B1 and B2 liver content, regardless of the amount of vitamins in the diet. Adding fiber to the diet of animals adequately provided with vitamins resulted in significantly 1,3-fold increase of 25(OH)D blood plasma concentration and a slight but significant decrease of α-tocopherol liver level by 16% as compared to rats not receiving WB. The enrichment of rat diet with dietary fibers worsened restoration of the reduced vitamin E status not only by filling vitamin content in the diet to an adequate level, but also by using 2-fold enhanced dose of vitamin. Within 5 days deficiency of vitamins A, B1, B2 was not eliminated with increasing vitamin diet content to an adequate level. Higher doses of vitamins are needed for the complete correction of vitamin status. The addition of vitamins to an adequate level was sufficient to normalize the elevated liver levels of MDA in rats with combined vitamin deficiency that may be associated with vitamin E status improvement. The diet enrichment with fiber did not affect on the intensity of lipid peroxidation in rat liver regardless of their provision with vitamins.
Martínez-Hernández, Ginés Benito; Gómez, Perla A; Artés, Francisco; Artés-Hernández, Francisco
2015-01-01
The nutritional quality changes of the fresh-cut kailan-hybrid broccoli were compared with those of the 'Parthenon' cv. throughout 15 days at 2 ℃, 5 ℃ and 8 ℃ under air and modified atmosphere packaging. Florets showed higher dietary fiber content than stems. The total protein content of kailan-hybrid florets was 2.2-fold higher than that of 'Parthenon' cv. and higher amounts of S, Ca, Mg, Fe, Sr, Mn, Zn and Cu were found. However, 'Parthenon' florets registered higher initial total phenolics content than the kailan-hybrid edible part, followed by an increase throughout shelf-life favored at 5 ℃ and 8 ℃ under modified atmosphere packaging (5-7 kPa O2 + 14-15 kPa CO2). Modified atmosphere packaging stored samples at 8 ℃ showed higher individual phenolics content than modified atmosphere packaging stored samples at 2 ℃. The initial total antioxidant capacity of the kailan-hybrid edible part was higher than that of 'Parthenon' cv. florets. In conclusion, the kailan-hybrid florets generally showed healthier properties on the analyzed bioactive compounds, except total phenolic content, compared to the conventional 'Parthenon' cv. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang
2014-01-01
This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.
Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.
Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P
2016-01-01
NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.
Lucas-González, Raquel; Viuda-Martos, Manuel; Pérez-Álvarez, José Ángel; Fernández-López, Juana
2017-03-01
The aim of the work was to study the influence of particle size in the composition, physicochemical, techno-functional and physio-functional properties of two flours obtained from persimmon (Diospyros kaki Trumb. cvs. 'Rojo Brillante' (RBF) and 'Triump' (THF) coproducts. The cultivar (RBF and THF) and particle size significantly affected all parameters under study, although depending on the evaluated property, only one of these effects predominated. Carbohydrates (38.07-46.98 g/100 g) and total dietary fiber (32.07-43.57 g/100 g) were the main components in both flours (RBF and THF). Furthermore, insoluble dietary fiber represented more than 68% of total dietary fiber content. All color properties studied were influenced by cultivar and particle size. For both cultivars, the lower particle size, the higher lightness and hue values. RBF flours showed high values for emulsifying activity (69.33-74.00 mL/mL), while THF presented high values for water holding capacity (WHC: 9.47-12.19 g water/g sample). The bile holding capacity (BHC) and fat/oil binding values were, in general, higher in RBF (19.61-12.19 g bile/g sample and 11.98-9.07, respectively) than THF (16.12-12.40 g bile/g sample and 9.78-7.96, respectively). The effect of particle size was really evident in both WHC and BHC. Due to their dietary fiber content, techno-functional and physio-functional properties, persimmon flours seem to have a good profile to be used as potential functional ingredient.
Health effects of vegan diets.
Craig, Winston J
2009-05-01
Recently, vegetarian diets have experienced an increase in popularity. A vegetarian diet is associated with many health benefits because of its higher content of fiber, folic acid, vitamins C and E, potassium, magnesium, and many phytochemicals and a fat content that is more unsaturated. Compared with other vegetarian diets, vegan diets tend to contain less saturated fat and cholesterol and more dietary fiber. Vegans tend to be thinner, have lower serum cholesterol, and lower blood pressure, reducing their risk of heart disease. However, eliminating all animal products from the diet increases the risk of certain nutritional deficiencies. Micronutrients of special concern for the vegan include vitamins B-12 and D, calcium, and long-chain n-3 (omega-3) fatty acids. Unless vegans regularly consume foods that are fortified with these nutrients, appropriate supplements should be consumed. In some cases, iron and zinc status of vegans may also be of concern because of the limited bioavailability of these minerals.
Måge, Ingrid; Knutsen, Svein Halvor; Rud, Ida; Hetland, Ragna Bogen; Paulsen, Jan Erik
2016-01-01
Foods naturally high in dietary fiber are generally considered to protect against development of colorectal cancer (CRC). However, the intrinsic effect of dietary fiber on intestinal carcinogenesis is unclear. We used azoxymethane (AOM) treated A/J Min/+ mice, which developed a significantly higher tumor load in the colon than in the small intestine, to compare the effects of dietary inulin (IN), cellulose (CE) or brewers spent grain (BSG) on intestinal tumorigenesis and cecal microbiota. Each fiber was tested at two dose levels, 5% and 15% (w/w) content of the AIN-93M diet. The microbiota was investigated by next-generation sequencing of the 16S rRNA gene (V4). We found that mice fed IN had approximately 50% lower colonic tumor load than mice fed CE or BSG (p<0.001). Surprisingly, all three types of fiber caused a dose dependent increase of colonic tumor load (p<0.001). The small intestinal tumor load was not affected by the dietary fiber interventions. Mice fed IN had a lower bacterial diversity than mice fed CE or BSG. The Bacteroidetes/Firmicutes ratio was significantly (p = 0.003) different between the three fiber diets with a higher mean value in IN fed mice compared with BSG and CE. We also found a relation between microbiota and the colonic tumor load, where many of the operational taxonomic units (OTUs) related to low tumor load were significantly enriched in mice fed IN. Among the OTUs related to low tumor load were bacteria affiliated with the Bacteroides genus. These results suggest that type of dietary fiber may play a role in the development of CRC, and that the suppressive effect of IN on colonic tumorigenesis is associated with profound changes in the cecal microbiota profile. PMID:27196124
Seaweed Fortification on Crispy Enbal as Local Food of Kei Islands
NASA Astrophysics Data System (ADS)
Marasabessy, Ismael; Sudirjo, Fien
2017-10-01
One of health problems phenomenon in Indonesian and the world is increasing the degenerative disease because human’s bad habits of eating that having less fiber. Source of fiber which is relatively abundant in eastern Indonesia is seaweed that is very precise to fortified on local food that aims to be more nutritious and economically valuable. The purpose of this study is to got appropriate seaweed fortification technique to produce Seaweed Crispy Enbal (SCE) as typical food from Kei islands that rich in fiber and preferred by consumers. The research was done in two stages. The first stage is to analyze quality of fiber and HCN content of seaweed and enbal flour as SCE raw material, and the two-stage is fortified fiber to enbal lempeng using two types of raw materials, namely pulp seaweed and flour seaweed. The results showed that the fiber content of seaweed Eucheuma cottonii and flour enbal respectively 7.01% and 4%, while HCN content less than 3 mg/kg. Fortification techniques using pulp seaweed better than others. It is because pulp seaweed produces seaweed crispy enbal with high value of sensory (really like) with having fiber content is 7.48%.
Pereira, Anieli G; Abdala, Virginia; Kohlsdorf, Tiana
2015-02-01
Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types. Copyright © 2014. Published by Elsevier GmbH.
Sarukawa, Junichiro; Takahashi, Masaaki; Abe, Masashi; Suzuki, Daisuke; Tokura, Seiichi; Furuike, Tetsuya; Tamura, Hiroshi
2011-01-01
Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA-chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA-chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
16 CFR 303.13 - Sale of remnants and products made of remnants.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.13... information as “remnants of undetermined fiber content.” (2) Where such remnants of fabrics are displayed for... conjunction with such display, stating with respect to required fiber content disclosure that the goods are...
Properties of rigid polyurethane foams filled with milled carbon fibers
NASA Astrophysics Data System (ADS)
Yakushin, V.; Stirna, U.; Bel'kova, L.; Deme, L.; Sevastyanova, I.
2011-01-01
The effect of milled carbon fibers of two types (differing in length) on the properties of rigid polyurethane foams in the density range from 50 to 90 kg/m3 is investigated. The coefficient of thermal expansion and properties of the foams in tension and compression as functions of fiber content in them are determined. It is found that the long fibers are more efficient in improving the properties of the foams in their rise direction. The elongation at break of the foams decreases significantly with increasing fiber content.
Speil, Sidney
1974-01-01
The problems of quantitating chrysotile in water by fiber count techniques are reviewed briefly and the use of mass quantitation is suggested as a preferable measure. Chrysotile fiber has been found in almost every sample of natural water examined, but generally transmission electron miscroscopy (TEM) is required because of the small diameters involved. The extreme extrapolation required in mathematically converting a few fibers or fiber fragments under the TEM to the fiber content of a liquid sample casts considerable doubt on the validity of numbers used to compare chrysotile contents of different liquids. PMID:4470930
O'Neill, David E T; Aubrey, F Kris; Zeldin, David A; Michel, Robin N; Noble, Earl G
2006-03-01
Heat shock protein 72 (Hsp70) is constitutively expressed in rat hindlimb muscles, reportedly in proportion to their content of type I myosin heavy chain. This distribution pattern has been suggested to result from the higher recruitment and activity of such muscles and/or a specific relationship between myosin phenotype and Hsp70 content. To differentiate between these possibilities, the fiber-specific distribution of Hsp70 was examined in male Sprague-Dawley rat plantaris under control conditions, following a fast-to-slow phenotypic shift in response to surgically induced overload (O) and in response to O when the phenotypic shift was prevented by 3,5,3'-triiodo-dl-thyronine administration. Constitutive expression of Hsp70 was restricted to type I and IIa fibers in plantaris from control rats, and this fiber-specific pattern of expression was maintained following O of up to 28 days, although Hsp70 content in the O muscle doubled. When O (for 40 days) of the plantaris was combined with 3,5,3'-triiodo-dl-thyronine administration, despite typical hypertrophy in the overloaded plantaris, prevention of the normal phenotypic transformation also blocked the increased expression of Hsp70 observed in euthyroid controls. Collectively, these data suggest that chronic changes in constitutive expression of Hsp70 with altered contractile activity appear critically dependent on fast-to-slow phenotypic remodeling.
NASA Astrophysics Data System (ADS)
Seguchi, Tadao
2000-03-01
Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.
NASA Astrophysics Data System (ADS)
Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent
2017-12-01
A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).
NASA Astrophysics Data System (ADS)
Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong
2016-01-01
Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-28
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-01
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... centimeters (52 inches). Finish: (Piece) dyed. Fabric 2 HTS Subheading: 6004.10.00. Fiber Content: 35% rayon...). Finish: (Piece) dyed. Fabric 3 HTS Subheading: 6001.22.00. Fiber Content: 79% rayon made from bamboo/15...: (Piece) dyed. (2) Certain knit fabrics of polyester fiber, of the specifications detailed below...
Seasonal Fiber Content of Three Sugarcane Cultivars in Three Crop Cycles on Sand and Muck Soils
USDA-ARS?s Scientific Manuscript database
Accurate seasonal estimates of fiber are needed to maximize profits whether producing sugarcane (Saccharum spp.) for sucrose or ethanol. The main purpose of this study was to determine the effects of sample date and crop cycle on fiber content of three sugarcane cultivars growing on sand and organic...
Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang
2014-01-01
This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P V-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P V-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%. PMID:24883395
Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers
2013-01-01
Background Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant. Results In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content. Conclusions The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low reinforcement loading. The affinity of the dispersant to PLA is important for the ultimate strength and stiffness of the composites. PMID:24341897
Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian
2014-10-15
Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P < 0.01) and exhibited a group difference from Ecc (P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups (P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc (P < 0.01) and Placebo-Ecc (P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention (P < 0.001), type II fiber CSA increased exclusively with Whey-Conc (P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation. Copyright © 2014 the American Physiological Society.
Oh, Im Kyung; Bae, In Young; Lee, Hyeon Gyu
2014-02-01
The influence of the ratio of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) on the in vitro starch digestion, predicted glycemic index (pGI), and the physicochemical properties of fiber-enriched cakes were evaluated. The hydration and pasting properties were affected by the ratio of SDF and IDF. According to the increase of IDF ratio (SDF ratio reduction) in 3 g fiber-enriched cakes, slowly digestible starch (SDS) contents increased, while the rapidly digestible starch (RDS) contents decreased. The pGI values were significantly different with control in 3 g fiber-enriched cake containing more than 50% IDF contents (p<0.05). But the pGI values of 6g fiber-enriched cake samples were not significantly different by SDF and IDF ratio. With the exception of the SDF 100% cake, volume index, hardness, and color values of the fiber-enriched cakes increased according to reductions in the SDF ratio. The cakes containing 3 g of total dietary fiber (the same ratio of SDF and IDF) per serving were shown to have low pGI and acceptable quality attributes. Specially, total dietary fiber amount and IDF ratio are more effective than SDF ratio to lower the pGI value. Copyright © 2013 Elsevier B.V. All rights reserved.
The Effect of Water Molecules on Mechanical Properties of Bamboo Microfibrils
NASA Astrophysics Data System (ADS)
Rahbar, Nima
Bamboo fibers have higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. Our results suggest that hemicellulose exhibits better mechanical properties and lignin shows greater tendency to adhere to cellulose nanofibrils. Consequently, the role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils is responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content (less than 10 NSF CAREER Grant No. 1261284.
NASA Technical Reports Server (NTRS)
Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.
1980-01-01
Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.
Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José
2016-01-20
Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Different Extrusion Parameters on Dietary Fiber in Wheat Bran and Rye Bran.
Andersson, Annica A M; Andersson, R; Jonsäll, Anette; Andersson, Jörgen; Fredriksson, Helena
2017-06-01
Wheat bran and rye bran are mostly used as animal feed today, but their high content of dietary fiber and bioactive components are beneficial to human health. Increased use of bran as food raw material could therefore be desirable. However, bran mainly contains unextractable dietary fiber and deteriorates the sensory properties of products. Processing by extrusion could increase the extractability of dietary fiber and increase the sensory qualities of bran products. Wheat bran and rye bran were therefore extruded at different levels of moisture content, screw speed and temperature, in order to find the optimal setting for increased extractability of dietary fiber and positive sensory properties. A water content of 24% for wheat bran and 30% for rye bran, a screw speed of 400 rpm, and a temperature of 130 °C resulted in the highest extractability of total dietary fiber and arabinoxylan. Arabinoxylan extractability increased from 5.8% in wheat bran to 9.0% in extruded wheat bran at those settings, and from 14.6% to 19.2% for rye bran. Total contents of dietary fiber and arabinoxylan were not affected by extrusion. Content of β-glucan was also maintained during extrusion, while its molecular weight decreased slightly and extractability increased slightly. Extrusion at these settings is therefore a suitable process for increasing the use of wheat bran and rye bran as a food raw material. © 2017 Institute of Food Technologists®.
Characterization of dietary constituents and antioxidant capacity of Tropaeolum pentaphyllum Lam.
De Bona, Gicele S; Boschetti, Wiliam; Bortolin, Rafael C; Vale, Maria G R; Moreira, José C F; de Rios, Alessandro O; Flôres, Simone H
2017-10-01
The aim of this study was to evaluate the nutritional content and antioxidant capacity of the tubers, leaves and, flowers of the species Tropaeolum pentaphyllum Lam. The three parts of the plant were analyzed by physicochemical methods, atomic absorption spectrometry, spectrophotometric and chromatographic techniques. The tubers, leaves, and flowers exhibited significant differences in all parameters evaluated. The leaves showed significantly higher values of protein (16.28 ± 0.02 g/100 g), total dietary fiber (27.78 ± 0.15 g/100 g) and quercetin (3798.61 ± 37.57 µg/g) when compared to the tubers and flowers. The study revealed a potential content of the protein, dietary fiber, and flavonoids the species Tropaeolum pentaphyllum , when compared with the sweet potatoes leaves ( Ipomoea batatas L.). In addition, the antioxidant activities of leaves and flowers were also higher measured by ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl), and TRAP (total radical-trapping antioxidant potential) methods. Tropaeolum pentaphyllum have high nutritional potential that can be exploited to improve nutritional value of various food products.
Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I
2016-09-01
Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. Copyright © 2016 Elsevier Ltd. All rights reserved.
PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.
Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L
2018-02-01
Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.
Water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film
NASA Astrophysics Data System (ADS)
Salleh, M. S. N.; Nor, N. N. Mohamed; Mohd, N.; Draman, S. F. Syed
2017-02-01
The growing attention of starch fiber (SF) has led to the innovation of Polyvinyl Alcohol-SF (PVA-SF) blends. This blend is regarded as the biodegradable material which aims to reduce the accumulation of synthetic polymer solid waste derived from petroleum. In this study, the thermal blending characterizations of PVA-SF were investigated by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The water resistance of the blend was also evaluated to study the polarity of the blends. The blend was prepared by plasticizing the polyvinyl alcohol with glycerol and distilled water with the addition of starch fiber. The incorporation of SF to the blends was at 10 wt% to 50 wt% composition. Based on the thermal analysis, PVA-SF blends were suitable for processing at high temperatures, which can be seen by the shifted onset degradation temperature to a higher temperature. This is because cyclic hemiacetals which were provided by SF can act to prevent the thermal attacks. Conversely, increasing the starch fiber proportion to the film blend reduce the endothermic peak amplitude in the DSC thermogram. It was found that PVA-SF blend at the higher composition of SF had the highest water resistance. This may be attributed to the content of fibre in SF which is hydrophilic.
NASA Astrophysics Data System (ADS)
Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad
2015-05-01
This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.
NASA Astrophysics Data System (ADS)
Teomete, Egemen
2016-07-01
Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.
USDA-ARS?s Scientific Manuscript database
Leaf content, seed moisture and module storage time of seed cotton influence cotton fiber quality and aflatoxin contamination of cottonseed in South Texas. Crop Science ... Cotton is the most important natural fiber used to produce apparel, home furnishing, and industrial products. The quality of th...
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.
In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Vannucci, R. D.
1974-01-01
Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.
NASA Astrophysics Data System (ADS)
Prasad Nanda, Bishnu; Satapathy, Alok
2018-03-01
This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.
Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles.
Wu, GuoHua; Song, Peng; Zhang, DongYang; Liu, ZeYu; Li, Long; Huang, HuiMing; Zhao, HongPing; Wang, NanNan; Zhu, YanQiu
2017-11-01
This paper reports the impacts of direct feeding silkworms with different nanoparticles (Cu, Fe, and TiO 2 ) on the morphology, structures, and mechanical properties of the resulting silk fiber (SF). The contents of the Cu nanoparticles were 38 times higher in the posterior silk glands and only 2-3 times higher in the SF and in the middle silk glands compared with the controlled groups. Significant changes of the surface morphology, structures, and diameter of the Cu nanoparticle fed SF have been observed, which are attributed to a slight SF protein reconstruction or conformational change in the mixture of silk fibroin and sericin in the silk glands. The resulting Cu-containing SF exhibits good tensile strength of 360MPa and reaches a strain of 38%, which are 89% and 36% higher than those of the natural SF. This study offers a new green strategy for the easy modification to achieve robust composite SF. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Yu; Wang, Chunxia; Qiu, Yiping
2007-09-01
One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%.
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio
2015-09-01
Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.
Heinritz, Sonja N.; Weiss, Eva; Eklund, Meike; Aumiller, Tobias; Heyer, Charlotte M.E.; Messner, Sabine; Rings, Andreas; Louis, Sandrine; Bischoff, Stephan C.; Mosenthin, Rainer
2016-01-01
To further elaborate interactions between nutrition, gut microbiota and host health, an animal model to simulate changes in microbial composition and activity due to dietary changes similar to those in humans is needed. Therefore, the impact of two different diets on cecal and colonic microbial gene copies and metabolic activity, organ development and biochemical parameters in blood serum was investigated using a pig model. Four pigs were either fed a low-fat/high-fiber (LF), or a high-fat/low-fiber (HF) diet for seven weeks, with both diets being isocaloric. A hypotrophic effect of the HF diet on digestive organs could be observed compared to the LF diet (p < 0.05). Higher gene copy numbers of Bacteroides (p < 0.05) and Enterobacteriaceae (p < 0.001) were present in intestinal contents of HF pigs, bifidobacteria were more abundant in LF pigs (p < 0.05). Concentrations of acetate and butyrate were higher in LF pigs (p < 0.05). Glucose was higher in HF pigs, while glutamic pyruvic transaminase (GPT) showed higher concentrations upon feeding the LF diet (p < 0.001). However, C-reactive protein (CRP) decreased with time in LF pigs (p < 0.05). In part, these findings correspond to those in humans, and are in support of the concept of using the pig as human model. PMID:27223303
Heinritz, Sonja N; Weiss, Eva; Eklund, Meike; Aumiller, Tobias; Heyer, Charlotte M E; Messner, Sabine; Rings, Andreas; Louis, Sandrine; Bischoff, Stephan C; Mosenthin, Rainer
2016-05-23
To further elaborate interactions between nutrition, gut microbiota and host health, an animal model to simulate changes in microbial composition and activity due to dietary changes similar to those in humans is needed. Therefore, the impact of two different diets on cecal and colonic microbial gene copies and metabolic activity, organ development and biochemical parameters in blood serum was investigated using a pig model. Four pigs were either fed a low-fat/high-fiber (LF), or a high-fat/low-fiber (HF) diet for seven weeks, with both diets being isocaloric. A hypotrophic effect of the HF diet on digestive organs could be observed compared to the LF diet (p < 0.05). Higher gene copy numbers of Bacteroides (p < 0.05) and Enterobacteriaceae (p < 0.001) were present in intestinal contents of HF pigs, bifidobacteria were more abundant in LF pigs (p < 0.05). Concentrations of acetate and butyrate were higher in LF pigs (p < 0.05). Glucose was higher in HF pigs, while glutamic pyruvic transaminase (GPT) showed higher concentrations upon feeding the LF diet (p < 0.001). However, C-reactive protein (CRP) decreased with time in LF pigs (p < 0.05). In part, these findings correspond to those in humans, and are in support of the concept of using the pig as human model.
Temporal Response of Angiogenesis and Hypertrophy to Resistance Training in Young Men.
Holloway, Tanya M; Snijders, Tim; VAN Kranenburg, Janneau; VAN Loon, Luc J C; Verdijk, Lex B
2018-01-01
Although endurance exercise training promotes angiogenesis and improves metabolic health, the effect of resistance training on this process is less well defined. We hypothesized that capillarization would increase proportionally, and concurrently, with muscle fiber hypertrophy in response to resistance training in young men. In this double-blind, randomized control trial, 36 men (22 ± 1 yr) were randomized to placebo or protein supplementation, and participated in 12 wk of resistance training. Skeletal muscle biopsies were collected before and after 2, 4, 8, and 12 wk of training. Immunohistochemistry assessed fiber type-specific size and capillarization. Western blot and reverse transcription polymerase chain reaction assessed proteins involved in the molecular regulation of angiogenesis. Resistance training effectively increased Type I (15% ± 4%; P < 0.01) and Type II fiber cross-sectional area (28% ± 5%; P < 0.0001), an effect that tended to be further enhanced with protein supplementation in Type II fibers (P = 0.078). Capillary-to-fiber ratio significantly increased in Type I (P = 0.001) and II (P = 0.015) fibers after 12 wk of resistance exercise training and was evident after only 2 wk. Capillary-to-fiber perimeter exchange index increased in the Type I fibers only (P = 0.054) after 12 wk of training. Training resulted in a reduction in vascular endothelial growth factor mRNA. A (P = 0.008), while vascular endothelial growth factor receptor 2 (P = 0.016), hypoxia-inducible factor 1α (P = 0.016), and endothelial nitric oxide synthase (P = 0.01) increased in both groups. Hypoxia-inducible factor 1α protein content was higher in the protein group (main group effect, P = 0.02), and endothelial nitric oxide synthase content demonstrated a divergent relationship (time-group interaction, P = 0.049). This study presents novel evidence that microvascular adaptations and the molecular pathways involved are elevated after 2 wk of a 12-wk resistance training program. Increases in muscle fiber cross-sectional area are effectively matched by the changes in the microvasculature, providing further support for resistance training programs to optimize metabolic health.
Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Bain, James L. W.; Ellis, Stanley
1988-01-01
The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.
