Kuribayashi, Ryuma; Nittono, Hiroshi
2017-01-01
High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.
Sloshing response of a reactor tank with internals
NASA Astrophysics Data System (ADS)
Ma, D. C.; Gvildys, J.; Chang, Y. W.
The sloshing response of a large reactor tank with in tank components is presented. It is indicated that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free surface but increases the dynamic pressure in the fluid.
Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2012-01-01
This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.
Nameda, N
1988-01-01
Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
..., the basic components of which are frequency, wavelength, velocity, and amplitude. Frequency is the... frequency sounds have longer wavelengths than higher frequency sounds and attenuate more rapidly in... occurring ambient noise for frequencies between 200 Hz and 50 kHz (Mitson, 1995). In general, ambient noise...
Improving mental task classification by adding high frequency band information.
Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping
2010-02-01
Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.
Dynamic Characteristics and Human Perception of Vibration Aboard a Military Propeller Aircraft
2007-09-01
a significant reduction in the X-axis seat pan vibration as compared to the original operational seat cushion at the blade passage frequency ( BPF ...system characteristics at higher frequencies. A body region perception survey suggested that the subjects were most sensitive to the BPF component of...perception of the exposure. Current human exposure guidelines may not optimally reflect these relationships for assessing higher frequency propeller
Patterns of motor recruitment can be determined using surface EMG.
Wakeling, James M
2009-04-01
Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle theta that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower theta and higher mean frequency.
Smith, Suzanne D
2006-01-01
There have been increasing reports of annoyance, fatigue, and even neck and back pain during prolonged operation of military propeller aircraft, where persistent multi-axis vibration occurs at higher frequencies beyond human whole-body resonance. This paper characterizes and assesses the higher frequency vibration transmitted to the occupants onboard these aircraft. Multi-axis accelerations were measured at the occupied seating surfaces onboard the WC/C-130J, C-130H3, and E-2C Hawkeye. The effects of the vibration were assessed in accordance with current international guidelines (ISO 2631-1:1997). The relative psychophysical effects of the frequency components and the effects of selected mitigation strategies were also investigated. The accelerations associated with the blade passage frequency measured on the passenger seat pans located on the side of the fuselage near the propeller plane of the C-130J (102 Hz) and C-130H3 (68 Hz) were noteworthy (5.19 +/- 1.72 ms(-2) rms and 7.65 +/- 0.71 ms(-2) rms, respectively, in the lateral direction of the aircraft). The psychophysical results indicated that the higher frequency component would dominate the side passengers' perception of the vibration. Balancing the props significantly reduced the lower frequency propeller rotation vibration (17 Hz), but had little effect on the blade passage frequency vibration. The relationships among the frequency, vibration direction, and seat measurement sites were complex, challenging the development of seating systems and mitigation strategies. Psychophysical metrics could provide a tool for optimizing mitigation strategies, but the current international vibration standard may not provide optimum assessment methods for evaluating higher frequency operational exposures.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... Sound travels in waves, the basic components of which are frequency, wavelength, velocity, and amplitude. Frequency is the number of pressure waves that pass by a reference point per unit of time and is measured in... frequency sounds have longer wavelengths than higher frequency sounds, and attenuate (decrease) more rapidly...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... components of which are frequency, wavelength, velocity, and amplitude. Frequency is the number of pressure.... Wavelength is the distance between two peaks of a sound wave; lower frequency sounds have longer wavelengths than higher frequency sounds and attenuate more rapidly in shallower water. Amplitude is the height of...
Energy Spectra and High Frequency Oscillations in 4U 0614+091
NASA Technical Reports Server (NTRS)
Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.
1997-01-01
We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.
NASA Astrophysics Data System (ADS)
Chen, Huaiyu; Cao, Li
2017-06-01
In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.
Mechanism of inverted-chirp infrasonic radiation from sprites
NASA Astrophysics Data System (ADS)
de Larquier, Sebastien; Pasko, Victor P.
2010-12-01
Farges and Blanc (2010) reported inverted-chirp infrasonic signals with high frequencies arriving before low frequencies, possibly emitted by sprite discharges and observed on the ground at close range (<100 km) from the source. In the present work a parallel version of a 2-D FDTD model of infrasound propagation in a realistic atmosphere is applied to demonstrate that the observed morphology of infrasound signals is consistent with general scaling of diameters of sprite streamers inversely proportionally to the air density. The smaller structures at lower altitudes radiate higher infrasonic frequencies that arrive first at the observational point on the ground, while the low frequency components are delayed because they originate at lower air densities at higher altitudes. The results demonstrate that strong absorption of high frequency infrasonic components at high altitudes (i.e., ˜0.2 dB/km for 8 Hz at 70 km) may also contribute to formation of inverted-chirp signals observed on the ground at close range.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
Flight assessment of an atmospheric turbulence measurement system with emphasis on long wavelengths
NASA Technical Reports Server (NTRS)
Rhyne, R. H.
1976-01-01
A flight assessment has been made of a system for measuring the three components of atmospheric turbulence in the frequency range associated with airplane motions (0 to approximately 0.5 Hz). Results of the assessment indicate acceptable accuracy of the resulting time histories and power spectra. Small residual errors at the airplane short period and Dutch roll frequencies (0.5 and 0.25 Hz, respectively), as determined from in-flight maneuvers in smooth air, would not be detectable on the power spectra. However, errors at approximately 0.25 Hz can be present in the time history of the lateral turbulence component, particularly at the higher altitudes where airplane yawing motions are large. An assessment of the quantities comprising the vertical turbulence component leads to the conclusion that the vertical component is essentially accurate to zero frequency.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen
2016-01-01
Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
NASA Technical Reports Server (NTRS)
Smith, C. D.; Parrott, T. L.
1978-01-01
The treatment consisted of immersing samples of Kevlar in a solution of distilled water and Zepel. The samples were then drained, dried in a circulating over, and cured. Flow resistance tests showed approximately one percent decrease in flow resistance of the samples. Also there was a density increase of about three percent. It was found that the treatment caused a change in the texture of the samples. There were significant changes in the acoustic properties of the treated Kevlar over the frequency range 0.5 to 3.5 kHz. In general it was found that the propagation constant and characteristic impedance increased with increasing frequency. The real and imaginary components of the propagation constant for the treated Kevlar exhibited a decrease of 8 to 12 percent relative to that for the untreated Kevlar at the higher frequencies. The magnitude of the reactance component of the characteristic impedance decreased by about 40 percent at the higher frequencies.
Zhao, Jie; Hua, Mei
2004-06-01
To develop a wavelet noise canceller that cancels muscle electricity and power line hum in wide range of frequency. According to the feature that the QRS complex has higher frequency components, and the T, P wave have lower frequency components, the biorthogonal wavelet was selected to decompose the original signals. An interference-eliminated signal ECG was formed by reconstruction from the changed coefficients of wavelet. By using the canceller, muscle electricity and power line interference between 49 Hz and 61 Hz were eliminated from the ECG signals. This canceller works well in canceling muscle electricity, and basic and harmonic frequencies of power line hum. The canceller is also insensitive to the frequency change of power line, the same procedure is good for both 50 and 60 Hz power line hum.
Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J
2015-11-01
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.
Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.
2015-01-01
Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682
The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum
NASA Astrophysics Data System (ADS)
Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2018-02-01
We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
Effect of TE Mode Power on the PEP II LER BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Cho-K
2011-08-26
The beam chamber of the PEP-II B-Factory Low Energy Ring (LER) arc sections is connected to an antechamber for the absorption of synchrotron radiation on discrete photon stops. The presence of the antechamber substantially reduces the cutoff frequency of the vacuum chamber and, in particular, allows the propagation of higher-order-mode (HOM) TE power generated by beamline components at the BPM signal processing frequency. Calculations of the transmission properties of the TE mode in different sections of the vacuum chamber show that the power is trapped between widely separated bellows in the arc sections. Because of the narrow signal bandwidth andmore » weak coupling of the TE mode to the BPM buttons, the noise contributed by the HOM TE power will not produce a noticeable effect on the BPM position signal voltage. The LER arc vacuum chamber employs an antechamber with a discrete photon stop for absorption of synchrotron radiation and with pumps for maintaining pressure below 10 nTorr [1]. The horizontal dimensions of the antechambers at the pumping chamber section and the magnet chamber section are larger or comparable to that of the beam chamber. Because of the increase in the horizontal dimension, the cutoff frequency of the TE10-like mode (in rectangular coordinates) of the vacuum chamber is considerably reduced and, in particular, is less than the BPM signal processing frequency at 952 MHz. TE power propagating in the vacuum chamber will penetrate through the BPM buttons and will affect the pickup signal if its magnitude is not properly controlled. It is the purpose of this note to clarify various issues pertaining to this problem. TE power is generated when the beam passes a noncylindrically symmetric beamline component such as the RF cavity, the injection region, the IR crotch and the IP region. The beampipes connected to these components have TE cutoff frequencies greater than 952 MHz (for example, the TE cutoff frequency of the RF cavity beampipe is 1.8 GHz), and hence no TE power at this frequency propagates from the component. TE power can also be generated by the scattering of TM power through these beamline components. Since the cutoff frequency of the TM mode is in general higher than that of the TE mode, this mechanism is not pertinent to the problem related to the BPM signal. Consequently, the TE power that needs to be considered is mainly generated by components of the LER arc vacuum chamber, where the TE cutoff frequency is less than the BPM processing frequency.« less
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
Effect of feeders in 3D modeling of low impedance multilayer CPW transmission line
NASA Astrophysics Data System (ADS)
Zaini, R. I.; Kyabaggu, P. B. K.; Sinulingga, E. P.