Fustini, M; Palmonari, A; Canestrari, G; Bonfante, E; Mammi, L; Pacchioli, M T; Sniffen, G C J; Grant, R J; Cotanch, K W; Formigoni, A
2017-06-01
The objective of this study was to investigate the effects of 2 alfalfa hays differing in undigested neutral detergent fiber content and digestibility used as the main forage source in diets fed to high producing cows for Parmigiano-Reggiano cheese production. Diets were designed to have 2 different amounts of undigestible NDF [high (Hu) and low (Lu)], as determined by 240-h in vitro analysis (uNDF 240 ). Alfalfa hay in vitro digestibility [% of amylase- and sodium sulfite-treated NDF with ash correction (aNDFom)] at 24 and 240 h was 40.2 and 31.2% and 53.6 and 45.7% for low- (LD) and high-digestibility (HD) hays, respectively. The 4 experimental diets (Hu-HD, Lu-HD, Hu-LD, and Lu-LD) contained 46.8, 36.8, 38.8, and 30.1% of alfalfa hay, respectively, 8.6% wheat straw, and 35.3% corn (50% flake and 50% meal; DM basis). Soy hulls and soybean meal were used to replace hay to balance protein and energy among diets. Eight multiparous Holstein cows (average milk production = 46.0 ± 5.2 kg/d, 101 ± 38 d in milk, and 662 ± 42 kg of average body weight) were assigned to a 4 × 4 Latin square design, with 2 wk of adaptation and a 1-wk collection period. Dry matter and water intake, rumination time, ruminal pH, and milk production and composition were measured. Diets and feces were analyzed for NDF on an organic matter basis (aNDFom), acid detergent fiber, acid detergent lignin, and uNDF 240 to estimate total-tract fiber digestibility. Dry matter intake and rumination times were higher in HD diets compared with LD diets, regardless of forage amount. Rumination time was constant per unit of dry matter intake but differed when expressed as a function of uNDF 240 , aNDFom, or physically effective NDF intake. No differences were found among treatments on average ruminal pH, but the amount of time with pH <5.8 was lower in Hu-HD diets. Milk production and components were not different among diets. Total-tract aNDFom and potentially digestible neutral detergent fiber fraction digestibility was higher for the LD diets (88.3 versus 85.8% aNDFom in HD), for which lower feed intakes were also observed. The Hu-HD diet allowed greater dry matter intake, longer rumination time, and higher ruminal pH, suggesting that the limiting factor for dry matter intake is neutral detergent fiber digestibility and its relative rumen retention time. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fiber source and inclusion level affects characteristics of excreta from growing pigs
Ndou, Saymore Petros; Bakare, Archibold Garikayi
2018-01-01
Objective The objective of the study was to determine the influence of varying fibrous diets on fecal characteristics of growing pigs. Methods A total of 104 pigs (initial weight 18±2.0 kg) were used in the study. They were housed in individual pens and fed on diets containing maize cob, grass hay, lucerne hay, maize stover, and sunflower husk. These fibers were included at 0, 80, 160, 240, 320 and 400 g/kg. Fecal and urine samples were collected. Results Fecal output was largest amongst pigs fed on diets containing grass hay and maize stover (p<0.05). Nitrogen content was highest in feces from pigs fed on sunflower husk (p< 0.05). Pigs fed on diets containing maize stover and maize cobs produced the largest concentrations of short chain fatty acids. Acetate concentration was high in feces of pigs fed maize stover than those fed grass hay and lucerne hay (p<0.05). As the level of fiber inclusion increased, fecal consistency and nitrogen content increased linearly (p<0.05). Urea nitrogen decreased as the inclusion level increased across all the fibers (p<0.05), with maize cobs containing the largest content of urea nitrogen. As dietary fiber content increased, fecal nitrogen content also increased (p<0.05). Conclusion It was concluded that different fiber sources influence fecal characteristics, thereby having different implications on pig waste management. It is vital to monitor fiber inclusion thresholds so as to easily manage environmental pollutants such as butyrate that contribute to odors. PMID:26954189
Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos
2002-12-18
The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed.
Conceptual study on maillardized dietary fiber in coffee.
Silván, José Manuel; Morales, Francisco J; Saura-Calixto, Fulgencio
2010-12-08
There is a methodological and conceptual overlap between coffee melanoidins and dietary fiber. Green Uganda coffee beans were roasted in a range from 8.1 to 21.6% of weight loss to evaluate melanoidins and dietary fiber. Samples were characterized by color, moisture, solubility, water activity, carbohydrates, polyphenols, protein, soluble dietary fiber (SDF), and melanoidins content. Hydroxymethylfurfural and chlorogenic acids were also measured as chemical markers of the extent of roasting. Melanoidins rapidly increased from 5.6 (light roasting) to 29.1 mg/100 mg soluble dry matter (dark roasting). A melanoidins-like structure was already present in green coffee that might overestimate up to 21.0% of the melanoidins content as determined by colorimetric methods. However, its contribution is variable and very likely depends on the method of drying applied to green coffee. SDF content (mg/100 mg soluble dry matter) gradually increased from 39.4 in green coffee to 64.9 at severe roasting conditions due to incorporation of neoformed colored structures and polyphenols. Then, SDF progressively turns to a maillardized structure, which increased from 11.0 to 45.0% according to the roasting conditions. It is concluded that the content of coffee melanoidins includes a substantial part of dietary fiber and also that coffee dietary fiber includes melanoidins. A conceptual discussion on a new definition of coffee melanoidins as a type of maillardized dietary fiber is conducted.
High fiber-low matrix composites: kenaf fiber/polypropylene.
Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree
2002-01-01
Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...
16 CFR 303.10 - Fiber content of special types of products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... percentages of such components by weight. (2) If the components of such fibers are of a matrix-fibril configuration, the term matrix-fibril fiber or matrix fiber may be used in setting forth the information...% Biconstituent Fiber (65% Nylon, 35% Polyester) 80% Matrix Fiber (60% Nylon, 40% Polyester) 15% Polyester 5...
In situ polymerization of monomers for polyphenylquinoxaline/graphite
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Vannucci, R. D.
1973-01-01
Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.
Tovar-Jiménez, Xochitl; Caro-Corrales, José; Gómez-Aldapa, Carlos A; Zazueta-Morales, José; Limón-Valenzuela, Víctor; Castro-Rosas, Javier; Hernández-Ávila, Juan; Aguilar-Palazuelos, Ernesto
2015-10-01
A mixture of orange vesicle flour, commercial nixtamalized corn flour and potato starch was extruded using a Brabender Laboratory single screw extruder (2:1 L/D). The resulting pellets were expanded by microwaves. Expansion index, bulk density, penetration force, carotenoid content, and dietary fiber were measured for this third-generation snack and optimum production conditions were estimated. Response surface methodology was applied using a central composite rotatable experimental design to evaluate the effect of moisture content and extrusion temperature. Temperature mainly affected the expansion index, bulk density and penetration force, while carotenoids content was affected by moisture content. Surface overlap was used to identify optimum processing conditions: temperature: 128-130 °C; moisture content: 22-24 %. Insoluble dietary fiber decreased and soluble dietary fiber increased after extrusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.
2010-03-11
High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less
Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk
NASA Astrophysics Data System (ADS)
Banchorndhevakul, Siriwattana
2002-08-01
Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.
Heat-treated hull flour does not affect iron bioavailability in rats.
Martino, Hércia Stampini Duarte; Carvalho, Ariela Werneck de; Silva, Cassiano Oliveira da; Dantas, Maria Inês de Souza; Natal, Dorina Isabel Gomes; Ribeiro, Sônia Machado Rocha; Costa, Neuza Maria Brunoro
2011-06-01
In this study the chemical composition and iron bioavailability of hull and hull-less soybean flour from the new cultivar UFVTN 105AP was evaluated. The hemoglobin depletion-repletion method was used in Wistar rats. Soybean hull flour presented 37% more total dietary fiber and higher content of iron than hull-less soybean flour. The phytate:iron molar ratio, however, was 2-fold lower in the soybean hull flour in compared to the hull-less soybean flour. Animals fed soybean hull flour presented hemoglobin gains similar to those of the control diet group (p > 0.05). The Relative Biological Values of hull and hull-less soybean flour were 68.5% and 67.1%, respectively, compared to the control group. Heat-treated soybean hull flour (150 degrees C/30 minutes) showed high content of iron and low phytate, which favors the iron bioavailability. Thus, the soybean hull flour is a better source of dietary fiber and iron than hull-less soybean flour at comparable bioavailabilities.
Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L.
Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A
2011-07-01
The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L.
Properties of indirect composites reinforced with monomer-impregnated glass fiber.
Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F
2012-07-01
Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.
Seggiani, Maurizia; Cinelli, Patrizia; Balestri, Elena; Mallegni, Norma; Stefanelli, Eleonora; Rossi, Alessia; Lardicci, Claudio; Lazzeri, Andrea
2018-05-11
In order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and fibers of Posidonia oceanica (PO), a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC) as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading. The tensile modulus slightly increased (from 2 to 2.4 GPa) while the tensile strength and the elongation decreased (from 23.6 to 21.5 MPa and from 3.2 to 1.9%, respectively) by increasing the PO fiber content from 0 to 30 wt %. Interestingly, the impact resistance of the composites increased with the increasing of the PO content: the Charpy’s impact energy increased from 3.6 (without fiber) to 4.4 kJ/m² for the composite with 30 wt %. The results of the aerobic biodegradation under simulated marine conditions showed that the presence of PO fibers favored the physical disintegration of the composite increasing the biodegradation rate of the polymeric matrix: after 216 days, the composite with 20 wt % PO fibers showed a biodegradability of about 30% compared to 20% of the composite without fibers. Under real marine conditions, the specimens containing PO fibers showed higher weight losses and deterioration of tensile properties compared to those without fibers. Presumably, biodegradation occurred after colonization of the specimen, and the specimens with 20 wt % PO fibers showed well-developed biofilm consisting of bacteria and fungi on the surface after only 3 months of incubation in marine sediments, unlike the no-fiber specimens. Consequently, the persistence of an adequate mechanical performance for a relatively long period (1 year), due to a moderate rate of biodegradation in the marine environment, make the developed PHBV/PO composites particularly suitable for the production of relatively low-cost and biodegradable items which are usable in the sea and/or sand dunes, increasing the market opportunities for biopolymers such as PHBV and, at the same time, finding an eco-sustainable valorization for the PO fibrous residues accumulated in large quantities on Mediterranean beaches, which represents a problem for coastal municipalities.
Mallegni, Norma; Stefanelli, Eleonora; Rossi, Alessia
2018-01-01
In order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and fibers of Posidonia oceanica (PO), a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC) as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading. The tensile modulus slightly increased (from 2 to 2.4 GPa) while the tensile strength and the elongation decreased (from 23.6 to 21.5 MPa and from 3.2 to 1.9%, respectively) by increasing the PO fiber content from 0 to 30 wt %. Interestingly, the impact resistance of the composites increased with the increasing of the PO content: the Charpy’s impact energy increased from 3.6 (without fiber) to 4.4 kJ/m2 for the composite with 30 wt %. The results of the aerobic biodegradation under simulated marine conditions showed that the presence of PO fibers favored the physical disintegration of the composite increasing the biodegradation rate of the polymeric matrix: after 216 days, the composite with 20 wt % PO fibers showed a biodegradability of about 30% compared to 20% of the composite without fibers. Under real marine conditions, the specimens containing PO fibers showed higher weight losses and deterioration of tensile properties compared to those without fibers. Presumably, biodegradation occurred after colonization of the specimen, and the specimens with 20 wt % PO fibers showed well-developed biofilm consisting of bacteria and fungi on the surface after only 3 months of incubation in marine sediments, unlike the no-fiber specimens. Consequently, the persistence of an adequate mechanical performance for a relatively long period (1 year), due to a moderate rate of biodegradation in the marine environment, make the developed PHBV/PO composites particularly suitable for the production of relatively low-cost and biodegradable items which are usable in the sea and/or sand dunes, increasing the market opportunities for biopolymers such as PHBV and, at the same time, finding an eco-sustainable valorization for the PO fibrous residues accumulated in large quantities on Mediterranean beaches, which represents a problem for coastal municipalities. PMID:29751601
In vitro dynamic solubility test: influence of various parameters.
Thélohan, S; de Meringo, A
1994-01-01
This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964
In vitro dynamic solubility test: influence of various parameters.
Thélohan, S; de Meringo, A
1994-10-01
This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)
Effect of long-term administration of dietary fiber on the exocrine pancreas in the rat.
Sommer, H; Kasper, H
1984-08-01
Male Sprague-Dawley rats (50--70g) were fed a standard laboratory diet containing 6% dietary fiber substances (diet I), the same diet supplemented with 5% guar (diet II), 10% wheat bran (diet III), or 5% pectin of high (76%) methylic esterification (diet IV), or a fiber-free diet (diet V). After a 6-week feeding period, the body weight of the animals had increased to 300--350g. The common bile duct was then canulated and the exocrine pancreatic function tested under urethane anesthesia (1.5 g/kg body weight). The tested fiber substances had no effect on the basal pancreatic secretion of volume, bicarbonate, lipase, amylase or protein, or on the wet weight and histological appearance of the organ. However, the fiber substances influenced the pancreatic response to maximal exogenous stimulation with secretin (3.0 CU/100 g X hour) and cholecystokinin (0.6 IDU/100 g X hour) and the enzyme content of the gland significantly. Compared with diet V, diet I increased the DNA content of the pancreas and its secretion of bicarbonate and protein, and decreased the protein concentration in the gland. Diet II reduced the pancreatic content of trypsinogen and protein. Diet III decreased the protein content, but increased the bicarbonate secretion, which was also increased by diet IV. -- We conclude that fiber substances influence stimulated secretion and the enzyme content of the pancrease to a varying degree.
Giavini, E; Airoldi, L; Broccia, M L; Roversi, G D; Prati, M
1993-01-01
Three groups of streptozotocin-diabetic rats were maintained during pregnancy on three hyperproteic diets with different protein contents. These differences were compensated by an equal quantity of fiber (group 1: protein 55.0%, fiber 4.5%; group 2: 45.0%, 14.0%; group 3: 35.0%, 24.0%). Three groups of nondiabetic pregnant rats were fed with the same diets and served as control. The differences of the daily protein intake among the diabetic groups were less pronounced than those expected on the basis of the diet composition, and the embryopathic effects (reduced fetal weight, increased in malformation and resorption rate) were not statistically different among the three groups of diabetic animals. The frequency of congenital malformations was higher than that observed in a previous experiment in diabetic rats maintained on a standard diet, but much lower than that observed in animals fed on a purified, fiber-poor, normoproteic diet. When the caloric intake of the diabetic rats in the different groups was determined it was found to be similar for all of them and also similar to the caloric intake of the rats given a standard nonteratogenic diet (in previous experiments), while the rats maintained on a normoproteic, teratogenic diet increased their caloric intake. These results seem to indicate that the diet composition greatly influences the intake of food and calories of pregnant diabetic rats and this may play a role in modulating the embryopathic effect of diabetes.
Poly-m-aramid nanofiber mats: Production for application as structural modifiers in CFRP laminates
NASA Astrophysics Data System (ADS)
Mazzocchetti, Laura; D'Angelo, Emanuele; Benelli, Tiziana; Belcari, Juri; Brugo, Tommaso Maria; Zucchelli, Andrea; Giorgini, Loris
2016-05-01
Poly(m-phenylene isophtalamide) electrospun nanofibrous membranes were produced to be used as structural reinforcements for carbon fiber reinforced composites production. In order for the polymer to be electrospun, it needs however to be fully solubilized, so the addition of some salts is required to help disrupt the tight macromolecular packing based on intra- and inter-molecular hydrogen bonding. Such salts may also contribute to the electrospinnability of the overall solution, since the provide it with a higher conductivity, whatever the solvent might be. The salt haobwever stays in the final nanofibrous mat. The membranes containing the salt are also observed to be highly hygroscopic, with a water content up to 26%, in the presence of 20%wt LiCl in the nanofibrous mat. When those membranes were interleaved among prepregs to produce a laminates, the obtained composite displayed thermal properties comparable to those of a reference nanofiber-free composite, though the former showed also easier delamination. Hence the removal of the hygroscopic salt was performed, that lead to thinner membranes, whose water content matched that of the pristine polymer. The washing step induced a thinning of the layers and of the fibers diameters, though no fiber shrinking nor membrane macroscopic damages were observed. These preliminary encouraging results thus pave the way to a deeper study of the optimized condition for producing convenient poly(m-phenylene isophtalamide) electrospun nanofibrous membranes to be used for carbon fiber reinforced composites structural modification.
Wu, Yankai; Li, Yanbin; Niu, Bin
2014-01-01
Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951
NASA Astrophysics Data System (ADS)
Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong
2015-01-01
Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry-differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C4H4CuO6 → Cu reaction occurs at ∼250-310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100-400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5-1 μm and fiber diameter of 100-200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.
Industrial Applications of Graphite Fluoride Fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Kucera, Donald
1991-01-01
Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.
Measurement and removal of cladding light in high power fiber systems
NASA Astrophysics Data System (ADS)
Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.
Kleintop, Adrienne E; Echeverria, Dimas; Brick, Leslie A; Thompson, Henry J; Brick, Mark A
2013-10-09
Dietary fiber (DF) has important health benefits in the human diet. Developing dry edible bean (Phaseolus vulgaris L.) cultivars with improved DF and reduced nondigestible oligosaccharide content is an important goal for dry bean breeders to increase consumer acceptance. To determine if genetic variation exists among dry bean cultivars for DF, two populations of diverse dry bean cultivars/lines that represent two centers of dry bean domestication were evaluated for dietary fiber using the Integrated Total Dietary Fiber Assay (AOAC 2011.25). This assay was adapted to measure water insoluble dietary fiber, water soluble dietary fiber, oligosaccharides raffinose and stachyose, and the calculated total dietary fiber (TDF) content of cooked dry bean seed. The AOAC 2011.25 protocol was modified by using a quick, simple, and sensitive high-performance liquid chromatography method paired with an electrochemical detection method to separate and quantify specific oligosaccharides, and using duplicate samples as replicates to generate statistical information. The TDF of dry bean entries ranged from 20.0 to 27.0% in population I and from 20.6 to 25.7% in population II. Total oligosaccharides ranged from 2.56 to 4.65% in population I and from 2.36 to 3.84% in population II. The results suggest that significant genetic variation exists among dry bean cultivars/lines to allow for genetic selection for improved DF content in dry beans and that the modifications to the AOAC 2011.25 method were suitable for estimating DF in cooked dry edible beans.
Fiber sources for complete calf starter rations.
Murdock, F R; Wallenius, R W
1980-11-01
Complete calf starter rations containing either 1) alfalfa hay, 2) cottonseed hulls, or 3) alfalfa-beet pulp as sources of fiber were fed to Holstein heifer calves at two locations on a limited milk program from 3 days to 12 wk of age. Rations were isonitrogenous and similar in content of crude fiber and acid detergent fiber. Although growth and development were normal on all rations, calves fed the cottonseed hull ration consumed more starter and gained more body weight than calves fed the other sources of fiber. The similarity of feed efficiencies, rumen pH, and molar ratios of volatile fatty acids between rations indicated no appreciable differences in rumen development or function. The growth response of calves fed the cottonseed hull ration appeared to be a result of better ration acceptability for which no reason was evident. Calves raised at Puyallup gained more body weight than calves at Pullman, and these gains were made more efficiently. These location effects may be related to seasonal differences and greater demands for production of body heat. Although the incidence of scours was less for calves fed alfalfa hay starter, the incidence and severity of bloat were higher for that ration.
Meot-Duros, Laetitia; Le Floch, Gaëtan; Meot, Benoit; Letousey, Patricia; Jacob, Bruno; Barbier, Georges
2011-10-26
Composed of a marine plant, Zostera sp., eelgrass slabs are a novel organic substrate for soilless cultures used in tomato production. The benefit of using eelgrass slabs for growing tomatoes was assessed by comparing it with coconut fiber slabs in regard to contamination by Pythium spp. and to the antioxidant properties of tomato fruits. First, tomato root contamination by Pythium spp. was studied by direct plate counting, and a molecular comparison of fungal and oomycete communities was conducted using PCR-DHPLC. Second, the antioxidant properties of tomato fruits were analyzed by measuring total phenol and carotenoid contents and by evaluating radical scavenging activity. Compared to plants grown on coconut fiber slabs, those on eelgrass slabs presented a lower rate of Pythium spp. root contamination. Moreover, culture on eelgrass slabs produced fruits with better radical scavenging activity and higher total phenol content compared to controls. Carotenoid content was not affected by the type of substrate. This study highlights the value of detrital leaves of Zostera sp. as a substrate for soilless culture that reduces root contamination and also promotes the production of tomato fruits with better nutritional value.
Fluorinated graphite fibers as a new engineering material: Promises and challenges
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Long, Martin
1989-01-01
Pitch based graphitized carbon fibers with electrical resistivity of 300 micro-Ohm/cm were brominated and partially debrominated to 18 percent bromine at room temperature, and then fluorinated at 300 to 450 C, either continuously or intermittently for several cycles. In addition, on fluorine and titanium fluoride intercalated fiber sample was fluorinated at 270 C from the same fiber source. The mass and conductivity of the brominated-debrominated then fluorinated fibers (with fluorine-to-carbon atom ratio of 0.54 or higher) stabilized at room temperature air in a few days. However, at 200 C, these values decreased rapidly and then more slowly, throughout a 2-week test period. The electrically insulative or semiconductive fibers were found to be compatible with epoxy and have the fluorine-to-carbon atom ratio of 0.65 to 0.68, thermal conductivity of 5 to 24 W/m-K, electrical resistivity of 10(exp 4) to 10(exp 11) Ohm/cm, tensile strength of 70 to 150 ksi, Young's modulus of 20 to 30 msi, and CTE (coefficient of thermal expansion) values of 7 ppm/deg C. Data of these physical property values are preliminary. However, it is concluded that these physical properties can be tailor-made. They depend largely on the fluorine content of the final products and the intercalant in the fibers before fluorination, and, to a smaller extent, on the fluorination temperature histogram.
Wang, Wenhang; Zhang, Xiuling; Li, Cong; Du, Guanhua; Zhang, Hongjie; Ni, Yonghao
2018-06-01
Collagen-based films including casings with a promising application in meat industry are still needed to improve its inferior performance. In the present study, the reinforcement of carboxylated cellulose nanofibers (CNF) for collagen film, based on inter-/intra- molecular electrostatic interaction between cationic acid-swollen collagen fiber and anionic carboxylated CNF, was investigated. Adding CNF decreased the zeta-potential but increased particle size of collagen fiber suspension, with little effect on pH. Furthermore, CNF addition led to a higher tensile strength but a lower elongation, and the water vapor and oxygen barrier properties were improved remarkably. Because the CNF content was 50 g kg -1 or lower, the films had a homogeneous interwoven network, and CNF homogeneously embedded into collagen fiber matrix according to the scanning electron microscopy and atomic force microscopy analysis. Additionally, CNF addition increased film thickness and opacity, as well as swelling rate. The incorporation of CNF endows collagen fiber films good mechanical and barrier properties over a proper concentration range (≤ 50 g kg -1 collagen fiber), which is closely associated with electrostatic reaction of collagen fiber and CNF and, subsequently, the form of the homogenous, compatible spatial network, indicating a potential applications of CNF in collagenous protein films, such as edible casings. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique.
Magaia, Telma; Uamusse, Amália; Sjöholm, Ingegerd; Skog, Kerstin
2013-12-01
The harvesting, utilization and marketing of indigenous fruits and nuts have been central to the livelihoods of the majority of rural communities in African countries. In this study we report on the content of dietary fiber, minerals and selected organic acids in the pulps and kernels of the wild fruits most commonly consumed in southern Mozambique. The content of soluble fiber in the pulps ranged from 4.3 to 65.6 g/100 g and insoluble fiber from 2.6 to 45.8 g/100 g. In the kernels the content of soluble fiber ranged from 8.4 to 42.6 g/100 g and insoluble fiber from 14.7 to 20.9 g/100 g. Citric acid was found in all fruits up to 25.7 g/kg. The kernels of Adansonia digitata and Sclerocarya birrea were shown to be rich in calcium, iron, magnesium and zinc. The data may be useful in selecting wild fruit species appropriate for incorporation into diets.
Determining resin/fiber content of laminates
NASA Technical Reports Server (NTRS)
Garrard, G. G.; Houston, D. W.
1979-01-01
Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.
Kurek, Marcin Andrzej; Wyrwisz, Jarosław; Karp, Sabina; Wierzbicka, Agnieszka
2018-05-01
In this study, some dietary fiber (DF) sources were investigated as fortifiers of wheat bread: oat (OB), flax (FB), and apple (AB). Adding oat and flax fibers to bread significantly changed the fatty acid profiles. OB was highest in oleic acid (33.83% of lipids) and linoleic acid (24.31% of lipids). Only in FB, γ-linolenic fatty acid was present in a significant amount-18.32%. The bioaccessibility trails revealed that the DF slow down the intake of saturated fatty acids. PUFA were least bioaccessible from all fatty acids groups in the range of (72% in OB to 87% in FB). The control bread had the greatest value (80.5) and was significantly higher than values for OB, FB, and AB in terms of glycemic index. OB, FB and AB addition led to obtain low glycemic index. AB had a significant highest value of total phenolic (897.2 mg/kg) with the lowest values in FB (541.2 mg/kg). The only significant lowering of caloric values in this study was observed in AB. The study could address the gap in the area of research about taking into consideration glycemic index, fatty acid profile and phenolic content in parallel in terms of DF application in breads.
Xing, Chenyang; Guan, Jipeng; Li, Yongjin; Li, Jingye
2014-03-26
Novel anti-static nanofibers based on blends of poly(vinylidene fluoride) (PVDF) and a room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated using an electrospinning approach. The effects of the RTIL on the morphology, crystal structure, and physical properties of the PVDF nanofibers were investigated. Incorporation of RTIL leads to an increase in the mean fiber diameter and the rough fiber surface of the PVDF/RTIL composite nanofibers compared with the neat PVDF nanofibers. The PVDF in the PVDF/RTIL nanofibers exhibits an extremely high content (almost 100%) of β crystals, in contrast to the dominance of PVDF γ crystals in bulk melt-blended PVDF/RTIL blends. Nonwoven fabrics produced from the electrospun PVDF/RTIL composite nanofibers show better stretchability and higher electrical conductivity than those made from neat PVDF without RTIL, and are thus excellent antielectrostatic fibrous materials. In addition, RTIL greatly improved the hydrophobicity of the PVDF fibers, enabling them to effectively separate a mixture of tetrachloromethane (CCl4) and water. The extremely high β content, excellent antielectrostatic properties, better stretchability, and hydrophobicity of the present PVDF/RTIL nanofibers make them a promising candidate for micro- and nanoscale electronic device applications.
Sánchez-Herrera, Marissa; Martínez-Cano, Evelia; Maldonado-Santoyo, María; Aparicio-Fernández, Xochitl
2014-06-01
The present study was conducted to analyze the chemical composition, total phenolics content and antioxidant capacity of two whole corn (Zea mays) based meals traditional from Mexico: "traditional pinole" and "seven grain pinole"; and compare it with information available from ready to eat cereal products based on refined corn and whole grain cereals. Proximate analyses (moisture, ash, fat, protein and fiber) were carried out according to the procedures of AOAC, sugars content was determined by HPLC method; calcium and iron were quantified using atomic absorption spectroscopy. Total phenolic compounds were determined by Folin-Ciocalteu spectrophotometric method; the antiradical capacity was determined by DPPH colorimetric method and total antioxidant capacity was determined by FRAP method. Traditional and seven grain pinole presented higher energy content and nutrient density (protein and fat) than processed cereals. Calcium content was higher in processed cereals than pinole; seven grain pinole presented the highest conentration of iron. Polyphenolic concentration was higher in both kinds of pinole compared to processed cereals; traditional pinole presented the highest antioxidant activity measured by DPPH and FRAP methods. The results provide evidence about the important nutrient and antioxidant content of traditional and seven grain pinole compared to processed cereals based on corn and other grains. It is recommended their incorporation in to regular diet as a healthy food, with a good protein level, low sugar content and good antioxidant capacity.
Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cai, Liping; Li, Jianzhang
2015-01-01
Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution. PMID:28787808
Olayiwola, Ibiyemi; Folaranmi, Funmi; Adebowale, Abdul-Rasaq A; Oluseye, Onabanjo; Ajoke, Sanni; Wasiu, Afolabi
2013-05-01
The study was conducted to improve cocoyam-based recipes (steamed cocoyam paste [ ebiripo ], ikokore, and fried cocoyam balls [ ojojo ]) using different blends of cocoyam and cowpea flours (100:0, 80:20, 70:30, 60:40, and 50:50). The proximate composition, mineral composition, and sensory qualities of the recipes were determined using standard analytical procedures. The recipes had significantly ( P < 0.05) higher contents of protein, fat, crude fiber, iron, zinc, sodium, and phosphorus compared with the control recipe (100% cocoyam flour). The protein content was highest in all recipes containing 50:50 cocoyam: cowpea flour (10.79%, 10.56%, 10.36% for ojojo, ikokore, and ebiripo , respectively). However, ikokore had higher iron (2.5 mg), phosphorus (92.5 mg), and zinc (1.92 mg) contents than ebiripo and ojojo . While the 80:20 recipe for ebiripo had significantly ( P < 0.05) higher flavor and overall acceptability scores compared with other recipes. In conclusion, enrichment of cocoyam-based recipes with cowpea flour improved the proximate composition, mineral composition, and sensory acceptability of the foods.
Handa, C; Goomer, S
2015-09-01
Rice grits, corn grits, pulse, wholegrain - finger millet and sorghum were utilized in the production of multigrain extruded puffs using a single screw extruder. The effect of inclusion of fructan - fructoligosaccharide in multi-wholegrain (MWG) extruded puffs was examined. MWG fructan enriched puffs puffs had 450 % higher dietary fiber content than the control puff (CP). These puffs can be categorized as 'Good Source' of fiber as it suffices 17.2 % DV of fiber. Puffs were rated 8.1 ± 0.6, 8.3 ± 0.7, 8.1 ± 0.6, 7.5 ± 0.5 and 8.2 ± 0.6 for color, flavor, texture, appearance and overall acceptability respectively. The scores for all the attributes were found to be not significantly different (p < 0.05) from CP. The MWG fructan puffs were rated higher on flavor than the CP having a score of 8.3 ± 0.7 as opposed to 8.2 ± 0.4 for CP. This indicates that the nutritional quality and acceptability of MWG extruded puffs could be improved by the inclusion of fructans.
Highly filled formaldehyde-free natural fiber polypropylene composites
Anand R. Sanadi; Daniel F. Caulfield
2000-01-01
Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 50% by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...
Extraction and electrospinning of gelatin from fish skin.
Songchotikunpan, Panida; Tattiyakul, Jirarat; Supaphol, Pitt
2008-04-01
Ultra-fine gelatin fibers were successfully fabricated by electrospinning from the solutions of Nile tilapia (Oreochromis niloticus) skin-extracted gelatin in either acetic acid or formic acid aqueous solutions. The extracted gelatin contained 7.3% moisture, 89.4% protein, 0.3% lipid, and 0.4% ash contents (on the basis of wet weight), while the bloom gel strength, the shear viscosity, and the pH values were 328 g, 17.8 mPa s, and 5.0, respectively. Both the acid concentration and the concentration of the gelatin solutions strongly influenced the properties of the as-prepared solutions and the obtained gelatin fibers. At low acid concentrations (i.e., 15% (w/v) extracted gelatin solutions in 10 and 20% (v/v) acetic acid solvents or 10-60% (v/v) formic acid solvents), a combination between smooth and beaded fibers was observed. At low concentrations of the gelatin solutions in either 40% (v/v) acetic acid solvent or 80% (v/v) formic acid solvent (i.e., 5-11%, w/v), either discrete beads or beaded fibers were obtained, while, at higher concentrations (i.e., 14-29%, w/v), only smooth or a combination of smooth and beaded fibers were obtained. The average diameters of the obtained fibers, regardless of the types of the acid solvents used, ranged between 109 and 761 nm. Lastly, cross-linking of the obtained gelatin fiber mats with glutaraldehyde vapor caused slight shrinkage from their original dimension, and the cross-linked gelatin fiber mats became stiffer.
Ohlsson, Bodil; Roth, Bodil; Larsson, Ewa; Höglund, Peter
2017-04-01
Calprotectin is a marker of inflammation and zonulin is a marker of intestinal permeability. Diets with lower carbohydrate content and higher contents of fat, fiber and protein, e.g., Okinawan-based diet, are considered to reduce inflammation and intestinal permeability. The aim of the present study was to evaluate calprotectin and zonulin levels in serum and feces after intervention with an Okinawan-based Nordic diet. Thirty patients (17 women) with type 2 diabetes, mean age 57.5±8.2 years, BMI 29.9±4.1 kg/m 2 , were served the diet during 12 weeks, and were followed for another 16 weeks. Anthropometric and metabolic parameters were registered. Fasting levels of calprotectin and zonulin in serum and feces, and hormones in plasma, were measured by Luminex or ELISA before study start and after 12 and 28 weeks. Calprotectin in serum tended to be increased (P=0.074) after 12 weeks. Zonulin in serum and feces were elevated after 12 weeks (P=0.019 vs. P<0.001), and remained elevated in serum after 28 weeks (P=0.014). In contrast to baseline, there was a correlation between calprotectin and zonulin in serum and feces after dietary intervention (P=0.025 vs. P=0.079). Energy percentage of protein in breakfast correlated with serum calprotectin (P=0.008) and tended to correlate with serum zonulin (P=0.059). Calprotectin in serum tended to be elevated, and zonulin in serum and feces are elevated after introduction of an Okinawan-based Nordic diet. These biomarkers correlate with energy percentage of protein.
Controlled environments alter nutrient content of soybeans
NASA Astrophysics Data System (ADS)
Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.
1997-01-01
Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.
Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban
2018-01-01
A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p < .05) on the torque. The apparent viscosity of dough inside the extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.
The Effect of Water Molecules on Mechanical Properties of Cell Walls
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Youssefian, Sina
The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.
Properties of different aged jicama (Pachyrhizus Erozus) plants
NASA Astrophysics Data System (ADS)
Nursandi, F.; Machmudi, M.; Santoso, U.; Indratmi, D.
2017-07-01
Jicama crop potential is very large, the tuber is used as a fresh fruit, ice mix fruit, salad, and can be made into flour, starch and inulin. The nutritional content of yam tubers depends on the age of the harvest, while farmers harvest jicama tubers at the age varying between 4-6 months. The research objective is to analyze the content of proximate fresh tubers and three kinds of flour (flour, starch and starch dregs) by harvesting different age plants. The study was conducted in Malang at a height of 560 m above sea level. Planting was done using plastic mulch with a spacing of 80 cm × 20 cm. Research using complete Randomized block Design with one factor harvesting consisting of 16, 18, 20 and 22 weeks after planting. Jicama tubers were harvested and analyzed the proximate for moisture, ash, fat, protein and carbohydrates in the fresh tubers, flour, starch and jicama flour dregs. The results showed that the late harvest resulted in moisture content, ash content, fiber and fat increase while the protein and carbohydrate decreased. The content of carbohydrates in the flour, starch and starch dregs was almost the same at different harvest time. The protein content of the flour is from 4.22 to 5.87%; while protein content of starch and protein content flour dregs is from 1.05 to 1.90% and 3.95 to 4.84%. Flour fiber content increased with increasing age of plants, while the fiber content of starch decreased but the dregs flour fiber content is almost the same
Myosin content of individual human muscle fibers isolated by laser capture microdissection.
Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H
2016-03-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.
Myosin content of individual human muscle fibers isolated by laser capture microdissection
Stone, William L.; Howell, Mary E. A.; Brannon, Marianne F.; Hall, H. Kenton; Gibson, Andrew L.; Stone, Michael H.
2015-01-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. PMID:26676053
Demonstration of theoretical and experimental simulations in fiber optics course
NASA Astrophysics Data System (ADS)
Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun
2017-08-01
"Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.
Sanchez, B; Li, J; Bragos, R; Rutkove, S B
2014-01-01
Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz–10 MHz frequency range and modeled to a resistivity Cole–Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease. PMID:24743385
NASA Astrophysics Data System (ADS)
Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.
2014-05-01
Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.
Changes in kenaf properties and chemistry as a function of growing time
Roger M. Rowell; James S. Han
1999-01-01
Kenaf Tainung 1 cultivar was grown in Madison, WI in 1994. The ratio of core to bast fiber, total plant yield, protein, ash, fiber length, extractives, lignin, and sugar content were determined as a function of growing age. Ash, protein, extractives, L-arabinose, L-rhamnose, D-galactose, and D-mannose contents decreased while lignin, D-glucose and D-xylose content...
Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; Davidonis, G.H.; Johnson, A.S.
Temperature and atmospheric carbon dioxide concentration [CO{sub 2}] affect cotton (Gossypium hirsutum L.) growth and development, but the interaction of these two factors on bill and fiber properties has not been studied. An experiment was conducted in naturally lit plant growth chambers to determine the influence of temperature and atmospheric [CO{sub 2}] on cotton (cv. DPL-51) boll and fiber growth parameters. Five temperature regimes were evaluated: the 1995 temperature at Mississippi State, MS; the 1995 temperature minus 2 C; and the 1995 temperature plus 2, 5, and 7 C. Daily and seasonal variation and amplitudes were maintained. Atmospheric [CO{sub 2}]more » treatments were 360 (ambient) and 720 {micro}L L{sup {minus}1}. Boll number, boll growth, and fiber properties were measured. Boll size and maturation periods decreased as temperature increased. Boll growth increased with temperature to 25 C and then declined at the highest temperature. Boll maturation period, size, and growth rates were not affected by atmospheric [CO{sub 2}]. The most temperature-sensitive aspect of cotton development is boll retention. Almost no bolls were retained to maturity at 1995 plus 5 or 7 C, but squares and bolls were continuously produced even at those high temperatures. Therefore, the upper limit for cotton boll survival is 32 C, or 5 C warmer than the 1995 US Mid-South ambient temperatures. The 720 {micro}L L{sup {minus}1} atmospheric [CO{sub 2}] had about 40% more squares and bolls across temperatures than the 360 {micro}L L{sup {minus}1} [CO{sub 2}]. Fibers were longer when bolls grew at less than optimal temperatures (25 C) for boll growth. As temperature increased, fiber length distributions were more uniform. Fiber fineness and maturity increased linearly with the increase in temperature up to 26 C, but decreased at 32 C. Short-fiber content declined linearly from 17 to 26 C, but was higher at higher temperature. As for boll growth and developmental parameters, elevated atmospheric [CO{sub 2}] did not affect any of the fiber parameters. Changes in temperature, however, had a dramatic effect on boll set and fiber properties. The relationships between temperature and boll growth and developmental rate functions and fiber properties provide the necessary functional parameters to build fiber models under optimum water and nutrient conditions.« less
Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension
NASA Technical Reports Server (NTRS)
Mcdonald, K. S.; Blaser, C. A.; Fitts, R. H.
1994-01-01
The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HA, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V sub O)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub O) is unknown. There was a progressive decrease in fiber diameter and peak force after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub O) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.
Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension
NASA Technical Reports Server (NTRS)
McDonald, K. S.; Blaser, C. A.; Fitts, R. H.
1994-01-01
The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.
Akkus, Anna; Yang, Shan; Roperto, Renato; Mustafa, Hathem; Teich, Sorin; Akkus, Ozan
2017-02-01
Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for measurement of mineral content within enamel tissue has not been elucidated significantly in the prior literature. Human teeth with varying degrees of enamel mineralization were selected. In addition alligator, boar and buffalo teeth which have increasing amount of mineral content, respectively, were also included as another set of samples. Reference Raman measurements of mineralization were performed using a high-fidelity confocal Raman microscope. Analysis of human teeth by research grade Raman system indicated a 2-fold difference in the Raman intensities of v1 symmetric-stretch bands of mineral-related phosphate bonds and 7-fold increase in mineral related Raman intensities of animal teeth. However, fiber optic system failed to resolve the differences in the mineralization of human teeth. These results indicate that the sampling volume of fiber optic systems extends to the underlying dentin and that confocal aperture modification is essential to limit the sampling volume to within the enamel. Further research efforts will focus on putting together portable Raman systems integrated with confocal fiber probe. Key words: Enamel, mineral content, raman spectroscopy.
Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete
NASA Astrophysics Data System (ADS)
Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun
2017-09-01
In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.
Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes12
Slavin, Joanne L.
2013-01-01
Vegetables are universally promoted as healthy. Dietary Guidelines for Americans 2010 recommend that you make half of your plate fruits and vegetables. Vegetables are diverse plants that vary greatly in energy content and nutrients. Vegetables supply carbohydrates, dietary fiber, and resistant starch in the diet, all of which have been linked to positive health outcomes. Fiber lowers the incidence of cardiovascular disease and obesity. In this paper, the important role of white vegetables in the human diet is described, with a focus on the dietary fiber and resistant starch content of white vegetables. Misguided efforts to reduce consumption of white vegetables will lower intakes of dietary fiber and resistant starch, nutrients already in short supply in our diets. PMID:23674804
Deodorizing Properties of Photocatalyst Textiles and Its Effect Analysis
NASA Astrophysics Data System (ADS)
Zhang, Hongxia; Ge, Caihong; Zhu, Chengyan; Li, Yanqing; Tian, Wei; Cheng, Dongzhi; Pan, Zhongxiang
In this paper, yarns of photocatalyst modified polyester staple fiber, cotton and blended yarn of bamboo fiber and photocatalyst modified polyester were selected. Series of woven fabric were manufactured.The photocatalyst fiber contents of woven fabrics were changed from 0% to 100% with 20% gap, that is 0%,40%,60%,80% and 100%. The deodorant performance of these fabrics were tested and analyzed, it can be concluded that when the content of the photocatalyst is 80% or 100%, the fabrics owns better deodorant; when the photocatalyst content in fabric is 40% or 60%, it has the deodorantion properties but the effect was not good. It can be shown from this experimental study that the deodorizing fabrics can be considered to develop if only the content of photocatalyst is above the 80%.
Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber
Zhang, Shuzhi; Zhang, Shuling; Chen, Yanfei; Han, Jianchao; Zhang, Changjiang; Wang, Xiaopeng; Chen, Yuyong
2017-01-01
The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α) phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification. PMID:28772555
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-05-10
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-01-01
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248
Do healthier foods cost more in Saudi Arabia than less healthier options?
Gosadi, Ibrahim M.; Alshehri, Muner A.; Alawad, Saud H.
2016-01-01
Objectives: To investigate whether healthy foods in Saudi Arabia cost more compared with less healthy options. Method: This is a cross-sectional study conducted in Riyadh, Saudi Arabia during June and July 2015. The study targeted well-known market chains in the city of Riyadh. The selection of food items was purposive to include healthy and less healthy food items in each category. Price, caloric value, salt, fat, sugar, and fiber contents for each food item were collected. To test for the correlation between nutritional contents and average price, Spearman’s correlation coefficients were calculated. The Mann-Whitney U test was used to test for the presence of average price difference between healthy and less healthy food items. Results: A total of 162 food items were collected. Sixty-six food items were classified as healthy compared with 96 less healthier options. The calculated correlation coefficients indicate an association between increased cost of food with increased caloric values (0.649 p=0.0000001), increased fat content (0.610 p=0.0000003), and increased salt contents (0.273 p=0.001). Prices of food items with higher fiber contents showed a weaker association (0.191 p=0.015). The overall average cost of healthy food was approximately 10 Saudi riyals cheaper than less healthy food (p=0.000001). Conclusion: The findings of the study suggest that the cost of healthy food is lower than that of less healthy items in the Saudi market. PMID:27570859
Jiménez, María Eugenia; Sammán, Norma
2014-06-01
There is great interest in consuming foods that can provide the nutrients for a good nutrition and other health beneficial compounds. The aim of this work was to determine the chemical composition of native foods of the Andean region and to quantify some functional com-ponents. Proximal composition, vitamin C, total phenolic compounds, antiradical activity (DPPH) in peel and pulp, dietary fiber soluble and insoluble, fructooligosaccharides (FOS), total and resistant starch (in tubers and raw roots, boiled and boiled and stored) of 6 varieties of Oca (Oxalis tuberosa), 4 clones of manioc (Manihot esculenta Crantz) and yacon (Smallanthus sonchifolius were determined. The results showed greater amount of bioactive compounds and antiradical activity in the skin of these products. The highest content was found in the oca peel. In all cases, the content of insoluble fiber was greater than the soluble. The manioc had higher total starch than Andean roots and tubers. The boiling process decreased the resistant starch content of ocas and maniocs, but when these are stored for 48 h at 5 ° C, the resistant starch content increased. The FOS content of the ocas was similar for all varieties (7%). The main component of yacon carbohydrates were FOS (8.89%). The maniocs did not contain FOS. It can be concluded that the roots and tubers studied, in addition to provide nutrients, contain functional compounds that confer additional helpful value for preventing no communicable diseases.
Cammarata, P R; Zhou, C; Chen, G; Singh, I; Reeves, R E; Kuszak, J R; Robinson, M L
1999-07-01
Intracellular osmotic stress is believed to be linked to the advancement of diabetic cataract. Although the accumulation of organic osmolytes (myo-inositol, sorbitol, taurine) is thought to protect the lens by maintaining osmotic homeostasis, the physiologic implication of osmotic imbalance (i.e., hyperosmotic stress caused by intracellular over-accumulation of organic osmolytes) on diabetic cataract formation is not clearly understood. Studies from this laboratory have identified several osmotic compensatory mechanisms thought to afford the lens epithelium, but not the lens fibers, protection from water stress during intervals of osmotic crisis. This model is founded on the supposition that the fibers of the lens are comparatively more susceptible to damage by osmotic insult than is the lens epithelium. To test this premise, several transgenic mouse lines were developed that over-express the bovine sodium/myo-inositol cotransporter (bSMIT) gene in lens fiber cells. Of the several transgenic mouse lines generated, two, MLR14 and MLR21, were analyzed in detail. Transgenic mRNA expression was analyzed in adult and embryonic transgenic mice by a coupled reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization on embryonic tissue sections, respectively. Intralenticular myo-inositol content from individual mouse lenses was quantified by anion exchange chromatography and pulsed electrochemical detection. Ocular histology of embryonic day 15.5 (E15.5) embryos from both transgenic (TG) families was analyzed and compared to their respective nontransgenic (NTG) littermates. Both RT-PCR and in situ hybridization determined that transgene expression was higher in line MLR21 than in line MLR14. Consistent with this, intralenticular myo-inositol from MLR21 TG mice was markedly higher compared with NTG littermates or MLR14 TG mice. Histologic analysis of E15.5 MLR21 TG embryos disclosed a marked swelling in the differentiating fibers of the bow region and subcapsular fibers of the central zone, whereas the lens epithelium appeared morphologically normal. The lenticular changes, initiated early during lens development in TG MLR21 embryos, result in severe bilateral nuclear cataracts readily observable in neonates under normal rearing and dietary conditions. In contrast, TG MLR14 pups reared under standard conditions produced no lens opacity. Lens fiber swelling and related cataractous outgrowth positively correlated to the degree of lens bSMIT gene expression and intralenticular myo-inositol content. The affected (i.e., swollen) lens fibers appeared to be unable to cope with the water stress generated by the transgene-induced over-accumulation of myo-inositol and, as a result of this inability to osmoregulate, suffered osmotic damage due to water influx.
Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin
2016-12-01
Natural lactic acid bacteria (LAB) populations in tropical grasses and their fermentation characteristics on silage prepared with cellulase enzyme and LAB inoculants were studied. A commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), a local selected strain Lactobacillus casei TH14 (TH14), and 2 cellulases, Acremonium cellulase (AC) and Maicelase (MC; Meiji Seika Pharma Co. Ltd., Tokyo, Japan), were used as additives to silage preparation with fresh and wilted (6 h) Guinea grass and Napier grass. Silage was prepared using a laboratory-scale fermentation system. Treatments were CH, TH14, AC at 0.01% fresh matter, AC 0.1%, MC 0.01%, MC 0.1%, CH+AC 0.01%, CH+AC 0.1%, CH+MC 0.01%, CH+MC 0.1%, TH14+AC 0.1%, TH14+AC 0.01%, TH14+MC 0.1%, and TH14+MC 0.01%. Microorganism counts of Guinea grass and Napier grass before ensiling were 10 2 LAB and 10 6 aerobic bacteria; these increased during wilting. Based on morphological and biochemical characteristics, and 16S rRNA gene sequence analysis, natural strains from both grasses were identified as L. plantarum, L. casei, Lactobacillus acidipiscis, Leuconostoc pseudomesenteroides, Leuconostoc garlicum, Weissella confusa, and Lactococcus lactis. Lactobacillus plantarum and L. casei are the dominant species and could grow at lower pH and produce more lactic acid than the other isolates. Crude protein and neutral detergent fiber were 5.8 and 83.7% of dry matter (DM) for Guinea grass, and 7.5 and 77.1% of DM for Napier grass. Guinea grass had a low level of water-soluble carbohydrates (0.39% of DM). Guinea grass silage treated with cellulase had a lower pH and higher lactic acid content than control and LAB treatments. The 0.1% AC and MC treatments had the best result for fermentation quality. All high water-soluble carbohydrate (2.38% DM) Napier grass silages showed good fermentation quality. Compared with control and LAB-inoculated silage, the cellulase-treated silages had significantly higher crude protein content and lower neutral detergent fiber and acid detergent fiber contents. The results confirmed that cellulase could improve tropical silage quality, inhibiting protein degradation and promoting fiber degradation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E
2006-03-22
In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.
Ma, Zhuanzhuan; Pan, Gangwei; Xu, Helan; Huang, Yiling; Yang, Yiqi
2015-06-25
Cellulosic fibers with high aspect ratio have been firstly obtained from cornhusks via controlled swelling in organic solvent and simultaneous tetramethylammonium hydroxide (TMAOH) post treatment within restricted depth. Cornhusks, with around 42% cellulose content, are a copious and inexpensive source for natural fibers. However, cornhusk fibers at 20tex obtained via small-molecule alkaline extraction were too coarse for textile applications. Continuous NaOH treatment would result in fine fibers but with length of about 0.5-1.5mm, too short for textile use. In this research, post treatment using TMAOH and under controlled swelling significantly reduced fineness of cornhusk fibers from 21.3±2.88 to 5.72±0.21tex. Fiber length was reduced from 105.47±10.03 to47.2±27.4mm. The cornhusk fibers had more oriented microstructures and cellulose content increased to 84.47%. Besides, cornhusk fibers had similar tenacity, longer elongation, and lower modulus compared to cotton and linen, which endowed them with durability and flexibility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Durability of Cement Composites Reinforced with Sisal Fiber
NASA Astrophysics Data System (ADS)
Wei, Jianqiang
This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.
Grajales-García, Eva M; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H; Bello-Pérez, Luis A
2012-01-01
Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics.
16 CFR 300.24 - Representations as to fiber content.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Representations as to fiber content. 300.24 Section 300.24 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.24 Representations as...