2018-02-01
Improved characteristics with low dissipation loss MMICs are highly desirable for wireless communications. However, the current industrial MMIC design is mainly based on microstrip concept which suffered from parasitic and unwanted phenomenon especially at higher frequency (>20 GHz). On the other hand, for future wireless technology, higher frequency operation is required and on-wafer microwave characterizations as well as precise modeling of 3D Multilayer CPW components are vital. This project concerns with understanding of the microwave characteristics behavior of Multilayer CPW components in MMIC applications. Feeder effect as unwanted parts in the characteristics has been investigated to determine its relation with the half wavelength resonance of the Multilayer CPW Low Impedance Transmission Line.
Pupillary responses during lexical decisions vary with word frequency but not emotional valence.
Kuchinke, Lars; Võ, Melissa L-H; Hofmann, Markus; Jacobs, Arthur M
2007-08-01
Pupillary responses were examined during a lexical decision task (LDT). Word frequency (high and low frequency words) and emotional valence (positive, neutral and negative words) were varied as experimental factors incidental to the subjects. Both variables significantly affected lexical decision performance and an interaction effect was observed. The behavioral results suggest that manipulating word frequency may partly account for the heterogeneous literature findings regarding emotional valence effects in the LDT. In addition, a difference between high and low frequency words was observed in the pupil data as reflected by higher peak pupil dilations for low frequency words, whereas pupillary responses to emotionally valenced words did not differ. This result was further supported by means of a principal component analysis on the pupil data, in which a late component was shown only to be affected by word frequency. Consistent with previous findings, word frequency was found to affect the resource allocation towards processing of the letter string, while emotionally valenced words tend to facilitate processing.
FREQUENCY CONTENT OF CARTILAGE IMPACT FORCE SIGNAL REFLECTS ACUTE HISTOLOGIC STRUCTURAL DAMAGE.
Heiner, Anneliese D; Martin, James A; McKinley, Todd O; Goetz, Jessica E; Thedens, Daniel R; Brown, Thomas D
2012-10-01
The objective of this study was to determine if acute cartilage impact damage could be predicted by a quantification of the frequency content of the impact force signal. Osteochondral specimens excised from bovine lateral tibial plateaus were impacted with one of six impact energies. Each impact force signal underwent frequency analysis, with the amount of higher-frequency content (percent of frequency spectrum above 1 KHz) being registered. Specimens were histologically evaluated to assess acute structural damage (articular surface cracking and cartilage crushing) resulting from the impact. Acute histologic structural damage to the cartilage had higher concordance with the high-frequency content measure than with other mechanical impact measures (delivered impact energy, impact maximum stress, and impact maximum stress rate of change). This result suggests that the frequency content of an impact force signal, specifically the proportion of higher-frequency components, can be used as a quick surrogate measure for acute structural cartilage injury. Taking advantage of this relationship could reduce the time and expense of histological processing needed to morphologically assess cartilage damage, especially for purposes of initial screening when evaluating new impaction protocols.
Hansen, M; Wahlberg, M; Madsen, P T
2008-12-01
Underwater sound signals for biosonar and communication normally have different source properties to serve the purposes of generating efficient acoustic backscatter from small objects or conveying information to conspecifics. Harbor porpoises (Phocoena phocoena) are nonwhistling toothed whales that produce directional, narrowband, high-frequency (HF) echolocation clicks. This study tests the hypothesis that their 130 kHz HF clicks also contain a low-frequency (LF) component more suited for communication. Clicks from three captive porpoises were analyzed to quantify the LF and HF source properties. The LF component is 59 (S.E.M=1.45 dB) dB lower than the HF component recorded on axis, and even at extreme off-axis angles of up to 135 degrees , the HF component is 9 dB higher than the LF component. Consequently, the active space of the HF component will always be larger than that of the LF component. It is concluded that the LF component is a by-product of the sound generator rather than a dedicated pulse produced to serve communication purposes. It is demonstrated that distortion and clipping in analog tape recorders can explain some of the prominent LF components reported in earlier studies, emphasizing the risk of erroneous classification of sound types based on recording artifacts.
Type III Solar Radio Burst Source Region Splitting due to a Quasi-separatrix Layer
NASA Astrophysics Data System (ADS)
McCauley, Patrick I.; Cairns, Iver H.; Morgan, John; Gibson, Sarah E.; Harding, James C.; Lonsdale, Colin; Oberoi, Divya
2017-12-01
We present low-frequency (80–240 MHz) radio imaging of type III solar radio bursts observed by the Murchison Widefield Array on 2015 September 21. The source region for each burst splits from one dominant component at higher frequencies into two increasingly separated components at lower frequencies. For channels below ∼132 MHz, the two components repetitively diverge at high speeds (0.1c–0.4c) along directions tangent to the limb, with each episode lasting just ∼2 s. We argue that both effects result from the strong magnetic field connectivity gradient that the burst-driving electron beams move into. Persistence mapping of extreme-ultraviolet jets observed by the Solar Dynamics Observatory reveals quasi-separatrix layers (QSLs) associated with coronal null points, including separatrix dome, spine, and curtain structures. Electrons are accelerated at the flare site toward an open QSL, where the beams follow diverging field lines to produce the source splitting, with larger separations at larger heights (lower frequencies). The splitting motion within individual frequency bands is interpreted as a projected time-of-flight effect, whereby electrons traveling along the outer field lines take slightly longer to excite emission at adjacent positions. Given this interpretation, we estimate an average beam speed of 0.2c. We also qualitatively describe the quiescent corona, noting in particular that a disk-center coronal hole transitions from being dark at higher frequencies to bright at lower frequencies, turning over around 120 MHz. These observations are compared to synthetic images based on the MHD algorithm outside a sphere (MAS) model, which we use to flux-calibrate the burst data.
Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.
Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga
2016-08-01
Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.
Effect of chevron nozzle penetration on aero-acoustic characteristics of jet at M = 0.8
NASA Astrophysics Data System (ADS)
Nikam, S. R.; Sharma, S. D.
2017-12-01
Aero-acoustic characteristics of a high-speed jet with chevron nozzles are experimentally investigated at a Mach number of 0.8. The main focus is to examine the effects of the extent of chevron penetration and its position in the mixing layer. Chevron nozzles with three different levels of penetration employed at three different longitudinal locations from the nozzle lip are tested, and the results are compared with those of a plain baseline nozzle. The chevrons are found to produce a lobed shear layer through the notched region, thereby increasing the surface area of the jet, particularly in the close vicinity of the nozzle, which increases the mixing and reduces the potential core length. This effect becomes more prominent with increasing penetration closer to the nozzle lip in the thinner mixing layer. Near field and far field noise measurements show distinctly different acoustic features due to chevrons. The chevrons are found to effectively shift the dominant noise source upstream closer to the nozzle. Present investigation proposes a simpler method for locating the dominant noise source from the peak of the centerline velocity decay rate. The overall noise levels registered along the jet edge immediately downstream of the chevrons are higher, but further downstream they are reduced in comparison with the plain baseline nozzle. Also, the chevrons beam the noise towards higher polar angles at higher frequencies. At shallow polar angles with respect to the jet axis in the far field, chevrons suppress the noise at low frequencies with increasing penetration, but for higher polar angles, while they continue to suppress the low frequency noise, at higher frequencies the trend is found to reverse. The noise measured in the near field close to the jet edge is composed of two components: acoustic and hydrodynamic. Of these two components, the chevrons are found to reduce the hydrodynamic component in comparison with the acoustic one.
RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.
2016-01-01
Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Improving prediction accuracy of cooling load using EMD, PSR and RBFNN
NASA Astrophysics Data System (ADS)
Shen, Limin; Wen, Yuanmei; Li, Xiaohong
2017-08-01
To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.
Cortical evoked potentials to an auditory illusion: binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-08-01
To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.
Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-01-01
Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
Wave propagation in axially moving periodic strings
NASA Astrophysics Data System (ADS)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-04-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.
Vigo, Daniel E; Dominguez, Javier; Guinjoan, Salvador M; Scaramal, Mariano; Ruffa, Eduardo; Solernó, Juan; Siri, Leonardo Nicola; Cardinali, Daniel P
2010-04-19
Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages. 2009 Elsevier B.V. All rights reserved.
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study
Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.
2016-01-01
The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821
Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins.
Li, Songhai; Wu, Haiping; Xu, Youhou; Peng, Chongwei; Fang, Liang; Lin, Mingli; Xing, Luru; Zhang, Peijun
2015-08-01
The impact of noise made by vessels on marine animals has come under increased concern. However, most measurements on noise from vessels have only taken into account the low-frequency components. For cetaceans operating in the mid- and high-frequencies, such as the Indo-Pacific humpback dolphin (Sousa chinensis), mid- to high-frequency noise components may be of more concern, in terms of their potential impacts. In this study, noise made by a small high-speed boat was recorded using a broadband recording system in a dolphin watching area focusing on the effects on humpback dolphins in Sanniang Bay, China. The high-speed boat produced substantial mid- to high-frequency noise components with frequencies to >100 kHz, measured at three speeds: ∼40, 30, and 15 km/h. The noise from the boat raised the ambient noise levels from ∼5 to 47 decibels (dB) root-mean-square (rms) across frequency bands ranging from 1 to 125 kHz at a distance of 20 to 85 m, with louder levels recorded at higher speeds and at closer distances. To conclude, the noise produced by the small high-speed boat could be heard by Sousa chinensis and therefore potentially had adverse effects on the dolphins.
Holmes, Amanda; Winston, Joel S; Eimer, Martin
2005-10-01
To investigate the impact of spatial frequency on emotional facial expression analysis, ERPs were recorded in response to low spatial frequency (LSF), high spatial frequency (HSF), and unfiltered broad spatial frequency (BSF) faces with fearful or neutral expressions, houses, and chairs. In line with previous findings, BSF fearful facial expressions elicited a greater frontal positivity than BSF neutral facial expressions, starting at about 150 ms after stimulus onset. In contrast, this emotional expression effect was absent for HSF and LSF faces. Given that some brain regions involved in emotion processing, such as amygdala and connected structures, are selectively tuned to LSF visual inputs, these data suggest that ERP effects of emotional facial expression do not directly reflect activity in these regions. It is argued that higher order neocortical brain systems are involved in the generation of emotion-specific waveform modulations. The face-sensitive N170 component was neither affected by emotional facial expression nor by spatial frequency information.
Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît
2016-06-14
Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, B.; Iwnicki, S. D.; Zhao, Y.
2013-08-01
The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.
Shirota, Hideaki; Kakinuma, Shohei
2015-07-30
In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.
Golick, V A; Kadygrob, D V; Yampol'skii, V A; Rakhmanov, A L; Ivanov, B A; Nori, Franco
2010-05-07
We predict a new branch of surface Josephson plasma waves (SJPWs) in layered superconductors for frequencies higher than the Josephson plasma frequency. In this frequency range, the permittivity tensor components along and transverse to the layers have different signs, which is usually associated with negative refraction. However, for these frequencies, the bulk Josephson plasma waves cannot be matched with the incident and reflected waves in the vacuum, and, instead of the negative-refractive properties, abnormal surface modes appear within the frequency band expected for bulk modes. We also discuss the excitation of high-frequency SJPWs by means of the attenuated-total-reflection method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Albright, Austin P; Rahimpour, Alireza
Wide-area-measurement systems (WAMSs) are used in smart grid systems to enable the efficient monitoring of grid dynamics. However, the overwhelming amount of data and the severe contamination from noise often impede the effective and efficient data analysis and storage of WAMS generated measurements. To solve this problem, we propose a novel framework that takes advantage of Multivariate Empirical Mode Decomposition (MEMD), a fully data-driven approach to analyzing non-stationary signals, dubbed MEMD based Signal Analysis (MSA). The frequency measurements are considered as a linear superposition of different oscillatory components and noise. The low-frequency components, corresponding to the long-term trend and inter-areamore » oscillations, are grouped and compressed by MSA using the mean shift clustering algorithm. Whereas, higher-frequency components, mostly noise and potentially part of high-frequency inter-area oscillations, are analyzed using Hilbert spectral analysis and they are delineated by statistical behavior. By conducting experiments on both synthetic and real-world data, we show that the proposed framework can capture the characteristics, such as trends and inter-area oscillation, while reducing the data storage requirements« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, L. D.
Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.
Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.;
2011-01-01
Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.
Characterization and Impact of Low Frequency Wind Turbine Noise Emissions
NASA Astrophysics Data System (ADS)
Finch, James
Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.
Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone
NASA Astrophysics Data System (ADS)
Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji
2017-07-01
Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.
Digital Phase-Locked Loop With Phase And Frequency Feedback
NASA Technical Reports Server (NTRS)
Thomas, J. Brooks
1991-01-01
Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.
High resolution time interval meter
Martin, A.D.
1986-05-09
Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.
Properies of the microseism wave field in Australia from three component array data
NASA Astrophysics Data System (ADS)
Gal, Martin; Reading, Anya; Ellingsen, Simon; Koper, Keith; Burlacu, Relu; Tkalčić, Hrvoje
2016-04-01
In the last two decades, ambient noise studies in the range of 1-20 seconds have predominantly focused on the analysis of source regions for Rayleigh and P waves. The theoretical excitation of these phases is well understood for primary microseisms (direct coupling of gravity waves in sloping shallow bathymetry) and secondary microseisms (wave-wave interaction) and correlates well with observations. For Love waves, the excitation mechanism in the secondary microseism band is to date unknown. It has been shown, that LQ waves can exhibit larger amplitudes than Rg waves for certain frequencies. Therefore detailed analysis of the wave field are necessary to find indications on the generation mechanism. We analyse data from two spiral-shaped arrays located in Australia, the Pilbara Array (PSAR) in the North-West and an array in South Queensland (SQspa) in the East. The two arrays are different in aperture and allow for the study of primary and secondary microseisms with SQspa and higher secondary microseisms with PSAR. We use a deconvolution enhanced beamforming approach, which is based on the CLEAN algorithm. It allows the accurate detection of weaker sources and the estimation of power levels on each component or wave type. For PSAR we evaluate 1 year of data in the frequency range of 0.35-1 Hz and find fundamental and higher mode Rg and LQ waves. For the low end of the frequency range, we find the strongest fundamental mode Rg waves to originate from multiple direction, but confined to coastline reflectors, i.e. coastlines that are perpendicular to the main swell direction, while higher mode Rg waves are mainly generated in the Great Australian Bight. For higher frequencies, the source locations of Rg waves move toward the north coast, which is closest to the array and we see an increase in the Lg phase. The majority of fundamental LQ waves are generated at the west coast of Australia and we find some agreement between low frequency Rg and LQ source locations, which becomes uncorrelated with increasing frequency. For higher mode LQ waves the generation region is in the south-west, where Australia is exposed to direct swells from the Antarctic. In the case of Rg-to-LQ power ratio, we find a frequency and backazimuth dependence. Results from SQspa allow lower frequency arrivals around the primary and secondary microseism peak to be investigated.
Knowledge inhibition and N400: a study with words that look like common words.
Debruille, J B
1998-04-01
In addition to their own representations, low frequency words, such as BRIBE, can covertly activate the representations of higher frequency words they look like (e.g., BRIDE). Hence, look-alike words can activate knowledge that is incompatible with the knowledge corresponding to accurate representations. Comparatively, eccentric words, that is, low frequency words that do not look as much like higher frequency words, are less likely to activate incompatible knowledge. This study focuses on the hypothesis that the N400 component of the event-related potential reflects the inhibition of incompatible knowledge. This hypothesis predicts that look-alike words elicit N400s of greater amplitudes than eccentric words in conditions where incompatible knowledge is inhibited. Results from a single item lexical decision experiment are reported which support the inhibition hypothesis. Copyright 1998 Academic Press.
Dynamic behavior of an unsteady trubulent boundary layer
NASA Technical Reports Server (NTRS)
Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.
1981-01-01
Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.
NASA Astrophysics Data System (ADS)
van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group
2017-12-01
A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.
[EMD Time-Frequency Analysis of Raman Spectrum and NIR].
Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe
2016-02-01
This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.
Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion
NASA Astrophysics Data System (ADS)
Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong
2017-03-01
Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.
Temporal and frequency characteristics of a narrow light beam in sea water.
Luchinin, Alexander G; Kirillin, Mikhail Yu
2016-09-20
The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.
Study on time-frequency analysis method of very fast transient overvoltage
NASA Astrophysics Data System (ADS)
Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun
2018-04-01
The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.
Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min
2007-08-17
This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.
Characterizing waveform uncertainty due to ambient noise for the Global Seismic Network
NASA Astrophysics Data System (ADS)
Guandique, J. A.; Burdick, S.; Lekic, V.
2015-12-01
Ambient seismic noise is the vibration present on seismograms not due by any earthquake or discrete source. It can be caused by trees swaying in the wind or trucks rumbling on the freeway, but the main source of noise is the microseism caused by ocean waves. The frequency content and amplitude of seismic noise varies due to weather, season, and the location of a station, among other factors. Because noise affects recordings of earthquake waveforms, better understanding it could improve the detection of small earthquakes, reduce false positives in earthquake early warning, and quantify uncertainty in waveform-based studies In this study, we used two years of 3-component accelerograms from stations in the GSN. We eliminate days with major earthquakes, aggregate analysis by month, and calculate the mean power spectrum for each component and the transfer function between components. For each power spectrum, we determine the dominant frequency and amplitude of the primary (PM) and secondary (SM) microseisms which appear at periods of ~14s and ~7s, as well as any other prominent peaks. The cross-component terms show that noise recorded on different components cannot be treated as independent. Trends in coherence and phase delay suggest directionality in the noise and information about in which modes it propagates. Preliminary results show that the noise on island stations exhibits less monthly variability, and its PM peaks tend to be much weaker than the SM peaks. The continental stations show much less consistent behavior, with higher variability in the PM peaks between stations and higher frequency content during winter months. Stations that are further inland have smaller SM peaks compared to coastal stations, which are more similar to island stations. Using these spectra and cross-component results, we develop a method for generating realistic 3-component seismic noise and covariance matrices, which can be used across various seismic applications.
Effects of forward motion on jet and core noise
NASA Technical Reports Server (NTRS)
Low, J. K. C.
1977-01-01
A study was conducted to investigate the effects of forward motion on both jet and core noise. Measured low-frequency noise from static-engine and from flyover tests with a DC-9-30 powered by JT8D-109 turbofan engines and with a DC-10-40 powered by JT9D-59A turbofan engines was separated into jet- and core noise components. Comparisons of the static and the corresponding in-flight jet- and core-noise components are presented. The results indicate that for the DC-9 airplane at low power settings, where core noise is predominant, the effect of convective amplification on core-noise levels is responsible for the higher in-flight low-frequency noise levels in the inlet quadrant. Similarly, it was found that for the DC-10 airplane with engines mounted under the wings and flaps and flap deflection greater than 30 degrees, the contribution from jet-flap-interaction noise is as much as 5 dB in the inlet quadrant and is responsible for higher in-flight low-frequency noise levels during approach conditions. Those results indicate that to properly investigate flight effects, it is important to consider the noise contributions from other low-frequency sources, such as the core and the jet-flap interaction.
Development of a point-kinetic verification scheme for nuclear reactor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demazière, C., E-mail: demaz@chalmers.se; Dykin, V.; Jareteg, K.
In this paper, a new method that can be used for checking the proper implementation of time- or frequency-dependent neutron transport models and for verifying their ability to recover some basic reactor physics properties is proposed. This method makes use of the application of a stationary perturbation to the system at a given frequency and extraction of the point-kinetic component of the system response. Even for strongly heterogeneous systems for which an analytical solution does not exist, the point-kinetic component follows, as a function of frequency, a simple analytical form. The comparison between the extracted point-kinetic component and its expectedmore » analytical form provides an opportunity to verify and validate neutron transport solvers. The proposed method is tested on two diffusion-based codes, one working in the time domain and the other working in the frequency domain. As long as the applied perturbation has a non-zero reactivity effect, it is demonstrated that the method can be successfully applied to verify and validate time- or frequency-dependent neutron transport solvers. Although the method is demonstrated in the present paper in a diffusion theory framework, higher order neutron transport methods could be verified based on the same principles.« less
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
Kozina, M.; van Driel, T.; Chollet, M.; ...