Pham, Thanh-Dong; Lee, Byeong-Kyu
2014-01-01
This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s−1∙cm−2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels. PMID:24658408
Chang, H C; Wu, L-C
2008-10-01
The objective of this study was to compare fresh Chinese noodles made with different levels of green seaweed. Green seaweed powder was incorporated in proportions of 4%, 6%, and 8% in noodles, which were made with or without additional eggs. Proximate compositions, cooking properties, textural intensities, and sensory qualities of noodles were assessed. The addition of seaweed powder increased the crude fiber contents of raw fresh noodles; the fiber contents were 0.100%+/- 0.015 to 0.449%+/- 0.013 for noodles made with eggs from 0% to 8% additional seaweed and 0.247%+/- 0.018 to 0.344%+/- 0.021 for those without eggs. Higher cooking yields were found in the noodles, due to water absorption during cooking by the fibers and polysaccharides in the seaweed. Significantly higher cooking yields (P < 0.05) were found in the noodles with 8% additional seaweed powder; water uptake readings measured 2.39 +/- 0.38 and 2.43 +/- 0.25 g H(2)O/g noodle for samples made without and with eggs, respectively. Higher water absorption by the seaweed led to softer and spongier textural intensities in the noodles. Breaking energy of cooked fresh egg noodles were 28.94 +/- 3.42 to 6.43 +/- 1.01 N x mm for 8% to 0% additional seaweed, and the intensities decreased as the amount of seaweed increased; the same pattern was observed in noodles without eggs, where readings were 8.66 +/- 1.02 to 3.49 +/- 0.25 N x mm. Capacities of extensibility measured 61.81 +/- 2.04 to 30.74 +/- 0.90 mm for fresh egg noodles with additional seaweed powder from 0% to 8%, and 47.46 +/- 2.41 to 28.36 +/- 2.25 mm for cooked fresh noodles without eggs. The results from Pearson's correlation analysis indicated that textural parameters were influenced not only by additional eggs and seaweed powder, but also by cooking properties.
NASA Technical Reports Server (NTRS)
Finckenor, J. L.
2003-01-01
To determie composite material properties' effects from porcessing variables, a 3 factorial designed experiment with two replicates was conducted. The factors were cure method (oven versus autoclave), layup (hand versus tape-laying machine), and thickness (8 versus 52 ply). Four material systems were tested: AS4/3501-6, IM7/8551-7, IM7/F655 bismaleimide (BMI), and shear tests on IM7/F584. Material properties were G(sub 12), v(sub 12), E(sub 1c) and E(sub 2c). Since the samples were necessarily nonstandard, strengths, though recorded, cannot be considered valid. Void content was also compared. Autoclave curing helped material properties for the low modulus fiber material but showed little benefit for higher stiffness fibers. The number of plies was very important for epoxy composites but not for the BMI. E(sub 1) was generally unaffected by any factor. Particularly high void content did correlate to reduced properties. Autoclave curing reduced void content over oven curiing but a moderate amount of voids, less than 1 percent void content, didnot correlate with material properties. Oven cures and hand layups can produce high-quality parts. Part thickness of epoxy composites is important, though cure optimization may improve performance. Significant variations can be caused by processing and it is important that test coupons always reflect the layup and processes of the final part.
NASA Astrophysics Data System (ADS)
Yunianto, M.; Eka, D.; Permata, A. N.; Ariningrum, D.; Wahyuningsih, S.; Marzuki, A.
2017-02-01
The objective of this study is to detect glucose content in human blood serum using optical fiber grating with LED wavelength corresponding to the absorption of glucose content in blood serum. The testing used a UV-Vis spectrometer and Rays spectrometers, in which in the ray spectrometer it was used optical fiber biosensor using optical fiber grating. The result obtained is the typical peak of glucose absorption in UV-Vis at 581 nm wavelength and rays spectrometer on green LED at 514.2 nm wavelength with linear regression result by 0.97 and 0.94, respectively.
Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers
USDA-ARS?s Scientific Manuscript database
Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...
Nondestructive testing of CFRP plates by Lamb waves
NASA Astrophysics Data System (ADS)
Tsushima, Satoshi; Fukiage, Norio; Ono, Masao
1993-03-01
Nondestructive testing based on low frequency Lamb waves was used to analyze the thickness of plates, the delamination, the fiber contents, and the wave velocities in composite laminates. The thickness of plates was predicted and the delamination was detected using the relationship between the phase velocities of Lamb waves and the product of frequency and plate thickness. The fiber content was predicted from the stationary waves, and the wave velocity propagating at an angle to the fiber direction was calculated using the Young's modulus.
Wang, Lin; Nakanishi, Takashi; Sato, Yoshiaki; Oishi, Kazato; Hirooka, Hiroyuki; Takahashi, Kei; Kumagai, Hajime
2017-03-01
This study was to examine in vivo digestibility, nitrogen balance and ruminal fermentation of tamarind ( Tamarind indica ) kernel powder extract residue (TKPER) compared to soybean products and by-products in wethers. Four wethers with initial body weight (BW) of 51.6±5.5 kg were assigned in a 4×4 Latin square design to investigate nutritional characteristics of TKPER, dry heat soybean (SB), dry soybean curd residue (SBCR) and soybean meal (SBM) feeding with ryegrass straw (R) at a ratio of 1:1 at 2% of BW in dry matter (DM) on a daily basis. The digestibility of DM, crude protein, and ether extract (EE) of TKPER-R diet were 57.0%, 87.0%, and 86.0%, respectively. Higher non-fiber carbohydrates digestibility was observed in TKPER-R diet (83.2%) than in SB-R diet (73.9%, p<0.05). Wethers fed the TKPER-R diet had lower retention of nitrogen (N) and ruminal ammonia nitrogen (NH 3 -N) contents at 4 h after feeding than those fed the SBM-R diet (p<0.05), which had values similar to the SB-R or SBCR-R diet. The TKPER feeding had higher propionate (C3) and lower butyrate content, as well as lower acetate to propionate ratio (C2:C3) in rumen fluid than SBM feeding at 4 h after feeding (p<0.05). TKPER did not bring any side effect to the wethers although it was lack of fiber, and could be used as a high protein and energy ingredient in concentrate with appropriate roughage to meet the fiber requirement for ruminants.
Elastin Fiber Accumulation in Liver Correlates with the Development of Hepatocellular Carcinoma.
Yasui, Yutaka; Abe, Tokiya; Kurosaki, Masayuki; Higuchi, Mayu; Komiyama, Yasuyuki; Yoshida, Tsubasa; Hayashi, Tsuguru; Kuwabara, Konomi; Takaura, Kenta; Nakakuki, Natsuko; Takada, Hitomi; Tamaki, Nobuharu; Suzuki, Shoko; Nakanishi, Hiroyuki; Tsuchiya, Kaoru; Itakura, Jun; Takahashi, Yuka; Hashiguchi, Akinori; Sakamoto, Michiie; Izumi, Namiki
2016-01-01
The fibrosis stage, which is evaluated by the distribution pattern of collagen fibers, is a major predictor for the development of hepatocellular carcinoma (HCC) for patients with hepatitis C. Meanwhile, the role of elastin fibers has not yet been elucidated. The present study was conducted to determine the significance of quantifying both collagen and elastin fibers. We enrolled 189 consecutive patients with hepatitis C and advanced fibrosis. Using Elastica van Gieson-stained whole-slide images of pretreatment liver biopsies, collagen and elastin fibers were evaluated pixel by pixel (0.46 μm/pixel) using an automated computational method. Consequently, fiber amount and cumulative incidences of HCC within 3 years were analyzed. There was a significant correlation between collagen and elastin fibers, whereas variation in elastin fiber was greater than in collagen fiber. Both collagen fiber (p = 0.008) and elastin fiber (p < 0.001) were significantly correlated with F stage. In total, 30 patients developed HCC during follow-up. Patients who have higher elastin fiber (p = 0.002) in addition to higher collagen fiber (p = 0.05) showed significantly higher incidences of HCC. With regard to elastin fiber, this difference remained significant in F3 patients. Furthermore, for patients with a higher collagen fiber amount, higher elastin was a significant predictor for HCC development (p = 0.02). Computational analysis is a novel technique for quantification of fibers with the added value of conventional staging. Elastin fiber is a predictor for the development of HCC independently of collagen fiber and F stage.
Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre
2016-11-20
1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holographic imaging based on time-domain data of natural-fiber-containing materials
Bunch, Kyle J.; McMakin, Douglas L.
2012-09-04
Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.
Baéza, E; Gondret, F; Chartrin, P; Le Bihan-Duval, E; Berri, C; Gabriel, I; Narcy, A; Lessire, M; Métayer-Coustard, S; Collin, A; Jégou, M; Lagarrigue, S; Duclos, M J
2015-10-01
The increasing use of unconventional feedstuffs in chicken's diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and more PUFA in abdominal fat and muscles than lean chickens. Except for the fatty acid composition of liver and abdominal fat, no interaction between line and diet was observed. In conclusion, the amount of lipids stored in muscles and fatty tissues by lean or fat chickens did not depend on the dietary energy source.
Polymeric materials from renewable resources
NASA Astrophysics Data System (ADS)
Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.
2016-05-01
The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.
A new biodegradable sisal fiber-starch packing composite with nest structure.
Xie, Qi; Li, Fangyi; Li, Jianfeng; Wang, Liming; Li, Yanle; Zhang, Chuanwei; Xu, Jie; Chen, Shuai
2018-06-01
A new completely biodegradable sisal fiber-starch packing composite was proposed. The effects of fiber content and alkaline treatment on the cushioning property of the composites were studied from energy absorption efficiency, cellular microstructure and compatibility between fiber and starch. With increasing fiber content, the nest structure of composites becomes dense first and then loosens, resulting in initial enhancement and subsequent weakening of the cushioning property of the composites. The composite with 4:13 mass ratio of fiber and thermoplastic starch (TPS) exhibit the optimal cushioning property. Alkaline treatment increases the compatibility between sisal fiber and TPS, promotes the formation of dense nest structure, thereby enhances the cushioning property of the composites. After biodegradability tests for 28 days, the weight loss of the composites was 62.36%. It's found that the composites are a promising replacement for expandable polystyrene (EPS) as packing material, especially under large compression load (0.7-6 MPa). Copyright © 2018 Elsevier Ltd. All rights reserved.
Carbon fiber content measurement in composite
NASA Astrophysics Data System (ADS)
Wang, Qiushi
Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and Malek methods. The activation energy (Ea) of the solid-state process is determined to be 202 kJ mol--1 in an oxidative atmosphere using Kissinger's method, which is 10-15 kJ mol--1 more than the results calculated in a nitrogen atmosphere. The value of the activation energy obtained using Ozawa-Flynn methods is in agreement with that using the Kissinger method. Different degradation mechanisms are used to compare with this value. Based on the analytical result, the actual thermal degradation mechanism of the CPPS is a Dn deceleration type. The carbonization temperature range of the CPPS is the same as pure PPS resin.
48 CFR 52.204-4 - Printed or Copied Double-Sided on Postconsumer Fiber Content Paper.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Printed or Copied Double-Sided on Postconsumer Fiber Content Paper. 52.204-4 Section 52.204-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...
Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers.
Zhou, Jianfeng; Zheng, Dandan; Zhang, Fengxiu; Zhang, Guangxian
2016-12-01
In this paper, reactive -NH2 groups (8.36×10(-6)mol/g fabric) were introduced to the surface of polyethylene terephthalate (PET) fabrics by a nitration and reduction method, and epoxy groups were introduced to silkworm pupa protein (SPP) by reaction with epoxy chloropropane. PET-SPP composite fabrics were then prepared by reaction of these two precursors. The results showed that the SPP was firmly grafted onto the PET fabric surface and that the hydrophilicity of the fabric was markedly improved by the grafting of SPP. SEM images revealed a layer of substance covering the surface of the PET fibers, and XPS investigation showed that the nitrogen content of the PET-SPP fabric was higher than that of the original PET fabric (2.32% vs 0%). ATR-FTIR adsorption bands at 1653 and 1543cm(-1) suggested the successful grafting of SPP onto the PET fabric surface. The DSC and TG of the PET fibers demonstrated that the thermal stability of the original PET fibers was maintained well by the SPP-grafted PET fibers. The breaking strength, bending rigidity, air permeability, and crease recovery angle of the original PET fabric were also retained by the SPP-grafted PET fabric. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Dong Hyeon; Amanullah, Sardar M; Lee, Hyuk Jun; Joo, Young Ho; Han, Ouk Kyu; Adesogan, Adegbola T; Kim, Sam Churl
2016-09-01
The present study evaluated the effects of different cutting height on nutritive value, fermentation quality, in vitro and in vivo digestibility of whole crop barley silage. Whole crop barley forage (Yuyeon hybrid) was harvested at height of 5, 10, and 15 cm from the ground level. Each cutting height was rolled to make round bale and ensiled for 100 days. After 100 days of ensiling, pH of silage was lower (p<0.05) in 5 cm, but no difference between 10 and 15 cm of cutting height. The content of lactate and lactate to acetate ratio were increased (p<0.05) in 5 cm of cutting height, whereas the acetate content was higher (p<0.05) in 10 and 15 cm than that of 5 cm cutting height. Aerobic stability was greater (p<0.05) in silages of 10 and 15 cm of cutting height. Three total mixed rations (TMR) were formulated with silages from the three different cutting heights (TMR5, TMR10, and TMR15) incorporated as forage at 70:30 ratio with concentrate (dry matter [DM] basis). In vitro dry matter digestibility was higher (p<0.05) in the TMR5 and TMR10 than that in TMR15, whereas in vitro neutral detergent fiber digestibility was higher (p<0.05) in the TMR10 and TMR15 than that in TMR5. Concentration of NH3-N was highest (p<0.05) in the TMR10 followed by TMR15 and TMR5. Total volatile fatty acid was decreased (p<0.05) with increased cutting height. The digestibility of DM and neutral detergent fiber were highest (p<0.05) in TMR15, than those in TMR5 and TMR10, whereas acid detergent fiber digestibility was higher (p<0.05) in TMR5 than that in TMR10. The results showed that increasing cutting height, at least up to 10 to 15 cm, of whole crop barley forage at harvest (Yuyeon) may be beneficial for making silage for TMR formulation and increasing digestibility of DM and NDF.
Johansson, Daniel P; Lee, Isabella; Risérus, Ulf; Langton, Maud; Landberg, Rikard
2015-01-01
Background Whole grain rye products have been shown to increase satiety and elicit lower postprandial insulin response without a corresponding change in glucose response compared with soft refined wheat bread. The underlying mechanisms for these effects have not been fully determined The primary aim of the study was to investigate if whole grain rye crisp bread compared to refined wheat crisp bread, elected beneficial effects on appetite and postprandial insulin response, similarly as for other rye products. Methods In a randomized cross-over trial, 23 healthy volunteers, aged 27-70 years, BMI 18-31.4 kg/m2, were served a standardized breakfast with unfermented whole grain rye crisp bread (uRCB), fermented whole grain rye crisp bread (RCB) or refined wheat crisp bread (WCB), Appetite was measured using a visual analogue scale (VAS) until 4 h after breakfast. Postprandial glucose and insulin were measured at 0-230 min. Breads were chemically characterized including macronutrients, energy, dietary fiber components, and amino acid composition, and microstructure was characterized with light microscopy. Results Reported fullness was 16% higher (P<0.001), and hunger 11% and 12% lower (P<0.05) after ingestion of uRCB and RCB, respectively, compared with WCB. Postprandial glucose response did not differ significantly between treatments. Postprandial insulin was 10% lower (P<0.007) between 0-120 min but not significantly lower between 0-230 min for RCB compared with WCB. uRCB induced 13% (P<0.002) and 17% (P<0.001) lower postprandial insulin response between 0-230 min compared with RCB and WCB respectively. Conclusion Whole grain rye crisp bread induces higher satiety and lower insulin response compared with refined wheat crisp bread. Microstructural characteristics, dietary fiber content and composition are probable contributors to the increased satiety after ingestion of rye crisp breads. Higher insulin secretion after ingestion of RCB and WCB compared with uRCB may be due to differences in fiber content and composition, and higher availability of insulinogenic branched chain amino acids. Trial Registration ClinicalTrials.gov NCT02011217 PMID:25826373
Kim, Dong Hyeon; Amanullah, Sardar M.; Lee, Hyuk Jun; Joo, Young Ho; Han, Ouk Kyu; Adesogan, Adegbola T.; Kim, Sam Churl
2016-01-01
The present study evaluated the effects of different cutting height on nutritive value, fermentation quality, in vitro and in vivo digestibility of whole crop barley silage. Whole crop barley forage (Yuyeon hybrid) was harvested at height of 5, 10, and 15 cm from the ground level. Each cutting height was rolled to make round bale and ensiled for 100 days. After 100 days of ensiling, pH of silage was lower (p<0.05) in 5 cm, but no difference between 10 and 15 cm of cutting height. The content of lactate and lactate to acetate ratio were increased (p<0.05) in 5 cm of cutting height, whereas the acetate content was higher (p<0.05) in 10 and 15 cm than that of 5 cm cutting height. Aerobic stability was greater (p<0.05) in silages of 10 and 15 cm of cutting height. Three total mixed rations (TMR) were formulated with silages from the three different cutting heights (TMR5, TMR10, and TMR15) incorporated as forage at 70:30 ratio with concentrate (dry matter [DM] basis). In vitro dry matter digestibility was higher (p<0.05) in the TMR5 and TMR10 than that in TMR15, whereas in vitro neutral detergent fiber digestibility was higher (p<0.05) in the TMR10 and TMR15 than that in TMR5. Concentration of NH3-N was highest (p<0.05) in the TMR10 followed by TMR15 and TMR5. Total volatile fatty acid was decreased (p<0.05) with increased cutting height. The digestibility of DM and neutral detergent fiber were highest (p<0.05) in TMR15, than those in TMR5 and TMR10, whereas acid detergent fiber digestibility was higher (p<0.05) in TMR5 than that in TMR10. The results showed that increasing cutting height, at least up to 10 to 15 cm, of whole crop barley forage at harvest (Yuyeon) may be beneficial for making silage for TMR formulation and increasing digestibility of DM and NDF. PMID:27165022
Relationship between pectoralis major muscle histology and quality traits of chicken meat.
Mazzoni, M; Petracci, M; Meluzzi, A; Cavani, C; Clavenzani, P; Sirri, F
2015-01-01
A trial was conducted to evaluate the influence of myodegeneration of pectoralis major muscle on quality traits and chemical composition of breast meat of heavy-size male broilers. For this purpose, a total of 72 pectoralis major muscles were randomly collected from broilers farmed under homogeneous conditions and graded into three categories (mild, n=22; moderate, n=33; and severe, n=17) based on the presence of abnormal fibers (giant fibers, fibers with hyaline degeneration, and damaged and/or necrotic fibers) evaluated by histological and immunohistochemical analysis. Color, pH, drip loss, Allo-Kramer shear values, and chemical composition (moisture, proteins, total lipids, ashes, and collagen) were determined on nonmarinated breast meat. Purge loss and cook loss, total yield, and Allo-Kramer shear values were measured on vacuum-tumbled samples. Samples showing moderate myodegeneration had the highest mean cross-sectional area of the fibers, while samples with severe myodegeneration had myofibers of different diameter and without the characteristic polygonal shape, multifocal degeneration and necrosis, as well as infiltration of CD3-immunoreactive cells. Cooking losses of nonmarinated meat were lower in the mild group with respect to moderate and severe groups (21.4 vs. 24.7 and 24.7%; P<0.001). Breast muscles with severe damage, in comparison with mild degenerated samples, showed higher moisture (75.4 vs. 74.4%; P<0.05) and lower protein percentages (21.1 vs. 22.6%; P<0.001). The lipid percentage of severely degenerated samples was higher than that from moderate group (2.94 vs. 2.36; P<0.05), while collagen content was not modified by histological lesion levels. Marinated meat from the mild group had higher uptake and total marinade yield after cooking. In conclusion, almost all breast fillets of heavy broiler chickens produced under intensive farming systems had histological lesions, which reflected on the chemical composition of the meat and the impaired water holding/binding capacities of the meat. © 2015 Poultry Science Association Inc.
Kim, Jong-Hee; Thompson, LaDora V
2014-07-15
We tested the hypothesis that non-weight bearing-induced muscle weakness (i.e., specific force) results from decreases in myosin protein quantity (i.e., myosin content per half-sarcomere and the ratio of myosin to actin) and quality (i.e., force per half-sarcomere and population of myosin heads in the strong-binding state during muscle contraction) in single myosin heavy chain (MHC) type II fibers. Fisher-344 rats were assigned to weight-bearing control (Con) or non-weight bearing (NWB). The NWB rats were hindlimb unloaded for 2 wk. Diameter, force, and MHC content were determined in permeabilized single fibers from the semimembranosus muscle. MHC isoform and the ratio of MHC to actin in each fiber were determined by gel electrophoresis and silver staining techniques. The structural distribution of myosin from spin-labeled fiber bundles during maximal isometric contraction was evaluated using electron paramagnetic resonance spectroscopy. Specific force (peak force per cross-sectional area) in MHC type IIB and IIXB fibers from NWB was significantly reduced by 38% and 18%, respectively. MHC content per half-sarcomere was significantly reduced by 21%. Two weeks of hindlimb unloading resulted in a reduced force per half-sarcomere of 52% and fraction of myosin strong-binding during contraction of 34%. The results suggest that reduced myosin and actin content (quantity) and myosin quality concomitantly contribute to non-weight bearing-related muscle weakness. Copyright © 2014 the American Physiological Society.
Effect of high- and low-fiber diets on plasma lipids and insulin.
Albrink, M J; Newman, T; Davidson, P C
1979-07-01
Seven healthy young adults were maintained for two separate 1-week periods on each of two very high-carbohydrate diets, one with low-fiber and one with high-fiber content. In both diets 15% of the calories were from protein, 15% from fat, and 70% were from carbohydrate. The low-fiber diet consisted of milk, glucose, and dextrins in liquid formula form, the high-fiber diet was composed of starchy foods. The crude fiber content of the high- and low-fiber diets was 18.0 and 1.0 g, respectively. The diets were isocaloric and the subjects maintained a stable weight. During the low-fiber diet the fasting triglycerides rose, reaching a peak 45% above base-line in 6 days. During the high-fiber diet the triglycerides fell to a level slightly below base-line. The cholesterol fell 16 and 23% below base-line on the low- and high-fiber diets. The glucose response to test meals representative of each diet was similar. The insulin response to a low-fiber meal was twice as great as that to a high-fiber meal containing an equivalent amount of carbohydrate. The results suggest that carbohydrate-induced hyperlipemia does not occur if the high carbohydrate diet is rich in dietary fiber, and furthermore that the insulin-stimulating potential of foods in a very high-carbohydrate diet is a critical determinant of the magnitude of carbohydrate-induced lipemia.
Mechanical properties of untreated and alkaline treated fibers from zalacca midrib wastes
NASA Astrophysics Data System (ADS)
Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono
2016-03-01
The environmental concern has been raised due to the abundance of waste from synthetic materials which cannot be biodegraded after their life-time. It provides opportunity to exploit natural resources which are neglected. For example, midrib wastes from zalacca plants after cutting are able to utilize as composite reinforcement. The aim of this research was to characterize the mechanical properties of zalacca midrib fibers. As other ones, zalacca midrib fibers consisted of cellulose, hemicellulose and lignin, which their compositions were 42.54, 34.35 and 28.01 % respectively. To raise their cellulose content, the zalacca fibers were alkaline treated by immersion in the sodium hydroxide for 2 hours and rinsing in the distilled water. The concentration of sodium hydroxide was varied 1 and 5%. To investigate the influence of alkaline treatment, the mechanical testing and morphological analysis was performed. The tensile testing was done to obtain ultimate strength, elastic modulus and strain to fracture. The surface morphology of fibers was observed by SEM. The average ultimate tensile strength of zalacca fibers ranged from 182.12 MPa (untreated) to 417.94 MPa (5%NaOH treated). The diameter measurement showed that the alkaline treatment reduce the average fiber diameters due to the decline of the hemicellulose and lignin content as fiber matrix. This caused the increase of the tensile strength and elastic modulus due to the reduction of diameters as divider meanwhile the cellulose content as structural supporter of the fibers was relatively constant. From the SEM analysis, it was shown that the alkaline treatment reduced the fiber matrix so that its surface morphology became rougher due to the microfibrils appearance.
Kim, Cheon-Jei; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Choi, Ji-Hun; Kim, Young-Boong; Choi, Yun-Sang
2016-01-01
In this study, we investigated the effects of reducing fat levels from 30% to 25, 20, and 15% by substituting pork fat with water and pumpkin fiber (2%) on the quality of frankfurters compared with control. Decreasing the fat concentration from 30% to 15% significantly increased moisture content, redness of meat batter and frankfurter, cooking loss, and water exudation, and decreased fat content, energy value, pH, and lightness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity. The addition of 2% pumpkin fiber was significantly increased moisture content, yellowness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity, whereas reduced cooking loss and emulsion stability. The treatment of reduced-fat frankfurters formulated with 20 and 25% fat levels and with pumpkin fiber had sensory properties similar to the high-fat control frankfurters. The results demonstrate that when the reduced-fat frankfurter with 2% added pumpkin fiber and water replaces fat levels can be readily made with high quality and acceptable sensory properties.
Kim, Cheon-Jei; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Choi, Ji-Hun
2016-01-01
In this study, we investigated the effects of reducing fat levels from 30% to 25, 20, and 15% by substituting pork fat with water and pumpkin fiber (2%) on the quality of frankfurters compared with control. Decreasing the fat concentration from 30% to 15% significantly increased moisture content, redness of meat batter and frankfurter, cooking loss, and water exudation, and decreased fat content, energy value, pH, and lightness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity. The addition of 2% pumpkin fiber was significantly increased moisture content, yellowness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity, whereas reduced cooking loss and emulsion stability. The treatment of reduced-fat frankfurters formulated with 20 and 25% fat levels and with pumpkin fiber had sensory properties similar to the high-fat control frankfurters. The results demonstrate that when the reduced-fat frankfurter with 2% added pumpkin fiber and water replaces fat levels can be readily made with high quality and acceptable sensory properties. PMID:27433101
Ye, Fayin; Tao, Bingbing; Liu, Jia; Zou, Yan; Zhao, Guohua
2016-04-01
The aim of this work was to study the effect of micronization (mechanical and jet grindings) on the physicochemical properties of the insoluble dietary fiber from citrus pomace in comparison with ordinary grinding. The results showed that micronization treatment effectively pulverized the IDF-CP powders to micron scale and significantly increased the soluble dietary fiber content (p < 0.05). Compared with mechanical grinding, jet grinding was more effective in size reduction and resulted in IDF-CP powders with narrower particle size distributions. Micronized IDF-CP powders had smaller particle size, smoother surface, higher fluidity, cation-exchange capacity, and metal cation binding capacity values, but lower water holding capacity, oil holding capacity, and swelling capacity values. These functional properties were significantly dependent on surface area and particle size (D0.5). The present study suggested that micronization treatments could modify functional properties of IDF-CP powders, which promotes their use in food applications. © The Author(s) 2015.
Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia.
Mathalon, Alysse; Hill, Paul
2014-04-15
Humans continue to increase the use and disposal of plastics by producing over 240 million tonnes per year, polluting the oceans with persistent waste. The majority of plastic in the oceans are microplastics (<5 mm). In this study, the contamination of microplastic fibers was quantified in sediments from the intertidal zones of one exposed beach and two protected beaches along Nova Scotia's Eastern Shore. From the two protected beaches, polychaete worm fecal casts and live blue mussels (Mytilus edulis) were analyzed for microplastic content. Store-bought mussels from an aquaculture site were also analyzed. The average microplastic abundance observed from 10 g sediment subsamples was between 20 and 80 fibers, with higher concentrations at the high tide line from the exposed beach and at the low tide line from the protected beaches. Microplastic concentrations from polychaete fecal casts resembled concentrations quantified from low tide sediments. In two separate mussel analyses, significantly more microplastics were enumerated in farmed mussels compared to wild ones. Copyright © 2014 Elsevier Ltd. All rights reserved.
16 CFR 303.41 - Use of fiber trademarks and generic names in advertising.
Code of Federal Regulations, 2010 CFR
2010-01-01
... use of a fiber trademark shall require a full disclosure of the fiber content information required by... or generic name is used in non-required information in advertising, such fiber trademark or generic... advertising. 303.41 Section 303.41 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC...
Effect of fiber source on cecal fermentation and nitrogen recycled through cecotrophy in rabbits.
García, J; Carabaño, R; Pérez-Alba, L; de Blas, J C
2000-03-01
The influence of fiber source on fiber digestion in rabbits was investigated. Six fibrous feedstuffs with wide differences in chemical composition and particle size were selected: paprika meal, olive leaves, alfalfa hay, soybean hulls, sodium hydroxide-treated barley straw, and sunflower hulls. Six diets were formulated to contain one of these ingredients as the sole source of fiber. To avoid nutrient imbalances, fiber sources were supplemented with different proportions of a fiber-free concentrate, based on soy protein isolate, wheat flour, lard, and a vitamin and mineral mix, to obtain diets containing at least 3% nitrogen and 5% starch. Daily soft feces excretion, and its NDF, and total and microbial nitrogen content were determined in 60 fattening rabbits (10 per diet). Seven days after the last cecotrophy control, the same animals were used to determine weight of stomach, cecum and their contents, and cecal fermentation traits (pH, VFA and ammonia concentrations, and buffer properties of cecal contents). Stepwise regression analysis showed a positive effect (P < .001) on soft feces excretion, total and microbial nitrogen concentrations in soft feces, cecal acidity, and total VFA in the cecum of dietary pectic constituents (2.9, 3.5, 2.5, .9, and 6.6%) and proportion of fine particles (< .315 mm) (1.8, .9, 1.3, .15, and .9%) per each increment of one percentage unit of the independent variables. Proportion of fine particles also increased weight of cecal contents (P < .001). Soft feces excretion and weight of stomach and of its contents increased (P < .001) by 5.2, 2.8, and 10.2% per each percentage unit increment of proportion of large particles (> 1.25 mm). Degree of lignification of NDF decreased total nitrogen concentration in soft feces and cecal VFA concentration (P < .001). Source of fiber affected cecal pH not only by its influence on the cecal concentrations of the final products of fermentation, but also through its effect on the pH of dry cecal contents (P < .001). The latter was negatively correlated with dietary proportion of fine particles, degree of lignification of NDF, and base-buffering capacity of dry cecal contents (r = -.52, -.37, and -.49, respectively). From these results, we conclude that pectic constituent concentration, degree of lignification of NDF, and particle size are the variables that best characterize the influence of the source of fiber on soft feces excretion and cecal fermentation traits in rabbits.
Minnesota retrofit insulation in situ test program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
The use of cellulose, glass fiber, rock/slag fiber and urea formaldehyde installed as retrofit insulation materials in residential walls and ceilings was studied. Homes were selected for testing according to the type of retrofit insulation, age of retrofit insulation and whether the retrofit was in the wall or ceiling. The total project was comprised of 22 wall and 48 ceiling samples. Samples of retrofit insulation were taken from an area of three to four square feet in the ceiling or wall of the home. The sample volume was measured, the sample removed and double-sealed in polyethylene bags. The samples weremore » shipped to the laboratory for testing. Laboratory measurements were made of density, moisture content, thermal resistance, and relative flammability of each sample. Additionally, the friability and compressive strength of each urea-formaldehyde foam sample was measured. The following results were obtained. Cellulosic loose fill insulation tests indicated that settling and moisture build-up are not serious problems. Flammability is a concern. Age did not affect the properties of the cellulosic loose fill, but fungal growth was evident. Shrinkage, ranging from 2.5 to 9 percent, averaging 4.5 percent, was exhibited. Degradation of the foam samples with time did not occur. Density was the most critical property affecting the other properties. The higher the density, the higher the thermal resistence per inch, the lower the friability and the higher the compressive strength. The accurate prediction of the fiber diameter, amount of unfiberized mineral, and extent of modular clumping thermal resistance of loose fill mineral fiber insulations is related to and is not solely a factor of density. The materials in this sample did not noticeably affect the structure or wiring of the retrofitted homes. (LCL)« less
Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.
Choi, Jeong-Il; Lee, Bang Yeon
2015-09-30
The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.
Elastin Fiber Accumulation in Liver Correlates with the Development of Hepatocellular Carcinoma
Kurosaki, Masayuki; Higuchi, Mayu; Komiyama, Yasuyuki; Yoshida, Tsubasa; Hayashi, Tsuguru; Kuwabara, Konomi; Takaura, Kenta; Nakakuki, Natsuko; Takada, Hitomi; Tamaki, Nobuharu; Suzuki, Shoko; Nakanishi, Hiroyuki; Tsuchiya, Kaoru; Itakura, Jun; Takahashi, Yuka; Hashiguchi, Akinori; Sakamoto, Michiie; Izumi, Namiki
2016-01-01
Background & Aims The fibrosis stage, which is evaluated by the distribution pattern of collagen fibers, is a major predictor for the development of hepatocellular carcinoma (HCC) for patients with hepatitis C. Meanwhile, the role of elastin fibers has not yet been elucidated. The present study was conducted to determine the significance of quantifying both collagen and elastin fibers. Methods We enrolled 189 consecutive patients with hepatitis C and advanced fibrosis. Using Elastica van Gieson-stained whole-slide images of pretreatment liver biopsies, collagen and elastin fibers were evaluated pixel by pixel (0.46 μm/pixel) using an automated computational method. Consequently, fiber amount and cumulative incidences of HCC within 3 years were analyzed. Results There was a significant correlation between collagen and elastin fibers, whereas variation in elastin fiber was greater than in collagen fiber. Both collagen fiber (p = 0.008) and elastin fiber (p < 0.001) were significantly correlated with F stage. In total, 30 patients developed HCC during follow-up. Patients who have higher elastin fiber (p = 0.002) in addition to higher collagen fiber (p = 0.05) showed significantly higher incidences of HCC. With regard to elastin fiber, this difference remained significant in F3 patients. Furthermore, for patients with a higher collagen fiber amount, higher elastin was a significant predictor for HCC development (p = 0.02). Conclusions Computational analysis is a novel technique for quantification of fibers with the added value of conventional staging. Elastin fiber is a predictor for the development of HCC independently of collagen fiber and F stage. PMID:27128435
Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton
2003-01-01
Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....
Sorption of copper, zinc and cobalt by oat and oat products.
Górecka, Danuta; Stachowiak, Jadwiga
2002-04-01
We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.
Farzana, Tasnim; Mohajan, Suman; Saha, Trissa; Hossain, Md Nur; Haque, Md Zahurul
2017-07-01
The research study was conducted to develop a healthy vegetables soup powder supplemented with soy flour, mushroom, moringa leaf and compare its nutritional facts with locally available soup powders. Proximate analysis and sensory evaluation were done by standard method. In this study, moisture, ash, protein, fat, fiber, carbohydrate, and energy content were ranged from 2.83% to 5.46%, 9.39% to 16.48%, 6.92% to 16.05%, 4.22% to 6.39%, 0.22% to 1.61%, 58.81% to 75.41%, and 337.42 to 386.72 kcal/100 g, respectively. Highest content of vitamin D, minerals, protein, and fiber and lowest content of moisture, fat, and carbohydrate were found in the presently developed soy-mushroom-moringa soup powder compare to locally available soup powders. Vitamin C was also found significantly higher than locally available soup powders S1, S2, and S3. Heavy metals were not found in any of the soup powders. On the sensory and microbiological point of view, the presently developed soup powder was found highly acceptable up to 6 months. So, the developed soy-mushroom-moringa soup powder is nutritionally superior to locally available soup powders and sufficient to meet day-to-day nutritional requirements as a supplement.
Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping
2018-05-01
Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M. S.; Chithirai Pon Selvan, M.; Sampath, P. S.; Raja, K.; Balasundaram, K.
2018-04-01
Multilayer glass fiber reinforced polymer (GFRP) laminates filled with nanoclay was manufactured with compression moulding machine. In the present work, five kinds of nanoclay (Cloisite 25A) loadings viz. 2, 4, 6, 8 and 10% on weight basis of epoxy resin were employed to modify the interlaminar shear strength (ILSS), critical energy release rate (GIc) and impact energy properties of GFRP laminates. Experimental results obtained from ILSS test on clay filled GFRP confirm that the superior strength was attained at low clay content of 155.10 MPa. Furthermore, the mode I interlaminar fracture toughness test conducted on DCB specimens revealed that the commanding improvement of GIc was obtained at 2 wt.% clay content level. On the other hand, both ILSS and fracture toughness was getting reduced at higher clay loadings. At last, the impact strength of the test samples was investigated by using Izod impact test apparatus and observed that the impact energy was increased by 44.39% for 2 wt.% and followed by 24.87% for 4 wt.% clay loadings.
Composition and Nutrient Value Proposition of Brewers Spent Grain.
Ikram, Sana; Huang, LianYan; Zhang, Huijuan; Wang, Jing; Yin, Meng
2017-10-01
Brewer's spent grain (BSG), a major brewing industry byproduct, is generated in large quantities annually. This review summarizes research into the composition and preservation of BSG, different extraction techniques for BSG proteins and phenolic acids, and the bioactivities of these phenolic components. Moreover, this article also highlights BSG integration into foodstuff for human consumption and animal feed supplements. BSG is considered a rich source of fiber, protein, and phenolic compounds. The phenolic acids present in BSG are hydroxycinnamic acids (ferulic, p-coumaric, and caffeic acids), which have many biofunctions, such as antioxidant, anticarcinogenic, antiatherogenic, and antiinflammatory activities. Previously, attempts have been made to integrate BSG into human food, such as ready-to-eat snacks, cookies and bread, to increase fiber and protein contents. The addition of BSG to animal feed leads to increased milk yields, higher fat contents in milk, and is a good source of essential amino acids. Therefore, many studies have concluded that integrating the biofunctional compounds in BSG into human food and animal feed has various health benefits. © 2017 Institute of Food Technologists®.
Nuñez-López, María A; Paredes-López, Octavio; Reynoso-Camacho, Rosalía
2013-11-20
Nopal (Opuntia ficus-indica) cladodes are recommended for their therapeutic properties; their maturity stage may affect their biological properties. Cladodes of three maturity stages, from the same crop and location, were dehydrated and evaluated for some of their physicochemical and nutritional characteristics and antidiabetic properties. The flours of small and medium cladodes (SCF and MCF, respectively) had higher contents of dietary fiber, water absorption, swelling, and viscosity compared to those of the large cladode flour (LCF). Streptozotocin-induced diabetic rats, treated with MCF and SCF (doses of 50 mg/kg body weight), showed reduction of postprandial blood glucose on 46.0 and 23.6%, respectively (p < 0.05), in relation to the control; and LCF had no significant effect. In vitro, glucose diffusion tests showed similar ranking by the two former samples, whereas the latter was close to the control. Cladode maturity stages showed different fiber content and produced suspensions with differences in viscosity, which may affect in vitro and in vivo glucose responses.
Hypolipidemic effect of fruit fibers in rats fed with high dietary fat.
Esmael, O A; Sonbul, S N; Kumosani, T A; Moselhy, S S
2015-03-01
The hypolipidemic effect of 10% fruit fibers in rats fed with high-fat diet (HFD) was evaluated. This study was conducted on a total of 50 male Albino rats divided into 10 equal groups fed with different types of dietary fruits. The feeding period lasted for 24 weeks. Fasting blood samples were collected and sera separated and subjected to lipid profile assay and atherogenic index. In addition, total antioxidant activity of different fruits was determined. The results obtained showed that pomegranate had higher content of antioxidants followed by apple, strawberry and guava compared with other fruits. Rats fed with 20% coconut oil showed a highly significant elevation in the levels of serum total cholesterol, low-density lipoprotein cholesterol and atherogenic factor while the level of high-density lipoprotein cholesterol was significantly decreased when compared with control rats. Histological examination revealed that there was a large lipid and cholesterol deposition in the livers of rats fed with HFD. The potential in lowering the levels of plasma total cholesterol and triglyceride is in the following order: pomegranate > apple > strawberry > guava > papaya > mandarin and orange. Accumulation of hepatic lipid droplets was diminished when compared with the HFD group. Also, antiatherogenic is better than the untreated groups. Accordingly these hypolipidemic effects may be due to high-fiber content and antioxidant activity of these fruits. © The Author(s) 2012.
Physicochemical properties of cookies enriched with xylooligosaccharides.
Ayyappan, P; Abirami, A; Anbuvahini, N A; Tamil Kumaran, P S; Naresh, M; Malathi, D; Antony, Usha
2016-07-01
The growing commercial importance of xylooligosaccharides is based on their beneficial health properties, particularly their ability to stimulate the growth and activity of intestinal bacteria such as Bifidobacterium and Lactobacillus species. Xylooligosaccharides are less sweet, acid, and heat stable, with low recommended levels of intake compared to other oligosaccharides. In view of the consumer demand for foods with low sugar, low fat, and high fiber contents, they are suitable for incorporation into bakery products. In this study, we have developed wheat-based cookies incorporated with xylooligosaccharides at 5%, 10%, and 15% levels. The nutritive value and physicochemical properties of the cookies changed with xylooligosaccharides incorporation; both crude fiber and dietary fiber contents increased by 14% and 35%, respectively, in the enriched cookies. The moisture levels increased with increase in the percentage of xylooligosaccharides incorporated. Cookies with 5% xylooligosaccharides were found most acceptable, although the color was slightly darker compared to the control, while cookies with 10% and 15% xylooligosaccharides were softer and darker and therefore less acceptable. Enrichment with xylooligosaccharides at 5% provided a product stable for 21 days at room temperature (25 ± 2℃). The storage stability of cookies with higher levels of xylooligosaccharides was less than the 5% xylooligosaccharides cookies and control. The retention of the prebiotic xylooligosaccharides in the products was relatively high (74%). © The Author(s) 2015.
Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation
Choi, Jeong-Il; Lee, Bang Yeon
2015-01-01
The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595
How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks
Millogo, Younoussa; Aubert, Jean-Emmanuel; Hamard, Erwan; Morel, Jean-Claude
2015-01-01
Physicochemical characteristics of Hibiscus cannabinus (kenaf) fibers from Burkina Faso were studied using X-ray diffraction (XRD), infrared spectroscopy, thermal gravimetric analysis (TGA), chemical analysis and video microscopy. Kenaf fibers (3 cm long) were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%), hemicelluloses (18.9 wt%) and lignin (3 wt%) and were characterized by high tensile strength (1 ± 0.25 GPa) and Young’s modulus (136 ± 25 GPa), linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.
Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny
2007-09-01
Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.
Falcón-Villa, María R; Barrón-Hoyos, Jesús M; Cinco-Moroyoqui, Francisco J
2014-09-01
The beneficial effect of dietary fiber (DF) consumption has long been recognized. The global economy and open market trade policies have increased the availability of food products in Mexican markets, resulting in a wide variety of ready-to-eat commercial breakfast cereals classified as 'high fiber'. This research was aimed to evaluate the total dietary fiber contents, its fractions (soluble and insoluble) and β-glucan in 13 commercial 'high-fiber' breakfast cereals, as well as to evaluate their protein quality by rat bioassays. Commercial 'high-fiber' breakfast cereals had 7.42-39.82% insoluble dietary fiber, 2.53-12.85% soluble dietary fiber, and 0.45-4.96% β-glucan. These ready-to-eat commercial 'high-fiber' breakfast cereals differed significantly in their total dietary fiber, their soluble and insoluble DF fractions, and also in their β-glucan contents. When supplied as experimental diets, in 14-day rat feeding trials, the 'high-fiber' breakfast cereals showed an adverse effect on the % N digestibility but protein utilization, as measured as net protein ratio (NPR), was not significantly affected. The consumption of these commercial breakfast cereals, especially those made of oats as the basic ingredient, is highly recommended, since these products, being a concentrated source of dietary fiber, do not affect their protein quality.
Montoya, Carlos A; Henare, Sharon J; Rutherfurd, Shane M; Moughan, Paul J
2016-08-01
The aim of this review is to identify the origin and implications of a nondietary material present in digesta and feces that interferes with the determination of dietary fiber in gastrointestinal contents. Negative values for ileal and fecal digestibility of dietary fiber are commonly reported in the literature for monogastric animal species, including humans. As negative values are not possible physiologically, this suggests the existence of a nondietary material in the gastrointestinal contents and feces that interferes with the accurate determination of dietary fiber digestibility when conventional methods of fiber determination are applied. To date, little attention has been given to this nondietary interfering material, which appears to be influenced by the type and concentration of fiber in the diet. Interestingly, estimates of dietary fiber digestibility increase substantially when corrected for the nondietary interfering material, which suggests that currently reported values underestimate the digestibility of dietary fiber and may misrepresent where, in the digestive tract, fermentation of fiber occurs. A new perspective of dietary fiber digestion in the gastrointestinal tract is developing, leading to a better understanding of the contribution of dietary fiber to health. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Basic failure mechanisms in advanced composites
NASA Technical Reports Server (NTRS)
Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.
1972-01-01
Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.
Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.
1994-01-01
Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.
In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
Cui, Wenguo; Li, Xiaohong; Zhou, Shaobing; Weng, Jie
2007-09-15
Development of nanocomposites of hydroxyapatite (HA) and polylactic acid (PLA) is attractive, as the advantageous properties of the two types of materials can be combined to suit better the mechanical and biological demands for biomedical uses. To solve the problematic issue of agglomeration of HA crystallites in the PLA matrix, a novel method is introduced in the present study to use electrospun nanofibers as the reaction confinement for composite fabrication. Poly(DL-lactide) ultrafine fibers with calcium nitrate entrapment were prepared by electrospinning and then incubated in phosphate solution to form in situ calcium phosphate on the polymer matrix. The formation of nonstoichiometric nanostructured HA and well dispersion of HA particles on the electrospun fibers were observed. Higher crystalline HA phase was indicated in samples after sintering at 1200 degrees C. The formation of the calcium-phosphate phase was dependent upon the precipitation conditions, and the effects of the incubation time, temperature, and the pH values of the incubation medium were investigated on the spontaneous precipitation and amorphous-crystalline transformation of HA in the current study. Considering the biodegradability of matrix polymer and the crystallinity and uniform dispersal of HA, optimal conditions for composite preparation were incubating calcium-containing ultrafine fibers at 37 degrees C in pH 7.4 or at 25 degrees C in pH 9.0 of diammonium hydrogen phosphate solutions for 7 days. Around 25%-34% of mineral contents can be synthesized in the resulting composites, which was higher than the theoretical value due to the nonstoichiometric HA formed in the composite, and the fiber degradation and partial calcium nitrate involved in the HA formation. Copyright 2007 Wiley Periodicals, Inc.
Influence of kraft pulping on carboxylate content of softwood kraft pulps
Zheng Dang; Thomas Elder; Arthur J. Ragauskas
2006-01-01
This study characterizes changes in fiber charge, which is the carboxylate content of fibers, for two sets of kraft pulps: (1) conventional laboratory cooked loblolly pine kraft pulps and (2) conventional pulping (CK) versus low solids pulping (LS) pulps. Laboratory kraft pulping of loblolly pine was carried out to study the influence of pulping conditions, including...
Arribas, C; Cabellos, B; Sánchez, C; Cuadrado, C; Guillamón, E; Pedrosa, M M
2017-10-18
Consumers and the food industry are demanding healthier products. Expanded snacks with a high nutritional value were developed from different rice, pea and carob flour blends. The proximate composition, starch (total and resistant), amylose and amylopectin, dietary fiber (soluble and insoluble) contents, and the in vitro protein digestibility of different rice-legume formulations, were evaluated before and after the extrusion process. Compared with the corresponding non-extruded blends (control), the extrusion treatment did not change the total protein content, however, it reduced the soluble protein (61-86%), the fat (69-92%) and the resistant starch contents (100%). The total starch content of all studied blends increased (2-19%) after extrusion. The processing increased the in vitro protein digestibility, reaching values around 88-95% after extrusion. Total dietary fiber was reduced around 30%, and the insoluble fraction was affected to a larger extent than the soluble fraction by the extrusion process. Because of its balanced nutritional composition, high dietary fiber content, as well as low energy density, these novel gluten-free snack-like foods could be considered as functional foods and a healthier alternative to commercially available gluten-containing or gluten-free and low nutritional value snacks.
Ceramic TBS/porous metal compliant layer
NASA Technical Reports Server (NTRS)
Tolokan, Robert P.; Jarrabet, G. P.
1992-01-01
Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.
Christensen, V R; Jensen, S L; Guldberg, M; Kamstrup, O
1994-10-01
Measurements of rates of dissolution of typical insulation wool fibers (glasswool and basalt based stonewool) and an experimental fiber were made using a flow-through equipment. The liquids used were a modified Gamble's solution, adjusted to pH 4.8 and 7.7 +/- 0.2, respectively. The dissolution of SiO2 and CaO was determined over periods of up to three months. The rate of dissolution of stonewool fibers was lower than that of glasswool fibers at pH 7.7, whereas the opposite was true at pH 4.8. The stonewool fibers dissolve congruently, but glasswool fibers tend to dissolve with leaching. The rates of dissolution of fibers of different compositions, including insulation wool (glasswool, basalt-based stonewool, slagwool) and experimental fibers were screened using a stationary set-up. Both the chemical composition and pH influenced the rates of dissolution. At pH 7.7 alumina was a determining component and at pH 4.8 the content of SiO2 and CaO was determinant. One experimental fiber with a high content of alumina was an exception having a fairly high rate of dissolution both at pH 4.8 and 7.7.
Christensen, V R; Jensen, S L; Guldberg, M; Kamstrup, O
1994-01-01
Measurements of rates of dissolution of typical insulation wool fibers (glasswool and basalt based stonewool) and an experimental fiber were made using a flow-through equipment. The liquids used were a modified Gamble's solution, adjusted to pH 4.8 and 7.7 +/- 0.2, respectively. The dissolution of SiO2 and CaO was determined over periods of up to three months. The rate of dissolution of stonewool fibers was lower than that of glasswool fibers at pH 7.7, whereas the opposite was true at pH 4.8. The stonewool fibers dissolve congruently, but glasswool fibers tend to dissolve with leaching. The rates of dissolution of fibers of different compositions, including insulation wool (glasswool, basalt-based stonewool, slagwool) and experimental fibers were screened using a stationary set-up. Both the chemical composition and pH influenced the rates of dissolution. At pH 7.7 alumina was a determining component and at pH 4.8 the content of SiO2 and CaO was determinant. One experimental fiber with a high content of alumina was an exception having a fairly high rate of dissolution both at pH 4.8 and 7.7. PMID:7882962
Koch, L E; Gomez, N A; Bowyer, A; Lascano, G J
2017-12-01
The addition of dietary fiber can alter nutrient and N utilization in precision-fed dairy heifers and may further benefit from higher inclusion levels of RUP. The objective of this experiment was to determine the effects of feeding a high-RUP diet when dietary fiber content was manipulated within differing forage-to-concentrate ratios (F:C) on nutrient utilization of precision-fed dairy heifers. Six rumen-cannulated Holstein heifers (555.4 ± 31.4 kg BW; 17.4 ± 0.1 mo) were randomly assigned to 2 levels of forage, high forage (HF; 60% forage) or low forage (LF; 45% forage), and to a fiber proportion sequence (low fiber: 100% oat hay and silage [OA], 0% wheat straw [WS]; medium fiber: 83.4% OA, 16.6% WS; and high fiber: 66.7% OA, 33.3% WS) administered according to a split-plot 3 × 3 Latin square design (21-d periods). Similar levels of N intake (1.70 g N/kg BW) and RUP (55% of CP) were provided. Data were analyzed as a split-plot, 3 × 3 Latin square design using a mixed model with fixed effects of period and treatment. A repeated measures model was used with data that had multiple measurements over time. No differences were observed for DM, OM, NDF, or ADF apparent digestibility coefficients (dC) between HF- and LF-fed heifers. Heifers receiving LF diets had greater starch dC compared to HF heifers. Increasing the fiber level through WS addition resulted in a linear reduction of OM dC. There was a linear interaction for DM dC with a concurrent linear interaction in NDF dC. Nitrogen intake, dC, and retention did not differ; however, urine and total N excretion increased linearly with added fiber. Predicted microbial CP flow (MP) linearly decreased with WS inclusion mainly in LF heifers, as indicated by a significant interaction between F:C and WS. Rumen pH linearly increased with WS addition, although no F:C effect was detected. Ruminal ammonia concentration had an opposite linear effect with respect to MP as WS increased. Diets with the higher proportion of fiber benefited the most from a high RUP supply, complementing the substantial reduction in predicted MP caused by the incremental dietary fiber concentration. These results suggest that RUP supplementation is a practical method for reestablishing optimal ruminal N balance in the event of increased dietary fiber through forage inclusion in precision-fed dairy heifer diets.