2017-05-03
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; van Driel, T.; Chollet, M.
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
NASA Astrophysics Data System (ADS)
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
The gust-mitigating potential of flapping wings.
Fisher, Alex; Ravi, Sridhar; Watkins, Simon; Watmuff, Jon; Wang, Chun; Liu, Hao; Petersen, Phred
2016-08-02
Nature's flapping-wing flyers are adept at negotiating highly turbulent flows across a wide range of scales. This is in part due to their ability to quickly detect and counterract disturbances to their flight path, but may also be assisted by an inherent aerodynamic property of flapping wings. In this study, we subject a mechanical flapping wing to replicated atmospheric turbulence across a range of flapping frequencies and turbulence intensities. By means of flow visualization and surface pressure measurements, we determine the salient effects of large-scale freestream turbulence on the flow field, and on the phase-average and fluctuating components of pressure and lift. It is shown that at lower flapping frequencies, turbulence dominates the instantaneous flow field, and the random fluctuating component of lift contributes significantly to the total lift. At higher flapping frequencies, kinematic forcing begins to dominate and the flow field becomes more consistent from cycle to cycle. Turbulence still modulates the flapping-induced flow field, as evidenced in particular by a variation in the timing and extent of leading edge vortex formation during the early downstroke. The random fluctuating component of lift contributes less to the total lift at these frequencies, providing evidence that flapping wings do indeed provide some inherent gust mitigation.
Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane
Rosowski, John J; Dobrev, Ivo; Khaleghi, Morteza; Lu, Weina; Cheng, Jeffrey Tao; Harrington, Ellery; Furlong, Cosme
2013-01-01
Opto-electronic computer holographic measurements were made of the tympanic membrane (TM) in cadaveric chinchillas. Measurements with two laser wavelengths were used to compute the 3D-shape of the TM. Single laser wavelength measurements locked to eight distinct phases of a tonal stimulus were used to determine the magnitude and the relative phase of the surface displacements. These measurements were made at over 250,000 points on the TM surface. The measured motions contained spatial phase variations consistent with relatively low-order (large spatial frequency) modal motions and smaller magnitude higher-order (smaller spatial frequency) motions that appear to travel, but may also be explained by losses within the membrane. The measurement of shape and thin shell theory allowed us to separate the measured motions into those components orthogonal to the plane of the tympanic ring, and those components within the plane of the tympanic ring based on the 3D-shape. The predicted in-plane motion components are generally smaller than the out-of-plane perpendicular component of motion. Since the derivation of in-plane and out-of plane depended primarily on the membrane shape, the relative sizes of the predicted motion components did not vary with frequency. PMID:23247058
Muyshondt, Pieter G G; Claes, Raf; Aerts, Peter; Dirckx, Joris J J
2018-01-01
The nature of the movement of the columellar footplate (CFP) in birds is still a matter of ongoing debate. Some sources claim that rocking motion is dominant, while others propose a largely piston-like motion. In this study, motions of the CFP are experimentally investigated in the ostrich using a post-mortem approach. For quasi-static loads, micro-CT scans of ostrich heads were made under positive and negative middle-ear pressures of 1 kPa. For dynamic loads, laser Doppler vibrometry was used to measure the velocity on multiple locations of the CFP as a function of excitation frequency from 0.125 to 4 kHz, and digital stroboscopic holography was used to assess the 1D full-field out-of-plane displacement of the CFP at different excitation frequencies. To expose the CFP in the experiments, measurements were made from the medial side of the CFP after opening and draining the inner ear. To determine the influence of the inner-ear load on CFP motions, a finite element model was created of the intact ostrich middle ear with inner-ear load included. For quasi-static loads, the CFP performed largely piston-like motions under positive ME pressure, while under negative ME pressure the difference between piston and rocking motion was smaller. For dynamic loads, the CFP motion was almost completely piston-like for frequencies below 1 kHz. For higher frequencies, the motions became more complicated with an increase of the rocking components, although they never exceeded the piston component. When including the inner-ear load to the model, the rocking components started to increase relative to the piston component when compared to the result of the model with unloaded CFP, but only at high frequencies above 1 kHz. In this frequency range, the motion could no longer be identified as purely piston-like or rocking. As a conclusion, the current results suggest that CFP motion is predominantly piston-like below 1 kHz, while at higher frequencies the motion becomes too complicated to be described as purely piston-like or rocking. Copyright © 2017 Elsevier B.V. All rights reserved.
Tool Condition Monitoring in Micro-End Milling using wavelets
NASA Astrophysics Data System (ADS)
Dubey, N. K.; Roushan, A.; Rao, U. S.; Sandeep, K.; Patra, K.
2018-04-01
In this work, Tool Condition Monitoring (TCM) strategy is developed for micro-end milling of titanium alloy and mild steel work-pieces. Full immersion slot milling experiments are conducted using a solid tungsten carbide end mill for more than 1900 s to have reasonable amount of tool wear. During the micro-end milling process, cutting force and vibration signals are acquired using Kistler piezo-electric 3-component force dynamometer (9256C2) and accelerometer (NI cDAQ-9188) respectively. The force components and the vibration signals are processed using Discrete Wavelet Transformation (DWT) in both time and frequency window. 5-level wavelet packet decomposition using Db-8 wavelet is carried out and the detailed coefficients D1 to D5 for each of the signals are obtained. The results of the wavelet transformation are correlated with the tool wear. In case of vibration signals, de-noising is done for higher frequency components (D1) and force signals were de-noised for lower frequency components (D5). Increasing value of MAD (Mean Absolute Deviation) of the detail coefficients for successive channels depicted tool wear. The predictions of the tool wear are confirmed from the actual wear observed in the SEM of the worn tool.
Multifrequency Raman amplifiers
NASA Astrophysics Data System (ADS)
Barth, Ido; Fisch, Nathaniel J.
2018-03-01
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
ERIC Educational Resources Information Center
Ellis, Jennifer; Miller, Paul
2014-01-01
Higher education institutions (HEIs) are critical to the delivery of education for all in any nation state. What they believe and what they do are critical components to creating societal impact. But what they believe and do is not always clear. Using a derivative of SWIFT (Structured Word Identification and Frequency Totals), the authors examined…
NASA Technical Reports Server (NTRS)
Angelaki, D. E.
1998-01-01
The three-dimensional (3-D) properties of the translational vestibulo-ocular reflexes (translational VORs) during lateral and fore-aft oscillations in complete darkness were studied in rhesus monkeys at frequencies between 0.16 and 25 Hz. In addition, constant velocity off-vertical axis rotations extended the frequency range to 0.02 Hz. During lateral motion, horizontal responses were in phase with linear velocity in the frequency range of 2-10 Hz. At both lower and higher frequencies, phase lags were introduced. Torsional response phase changed more than 180 degrees in the tested frequency range such that torsional eye movements, which could be regarded as compensatory to "an apparent roll tilt" at the lowest frequencies, became anticompensatory at all frequencies above approximately 1 Hz. These results suggest two functionally different frequency bandwidths for the translational VORs. In the low-frequency spectrum (<<0.5 Hz), horizontal responses compensatory to translation are small and high-pass-filtered whereas torsional response sensitivity is relatively frequency independent. At higher frequencies however, both horizontal and torsional response sensitivity and phase exhibit a similar frequency dependence, suggesting a common role during head translation. During up-down motion, vertical responses were in phase with translational velocity at 3-5 Hz but phase leads progressively increased for lower frequencies (>90 degrees at frequencies <0.2 Hz). No consistent dependence on static head orientation was observed for the vertical response components during up-down motion and the horizontal and torsional response components during lateral translation. The frequency response characteristics of the translational VORs were fitted by "periphery/brain stem" functions that related the linear acceleration input, transduced by primary otolith afferents, to the velocity signals providing the input to the velocity-to-position neural integrator and the oculomotor plant. The lowest-order, best-fit periphery/brain stem model that approximated the frequency dependence of the data consisted of a second order transfer function with two alternating poles (at 0.4 and 7.2 Hz) and zeros (at 0.035 and 3.4 Hz). In addition to clearly differentiator dynamics at low frequencies (less than approximately 0.5 Hz), there was no frequency bandwidth where the periphery/brain stem function could be approximated by an integrator, as previously suggested. In this scheme, the oculomotor plant dynamics are assumed to perform the necessary high-frequency integration as required by the reflex. The detailed frequency dependence of the data could only be precisely described by higher order functions with nonminimum phase characteristics that preclude simple filtering of afferent inputs and might be suggestive of distributed spatiotemporal processing of otolith signals in the translational VORs.
Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects
NASA Astrophysics Data System (ADS)
Solodov, Igor; Döring, Daniel; Busse, Gerd
2008-06-01
Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.
Analysis of switching surges generated by current interruption in an energy-storge coil
NASA Astrophysics Data System (ADS)
Chowdhuri, P.
1981-10-01
The transient voltages which are generated when the current in a large magnetic energy storage coil is interruped by a dc vacuum circuit breaker is analyzed. The effect of the various parameters in the circuit on the transient voltage is dicussed. The self inductance of the dump resistor must be minimized to control the generated transient. Contrary to general belief, a capacitor across the coil is not an effective surge suppressor. In fact, the capacitor may excite oscillations of higher magnitude. However, a capacitor, in addition to a surge suppressor, may be used to modify the frequency components of the transient voltage so that these frequency components are not coincident with the natural frequencies of the coil. Otherwise, resonant oscillations inside the coil may attain damaging magnitudes. The capacitor would also reduce the steepness of the wavefront of the transient across the coil, thus reducing the nonlinear voltage distribution inside the coil.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M., Jr.; Kubeček, V.; Jelínková, H.
2015-09-01
Optimal conditions of low-threshold collinear parametric Raman comb generation in calcite (CaCO3) are experimentally investigated under 20 ps laser pulse excitation, in agreement with the theoretical study. The collinear parametric Raman generation of the highest number of Raman components in the short calcite crystals corresponding to the optimal condition of Stokes-anti-Stokes coupling was achieved. At the excitation wavelength of 1064 nm, using the optimum-length crystal resulted in the effective multi-octave frequency Raman comb generation containing up to five anti-Stokes and more than four Stokes components (from 674 nm to 1978 nm). The 532 nm pumping resulted in the frequency Raman comb generation from the 477 nm 2nd anti-Stokes up to the 692 nm 4th Stokes component. Using the crystal with a non-optimal length leads to the Stokes components generation only with higher thresholds because of the cascade-like stimulated Raman scattering with suppressed parametric coupling.
Chen, Shiang-Fan; Jones, Gareth; Rossiter, Stephen J.
2009-01-01
The origin and maintenance of intraspecific variation in vocal signals is important for population divergence and speciation. Where vocalizations are transmitted by vertical cultural inheritance, similarity will reflect co-ancestry, and thus vocal divergence should reflect genetic structure. Horseshoe bats are characterized by echolocation calls dominated by a constant frequency component that is partly determined by maternal imprinting. Although previous studies showed that constant frequency calls are also influenced by some non-genetic factors, it is not known how frequency relates to genetic structure. To test this, we related constant frequency variation to genetic and non-genetic variables in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Recordings of bats from across Taiwan revealed that females called at higher frequencies than males; however, we found no effect of environmental or morphological factors on call frequency. By comparison, variation showed clear population structure, with frequencies lower in the centre and east, and higher in the north and south. Within these regions, frequency divergence was directional and correlated with geographical distance, suggesting that call frequencies are subject to cultural drift. However, microsatellite clustering analysis showed that broad differences in constant frequency among populations corresponded to discontinuities in allele frequencies resulting from vicariant events. Our results provide evidence that the processes shaping genetic subdivision have concomitant consequences for divergence in echolocation call frequency. PMID:19692399
‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements
NASA Astrophysics Data System (ADS)
Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.
2018-03-01
Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4000 frames but for an array of only 128 × 120 pixels, giving the moniker of ‘postage-stamp PIV’. The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 120 kHz, at which point a noise floor emerges whose magnitude is dependent on the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. The frequency response of the present measurement configuration exceeds nearly all previous velocimetry measurements in high speed flow.
Experimental and analytical study of secondary path variations in active engine mounts
NASA Astrophysics Data System (ADS)
Hausberg, Fabian; Scheiblegger, Christian; Pfeffer, Peter; Plöchl, Manfred; Hecker, Simon; Rupp, Markus
2015-03-01
Active engine mounts (AEMs) provide an effective solution to further improve the acoustic and vibrational comfort of passenger cars. Typically, adaptive feedforward control algorithms, e.g., the filtered-x-least-mean-squares (FxLMS) algorithm, are applied to cancel disturbing engine vibrations. These algorithms require an accurate estimate of the AEM active dynamic characteristics, also known as the secondary path, in order to guarantee control performance and stability. This paper focuses on the experimental and theoretical study of secondary path variations in AEMs. The impact of three major influences, namely nonlinearity, change of preload and component temperature, on the AEM active dynamic characteristics is experimentally analyzed. The obtained test results are theoretically investigated with a linear AEM model which incorporates an appropriate description for elastomeric components. A special experimental set-up extends the model validation of the active dynamic characteristics to higher frequencies up to 400 Hz. The theoretical and experimental results show that significant secondary path variations are merely observed in the frequency range of the AEM actuator's resonance frequency. These variations mainly result from the change of the component temperature. As the stability of the algorithm is primarily affected by the actuator's resonance frequency, the findings of this paper facilitate the design of AEMs with simpler adaptive feedforward algorithms. From a practical point of view it may further be concluded that algorithmic countermeasures against instability are only necessary in the frequency range of the AEM actuator's resonance frequency.
NASA Astrophysics Data System (ADS)
Kulagin, I. A.; Usmanov, T.
2009-07-01
It is shown for the first time that the use of autoionisation states for phase matching leads to the efficient selection of a single harmonic generated in a plateau region in plasma. The selected harmonic frequency can be tuned by changing the relative concentration of plasma components and tuning the fundamental radiation frequency. It is shown that the contrast of the selected harmonic can exceed 104.
The polar-ionosphere phenomena induced by high-power radio waves from the spear heating facility
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Janzhura, A. S.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.
2008-11-01
We present the results of experimental studies of specific features in the behavior of small-scale artificial field-aligned irregularities (AFAIs) and the DM component in the spectra of stimulated electromagnetic emission (SEE). Analysis of experimental data shows that AFAIs in the polar ionosphere are generated under different background geophysical conditions (season, local time, the presence of sporadic layers in the E region, etc.). It is shown that AFAIs can be excited not only in the F region, but also in “thick” sporadic E s layers of the polar ionosphere. The AFAIs were observed in some cycles of heating when the HF heater frequency exceeded the critical frequency by 0.3-0.5 MHz. Propagation paths of diagnostic HF radio waves scattered by AFAIs were modelled for geophysical conditions prevailing during the SPEAR heating experiments. Two components, namely, a narrow-banded one with a Doppler-spectrum width of up to 2 Hz and a broadband one observed in a band of up to 20 Hz, were found in the sporadic E s layer during the AFAI excitation. Analysis of the SEE spectra shows that the behavior of the DM component in time is irregular, which is possibly due to strong variations in the critical frequency of the F 2 layer from 3.5 to 4.6 MHz. An interesting feature observed in the SPEAR heating experiments is that the generation of the DM component was similar to the excitation of AFAIs when the heater frequency was up to 0.5 MHz higher than the critical frequency.
Dynamics of the outgoing turbulent boundary layer in a Mach 5 unswept compression ramp interaction
NASA Technical Reports Server (NTRS)
Gramann, Richard A.; Dolling, David S.
1990-01-01
Wall pressure fluctuations have been measured under the unsteady separation shock and on the ramp face in an unswept Mach 5 compression ramp interaction. The freestream Reynolds number was 51.0 x 10 to the 6th/m, and the incoming turbulent boundary layer developed on the tunnel floor under approximately adiabatic wall temperature conditions. Standard data-acquisition methods, as well as real-time and posttest conditional sampling techniques were used. The results show that the mean and rms pressure levels are strong functions of separation shock position. At all stations on the ramp, from the corner to where the pressure reaches the theoretical inviscid value, the pressure signals have two dominant components: a low frequency component characteristic of the global unsteadiness, which correlates with the separation shock motion, and a higher frequency component associated with turbulence. The former is the major contributor to the overall signal variance.
Gamma frequency SSVEP components differentiate children with febrile seizures from normal controls.
Birca, Ala; Carmant, Lionel; Lortie, Anne; Vannasing, Phetsamone; Lassonde, Maryse
2008-11-01
Gamma band electroencephalography (EEG) abnormalities have been reported in patients with epilepsy. We aimed to investigate whether patients with febrile seizures (FS) show abnormalities of the gamma frequency steady-state visual evoked potential (SSVEP) components evoked by intermittent photic stimulation (IPS). We analyzed the magnitude and phase alignment of the 50-100 Hz SSVEP components elicited by IPS from 12 FS patients, 5 siblings of FS patients, and 15 control children between 6 and 36 months of age. Patients with FS showed significantly higher SSVEP magnitude and phase alignment values when compared to both the siblings and control groups. Detected abnormalities could either represent the direct consequence of seizures or indicate a preexisting tendency to hypersynchrony in FS patients. Future prospective studies could assess whether SSVEP abnormalities are associated with complex rather than simple FS, or have a prognostic value for the development of epilepsy following FS.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.
Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan
2016-09-24
This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.
Etlinger, S C; Guttmann, G; Bauer, H
1986-07-01
A description of scalp-recorded, spontaneous, cerebral DC-potential shifts is given independent of other variables (shift stereotypy), in relationship to higher frequencies (theta, alpha 1, alpha 2: 4-13 Hz) and as analyzed pairwise across the median sagittal line (Fz, Cz, Pz) separately according to frequency and condition (relaxation and moderate mental load). Spontaneous DC-shifts are shown to behave unpredictably. Whether measured jointly (up to triads) or as dyad and triad context entropy, the frontal DC-shifts are calculated as being random, whereby their definition as such within the context of the Principle Component Analysis is supported by the analysis of longitudinal registrations. Cross-correlation analysis of the cerebral slow potential's relationship to each of the higher frequencies (theta, alpha 1, alpha 2) reveals it to be highly independent, the highest correlation accounting for merely 11% of the common variance, the average being 9% (R congruent to 0.3). By matching the conjoint activity of the DC-potential between Fz-Cz, Cz-Pz, and Fz-Pz to that of theta, alpha 1, alpha 2 at the same paired sites, the DC-activity is shown to be operating at higher levels of synchronous activity than the higher frequencies, regardless of pairing and/or condition, although the general level of synchronous activity (DC, theta, alpha 1, alpha 2) is remarkably high along the median sagittal line, 75% of the correlation averages of all analysis-pairings being above 0.60.
Processing of harmonics in the lateral belt of macaque auditory cortex.
Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P
2014-01-01
Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations ("coos"). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB.
Processing of harmonics in the lateral belt of macaque auditory cortex
Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P.
2014-01-01
Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations (“coos”). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB. PMID:25100935
NASA Astrophysics Data System (ADS)
Hassan Mohammed, Mohammed Ahmed
For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.
NASA Astrophysics Data System (ADS)
Ha, J.; Chung, W.; Shin, S.
2015-12-01
Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.
Multifrequency Raman amplifiers
Barth, Ido; Fisch, Nathaniel J.
2018-03-08
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less
Multifrequency Raman amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Ido; Fisch, Nathaniel J.