HIGH STRENGTH GLASS FIBERS DEVELOPMENT PROGRAM
Contents: Status of information relative to commercial fiberglass Intrinsic strength of the glass fiber Degree of surface damage existing in...the fibers after processing into the filament wound structure Failure mechanisms in a filament wound structure Need for understanding in two distinct problem areas
Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.
Erben, Melina; Osella, Carlos A
2017-07-01
The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.
Effect of CO2 levels on nutrient content of lettuce and radish.
McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S
1996-01-01
Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.
Effect of CO_2 levels on nutrient content of lettuce and radish
NASA Astrophysics Data System (ADS)
McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.
Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.
Effect of CO2 levels on nutrient content of lettuce and radish
NASA Technical Reports Server (NTRS)
McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)
1996-01-01
Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.
Effect of training and sudden detraining on the patellar tendon and its enthesis in rats
2011-01-01
Background Different conditions may alter tendon characteristics. Clinical evidence suggests that tendon injuries are more frequent in athletes that change type, intensity and duration of training. Aim of the study was the assessment of training and especially detraining on the patellar tendon (PT) and its enthesis. Methods 27 male adult Sprague-Dawley rats were divided into 3 groups: 20 rats were trained on a treadmill for 10 weeks. Of these, 10 rats were euthanized immediately after training (trained group), and 10 were caged without exercise for 4 weeks before being euthanized (de-trained group). The remaining 7 rats were used as controls (untrained rats). PT insertion, structure (collagen fiber organization and proteoglycan, PG, content), PT thickness, enthesis area, and subchondral bone volume at the enthesis were measured by histomorphometry and microtomography. Results Both PG content and collagen fiber organization were significantly lower in untrained and detrained animals than in trained ones (p < 0.05 and p < 0.0001). In the detrained group, fiber organization and PG content were worse than that of the untrained groups and the untrained group showed a significantly higher score than the detrained group (p < 0.05). In the trained group, the PT was significantly thicker than in untrained group (p < 0.05). No significant differences in the enthesis area and subchondral bone volume among the three groups were seen. Conclusions Moderate exercise exerts a protective effect on the PT structure while sudden discontinuation of physical activity has a negative effect on tendons. The present results suggest that after a period of sudden de-training (such as after an injury) physical activity should be restarted with caution and with appropriate rehabilitation programs. PMID:21247475
Low-energy density and high fiber intake are dietary concerns in female endurance athletes.
Melin, A; Tornberg, Å B; Skouby, S; Møller, S S; Faber, J; Sundgot-Borgen, J; Sjödin, A
2016-09-01
Low or reduced energy availability (LEA) is linked to functional hypothalamic oligomenorrhea/amenorrhea (FHA), which is frequently reported in weight-sensitive sports. This makes LEA a major nutritional concern for female athletes. The aim of this study was to describe dietary characteristics of athletes with LEA and/or FHA. Endurance athletes (n = 45) were recruited from national teams and competitive clubs. Protocols included gynecological examination, body composition, eating disorder evaluation, and 7-day dietary intake and EA assessment. Athletes with disordered eating behavior/eating disorders (n = 11), menstrual dysfunction other than FHA (n = 5), and low dietary record validity (n = 4) were excluded. Remaining subjects (n = 25) were characterized by EA [optimal: ≥ 45 kcal (188 kJ)/kg fat-free mass (FFM)/day (n = 11), LEA: < 45 kcal (188 kJ)/kg FFM/day (n = 14)] and reproductive function [eumenorrhea (EUM; n = 10), FHA (n = 15)]. There was no difference in EA between FHA and EUM subjects. However, FHA and LEA subjects shared the same dietary characteristics of lower energy density (ED) [(P = 0.012; P = 0.020), respectively], and fat content [(P = 0.047; P = 0.027), respectively]. Furthermore, FHA subjects had a lower intake of carbohydrate-rich foods (P = 0.019), higher fiber content (P < 0.001), and drive for thinness score (P = 0.003). Conclusively, low ED together with high fiber content may constitute targets for dietary intervention in order to prevent and treat LEA and FHA in female athletes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tupling, A R; Bombardier, E; Stewart, R D; Vigna, C; Aqui, A E
2007-12-01
To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.
Hewitt, Kevin C; Ghassemi Rad, Javad; McGregor, Hanna C; Brouwers, Erin; Sapp, Heidi; Short, Michael A; Fashir, Samia B; Zeng, Haishan; Alwayn, Ian P
2015-10-07
Due to the shortage of healthy donor organs, steatotic livers are commonly used for transplantation, placing patients at higher risk for graft dysfunction and lower survival rates. Raman Spectroscopy is a technique which has shown the ability to rapidly detect the vibration state of C-H bonds in triglycerides. The aim of this study is to determine whether conventional Raman spectroscopy can reliably detect and quantify fat in an animal model of liver steatosis. Mice and rats fed a methionine and choline-deficient (MCD) and control diets were sacrificed on one, two, three and four weeks' time points. A confocal Raman microscope, a commercial Raman (iRaman) fiber optic probe and a highly sensitive Raman fiber optic probe system, the latter utilizing a 785 nm excitation laser, were used to detect changes in the Raman spectra of steatotic mouse livers. Thin layer chromatography was used to assess the triglyceride content of liver specimens, and sections were scored blindly for fat content using histological examination. Principal component analysis (PCA) of Raman spectra was used to extract the principal components responsible for spectroscopic differences with MCD week (time on MCD diet). Confocal Raman microscopy revealed the presence of saturated fats in mice liver sections. A commercially available handheld Raman spectroscopy probe could not distinguish the presence of fat in the liver whereas our specially designed, high throughput Raman system could clearly distinguish lobe-specific changes in fat content. In the left lobe in particular, the Raman PC scores exhibited a significant correlation (R(2) = 0.96) with the gold standard, blinded scoring by histological examination. The specially designed, high throughput Raman system can be used for clinical purposes. Its application to the field of transplantation would enable surgeons to determine the hepatic fat content of the donor's liver in the field prior to proceeding with organ retrieval. Next steps include validating these results in a prospective analysis of human liver transplantation implant biopsies.
NASA Astrophysics Data System (ADS)
Benítez, Javier; Sayde, Chadi; Rodríguez Sinobas, Leonor; Sánchez, Raúl; Gil, María; Selker, John
2013-04-01
This research provides insights of the calibration procedures carried out at the agricultural field of La Nava de Arévalo (Spain). The suitability of the heat pulse theory applied to fiber optics for measuring soil water content, in field conditions, is here analyzed. In addition, it highlights the major findings obtained and the weakness to be addressed in future studies. Within a corn field, in a plot of 500 m2 of bare soil, 600 m of fiber optic cable (BruggSteal) were buried on a ziz-zag deployment at two depths, 30cm and 60cm. Various electrical heat pulses of 20W/m were applied to the stainless steel shield of the fiber optic cable during 2 minutes. The resulting thermal response was captured by means of Distributed Fiber Optic Temperature sensing (DFOT), within a spatial and temporal resolution up to 25 cm and 1 s, respectively. The soil thermal response was then correlated to the soil water content by using undisturbed soil samples and soil moisture sensors (Decagon ECHO 5TM). The process was also modeled by applying the numerical methods software Hydrus 2D. Also, the soil thermal properties were measured in situ by using a dual heat pulse probe (Decagon Kd2Pro). For an ongoing process, first results obtained show the suitability of heated fiber optics for measuring soil water content, in real field conditions. Also, they highlight the usefulness of Hydrus 2D as a complementary tool for calibration purposes and for reducing uncertainty in addressing soil spatial variability.
Dincer, Cuneyt; Karaoglan, Mert; Erden, Fidan; Tetik, Nedim; Topuz, Ayhan; Ozdemir, Feramuz
2011-11-01
The effects of baking and boiling on the nutritional and antioxidant properties of three sweet potato cultivars (Beniazuma, Koganesengan, Kotobuki) cultivated in Turkey were investigated. The samples were analyzed for proximate composition, total phenolic content, ascorbic acid, β-carotene, antiradical activity, and free sugars. The dry matter, protein, and starch contents of the sweet potatoes were significantly changed by the treatments while the ash and crude fiber contents did not differ as significantly. The β-carotene contents of baked and boiled sweet potatoes were lower than those of fresh sweet potatoes; however, the total phenolic and ascorbic acid contents of the baked and boiled sweet potatoes were higher than those of the fresh samples. Generally, the antiradical activity of the sweet potatoes increased with the treatments. Sucrose, glucose, and fructose were quantified as free sugars in all fresh sweet potatoes; however, maltose was determined in the treated samples. In terms of the analyzed parameters, there were no explicit differences among the sweet potato cultivars.
NASA Astrophysics Data System (ADS)
Sariri, A. K.; Mulyono, A. M. W.; Tari, A. I. N.
2018-03-01
This objective of this research was to observe the utilization of microbes as a fermentation agent of trembesi leaves that can increase the quality of trembesi leaves as ruminants feed. Before fermentation, trembesi leaves were divided into three treatments. They were control = non-agentic in fermentation, D-An = the addition of Aspergillus niger as fermentation agent, and D-Lp = the addition of Lactobacillus plantarum as fermentation agent. Each treatment experienced five repetitions. The experimental design used a randomized direct pattern group design. The analysis included proximate analysis consisting of water content, crude protein content, crude fiber content, lipid content, mineral content (ash) and saponin content after fermentation. It could be concluded that the utilization of Aspergillus niger and Lactobacillus plantarum in fermentation could decrease saponin content and could increase the nutrient content of trembesi leaves by increasing crude protein content otherwise by decreasing crude fiber content of trembesi leaves.
Choi, Yun-Sang; Kim, Young-Boong; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Kim, Hyun-Wook; Sung, Jung-Min; Kim, Cheon-Jei
2016-06-01
The effects of reducing pork fat level from 30 to 25 and 20% by partially substituting pork fat with 1 and 2% apple pomace fiber were investigated based on the evaluation of physicochemical properties and textural properties of uncured, reduced-fat chicken sausages. Increased fat level resulted in decreased moisture content, cooking loss, total expressible fluid separation, fat separation, and yellowness of uncured, reduced-fat chicken sausages, whereas, an increase in fat content, caloric energy, pH, lightness, redness, hardness, cohesiveness, gumminess, and chewiness was observed. The results showed that uncured, reduced-fat chicken sausage samples with increased apple pomace fiber level had lower cooking loss, total expressible fluid separation, fat separation, pH, and redness. The results from this study show that inclusion of apple pomace fiber in the formulation will successfully reduce fat content in emulsion sausages, while improving quality characteristics relative to regular-fat (30%) control. © 2016 Poultry Science Association Inc.
Liu, Xiaoyan; Li, Feng; Ding, Yongsheng; Zou, Ting; Wang, Lu; Hao, Kuangrong
2015-01-01
A hierarchical support vector regression (SVR) model (HSVRM) was employed to correlate the compositions and mechanical properties of bicomponent stents composed of poly(lactic-co-glycolic acid) (PGLA) film and poly(glycolic acid) (PGA) fibers for urethral repair for the first time. PGLA film and PGA fibers could provide ureteral stents with good compressive and tensile properties, respectively. In bicomponent stents, high film content led to high stiffness, while high fiber content resulted in poor compressional properties. To simplify the procedures to optimize the ratio of PGLA film and PGA fiber in the stents, a hierarchical support vector regression model (HSVRM) and particle swarm optimization (PSO) algorithm were used to construct relationships between the film-to-fiber weight ratio and the measured compressional/tensile properties of the stents. The experimental data and simulated data fit well, proving that the HSVRM could closely reflect the relationship between the component ratio and performance properties of the ureteral stents. PMID:28793658
A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou
2016-01-01
In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0â5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...
Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers
Beom-Goo Lee; Roger M. Rowell
2004-01-01
Spruce, coconut coir, sugarcane bagasse, kenaf bast, kenaf core, and cotton were tested for their ability to remove copper, nickel and zinc ions from aqueous-solutions as a function of their lignin content. The fibers were analyzed for sugar and lignin content and extracted with diethyl ether, ethyl alcohol. hot water, or 1% sodium hydroxide. The order of lignin...
Ogneva, I V; Maximova, M V; Larina, I M
2014-01-01
The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.
Thacker, Bryan E.; Tomiya, Akihito; Hulst, Jonah B.; Suzuki, Kentaro P.; Bremner, Shannon N.; Gastwirt, Randy F.; Greaser, Marion L.; Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Summary The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa versus 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa versus 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. PMID:21853457
Thacker, Bryan E; Tomiya, Akihito; Hulst, Jonah B; Suzuki, Kentaro P; Bremner, Shannon N; Gastwirt, Randy F; Greaser, Marion L; Lieber, Richard L; Ward, Samuel R
2012-03-01
The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa vs. 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa vs. 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. Copyright © 2011 Orthopaedic Research Society.
Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria).
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S; Antipova, Olga; Mandelberg, Yael; Kashman, Yoel; Benayahu, Dafna; Benayahu, Yehuda
2017-09-15
We report here the biochemical, molecular and ultrastructural features of a unique organization of fibrillar collagen extracted from the octocoral Sarcophyton ehrenbergi Collagen, the most abundant protein in the animal kingdom, is often defined as a structural component of extracellular matrices in metazoans. In the present study, collagen fibers were extracted from the mesenteries of S. ehrenbergi polyps. These fibers are organized as filaments and further compacted as coiled fibers. The fibers are uniquely long, reaching an unprecedented length of tens of centimeters. The diameter of these fibers is 9±0.37 μm. The amino acid content of these fibers was identified using chromatography and revealed close similarity in content to mammalian type I and II collagens. The ultrastructural organization of the fibers was characterized by means of high-resolution microscopy and X-ray diffraction. The fibers are composed of fibrils and fibril bundles in the range of 15 to 35 nm. These data indicate a fibrillar collagen possessing structural aspects of both types I and II collagen, a highly interesting and newly described form of fibrillar collagen organization. © 2017. Published by The Company of Biologists Ltd.
Fiber-type differences in muscle mitochondrial profiles.
Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D
2003-10-01
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.
Physico-chemical properties of instant ogbono (Irvingia gabonensis) mix powder
Bamidele, Oluwaseun P; Ojedokun, Omotayo S; Fasogbon, Beatrice M
2015-01-01
The main objective of the research is to develop a recipe of instant dry soup mix for easy preparation of ogbono soup. Instant ogbono mix powder was processed using common locally ingredients. Dika kernel powder, dried ugwu leaf, crayfish, stock fish, and a mixture of locust bean, onion, seasoning and Cameroon powder were formulated at different ratios to find the best acceptable ogbono mix powder. The samples were subjected to proximate, functional, vitamin, mineral, and sensory analyses. The formulated sample D with the highest ratio of crayfish and stock fish had the highest value of protein and carbohydrate (24.13 and 35.61%, respectively). The control sample (100% dika kernel powder) was low in moisture content (6.20%) but high in crude fat, other samples followed in this order (control > A > B > C > D) for crude fat. Ash, crude fiber, and carbohydrate showed a significant difference (P < 0.05) in all the samples. The functional properties of the sample showed a significant difference (P < 0.05) in all the samples with the control having the highest value for the water absorption, swelling capacity, and bulk density which may be due to the high crude fiber and low moisture content recorded for the control sample in the proximate analysis. The mineral content of all the samples were higher than the control with phosphorous having the highest value and iron the least value. Vitamin C was the main dominating vitamin in the sample followed by vitamin B2, vitamin A, and vitamin B3. The sensory evaluation revealed that 100% dika kernel powder gave a good attribute of the soup but with less nutritional composition, while some formulated samples showed a similar attribute with higher nutritional value. Sample A with the highest overall acceptability had the best attribute of ogbono soup. Instant ogbono mix powder has higher nutritional value and easy to cook. PMID:26288723
Romero-Lopez, Maria R; Osorio-Diaz, Perla; Bello-Perez, Luis A; Tovar, Juscelino; Bernardino-Nicanor, Aurea
2011-01-01
Orange is a tropical fruit used in the juice industry, yielding important quantities of by products. The objective of this work was to obtain a dietary fiber-rich orange bagasse product (DFROBP), evaluate its chemical composition and its use in the preparation of a bakery product (muffin). Muffins containing two different levels of DFROBP were studied regarding chemical composition, in vitro starch digestibility, predicted glyceamic index and acceptability in a sensory test. DFROBP showed low fat and high dietary fiber contents. The soluble and insoluble dietary fiber fractions were balanced, which is of importance for the health beneficial effects of fiber sources. DFROBP-containing muffins showed the same rapidly digestible starch content as the reference muffin, whilst the slowly digestible starch level increased with the addition of DFROBP. However, the resistant starch content decreased when DFROBP increased in the muffin. The addition of DFROBP to muffin decreased the predicted glyceamic index, but no difference was found between the muffins prepared with the two DFROBP levels. The sensory score did not show difference between control muffin and that added with 10% of DFROBP. The addition of DFROBP to bakery products can be an alternative for people requiring low glyceamic response.
Saha, Dolan C; Reimer, Raylene A
2014-09-01
A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P < 0.05). Firmicutes, especially Clostridium leptum, decreased in HF compared to C and HP (P < .05). The ratio of Firmicutes:Bacteroidetes was markedly lower in HF versus C and HP at 25 weeks (P < .05). HF decreased hepatic cholesterol content compared to HP and C at 25 weeks. HF and HP increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA and decreased lecithin-cholesterol acyltransferase mRNA compared to C (P < .05). In conclusion, re-matching rats to a HF but not HP diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Deadmore, Daniel L.; Sliney, Harold E.
1988-01-01
The friction and wear of monolithic and fiber reinforced Si-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C was measured. The monolithic materials tested were silicon carbide (SiC), fused silica (SiO2), syalon, silicon nitride (Si3N4) with W and Mg additives, and Si3N4 with Y2O3 additive. At 25 C fused silica had the lowest friction while Si3N4 (W,Mg type) had the lowest wear. At 800 C syalon had the lowest friction while Si3N4 (W,Mg type) and syalon had the lowest wear. The SiC/IN-718 couple had the lowest total wear at 25 C. At 800 C the fused silica/IN-718 couple exhibited the least total wear. SiC fiber reinforced reaction bonded silicon nitride (RBSN) composite material with a porosity of 32 percent and a fiber content of 23 vol percent had a lower coefficient of friction and wear when sliding parallel to the fiber direction than in the perpendicular at 25 C. The coefficient of friction for the carbon fiber reinforced borosilicate composite was 0.18 at 25 C. This is the lowest of all the couples tested. Wear of this material was about two decades smaller than that of the monolithic fused silica. This illustrates the large improvement in tribological properties which can be achieved in ceramic materials by fiber reinforcement. At higher temperatures the oxidation products formed on the IN-718 alloy are transferred to the ceramic by sliding action and forms a thin, solid lubricant layer which decreases friction and wear for both the monolithic and fiber reinforced composites.
Physicochemical Properties of Dietary Fibers from Artocarpus camansi Fruit
NASA Astrophysics Data System (ADS)
Suryanti, V.; Kusumaningsih, T.; Rumingtyas, Y. S.
2017-04-01
The objective of this work was to investigate the dietary fiber (DF) contents of Artocorpus camansi (breadnut) fruit and examine their physicochemical properties, such as water-holding capacity (WAC), oil-holding capacity (OHC) and water absorption capacity (WAC). This fruit flour contained of both water soluble fibers (SDF), such as pectin (1.95%) and gum (0.4%), and water insoluble fibers (IDF) (89.25%). The IDF content of this fruit was significantly high in respect to other DF sources. The WHC, OHC and WAC of IDF were 4.10, 2.60 and 4.0%, respectively. Moreover, the WHC, OHC and WHC of total dietary fibers (TDF) were 4.2, 4.3 and 4.6%, respectively. The results showed that the DF of fruit flour had good physicochemical properties. The findings suggested that there is a potential application of A. camansi of fruit as functional ingredients in the food industry.
Holographic imaging of natural-fiber-containing materials
Bunch, Kyle J [Richland, WA; Tucker, Brian J [Pasco, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Kennewick, WA; McMakin, Douglas L [Richland, WA; Lechelt, Wayne M [West Richland, WA; Griffin, Jeffrey W [Kennewick, WA; Sheen, David M [Richland, WA
2010-12-21
The present invention includes methods and apparatuses for imaging material properties in natural-fiber-containing materials. In particular, the images can provide quantified measures of localized moisture content. Embodiments of the invention utilize an array of antennas and at least one transceiver to collect amplitude and phase data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz. A conveyance system passes the natural-fiber-containing materials through a field of view of the array of antennas. A computing device is configured to apply a synthetic imaging algorithm to construct a three-dimensional image of the natural-fiber-containing materials that provides a quantified measure of localized moisture content. The image and the quantified measure are both based on the amplitude data, the phase data, or both.
[The research on the surfacial modification of organic high-performance Kevlar fiber].
Zheng, Yu-ying; Fu, Ming-lian; Cai, Wei-long; Wang, Can-yao; Wang, Liang-en
2004-04-01
In the paper the authors tried to use chemical disposal to bring the activity mass onto the surface of Kevlar fiber with the purpose of surface graft modification. In the paper the authors used the FTIR spectra to discuss the graft of toluene-2, 4-diisocyanate onto Kevlar fiber. The authors studied and analysed the effect of hydrolytic time on the content of -O-H group of the production, and the effect of hydrolyzation and hexyl-lactam steadily disposing on the graft reaction. The result showed that the content of -O-H group increased after hydrolyzation, it's helpful for the graft reaction, and hexyl-lactam steadily disposing made the graf product more stable. Through the research the authors came to the conclusion that by bringing some activity masses onto the fiber surface the authors can improve the interface of fiber/resin effectively.
Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M
2012-07-01
Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.
Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.
2012-01-01
Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953
Moisture absorption of starch based biocomposites reinforced with water hyacinth fibers
NASA Astrophysics Data System (ADS)
Abral, H.; Hartono, J.
2017-06-01
Bioplastic based on tapioca starch (TSB) is very sensitive on moisture; meanwhile this substance may be used to replace synthetic plastic. This paper reports effect of Water Hyacinth Fibers (WHF) content on performance moisture absorption of starch based biocomposites. WHF content in the TSB matrix was varied in 1, 3, 5, and 10% respectively. The samples were placed in closed room with high relative humidity (RH) of 99% at 250C with different duration for 30 and 960 min respectively. The result showed that moisture absorption in the beginning was increased rapidly, and then achieved a level steady state. After that, significant swelling of the sample occurred for further duration in 960 min. Gradient of the swelling was decreased as increasing the fibers content in the TSB matrix.
Grajales-García, Eva M.; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H.; Bello-Pérez, Luis A.
2012-01-01
Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. PMID:22312252
NASA Astrophysics Data System (ADS)
Zhang, Yuanyuan; Zhang, Yizhen; Liu, Yuan; Wang, Xinling; Yang, Bin
2016-09-01
Properties of carbon fiber (CF) reinforced composites depend largely on the interfacial bonding strength between fiber and the matrix. In the present work, CF was grafted by 4,4‧-diphenylmethane diisocyanate (MDI) molecules after electrochemical oxidation treatment. The existence of functional groups introduced to the fiber surface and the changes of surface roughness were confirmed by FTIR, AFM, XPS, SEM and Raman spectroscopy. To evaluate the possible applications of this surface modification of carbon fiber, we examined the mechanical properties as well as the friction and wear performance of pristine CF and MDI-CF reinforced thermoplastic polyurethane (TPU) composites with 5-30 wt.% fiber contents, and found that the mechanical properties of TPU composites were all significantly improved. It is remarkable that when fiber content was 30 wt.%, the tensile strength of TPU/MDI-CF was increased by 99.3%, which was greater than TPU/CF (53.2%), and the friction loss of TPU/MDI-CF was decreased by 49.09%. The results of DMA and SEM analysis indicated the positive effects of MDI modification on the interfacial bonding between fibers and matrix. We believed that this simple and effective method could be used to the development of surface modified carbon fiber for high-performance TPU.
Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters.
Fry, Andrew C; Schilling, Brian K; Staron, Robert S; Hagerman, Fredrick C; Hikida, Robert S; Thrush, John T
2003-11-01
Biopsies fro the vastus lateralis muscle of male weightlifters (WL; n=6; X +/- SE, age=27.0 +/- 2.1 years), and non-weight-trained men (CON; n=7; age=27.0 +/- 2.0 years) were compared for fiber types, myosin heavy chain (MHC) and titin content, and fiber type-specific capillary density. Differences (p<0.05) were observed for percent fiber types IIC (WL=0.4 +/- 0.2, CON=2.4 +/- 0.8); IIA (WL=50.5 +/- 3.2, CON=26.9 +/- 3.7); and IIB (WL=1.7 +/- 1.4, CON=21.0 +/- 5.3), as well as percent MHC IIa (WL=65.3 +/- 2.4, CON=52.1 +/- 4.2) and percent MHC IIB (WL=0.9 +/- 0.9; CON=18.2 +/- 6.1). All WL exhibited only the titin-1 isoform. Capillary density (caps.mm(-2)) for all fiber types combined was greater for the CON subjects (WL=192.7 +/- 17.3; CON=262.9 +/- 26.3), due primarily to a greater capillary density in the IIA fibers. Weightlifting performances and vertical jump power were correlated with type II fiber characteristics. These results suggest that successful weightlifting performance is not dependent on IIB fibers, and that weightlifters exhibit large percentages of type IIA muscle fibers and MHC IIa isoform content.