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less
Planck 2015 results. X. Diffuse component separation: Foreground maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
Planck 2015 results: X. Diffuse component separation: Foreground maps
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Corrosion process monitoring by AFM higher harmonic imaging
NASA Astrophysics Data System (ADS)
Babicz, S.; Zieliński, A.; Smulko, J.; Darowicki, K.
2017-11-01
The atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM’s higher cantilever modes when the cantilever motion is inharmonic and generates frequency components above the excitation frequency, usually close to the resonance frequency of the lowest oscillation mode. This method has been applied and developed to monitor corrosion processes. The higher-harmonic imaging is especially helpful for sharpening boundaries between objects in heterogeneous samples, which can be used to identify variations in steel structures (e.g. corrosion products, steel heterogeneity). The corrosion products have different chemical structures because they are composed of chemicals other than the original metal base (mainly iron oxides). Thus, their physicochemical properties are different from the primary basis. These structures have edges at which higher harmonics should be more intense because of stronger interference between the tip and the specimen structure there. This means that the AFM’s higher-harmonic imaging is an excellent tool for monitoring surficial effects of the corrosion process.
Phase-image-based content-addressable holographic data storage
NASA Astrophysics Data System (ADS)
John, Renu; Joseph, Joby; Singh, Kehar
2004-03-01
We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.
NASA Astrophysics Data System (ADS)
Athanasiadis, Panos; Gualdi, Silvio; Scaife, Adam A.; Bellucci, Alessio; Hermanson, Leon; MacLachlan, Craig; Arribas, Alberto; Materia, Stefano; Borelli, Andrea
2014-05-01
Low-frequency variability is a fundamental component of the atmospheric circulation. Extratropical teleconnections, the occurrence of blocking and the slow modulation of the jet streams and storm tracks are all different aspects of low-frequency variability. Part of the latter is attributed to the chaotic nature of the atmosphere and is inherently unpredictable. On the other hand, primarily as a response to boundary forcings, tropospheric low-frequency variability includes components that are potentially predictable. Seasonal forecasting faces the difficult task of predicting these components. Particularly referring to the extratropics, the current generation of seasonal forecasting systems seem to be approaching this target by realistically initializing most components of the climate system, using higher resolution and utilizing large ensemble sizes. Two seasonal prediction systems (Met-Office GloSea and CMCC-SPS-v1.5) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The current operational Met-Office system achieves unprecedented high scores in predicting the winter-mean phase of the North Atlantic Oscillation (NAO, corr. 0.74 at 500 hPa) and the Pacific-N. American pattern (PNA, corr. 0.82). The CMCC system, considering its small ensemble size and course resolution, also achieves good scores (0.42 for NAO, 0.51 for PNA). Despite these positive features, both models suffer from biases in low-frequency variance, particularly in the N. Atlantic. Consequently, it is found that their intrinsic variability patterns (sectoral EOFs) differ significantly from the observed, and the known teleconnections are underrepresented. Regarding the representation of N. hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. Given a documented strong relationship between high-latitude N. Atlantic blocking and the NAO, one would expect a predictive skill for the seasonal frequency of blocking comparable to that of the NAO. However, this remains elusive. Future efforts should be in the direction of reducing model biases not only in the mean but also in variability (band-passed variances).
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.
Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.
Hechenblaikner, Gerald
2013-05-01
High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.
A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components
NASA Astrophysics Data System (ADS)
Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa
2016-10-01
Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.
Design and evaluation of noise suppression sheet for GHz band utilizing magneto-elastic effect
NASA Astrophysics Data System (ADS)
Igarashi, Toshiyuki; Kondo, Koichi; Yoshida, Shigeyoshi
2017-12-01
Feasibility of realizing a noise suppression sheet (NSS) coping with the low SHF band such as the 5 GHz band was investigated, which was composed of soft magnetic metal flakes dispersed in a polymer. For suppressing noises, the higher frequency one of the bimodal frequency dispersion (lower frequency one: Dispersion DII, higher frequency one: Dispersion DIII) seen in the imaginary permeability (μ″; magnetic loss component) spectrum of the NSS was aimed to utilize. Referring to the previous finding that Dispersion DIII is originated from a magneto-elastic effect, several magnetic composite sheets were prepared using various alloy flakes with different saturation magnetostriction (λs), and their frequency (fr(DIII)) and magnitude (μ″(DIII)) of Dispersion DIII were investigated. It was found that the NSS containing flakes with higher λs exhibited higher fr(DIII) and higher μ″(DIII)/μ″(DII), which was ratio of μ″(DIII) to the magnitude of Dispersion DII (μ″(DII)). The fr(DIII) for the NSS having the highest λs containing Fe-Co alloy flake reached 7.45 GHz and μ″ in the 5 GHz band was approximately twice as high as the conventional NSS containing Fe-Si-Al alloy flake. For transmission attenuation power ratio (Rtp) when an NSS was placed on a microstrip line with characteristic impedance of 50 Ω, NSS with larger fr(DIII)2 · μ″(DIII) ∝ Ms2 (Ms: saturation magnetization), which theoretically gave the frequency limit of imaginary permeability for a thin film, exhibited larger Rtp in the low SHF band. These results suggested that an NSS containing a magnetic flake material with both large λs and Ms was suitable for suppressing low SHF band noises.
Islanding detection technique using wavelet energy in grid-connected PV system
NASA Astrophysics Data System (ADS)
Kim, Il Song
2016-08-01
This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.
MODE IDENTIFICATION OF AN ARCH DAM BY A DYNAMIC AIR-GUN TEST.
Liu, Hsi-Ping; Fedock, Joseph J.; Fletcher, Jon B.
1986-01-01
Thirteen natural frequencies of a concrete arch dam (Monticello Dam near Sacramento, California) have been identified by using a dynamic testing method which employs an air gun firing in the reservoir as the excitation source. These vibrations modes are determined from the peak responses in the Fourier amplitude spectra of the free-vibration data recorded at three crest locations using three-component geophones. Comparisons of the first five natural frequencies with results obtained by forced vibration tests using rotating mass shakers show good agreement. The next eight higher-frequency modes, not previously identified, are determined from data of the present tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, D.C.; Wood, R.W.; Laties, V.G.
1984-03-01
The behavioral effects of d-amphetamine have been shown to be modulated by stimulus control, with less impairment of performance occurring when control is great. When the fixed-consecutive-number schedule is used (on which at least a specified consecutive number of responses must be made on one operandum before a single response on another will produce a reinforcer), response rate tends to invariant but reinforcement frequency is not. This study asks whether the differences in reinforcement frequency that usually accompany changes in stimulus control could themselves be responsible for the performance differences. Two versions of the fixed-consecutive-number schedule of reinforcement were combinedmore » into a multiple schedule within which stimulus control was varied but differences in reinforcement frequency were minimized by omitting some reinforcer deliveries during the component that usually had the higher reinforcement frequency. In one component, a compound discriminative stimulus was added with the eighth consecutive response on the first lever, a single response on the second lever was then reinforced. In the other component, no such stimulus was presented. With no added stimulus, large decreases occurred in the number of runs satisfying the minimum requirement for reinforcement at doses of drug that produced only minimal changes when an added stimulus controlled behavior. Thus, increased stimulus control diminishes the behavioral changes produced by d-amphetamine even when the possible contribution by baseline reinforcement rate is minimized. 17 references, 6 figures, 4 tables.« less
A Three-Frequency Feed for Millimeter-Wave Radiometry
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J.; Khayatian, Behrouz; Sosnowski, John B.; Johnson, Alan K.; Bruneau, Peter J.
2012-01-01
A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies, including rivers, lakes, reservoirs, and wetlands. In this innovation, the feed provides three separate output ports in the 87-to- 97-GHz, 125-to-135-GHz, and 161-to-183- GHz bands; WR10 for the 90-GHz channel, WR8 for the 130-GHz channel, and WR5 for the 170-GHz channel. These ports are in turn connected to individual radiometer channels that will also demonstrate component technology including new PIN-diode switches and noise diodes for internal calibration integrated into each radiometer front end. For this application, a prime focus feed is required with an edge taper of approximately 20 dB at an illumination angle of 40 deg. A single polarization is provided in each band. Preliminary requirements called for a return loss of better than 15 dB, which is achieved across all three bands. Good pattern symmetry is also obtained throughout all three-frequency bands. This three-frequency broadband millimeter-wave feed also minimizes mass and provides a common focal point for all three millimeter-wave bands.
NASA Astrophysics Data System (ADS)
Xia, Jianghai
2014-04-01
This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
NASA Astrophysics Data System (ADS)
Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.
2017-12-01
High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we will report the initial results based on the datasets obtained since January 2017 focusing on the analyses of plasmasphere evolution by semi-automatic identification of UHR frequency, and AKR from the both hemisphere based on polarization measurement.
Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1998-01-01
The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.
NASA Astrophysics Data System (ADS)
Heikkilä, U.; Shi, X.; Phipps, S. J.; Smith, A. M.
2013-10-01
This study investigates the effect of deglacial climate on the deposition of the solar proxy 10Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 yr time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 BP and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol-climate model, driven with sea surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10Be production signal, driven by solar variability, from the weather or climate driven noise in the 10Be deposition flux during different stages of climate. The production signal varies on lower frequencies, dominated by the 11yr solar cycle within the 30 yr time scale of these experiments. The climatic noise is of higher frequencies. We first apply empirical orthogonal functions (EOF) analysis to global 10Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis on the time series of 10Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low frequency components and the long term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high frequency components represent climate driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that the 10Be atmospheric production signal is preserved in the deposition flux to surface even during climates very different from today's both in global data and at two specific locations. Secondly, noise can be effectively reduced from 10Be deposition data by simply applying the EOF analysis in the case of a reasonably large number of available data sets, or by decomposing the individual data sets to filter out high-frequency fluctuations.
NASA Astrophysics Data System (ADS)
Meza Conde, Eustorgio
The Hybrid Wave Model (HWM) is a deterministic nonlinear wave model developed for the computation of wave properties in the vicinity of ocean wave measurements. The HWM employs both Mode-Coupling and Phase Modulation Methods to model the wave-wave interactions in an ocean wave field. Different from other nonlinear wave models, the HWM decouples the nonlinear wave interactions from ocean wave field measurements and decomposes the wave field into a set of free-wave components. In this dissertation the HWM is applied to the prediction of wave elevation from pressure measurements and to the quantification of energy during breaking of long-crested irregular surface waves. 1.A transient wave train was formed in a two-dimensional wave flume by sequentially generating a series of waves from high to low frequencies that superposed at a downstream location. The predicted wave elevation using the HWM based on the pressure measurement of a very steep transient wave train is in excellent agreement with the corresponding elevation measurement, while that using Linear Wave Theory (LWT) has relatively large discrepancies. Furthermore, the predicted elevation using the HWM is not sensitive to the choice of the cutoff frequency, while that using LWT is very sensitive. 2.Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using the same superposition technique. Surface elevation measurements of each transient wave train were made at locations before and after breaking. Applying the HWM nonlinear deterministic decomposition to the measured elevation, the free-wave components comprising the transient wave train were derived. By comparing the free-wave spectra before and after breaking it is found that energy loss was almost exclusively from wave components at frequencies higher than the spectral peak frequency. Even though the wave components near the peak frequency are the largest, they do not significantly gain or lose energy after breaking. It was also observed that wave components of frequencies significantly below or near the peak frequency gain a small portion of energy lost by the high-frequency waves. These findings may have important implications to the ocean wave energy budget.
Multi-frequency communication system and method
Carrender, Curtis Lee; Gilbert, Ronald W.
2004-06-01
A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.
Interstellar Broadening of Images in the Gravitational Lens Pks 1830-211
NASA Technical Reports Server (NTRS)
Jones, D. L.; Preston, R. A.; Murphy, D. W.; Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Costa, M. E.
1996-01-01
The remarkably strong radio gravitational lens PKS 1830-211 consists of a one arcsecond diameter Einstein ring with two bright compact (milliarcsecond) components located on opposite sides of the ring. We have obtained 22 GHz VLBA data on this source to determine the intrinsic angular sizes of the compact components. Previous VLBI observations at lower frequencies indicate that the brightness temperatures of these components are significantly lower than 10(exp 10) K (Jauncey, et al. 1991), less than is typical for compact synchrotron radio sources and less than is implied by the short timescales of flux density variations. A possible explanation is that interstellar scattering is broadening the apparent angular size of the source and thereby reducing the observed brightness temperature. Our VLBA data support this hypothesis. At 22 GHz the measured brightness temperature is at least 10(exp 11) K, and the deconvolved 2 size of the core in the southwest compact component is proportional to upsilon(sup -2) between 1.7 and 22 GHz. VLBI observations at still higher frequencies should be unaffected by interstellar scattering.
Lipaemic donations: truth and consequences.
Lippi, Giuseppe; Franchini, Massimo
2013-10-01
The problem of using material of unsuitable quality, including "nontransparent turbid milky plasma" or more simply "turbid plasma", for producing blood components is not trivial for several epidemiological, technical, analytical, clinical and economical reasons. With some exception, most national and international guidelines mandate that blood components should preferably not be produced from lipaemic donations. The origin of lipaemic blood is variegated, and includes physiological or paraphysiological causes and metabolic disorders, whereas a broad range of common diseases and drugs can also be associated with hypertriglyceridaemia. Overall, the frequency of lipaemic donations ranges between 0.31% and 0.35%, although sporadic reports have highlighted that the frequency might be much higher, up to 13%. Lipaemic donations pose two leading problems in transfusion medicine, that are interference during laboratory testing, and safety of producing blood components from hypertriglyceridaemic materials. While the former issue can be overcome by using chemical or mechanical methods, the clinical use of lipaemic blood for producing components remains an unresolved question. Transfusion medicine should thereby embark on a landmark effort to find a universal agreement of behaviours and harmonization of policies worldwide. Copyright © 2012 Elsevier Ltd. All rights reserved.
Scaling laws from geomagnetic time series
Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.
1998-01-01
The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.
Development of Turbulence-Measuring Equipment
NASA Technical Reports Server (NTRS)
Kovasznay, Leslie S G
1954-01-01
Hot wire turbulence-measuring equipment has been developed to meet the more stringent requirements involved in the measurement of fluctuations in flow parameters at supersonic velocities. The higher mean speed necessitates the resolution of higher frequency components than at low speed, and the relatively low turbulence level present at supersonic speed makes necessary an improved noise level for the equipment. The equipment covers the frequency range from 2 to about 70,000 cycles per second. Constant-current operation is employed. Compensation for hot-wire lag is adjusted manually using square-wave testing to indicate proper setting. These and other features make the equipment adaptable to all-purpose turbulence work with improved utility and accuracy over that of older types of equipment. Sample measurements are given to demonstrate the performance.
High frequency oscillations in brain hemodynamic response
NASA Astrophysics Data System (ADS)
Akin, Ata; Bolay, Hayrunnisa
2007-07-01
Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.
Propagation velocity of Alfven wave packets in a dissipative plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagishi, Y.; Nakagawa, H.; Tanaka, M.
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in themore » anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.« less
Propagation velocity of Alfvén wave packets in a dissipative plasma
NASA Astrophysics Data System (ADS)
Amagishi, Yoshimitsu; Nakagawa, Hiroyuki; Tanaka, Masayoshi
1994-09-01
We have experimentally studied the behavior of Alfvén wave packets in a dissipative plasma due to ion-neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Image enhancement by non-linear extrapolation in frequency space
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)
1998-01-01
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.
Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.
Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori
2010-01-01
We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.
In-plane and out-of-plane motions of the human tympanic membrane
Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2016-01-01
Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C
2004-09-08
Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of alpha-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Calpha coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of alpha-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of alpha-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins. Copyright 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.
2004-09-01
Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of α-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Cα coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of α-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of α-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins.
Low Frequency Electromagnetic Pulse and Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, J J
2011-02-01
This paper reviews and summarizes prior work related to low frequency (< 100 Hz) EMP (ElectroMagnetic Pulse) observed from explosions. It focuses on how EMP signals might, or might not, be useful in monitoring underground nuclear tests, based on the limits of detection, and physical understanding of these signals. In summary: (1) Both chemical and nuclear explosions produce an EMP. (2) The amplitude of the EMP from underground explosions is at least two orders of magnitude lower than from above ground explosions and higher frequency components of the signal are rapidly attenuated due to ground conductivity. (3) In general, inmore » the near field, that is distances (r) of less than 10s of kilometers from the source, the amplitude of the EMP decays approximately as 1/r{sup 3}, which practically limits EMP applications to very close (<{approx}1km) distances. (4) One computational model suggests that the EMP from a decoupled nuclear explosion may be enhanced over the fully coupled case. This has not been validated with laboratory or field data. (5) The magnitude of the EMP from an underground nuclear explosion is about two orders of magnitude larger than that from a chemical explosion, and has a larger component of higher frequencies. In principle these differences might be used to discriminate a nuclear from a chemical explosion using sensors at very close (<{approx}1 km) distances. (6) Arming and firing systems (e.g. detonators, exploding bridge wires) can also produce an EMP from any type of explosion. (7) To develop the understanding needed to apply low frequency EMP to nuclear explosion monitoring, it is recommended to carry out a series of controlled underground chemical explosions with a variety of sizes, emplacements (e.g. fully coupled and decoupled), and arming and firing systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhao, E-mail: zhao.deng@foxmail.com; Waltz, R. E.
2015-05-15
This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively testedmore » over a range of relative ion cyclotron frequency 10 < Ω*{sup }< 100 where Ω*{sup }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of gyrokinetics. Thus, the cyclokinetic simulations do not account for the so-called “L-mode near edge short fall” seen in some low-frequency gyrokinetic transport and turbulence simulations.« less
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
NASA Astrophysics Data System (ADS)
Song, Xiaopeng; Hu, Xiao; Zhou, Shuqin; Liu, Weiguo; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong
2016-03-01
Depression is prevalent among patients with Parkinson's disease (PD); however the pathophysiology of depression in PD is not well understood. In order to investigate how depression and motor impairments differentially and interactively affect specific brain regions in Parkinson's disease, we introduced a new data driven approach, namely Frequency Component Analysis (FCA), to decompose the resting-state functional magnetic resonance imaging data of 59 subjects with Parkinson's disease into different frequency bands. We then evaluated the main effects of motor severity and depression, and their interactive effects on the BOLD-fMRI signal oscillation energy in these specific frequency components. Our results show that the severity of motor symptoms is more negatively correlated with energy in the frequency band of 0.10-0.25Hz in the bilateral thalamus (THA), but more positively correlated with energy in the frequency band of 0.01-0.027Hz in the bilateral postcentral gyrus (PoCG). In contrast, the severity of depressive symptoms is more associated with the higher energy of the high frequency oscillations (>0.1Hz) but lower energy of 0.01-0.027Hz in the bilateral subgenual gyrus (SGC). Importantly, the interaction between motor and depressive symptoms is negatively correlated with the energy of high frequency oscillations (>0.1Hz) in the substantia nigra/ventral tegmental area (SN/VTA), left hippocampus (HIPP), left inferior orbital frontal cortex (OFC), and left temporoparietal junction (TPJ), but positively correlated with the energy of 0.02-0.05Hz in the left inferior OFC, left TPJ, left inferior temporal gyrus (ITG), and bilateral cerebellum. These results demonstrated that FCA was a promising method in interrogating the neurophysiological implications of different brain rhythms. Our findings further revealed the neural bases underlying the interactions as well the dissociations between motor and depressive symptoms in Parkinson's disease.
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.
2011-03-01
Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.
Surface Fatigue Resistance with Induction Hardening
NASA Technical Reports Server (NTRS)
Townsend, Dennis; Turza, Alan; Chapman, Mike
1996-01-01
Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.