Zhang, Suling; Du, Zhuo; Li, Gongke
2012-10-19
A graphene-supported zinc oxide (ZnO) solid-phase microextraction (SPME) fiber was prepared via a sol-gel approach. Graphite oxide (GO), with rich oxygen-containing groups, was selected as the starting material to anchor ZnO on its nucleation center. After being deoxidized by hydrazine, the Zn(OH)2/GO coating was dehydrated at high temperature to give the ZnO/graphene coating. Sol-gel technology could efficiently incorporate ZnO/graphene composites into the sol-gel network and provided strong chemical bonding between sol-gel polymeric SPME coating and silica fiber surface, which enhanced the durability of the fiber and allowed more than 200 replicate extractions. Results indicated that pure ZnO coated fiber did not show adsorption selectivity toward sulfur compounds, which might because the ZnO nanoparticles were enwrapped in the sol-gel network, and the strong coordination action between Zn ion and S ion was therefore blocked. The incorporation of graphene into ZnO based sol-gel network greatly enlarged the BET surface area from 1.2 m2/g to 169.4 m2/g and further increased the adsorption sites. Combining the superior properties of extraordinary surface area of graphene and the strong coordination action of ZnO to sulfur compounds, the ZnO/graphene SPME fiber showed much higher adsorption affinity to 1-octanethiol (enrichment factor, EF, 1087) than other aliphatic compounds without sulfur-containing groups (EFs<200). Also, it showed higher extraction selectivity and sensitivity toward sulfur compounds than commercial polydimethylsiloxane (PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibers. Several most abundant sulfur volatiles in Chinese chive and garlic sprout were analyzed using the ZnO/graphene SPME fiber in combination with gas chromatography-mass spectrometry (GC-MS). Their limits of detection were 0.1-0.7 μg/L. The relative standard deviation (RSD) using one fiber ranged from 3.6% to 9.1%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 4.8-10.8%. The contents were in the range of 1.0-46.4 μg/g with recoveries of 80.1-91.6% for four main sulfides in Chinese chive and 17.1-122.6 μg/g with recoveries of 73.2-80.6% for three main sulfides in garlic sprout. Copyright © 2012 Elsevier B.V. All rights reserved.
de Carvalho, Cláudia M; de Paula, Tatiana P; Viana, Luciana V; Machado, Vitória Mt; de Almeida, Jussara C; Azevedo, Mirela J
2017-11-01
Background: The amount and quality of carbohydrates are important determinants of plasma glucose after meals. Regarding fiber content, it is unclear whether the intake of soluble fibers from foods or supplements has an equally beneficial effect on lowering postprandial glucose. Objective: The aim of our study was to compare the acute effect of soluble fiber intake from foods or supplements after a common meal on postprandial plasma glucose and plasma insulin in patients with type 2 diabetes (T2D). Design: A randomized crossover clinical trial was conducted in patients with T2D. Patients consumed isocaloric breakfasts (mean ± SD: 369.8 ± 9.4 kcal) with high amounts of fiber from diet food sources (total fiber: 9.7 g; soluble fiber: 5.4 g), high amounts of soluble fiber from guar gum supplement (total fiber: 9.1 g; soluble fiber: 5.4 g), and normal amounts of fiber (total fiber: 2.4 g; soluble fiber: 0.8 g). Primary outcomes were postprandial plasma glucose and insulin (0-180 min). Data were analyzed by repeated measures ANOVA and post hoc Bonferroni test. Results: A total of 19 patients [aged 65.8 ± 7.3 y; median (IQR), 10 (5-9) y of T2D duration; glycated hemoglobin 7.0% ± 0.8%; body mass index (in kg/m 2 ) 28.2 ± 2.9] completed 57 meal tests. After breakfast, the incremental area under the curve (iAUC) for plasma glucose [mg/dL · min; mean (95% CI)] did not differ between high fiber from diet (HFD) [7861 (6257, 9465)] and high fiber from supplement (HFS) [7847 (5605, 10,090)] ( P = 1.00) and both were lower than usual fiber (UF) [9527 (7549, 11,504)] ( P = 0.014 and P = 0.037, respectively). iAUCs [μIU/mL · min; mean (95% CI)] did not differ ( P = 0.877): HFD [3781 (2513, 5050)], HFS [4006 (2711, 5302), and UF [4315 (3027, 5603)]. Conclusions: Higher fiber intake was associated with lower postprandial glucose at breakfast, and the intake of soluble fiber from food and supplement had a similar effect in patients with T2D. This trial was registered at clinicaltrials.gov as NCT02204384. © 2017 American Society for Nutrition.
Luoto, K; Holopainen, M; Karppinen, K; Perander, M; Savolainen, K
1994-01-01
The effect of different chemical compositions of man-made vitreous fibers (MMVF) on their dissolution by alveolar macrophages (AM) in culture and in Gamble's solution was studied. The fibers were exposed to cultured rat AMs, culture medium alone; or Gamble's saline solution for 2, 4, or 8 days. The dissolution of the fibers was studied by measuring the amount of silicon (Si), iron (Fe), and aluminum (Al) in each medium. The AMs in culture dissolved Fe and Al from the fibers but the dissolution of Si was more marked in the cell culture medium without cells and in the Gamble's solution. The dissolution of Si, Fe, and Al was different for different fibers, and increased as a function of time. The Fe and Al content of the fibers correlated negatively with the dissolution of Si by AMs from the MMVF, i.e., when the content of Fe and Al of the fibers increased the dissolution of Si decreased. These results suggest that the chemical composition of MMVFs has a marked effect on their dissolution. AMs seem to affect the dissolution of Fe and Al from the fibers. This suggests that in vitro models with cells in the media rather than only culture media or saline solutions would be preferable in dissolution studies of MMVFs. PMID:7882911
Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, A., E-mail: antonino.alessi@univ-st-etienne.fr; Girard, S.; Di Francesca, D.
2015-08-28
We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-dopedmore » fibers, we observed that the Ge(1) and the Ge(2) defects generation is unchanged, whereas it was enhanced for the E'Ge. In the various fibers, the comparison of the γ and X-ray induced concentrations of these kinds of Ge related defects indicates that the two irradiations induce similar effects regardless of the different employed dose rates and sources. Confocal microscopy luminescence results show that the starting content of the Germanium Lone Pair Center (GLPC) is neither strongly affected by the Ge content nor by the drawing conditions, and we consider the similarity of the GLPC content as key factor in determining many of the above reported similarities.« less
Perry, Ben D; Wyckelsma, Victoria L; Murphy, Robyn M; Steward, Collene H; Anderson, Mitchell; Levinger, Itamar; Petersen, Aaron C; McKenna, Michael J
2016-11-01
Physical training increases skeletal muscle Na + ,K + -ATPase content (NKA) and improves exercise performance, but the effects of inactivity per se on NKA content and isoform abundance in human muscle are unknown. We investigated the effects of 23-day unilateral lower limb suspension (ULLS) and subsequent 4-wk resistance training (RT) on muscle function and NKA in 6 healthy adults, measuring quadriceps muscle peak torque; fatigue and venous [K + ] during intense one-legged cycling exercise; and skeletal muscle NKA content ([ 3 H]ouabain binding) and NKA isoform abundances (immunoblotting) in muscle homogenates (α 1-3 , β 1-2 ) and in single fibers (α 1-3 , β 1 ). In the unloaded leg after ULLS, quadriceps peak torque and cycling time to fatigue declined by 22 and 23%, respectively, which were restored with RT. Whole muscle NKA content and homogenate NKA α 1-3 and β 1-2 isoform abundances were unchanged with ULLS or RT. However, in single muscle fibers, NKA α 3 in type I (-66%, P = 0.006) and β 1 in type II fibers (-40%, P = 0.016) decreased after ULLS, with other NKA isoforms unchanged. After RT, NKA α 1 (79%, P = 0.004) and β 1 (35%, P = 0.01) increased in type II fibers, while α 2 (76%, P = 0.028) and α 3 (142%, P = 0.004) increased in type I fibers compared with post-ULLS. Despite considerably impaired muscle function and earlier fatigue onset, muscle NKA content and homogenate α 1 and α 2 abundances were unchanged, thus being resilient to inactivity induced by ULLS. Nonetheless, fiber type-specific downregulation with inactivity and upregulation with RT of several NKA isoforms indicate complex regulation of muscle NKA expression in humans. Copyright © 2016 the American Physiological Society.
Fiber Longitudinal Measurements for Predicting White Speck Contents of Dyed Cotton Fabrics
USDA-ARS?s Scientific Manuscript database
Fiber Image Analysis System (FIAS) was developed to provide an automatic method for measuring cotton maturity from fiber snippets or cross-sections . An uncombed cotton bundle is chopped and sprayed on a microscopic slide. The snippets are imaged sequentially on an microscope and measured with custo...
Modification of wood fiber using steam
Roger Rowell; Sandra Lange; Jim McSweeny; Mark Davis
2002-01-01
High temperature steam treatment of wood fiber in a closed press during fiberboard pressing and then cooling the fiberboard while still under pressure to below the glass transition temperature of lignin, greatly increased the dimensional stability and decreased the hemicellulose content of the fiberboards produced. For example, after pressing aspen fiber four minutes...
Eccentric contraction-induced injury to type I, IIa, and IIa/IIx muscle fibers of elderly adults
USDA-ARS?s Scientific Manuscript database
Muscles of old laboratory rodents experience exaggerated force losses after eccentric contractile activity. We extended this line of inquiry to humans and investigated the influence of fiber myosin heavy chain (MHC) isoform content on the injury process. Skinned muscle fiber segments, prepared from ...
A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images
ERIC Educational Resources Information Center
Lucas, Amand A.
2008-01-01
A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…
Craig Merrill Clemons; Anand R. Sanadi
2007-01-01
An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...
Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk
2004-01-01
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...
Fabrication and evaluation of low fiber content alumina fiber/aluminum composites
NASA Technical Reports Server (NTRS)
Hack, J. E.; Strempek, G. C.
1980-01-01
The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.
Fan, Yuanfang; Guo, Panpan; Yang, Yuyuan; Xia, Tian; Liu, Ling; Ma, Yongxi
2017-04-01
This experiment was conducted as a 3×2×2 factorial design to examine the effects of particle size (mean particle size of 331, 640, or 862 μm), evaluation method (direct vs indirect method) and adaptation duration (7 or 26 days) on the energy content and the apparent total tract digestibility (ATTD) of various chemical components in wheat when fed to finishing pigs. Forty-two barrows (Duroc×Landrace×Yorkshire) with an initial body weight of 63.0±0.8 kg were individually placed in metabolic cages and randomly allotted to 1 of 7 diets with 6 pigs fed each diet. For the indirect method, the pigs were fed either a corn-soybean meal based basal diet or diets in which 38.94% of the basal diet was substituted by wheat of the different particle sizes. In the direct method, the diets contained 97.34% wheat with the different particle sizes. For both the direct and indirect methods, the pigs were adapted to their diets for either 7 or 26 days. A reduction in particle size linearly increased the digestible energy (DE) and metabolizable energy (ME) contents as well as the ATTD of gross energy, crude protein, organic matter, ether extract (EE) and acid detergent fiber (ADF) (p<0.05), and had a trend to increase the ATTD of dry matter of wheat (p = 0.084). The DE, ME contents, and ATTD of gross energy, crude protein, dry matter and organic matter were higher (p<0.05) when determined by the direct method, but the ATTD of ADF, EE, and neutral detergent fiber were higher when determined by the indirect method (p<0.05). Prolongation of the adaption duration decreased the ATTD of neutral detergent fiber (p<0.05) and had a trend to increase the ATTD of EE (p = 0.061). There were no interactions between particle size and the duration of the adaptation duration. The ATTD of EE in wheat was influenced by a trend of interaction between method and adaptation duration (p = 0.074). The ATTD of ADF and EE in wheat was influenced by an interaction between evaluation method and wheat particle size such that there were linear equations (p<0.01) about ATTD of ADF and EE when determined by the direct method but quadratic equations (p = 0.073 and p = 0.088, respectively) about ATTD of ADF and EE when determined by the indirect method. Decreasing particle size can improve the DE and ME contents of wheat; both of the direct and indirect methods of evaluation are suitable for evaluating the DE and ME contents of wheat with different particle sizes; and an adaptation duration of 7 d is sufficient to evaluate DE and ME contents of wheat in finishing pigs.
Simiele, Eric A; DeWerd, Larry A
2018-05-24
To characterize response changes of various light guides used in megavoltage (MV) photon beam scintillation dosimetry as a function of irradiation conditions. Particular emphasis was placed on quantifying the impact of response changes on the Čerenkov light ratio (CLR). Intensity and spectral response measurements as a function of dose, depth, and fiber-beam angle were performed with a commercial scintillation detector stripped of its scintillation material and five different custom-made light guides. The core materials of the light guides investigated consisted of polymethyl methacrylate (PMMA), low- and high-hydroxyl content silica, and polystyrene. Dose levels ranging from 50 monitor units (MU) to 1000 MU, depths ranging from 1 to 20 cm, and fiber-beam angles ranging from 10° to 90° were investigated. All measurements were performed at a photon beam energy of 6 MV. The CLR was calculated by taking the ratio of the responses in the blue to green spectral regions. There was no significant change in the CLR measured with the modified commercial scintillation detector as a function of delivered dose. In addition, increases in the CLR as functions of depth and fiber-beam angle were observed where the maximum changes were 4.2% and 3.6%, respectively. The spectrum measurements showed no observable changes in spectral shape with depth except for the low-hydroxyl content silica fiber. Variations in the measured spectral shape with fiber-beam angle were observed for all fibers investigated. The magnitude of the changes in the spectral shape varied with fiber type, where the silica fibers exhibited the largest changes and the plastic fibers exhibited the smallest changes. Increases in the CLR were observed for the silica fibers with depth and for all fibers with fiber-beam angle. The plastic fibers showed no significant change in the CLR as a function of depth. Increases of 3.1% and 9.5% in the CLR were observed for the high- and low-hydroxyl content silica fibers, respectively, over the range of depths investigated. Variations of 2.3%, 6.1%, 5.1% and 11.9% were observed for the PMMA, polystyrene, high-hydroxyl, and low-hydroxyl content silica fiber CLR values as a function of fiber-beam angle, respectively. The insignificant change in the CLR with delivered dose indicates that a single CLR value over the investigated dose range is sufficient for accurate Čerenkov subtraction. Variations in the stem-effect spectrum shape can occur with changes in irradiation geometry. The magnitude of the changes are governed by the fiber construction and the optical properties of the fiber. The observed spectral shape changes can be explained by a combination of variations in optical path length through the fiber and the fiber fluorescent signal contribution to the stem-effect. These spectral shape variations directly influence the calculated CLR values. This work confirms that careful characterization of scintillation detectors is important as changes in the stem-effect spectrum can cause changes in the CLR. If the CLR changes between the reference and measurement conditions, this could result in an incorrect stem-effect subtraction and reduced measurement accuracy. © 2018 American Association of Physicists in Medicine.
Carbon nanotube fiber spun from wetted ribbon
Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi
2014-04-29
A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.
Cuellar-Nuñez, M L; Luzardo-Ocampo, I; Campos-Vega, R; Gallegos-Corona, M A; González de Mejía, E; Loarca-Piña, G
2018-03-01
Moringa (Moringa oleifera) is a plant that has generated great interest in recent years because of its attributed medicinal properties. The aim of this study was to characterize the bioactive compounds of moringa leaves (MO) and evaluate their effect on a colorectal carcinogenesis model. Twenty-four male CD-1 mice were divided into 4 groups: Group 1 fed with basal diet (negative control/NC); Group 2 received AOM/DSS (positive control); Groups 3 and 4 were fed with basal diet supplemented with moringa leaves (2.5% w/w and 5% w/w, respectively) for 12weeks. Moringa leaves exhibited a high content of dietary fiber (~18.75%) and insoluble dietary fiber (2.29%). There were identified 9 phenolic compounds whereas the chlorogenic and ρ-coumaric acid showed the higher contents (44.23-63.34μg/g and 180.45-707.42μg/g, respectively). Moringa leaves decreased the activity of harmful fecal enzymes (β-glucosidase, β-glucuronidase, tryptophanase and urease up to 40%, 43%, 103% and 266%, respectively) as well tumors incidence in male CD1-mice (~50% with 5% w/v of moringa dose). These findings suggest that the bioactive compounds of moringa such as total dietary fiber and phenolic compounds may have chemopreventive capacity. This is the first study of the suppressive effect of moringa leaves in an in vivo model of AOM/DSS-induced colorectal carcinogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ogneva, I V; Maximova, M V; Larina, I M
2014-05-15
The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers. Copyright © 2014 the American Physiological Society.
Proximate composition of several fish from Jatigede Reservoir in Sumedang district, West Java
NASA Astrophysics Data System (ADS)
Herawati, T.; Yustiati, A.; Nurhayati, A.; Mustikawati, R.
2018-04-01
The aim of research is to determine the nutritional contents of fishes in the Jatigede Reservoir, the research uses survey method from November 2016 to October 2017. Sample collecting is done in the Wado district and Jatigede district. Samples are identified by its species and the nutritional contents are determined. The analyzed parameter includes water content, ash content, crude fiber content, protein content, fat content and carbohydrate content. Research shows that the nutritional contents of 13 species of fish vary. The water contents ranges between 67.50 % to 77.75 %, the highest percentage found in Chana striata. Ash contents ranges between 1.25 % to 4.87 %, the highest percentage found in Rasbora argyrotaenia, Crude fiber percentage cannot be found. Protein ranges between 14.43% to 21.93 %, the highest percentage found in Chanos chanos, Fat ranges 0.72 % to 6.86 %, the highest percentage found in Hampala macrolepidota. Carbohydrate ranges between 0.12 % to 2.64 %, the highest percentage found in Osteochillus vittatus.
Di Gioia, Francesco; De Bellis, Palmira; Mininni, Carlo; Santamaria, Pietro; Serio, Francesco
2017-03-01
Peat-based mixes and synthetic mats are the main substrates used for microgreens production. However, both are expensive and non-renewable. Recycled fibrous materials may represent low-cost and renewable alternative substrates. Recycled textile-fiber (TF; polyester, cotton and polyurethane traces) and jute-kenaf-fiber (JKF; 85% jute, 15% kenaf-fibers) mats were characterized and compared with peat and Sure to Grow® (Sure to Grow, Beachwood, OH, USA; http://suretogrow.com) (STG; 100% polyethylene-terephthalate) for the production of rapini (Brassica rapa L.; Broccoletto group) microgreens. All substrates had suitable physicochemical properties for the production of microgreens. On average, microgreens fresh yield was 1502 g m -2 in peat, TF and JKF, and was 13.1% lower with STG. Peat-grown microgreen shoots had a higher concentration of K + and SO 4 2 - and a two-fold higher NO 3 - concentration [1959 versus 940 mg kg -1 fresh weight (FW)] than those grown on STG, TF and JKF. At harvest, substrates did not influence microgreens aerobic bacterial populations (log 6.48 CFU g -1 FW). Peat- and JKF-grown microgreens had higher yeast-mould counts than TF- and STG microgreens (log 2.64 versus 1.80 CFU g -1 FW). Peat-grown microgreens had the highest population of Enterobacteriaceae (log 5.46 ± 0.82 CFU g -1 ) and Escherichia coli (log 1.46 ± 0.15 CFU g -1 ). Escherichia coli was not detected in microgreens grown on other media. TF and JKF may be valid alternatives to peat and STG because both ensured a competitive yield, low nitrate content and a similar or higher microbiological quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Flores-Silva, Pamela C; Rodriguez-Ambriz, Sandra L; Bello-Pérez, Luis A
2015-05-01
An increase in celiac consumers has caused an increasing interest to develop good quality gluten-free food products with high nutritional value. Snack foods are consumed worldwide and have become a normal part of the eating habits of the celiac population making them a target to improve their nutritive value. Extrusion and deep-frying of unripe plantain, chickpea, and maize flours blends produced gluten-free snacks with high dietary fiber contents (13.7-18.2 g/100 g) and low predicted glycemic index (28 to 35). The gluten-free snacks presented lower fat content (12.7 to 13.6 g/100 g) than those reported in similar commercial snacks. The snack with the highest unripe plantain flour showed higher slowly digestible starch (11.6 and 13.4 g/100 g) than its counterpart with the highest chickpea flour level (6 g/100 g). The overall acceptability of the gluten-free snacks was similar to that chili-flavored commercial snack. It was possible to develop gluten-free snacks with high dietary fiber content and low predicted glycemic index with the blend of the 3 flours, and these gluten-free snacks may also be useful as an alternative to reduce excess weight and obesity problems in the general population and celiac community. © 2015 Institute of Food Technologists®
Gebruers, Kurt; Dornez, Emmie; Bedõ, Zoltan; Rakszegi, Mariann; Frás, Anna; Boros, Danuta; Courtin, Christophe M; Delcour, Jan A
2010-09-08
Within the HEALTHGRAIN diversity screen, the variability of the contents of dietary fiber (DF) and components thereof was studied in wheat. Furthermore, the contribution of genotype and environment to this variability was estimated. The levels of total DF (TDF), total nonstarch polysaccharide (TOTNSP), water-extractable nonstarch polysaccharide (WENSP), total arabinoxylan (TOTAX), lignin, and beta-glucan in whole meal, flour, and/or bran varied approximately 1.8-fold. The highest variability was observed for the water-extractable arabinoxylan (WEAX) level in flour and bran (approximately 3.7-fold). Genotype and environment contributed to a similar extent to the variability in TDF, TOTNSP, and TOTAX content in wheat. The observed relatively high impact of genotype-environment interaction suggests that the levels of these constituents are weak breeding parameters. The WENSP level is a more stable parameter as the effect of the interaction term was much less than the impact of genotype. For TOTAX and WEAX in flour, WEAX in bran, beta-glucan in whole meal, and extract viscosity, wheat genotype determined approximately 50% or higher of the variation observed, whereas the impact of the genotype-environment interaction was relatively low. These findings suggest that the health-related and technological functionality of wheat can be directed to a certain extent by selection of appropriate wheat varieties.
Marotta, Mario; Ferrer-Martnez, Andreu; Parnau, Josep; Turini, Marco; Macé, Katherine; Gómez Foix, Anna M
2004-08-01
Intramuscular triacylglyceride (TAG) is considered an independent marker of insulin resistance in humans. Here, we examined the effect of high-fat diets, based on distinct fatty acid compositions (saturated, monounsaturated or n-6 polyunsaturated), on TAG levels and fatty acid transporter protein (FATP-1) expression in 2 rat muscles that differ in their fiber type, soleus, and gastrocnemius; the relationship to whole body glucose intolerance was also studied. Compared with carbohydrate-fed rats, the groups subjected to any one of the high-fat diets consistently exhibited enhanced body weight gain and adiposity, elevated plasma free fatty acids and TAG in the fed condition, hyperinsulinemia, and glucose intolerance. TAG content was consistently higher in soleus than in gastrocnemius, but was only significantly elevated by the n-6 polyunsaturated-based diet. FATP-1 levels in soleus were double those in gastrocnemius muscle in carbohydrate-fed animals. High-fat diets caused an elevation in FATP-1 protein content in soleus, but a reduction in gastrocnemius. In conclusion, the hyperinsulinemic hyperlipidemic condition upregulates FATP-1 expression in soleus and downregulates that of gastrocnemius. Hypercaloric saturated, monounsaturated, or n-6 polyunsaturated lipid diets cause equivalent whole body insulin resistance in rats, but only an n-6 polyunsaturated acid-based diet triggers intramuscular TAG accumulation. Copyright 2004 Elsevier Inc.
Properties of carbon fibers with various coatings
NASA Technical Reports Server (NTRS)
Seegel, V.; Mcmahon, P.
1983-01-01
It is shown that all high modulus carbon fibers are durable with respect to thermal oxidation in air. Among the more widely used and economical materials with low modulus, Celion displays particularly good oxidative durability at high temperatures. This contrast to other materials is due to the low content of Natrium and Kalium in Celion carbon fibers. It is also noted that improved characteristics are attained in Celion carbon fiber/polyimide systems when fibers are used with high temperature resistant polyimide coatings.
The Effect of Mechanical Performance on PP Fiber to Polymer Mortar
NASA Astrophysics Data System (ADS)
Xie, Xinying; Kang, Xinnan; Jin, Yujie; Cai, Jingwei
2018-03-01
It introduces the purpose of of adding Polypropylene fiber. The paper The production process and test method of epoxy resin mortar with PP fiber are developed. The influence of PP fiber on mechanical properties of polymer mortar was studied in this paper, including the influence of PP fiber content on flexural strength, the ratio of flexural and compressive strength and so on. The experimental results are compared and analyzed. The reason is found, the conclusion of research is acquired.
NASA Astrophysics Data System (ADS)
Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.
2017-12-01
The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.
López-Vargas, Jairo H; Fernández-López, Juana; Pérez-Álvarez, José Ángel; Viuda-Martos, Manuel
2014-06-01
The aim of this work determined the technological, nutritional and sensory characteristics of pork burgers, added with different concentrations (2.5 and 5%) of passion fruit albedo (PFA) co-product, obtained from passion fruit juice processing. The addition of PFA on pork burgers improves their nutritional value (higher fiber content). In raw and cooked burger, all textural parameters, except springiness and cohesiveness, were affected by the incorporation of PFA. PFA addition was found to be effective improving the cooking yield, moisture retention and fat retention. The raw and cooked pork burgers added with PFA had lower TBA values and lower counts of aerobic mesophilic bacteria and enterobacteria than the control samples. No Escherichia coli and molds were found in the samples. The overall acceptability scores showed that the most appreciated sample was the one containing 2.5% PFA. According to the results obtained, 2.5 and 5% of PFA addition can be recommended in pork burger production as a new dietary fiber source. Copyright © 2014 Elsevier Ltd. All rights reserved.
Low-bending loss and single-mode operation in few-mode optical fiber
NASA Astrophysics Data System (ADS)
Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng
2016-10-01
The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.
NASA Astrophysics Data System (ADS)
Shakeri, Alireza; Ghasemian, Ali
2010-04-01
This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.
Blueberry by-product used as an ingredient in the development of functional cookies.
Perez, Claudia; Tagliani, Camila; Arcia, Patricia; Cozzano, Sonia; Curutchet, Ana
2018-06-01
A by-product of blueberry juice industries was used as an ingredient to develop fiber-enriched cookies. The blueberry pomace, once ground and dried, was used as an ingredient in cookie formulation. A control cookie was elaborated as reference. Cookies were analyzed for composition and functional properties. The fiber content obtained in the fiber-enriched cookie allows it to be labeled as "high fiber" in the European Union and as a "source of fiber" in MERCOSUR. The fiber-enriched cookie presented highly increased values on the antioxidant capacity and the polyphenol content when compared against the control cookie. Sensory evaluation was performed. Acceptability of the fiber-enriched cookie reached a value of 5.3 in a nine-point hedonic scale. Further strategies should be necessary in order to achieve an acceptable product. Cookies were subjected to an in vitro digestive process. Results show that the cookies' phytochemicals are bioaccessible and potentially bioavailable. Therefore, eating this type of food would represent an increase in the amount of antioxidants ingested and redound to a health benefit. In addition to improving both nutritional and functional properties of cookies, the present development represents an innovative strategy for a more sustainable growth of fruit juice industries.
Engineering Design Handbook Short Fiber Plastic Base Composites
1975-07-31
ENGINEERING DESIGN HANDBOOK N ’~rttl SHORT FIBER PLASTIC BASE COMPOSITES l ,.. HEADQUARTERS, US ARrm MAlERIEL COIVMAND JULY 1975 DEPARTMENT OF...HANDBOOK SHORT FIBER PLASTIC BASE COMPOSITES TABLE OF CONTENTS 31 July 1975 Paragraph Page 1-1 1-2 1-2.1 1-2.2 1-3 1-3.1 1-3.2 1-3.3 1...General ............................... . Molding Short Fiber Compounds ........... . Classification of Polymer Based Composites
Combustible Cartridge Case Characterization
1984-02-01
Latex 241 * Nitrocellulose and Kraft /fibers National Starch Resin 78-3730 The beater additive process for manufacturing combustible cartridge cases *is... Kraft Fibers The Kraft fibers were received as sheets weighing approximately 1.3 lb each. The moisture content of the sheets varied from 6 to 7-1/2... Kraft fibers was incorporated into each batch. Resins The resins were supplied as a water emulsion with nominally 50 percent solids. Samples of each
Lu, Longsheng; Liang, Linsheng; Teh, Kwok Siong; Xie, Yingxi; Wan, Zhenping; Tang, Yong
2017-01-01
Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility. PMID:28358344
Tunable Mechanics in Electrospun Composites via Hierarchical Organization.
Wanasekara, Nandula D; Matolyak, Lindsay E; Korley, LaShanda T J
2015-10-21
Design strategies from nature provide vital clues for the development of synthetic materials with tunable mechanical properties. Employing the concept of hierarchy and controlled percolation, a new class of polymer nanocomposites containing a montmorillonite (MMT)-reinforced electrospun poly(vinyl alcohol) (PVA) filler embedded within a polymeric matrix of either poly(vinyl acetate) (PVAc) or ethylene oxide-epichlorohydrin copolymer (EO-EPI) were developed to achieve a tunable mechanical response upon exposure to specific stimuli. Mechanical response and switching times upon hydration were shown to be dependent on the weight-fraction of MMT in the PVA electrospun fibers and type of composite matrix. PVA/MMT.PVAc composite films retained excellent two-way switchability for all MMT fractions; however, the switching time upon hydration was decreased dramatically as the MMT content was increased due to the highly hydrophilic nature of MMT. Additionally, for the first time, significant two-way switchability of PVA/MMT.EO-EPI composites was achieved for higher weight fractions (12 wt %) of MMT. An extensive investigation into the effects of fiber diameter, crystallinity, and MMT content revealed that inherent rigidity of MMT platelets plays an important role in controlling the mechanical response of these hierarchical electrospun composites.
Isolation, purification and identification of protein associated with corn fiber gum
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of corn kernel milling by-product “corn fiber” is a proteinaceous arabinoxylan with a protein content ranging from ca. 2 to 9% by weight for the CFG samples isolated from different corn milling fiber sources. Several studies have suggested...
Monitoring liquid and solid content in froth using conductivity
J.Y. Zhu; F. Tan; R. Gleisner
2005-01-01
This study reports the feasibility of monitoring liquid and fiber rejection during froth flotation of fiber suspensions through conductivity measurements of the rejected froth. The technique was demonstrated in laboratory flotation experiments using nylon and wood fiber suspensions in two laboratory flotation cells. We found that both the total wet rejection and the...
USDA-ARS?s Scientific Manuscript database
It is well known that cotton fibers readily exchange moisture content with their surrounding atmosphere. As moisture exchange progresses, several physical properties of the fiber are significantly affected. In this study, the effects of relative humidity (RH), a factor that affects the atmospheric m...
High resistance to thermal decomposition in brown cotton is linked to tannis and sodium content
USDA-ARS?s Scientific Manuscript database
Brown cotton (Gossypium hirsutum L.) fibers (SA-1 and MC-BL) studied were inferior to white cotton fiber Sure-Grow 747 (SG747) in fiber quality, i.e., shorter length, fewer twists, and lower crystallinity, but exhibited superior thermal properties in thermogravimetry (TG), differential thermogravime...
NASA Astrophysics Data System (ADS)
Anju, V. P.; Narayanankutty, Sunil K.
2016-01-01
Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.
Romero-Lopez, Maria R.; Osorio-Diaz, Perla; Bello-Perez, Luis A.; Tovar, Juscelino; Bernardino-Nicanor, Aurea
2011-01-01
Orange is a tropical fruit used in the juice industry, yielding important quantities of by products. The objective of this work was to obtain a dietary fiber-rich orange bagasse product (DFROBP), evaluate its chemical composition and its use in the preparation of a bakery product (muffin). Muffins containing two different levels of DFROBP were studied regarding chemical composition, in vitro starch digestibility, predicted glyceamic index and acceptability in a sensory test. DFROBP showed low fat and high dietary fiber contents. The soluble and insoluble dietary fiber fractions were balanced, which is of importance for the health beneficial effects of fiber sources. DFROBP-containing muffins showed the same rapidly digestible starch content as the reference muffin, whilst the slowly digestible starch level increased with the addition of DFROBP. However, the resistant starch content decreased when DFROBP increased in the muffin. The addition of DFROBP to muffin decreased the predicted glyceamic index, but no difference was found between the muffins prepared with the two DFROBP levels. The sensory score did not show difference between control muffin and that added with 10% of DFROBP. The addition of DFROBP to bakery products can be an alternative for people requiring low glyceamic response. PMID:21731434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi, E-mail: kikutani.t.aa@m.titech.ac.jp
Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP atmore » around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.« less
Pérez, Elevina; Lares, Mary
2005-09-01
The aim of the present study was to evaluate some chemical and mineral characteristics and functional and rheological properties of Canna and Arrowroot starches produced in the Venezuelan Andes. Canna starch showed a higher (P < 0.05) moisture, ash, and crude protein content than arrowroot starch, while crude fiber, crude fat, and amylose content of this starch were higher (P < 0.05). Starches of both rhizomes own phosphorus, sodium, potassium, magnesium, iron, calcium, and zinc in their composition. Phosphorus, sodium, and potassium are the higher in both starches. Water absorption, swelling power, and solubility values revealed weak bonding forces in Canna starch granules; this explained the lower gelatinization temperature and the substantial viscosity development of Canna starch during heating. Arrowroot starch showed a higher gelatinization temperature measure by DSC, than Canna starch and exhibited a lower value of DeltaH. Both starches show negative syneresis. The apparent viscosity of Canna starch was higher (P < 0.05) than the Arrowroot starch values. The size (wide and large) of Canna starch granules was higher than arrowroot starch. From the previous results, it can be concluded that Canna and Arrowroot starches could become interesting alternatives for food developers, depending on their characteristics and functional properties.
Histo-mechanical properties of the swine cardinal and uterosacral ligaments.
Tan, Ting; Davis, Frances M; Gruber, Daniel D; Massengill, Jason C; Robertson, John L; De Vita, Raffaella
2015-02-01
The focus of this study was to determine the structural and mechanical properties of two major ligaments that support the uterus, cervix, and vagina: the cardinal ligament (CL) and the uterosacral ligament (USL). The adult swine was selected as animal model. Histological analysis was performed on longitudinal and cross sections of CL and USL specimens using Masson׳s trichrome and Verhoeff-van Giesson staining methods. Scanning electron microscopy was employed to visualize the through-thickness organization of the collagen fibers. Quasi-static uniaxial tests were conducted on specimens that were harvested from the CL/USL complex of a single swine. Dense connective tissue with a high content of elastin and collagen fibers was observed in the USL. Loose connective tissue with a considerable amount of smooth muscle cells and ground substance was detected in both the CL and USL. Collagen fibers, smooth muscle cells, blood vessels, and nerve fibers were arranged primarily in the plane of the ligaments. The USL was significantly stronger than the CL with higher ultimate stress and tangent modulus of the linear region of the stress-strain curve. Knowledge about the mechanical properties of the CL and USL will aid in the design of novel mesh materials, stretching routines, and surgical procedures for pelvic floor disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ebadi, M R; Sedghi, M; Golian, A; Ahmadi, H
2011-10-01
Accurate knowledge of true digestible amino acid (TDAA) contents of feedstuffs is necessary to accurately formulate poultry diets for profitable production. Several experimental approaches that are highly expensive and time consuming have been used to determine available amino acids. Prediction of the nutritive value of a feed ingredient from its chemical composition via regression methodology has been attempted for many years. The artificial neural network (ANN) model is a powerful method that may describe the relationship between digestible amino acid contents and chemical composition. Therefore, multiple linear regressions (MLR) and ANN models were developed for predicting the TDAA contents of sorghum grain based on chemical composition. A precision-fed assay trial using cecectomized roosters was performed to determine the TDAA contents in 48 sorghum samples from 12 sorghum varieties differing in chemical composition. The input variables for both MLR and ANN models were CP, ash, crude fiber, ether extract, and total phenols whereas the output variable was each individual TDAA for every sample. The results of this study revealed that it is possible to satisfactorily estimate the TDAA of sorghum grain through its chemical composition. The chemical composition of sorghum grain seems to highly influence the TDAA contents when considering components such as CP, crude fiber, ether extract, ash and total phenols. It is also possible to estimate the TDAA contents through multiple regression equations with reasonable accuracy depending on composition. However, a more satisfactory prediction may be achieved via ANN for all amino acids. The R(2) values for the ANN model corresponding to testing and training parameters showed a higher accuracy of prediction than equations established by the MLR method. In addition, the current data confirmed that chemical composition, often considered in total amino acid prediction, could be also a useful predictor of true digestible values of selected amino acids for poultry.
Pendulum impact resistance of tungsten fiber/metal matrix composites.
NASA Technical Reports Server (NTRS)
Winsa, E. A.; Petrasek, D. W.
1972-01-01
The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.
Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki AB
2012-01-01
A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites’ thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens. PMID:22408394
Effect of dietary fiber on the methanogen community in the hindgut of Lantang gilts.
Cao, Z; Liang, J B; Liao, X D; Wright, A D G; Wu, Y B; Yu, B
2016-10-01
The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
NASA Astrophysics Data System (ADS)
Guan, Zhuo
Glass fiber (GF) reinforced polypropylene (PP) has become a common composite material used for various applications. Previous reports indicated that grafting ratio and molecular weight (MW) of znaleic anhydride grafted polypropylene (PP-g-MA) are the two most significant factors affecting the mechanical properties of PP/PP-g-MA/GF composites, but the combined effect of these two factors remains controversial. The study of the importance of MA grafting ratio and MW is continued in this work using PPIPP-g MA/GF composites containing various grades and concentrations of PP-g MA compatibilizer. First, MFR and FT1R analyses were performed to characterize the physical and chemical properties- of each PP-g-MA resin. Then, premixed PP and PP-g-MA blend were compounded with GF via twin screw extrusion, with the compounds injection molded into tensile, flexural and Izod impact specimens (all ASTM standard) for mechanical properties testing. Generally speaking, at a given GF content, higher compatibilizer concentrations led to higher tensile, flexural and notched Izod impact strength up to an optimum MA concentrations above which these properties tended to level off PP-g-MA resins with higher grafting ratio were more efficient compatibilizers as indicated by improved tensile, flexural and impact properties at lower PP-g-MA contents. In addition, MW was expected to affect properties as well, with too high and too 16w MW values leading to reduced reinforcement. While the optimum MW values for tensile and impact strength were still not clear based on present results, the estimated optimum weight average MW for maximum flexural strength was 90,000 +/- 1,400 g/mol.
Soukup, T; Diallo, M
2015-01-01
Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.
McGill, Carla R.; Fulgoni, Victor L.; Devareddy, Latha
2015-01-01
Current U.S. dietary guidance includes recommendations to increase intakes of both dietary fiber and whole grain (WG). This study examines fiber and WG intakes, food sources and trends from 2001 to 2010 based on National Health and Nutrition Examination Survey (NHANES) data for children/adolescents (n = 14,973) and adults (n = 24,809). Mean fiber intake for children/adolescents was 13.2 (±0.1) g/day. Mean fiber intake for adults 19–50 years (y) was 16.1 (±0.2) g/day and for adults 51+ was 16.1 (±0.2) g/day. There were significant increases in fiber intake from 2001–2010 for children/adolescents and for adults 51+ y. Mean WG intake for children/adolescents was 0.52 (±0.01) oz eq/day. Mean WG intake for adults 19–50 y was 0.61 (±0.02) oz eq/day and for adults 51+ 0.86 (±0.02) oz eq/day. There were no significant changes in WG intake for any age group from 2001–2010. The main food groups contributing to dietary fiber intake for children/adolescents were vegetables (16.6%), grain mixtures (16.3%), other foods (15.8%) and fruits (11.3%). For adults 19+ y, the main sources of dietary fiber were vegetables (22.6%), other foods (14.3%), grain mixtures (12.0%) and fruits (11.1%). Major WG sources for children/adolescents included ready-to-eat cereals (RTEC) (31%), yeast breads/rolls (21%) and crackers and salty grain snacks (21%). The main sources of WG for adults 19+ were yeast breads/rolls (27%), RTEC (23%) and pastas/cooked cereals/rice (21%). Recommending cereals, breads and grain mixtures with higher contents of both dietary fiber and WG, along with consumer education, could increase intakes among the United States (U.S.) population. PMID:25671414
McGill, Carla R; Fulgoni, Victor L; Devareddy, Latha
2015-02-09
Current U.S. dietary guidance includes recommendations to increase intakes of both dietary fiber and whole grain (WG). This study examines fiber and WG intakes, food sources and trends from 2001 to 2010 based on National Health and Nutrition Examination Survey (NHANES) data for children/adolescents (n=14,973) and adults (n=24,809). Mean fiber intake for children/adolescents was 13.2 (±0.1) g/day. Mean fiber intake for adults 19-50 years (y) was 16.1 (±0.2) g/day and for adults 51+ was 16.1 (±0.2) g/day. There were significant increases in fiber intake from 2001-2010 for children/adolescents and for adults 51+y. Mean WG intake for children/adolescents was 0.52 (±0.01) oz eq/day. Mean WG intake for adults 19-50 y was 0.61 (±0.02) oz eq/day and for adults 51+0.86 (±0.02) oz eq/day. There were no significant changes in WG intake for any age group from 2001-2010. The main food groups contributing to dietary fiber intake for children/adolescents were vegetables (16.6%), grain mixtures (16.3%), other foods (15.8%) and fruits (11.3%). For adults 19+y, the main sources of dietary fiber were vegetables (22.6%), other foods (14.3%), grain mixtures (12.0%) and fruits (11.1%). Major WG sources for children/adolescents included ready-to-eat cereals (RTEC) (31%), yeast breads/rolls (21%) and crackers and salty grain snacks (21%). The main sources of WG for adults 19+ were yeast breads/rolls (27%), RTEC (23%) and pastas/cooked cereals/rice (21%). Recommending cereals, breads and grain mixtures with higher contents of both dietary fiber and WG, along with consumer education, could increase intakes among the United States (U.S.) population.
Interfacial reactions in titanium/SCS fiber composites during fabrication
NASA Technical Reports Server (NTRS)
Warrier, S. G.; Lin, R. Y.
1993-01-01
The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.
Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review.
Devi, Palanisamy Bruntha; Vijayabharathi, Rajendran; Sathyabama, Sathyaseelan; Malleshi, Nagappa Gurusiddappa; Priyadarisini, Venkatesan Brindha
2014-06-01
The growing public awareness of nutrition and health care research substantiates the potential of phytochemicals such as polyphenols and dietary fiber on their health beneficial properties. Hence, there is in need to identify newer sources of neutraceuticals and other natural and nutritional materials with the desirable functional characteristics. Finger millet (Eleusine coracana), one of the minor cereals, is known for several health benefits and some of the health benefits are attributed to its polyphenol and dietary fiber contents. It is an important staple food in India for people of low income groups. Nutritionally, its importance is well recognised because of its high content of calcium (0.38%), dietary fiber (18%) and phenolic compounds (0.3-3%). They are also recognized for their health beneficial effects, such as anti-diabetic, anti-tumerogenic, atherosclerogenic effects, antioxidant and antimicrobial properties. This review deals with the nature of polyphenols and dietary fiber of finger millet and their role with respect to the health benefits associated with millet.
Modeling of Different Fiber Type and Content SiC/SiC Minicomposites Creep Behavior
NASA Technical Reports Server (NTRS)
Almansour, Amjad S.; Morscher, Gregory N.
2017-01-01
Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace and nuclear industries. However, creep damage mechanism in CMCs is the most dominant mechanism at elevated temperatures. Consequently, the tensile creep behavior of Hi-Nicalon, Hi-Nicalon Type S SiC fibers and Chemical vapor infiltrated Silicon Carbide matrix (CVI-SiC) were characterized and creep parameters were extracted from creep experiments. Some fiber creep tests were performed in inert environment at 1200 C on individual fibers. Creep behavior of different fiber content pristine and precracked Hi-Nicalon and Hi-Nicalon Type S reinforced minicomposites with BN interphases and CVI-SiC matrix were then modelled using the creep data found in this study and the literature and compared with creep experiments results for the pristine and precracked Hi-Nicalon and Hi-Nicalon Type S minicomposites. Finally, the effects of load-sharing and matrix cracking on CMC creep behavior will be discussed.
Wood plastic composites from agro-waste materials: Analysis of mechanical properties.
Nourbakhsh, Amir; Ashori, Alireza
2010-04-01
This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.
Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching
2010-10-15
This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.
Synthesis of a Carbon-activated Microfiber from Spider Webs Silk
NASA Astrophysics Data System (ADS)
Taer, E.; Mustika, W. S.; Taslim, R.
2017-03-01
Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.
Perturbation of a radially oscillating single-bubble by a micron-sized object.
Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F
2017-03-01
A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.
Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders
NASA Technical Reports Server (NTRS)
Tan, Seng; Zhou, Jian-guo
2013-01-01
Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.
Characterization of exposure and dose of man made vitreous fiber in experimental studies.
Hamilton, R D; Miiller, W C; Christensen, D R; Anderson, R; Hesterberg, T W
1994-01-01
The use of fibrous test materials in in vivo experiments introduces a number of significant problems not associated with nonfibrous particulates. The key to all aspects of the experiment is the accurate characterization of the test material in terms of fiber length, diameter, particulate content, and chemistry. All data related to fiber properties must be collected in a statistically sound manner to eliminate potential bias. Procedures similar to those outlined by the National Institute of Occupational Safety and Health (NIOSH) or the World Health Organization (WHO) must be the basis of any fiber characterization. The test material to which the animal is exposed must be processed to maximize the amount of respirable fiber and to minimize particulate content. The complex relationship among the characteristics of the test material, the properties of the delivery system, and the actual dose that reaches the target tissue in the lung makes verification of dose essential. In the case of man-made vitreous fibers (MMVF), dose verification through recovery of fiber from exposed animals is a complex task. The potential for high fiber solubility makes many of the conventional techniques for tissue preservation and digestion inappropriate. Processes based on the minimum use of aggressive chemicals, such as cold storage and low temperature ashing, are potentially useful for a wide range of inorganic fibers. Any processes used to assess fiber exposure and dose must be carefully validated to establish that the chemical and physical characteristics of the fibers have not been changed and that the dose to the target tissue is completely and accurately described. PMID:7882912
NASA Technical Reports Server (NTRS)
McDonald, K. S.; Fitts, R. H.
1993-01-01
This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.
Electron-spin-resonance studies of vapor-grown carbon fibers
NASA Technical Reports Server (NTRS)
Marshik, B.; Meyer, D.; Apple, T.
1987-01-01
The effects of annealing temperature and fiber diameter on the degree of disorder of vapor-grown carbon fibers were investigated by analyzing the electron-spin-resonance (ESR) line shapes of fibers annealed at six various temperatures up to 3375 K. The diameter of fibers, grown from methane gas, ranged from 10 to 140 microns with most fibers between 20 and 50 microns. It was found that the degree of disorder of vapor-grown fibers decreases upon annealing to higher temperature; standard angular deviation between the fiber axis and the crystallite basal planes could vary from 35 deg (for annealing temperature of 2275 K) to 12 deg (for 3375 K). With respect to fiber diameter, order parameters were found to be higher for fibers of smaller diameters.
Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber
Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang
2017-01-01
Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level. PMID:28966849
Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang
2017-09-01
Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level.
Poly-paper: a sustainable material for packaging, based on recycled paper and recyclable with paper.
Del Curto, Barbara; Barelli, Nadia; Profaizer, Mauro; Farè, Silvia; Tanzi, Maria Cristina; Cigada, Alberto; Ognibene, Giulia; Recca, Giuseppe; Cicala, Gianluca
2016-11-02
Until now, environmental sustainability issues are almost entirely unsolved for packaging materials. With the final aim of finding materials with a single recycling channel, cellulose fiber/poly(vinyl)alcohol composites were investigated. After extrusion and injection molding, samples of composite with different cellulose fiber content (30%, 50% and 70% w/w) were tested. Tensile mechanical tests exhibited an improvement in composite stiffness when the reinforcement content was increased together with a decrease in composite elongation. Solubility tests performed at room temperature and 45°C showed different behavior depending on the water-resistant film applied on the composite (50% cellulose fiber content). In particular, the uncoated composite showed complete solubility after 2 hours, whereas at the same time point, no solubility occurred when a non-water-soluble varnish was used. The proposed composites, named Poly-paper, appear to warrant further investigation as highly sustainable packaging.
High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings
NASA Astrophysics Data System (ADS)
Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire
2007-09-01
In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.
Metabolic Effects of Diets High in Corn Fiber in Growing Female Pigs
USDA-ARS?s Scientific Manuscript database
To evaluate the effects of high dietary corn fiber on growth and metabolic measures, growing female pigs (n= 48; BW 30.8 kg) were fed diets containing 0 to 38.6% solvent-extracted corn germ meal for 28 days. Corn germ meal is relatively high in neutral detergent fiber (53%) and hemicellulose content...
Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie
2012-01-01
Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...
Modified Process For Formation Of Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1996-01-01
Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.
Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix
USDA-ARS?s Scientific Manuscript database
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...
Drying and control of moisture content and dimensional changes
Richard Bergman
2010-01-01
The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...
Forsido, Sirawdink Fikreyesus; Rupasinghe, H P Vasantha; Astatkie, Tess
2013-12-01
The total antioxidant capacity, total phenolics content (TPC) and nutritional content of five types of enset (Enset ventricosum) flour in comparison with four staples (teff [Eragrostis tef], wheat, corn and tapioca) were evaluated. Teff, corn and "amicho" (corm of enset) had the highest ferric reducing antioxidant power (FRAP). The FRAP and TPC of teff (1.8 mmol Trolox equivalence/100 g dry matter (DM) and 123.6 mg gallic acid equivalent/100 g DM, respectively) were over 4-fold larger than the lowest obtained from "bulla" (dehydrated juice of pseudostem of enset). Corn had the lowest IC(50) value of 1,1-diphenyl-2-picrylhydrazyl radical scavenging (10.27 mg DM mL(-1)). Teff had the highest crude fat content (3.71%) and some mineral profile (P, Mg, Mn and Cu). Enset products had higher fiber, Ca, K, Mg and Mn content as compared to wheat and corn. Ethiopian staple teff has a potential for developing value-added food products with nutritional and health benefits.