[Frequency of chromosome aberrations in residents of the Semipalatinsk Oblast].
Gubitskaia, E G; Akhmatullina, N B; Vsevolodov, E B; Bishnevskaia, S S; Sharipov, I K; Cherednichenko, O G
1999-06-01
Cytogenetic analysis of the population of the Beskaragai district of the Semipalatinsk oblast adjacent to the territory of the nuclear test site was conducted by means of an ecological genetic questionnaire and cytogenetic examination of metaphase chromosomes. An increase in the total mutation level in the region was observed. The frequency of chromosome aberrations among the population of the Beskaragai district (3.2%) was statistically significantly (about 1.5 times) higher than the background levels in the clear regions (from 1 to 2%). Furthermore, the frequency of aberrations in adolescents was comparable with that in the adults. The spectrum of chromosome aberrations pointed to a significant contribution of radiation component to the mutagenesis.
A comparison of auditory evoked potentials to acoustic beats and to binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2010-04-01
The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakamura, Haruki; Naito, Yasushi; Tsuboi, Yukitoshi; Mitaku, Shigeki; Okano, Koji
1982-11-01
Time domain measurement to obtain ultrasonic resonance spectra was made using Fourier Synthesized Pseudorandom Noise (FSPN) excitation in order to observe the viscoelastic property of a lyotropic liquid crystal. The FSPN with multiple frequency components was amplitude-modulated by a carrier signal with a much higher single frequency component, and a quadrature detection technique was used to obtain a shear ultrasonic resonance spectrum produced between two transducers. A reflection method was applied to observe mechanical impedance of viscous and elastic materials at about 3 MHz. The viscosities obtained for standard viscous materials agreed well with literature values, and the rigidity and viscosity of a lyotropic liquid crystal of Sodium Lauryl Sulfate with water were measured; they were ˜ 106 dyn/cm2 and ˜0.1 P, respectively.
Vowel selection and its effects on perturbation and nonlinear dynamic measures.
Maccallum, Julia K; Zhang, Yu; Jiang, Jack J
2011-01-01
Acoustic analysis of voice is typically conducted on recordings of sustained vowel phonation. This study applied perturbation and nonlinear dynamic analyses to the vowels /a/, /i/, and /u/ in order to determine vowel selection effects on analysis. Forty subjects (20 males and 20 females) with normal voices participated in recording. Traditional parameters of fundamental frequency, signal-to-noise ratio, percent jitter, and percent shimmer were calculated for the signals using CSpeech. Nonlinear dynamic parameters of correlation dimension and second-order entropy were also calculated. Perturbation analysis results were largely incongruous in this study and in previous research. Fundamental frequency results corroborated previous work, indicating higher fundamental frequency for /i/ and /u/ and lower fundamental frequency for /a/. Signal-to-noise ratio results showed that /i/ and /u/ have greater harmonic levels than /a/. Results of nonlinear dynamic analysis suggested that more complex activity may be evident in /a/ than in /i/ or /u/. Percent jitter and percent shimmer may not be useful for description of acoustic differences between vowels. Fundamental frequency, signal-to-noise ratio, and nonlinear dynamic parameters may be applied to characterize /a/ as having lower frequency, higher noise, and greater nonlinear components than /i/ and /u/. Copyright © 2010 S. Karger AG, Basel.
Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine
NASA Astrophysics Data System (ADS)
Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.
2016-11-01
When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.
NASA Astrophysics Data System (ADS)
Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige
2018-06-01
In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.
NASA Astrophysics Data System (ADS)
Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige
2018-02-01
In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordonez-Miranda, Jose, E-mail: jose.ordonez@cnrs.pprime.fr; Ezzahri, Younès; Drevillon, Jérémie
2016-05-28
Far-field radiative heat transport in a thermal transistor made up of a vanadium dioxide base excited with a laser of modulated intensity is analytically studied and optimized. This is done by solving the equation of energy conservation for the steady-state and modulated components of the temperature and heat fluxes that the base exchanges with the collector and emitter. The thermal bistability of VO{sub 2} is used to find an explicit condition on the laser intensity required to maximize these heat fluxes to values higher than the incident flux. For a 1 μm-thick base heated with a modulation frequency of 0.5 Hz, itmore » is shown that both the DC and AC components of the heat fluxes are about 4 times the laser intensity, while the AC temperature remains an order of magnitude smaller than the DC one at around 343 K. Higher AC heat fluxes are obtained for thinner bases and/or lower frequencies. Furthermore, we find that out of the bistability temperatures associated with the dielectric-to-metal and metal-to-dielectric transitions of VO{sub 2}, the amplification of the collector-to-base and base-to-emitter heat fluxes is still possible, but at modulation frequencies lower than 0.1 Hz.« less
The nature of noise wavefield and its applications for site effects studies: A literature review
NASA Astrophysics Data System (ADS)
Bonnefoy-Claudet, Sylvette; Cotton, Fabrice; Bard, Pierre-Yves
2006-12-01
The aim of this paper is to discuss the existing scientific literature in order to gather all the available information dealing with the origin and the nature of the ambient seismic noise wavefield. This issue is essential as the use of seismic noise is more and more popular for seismic hazard purposes with a growing number of processing techniques based on the assumption that the noise wavefield is predominantly consisting of fundamental mode Rayleigh waves. This survey reveals an overall agreement about the origin of seismic noise and its frequency dependence. At frequencies higher than 1 Hz, seismic noise systematically exhibits daily and weekly variations linked to human activities, whereas at lower frequencies (between 0.005 and 0.3 Hz) the variation of seismic noise is correlated to natural activities (oceanic, meteorological…). Such a surface origin clearly supports the interpretation of seismic noise wavefield consisting primarily of surface waves. However, the further, very common (though hidden) assumption according which almost all the noise energy would be carried by fundamental mode Rayleigh waves is not supported by the few available data: no "average" number can though be given concerning the actual proportion between surface and body waves, Love and Rayleigh waves (horizontal components), fundamental and higher modes (vertical components), since the few available investigations report a significant variability, which might be related with site conditions and noise source properties.
All-fiber pyroelectric nanogenerator
NASA Astrophysics Data System (ADS)
Ghosh, Sujoy Kumar; Xie, Mengying; Bowen, Christopher Rhys; Mandal, Dipankar
2018-04-01
An all-fiber pyroelectric nanogenerator (PyNG) is fabricated where both the active pyroelectric component and the electrodes were composed of fiber. The pyroelectric component was made with randomly organized electrospun PVDF nano-fibers possessing ferroelectric β- and γ-phases. The PyNG possess higher level of sensitivity which can detect very low level of temperature fluctuation, as, low as, 2 K. In addition, the thermal energy harvesting ability of the PyNG under several temperature variations and cycling frequencies paves the way for next generation thermal sensor and self-powered flexible micro-electronics.
NASA Astrophysics Data System (ADS)
Chen, Xiaowang; Feng, Zhipeng
2016-12-01
Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to get the time-frequency distribution of original signal. The proposed method is validated using both numerical simulated and lab experimental planetary gearbox vibration signals. The time-varying gear fault symptoms are successfully extracted, showing effectiveness of the proposed iterative generalized time-frequency reassignment method in planetary gearbox fault diagnosis under nonstationary conditions.
Basic features of the STS/Spacelab vibration environment
NASA Technical Reports Server (NTRS)
Baugher, Charles R.; Ramachandran, N.
1994-01-01
The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre
2014-07-01
Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving risemore » to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.« less
Comparison of β Values in Rocks Deduced From the Elastoacoustic Effect and From 3-Wave Mixing
NASA Astrophysics Data System (ADS)
Dangelo, R.; Winkler, K. W.; Johnson, D. L.
2002-12-01
We measure the changes in the speeds of sound in Berea, wet and dry, due to the application of non-isotropic stresses (elastoacoustic effect). From these measurements we deduce values of the 3rd order elastic constants, A,B,C. We insonify these same samples, immersed in a water tank, with well-characterized acoustic signals having frequency content f1 = 1.05 MHz and f2 = 0.95 MHz. The nonlinear properties of the samples generate a difference frequency component at Δ f = 100 kHz whose amplitude we measure (3-wave mixing). We analyze the combined effects of diffraction, attenuation, and nonlinearity on these difference frequency signals by means of the KZK equation, suitably modified to account for the actual frequency dependence of the attenuation in these samples. The attenuation of the higher frequency nonlinear signals, f1+f_2, 2f1, 2f2, precludes our ability to measure them. The values of β deduced from the 3-wave mixing measurements are in the hundreds whereas the values of β implied by the values of A,B,C are in the thousands. The same experiments on lucite yield β values consistent with each other: β ≈ 6. In lucite we are easily able to measure the higher frequency nonlinear signals. The high attenuation in rocks precludes their measurement at these frequencies.
Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology
NASA Astrophysics Data System (ADS)
Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.
2014-03-01
It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.
Brunstrom, J M; Roberts, B
2001-07-01
When a partial of a periodic complex is mistuned, its change in pitch is greater than expected. Two experiments examined whether these partial-pitch shifts are related to the computation of global pitch. In experiment 1, stimuli were either harmonic or frequency-shifted (25% of F0) complexes. One partial was mistuned by +/- 4% and played with leading and lagging portions of 500 ms each, relative to the other components (1 s), in both monaural and dichotic contexts. Subjects indicated whether the mistuned partial was higher or lower in pitch when concurrent with the other components. Responses were positively correlated with the direction of mistuning in all conditions. In experiment 2, stimuli from each condition were compared with synchronous equivalents. Subjects matched a pure tone to the pitch of the mistuned partial (component 4). The results showed that partial-pitch shifts are not reduced in size by asynchrony. Similar asynchronies are known to produce a near-exclusion of a mistuned partial from the global-pitch computation. This mismatch indicates that global and partial pitch are derived from different processes. The similarity of the partial-pitch shifts observed for harmonic and frequency-shifted stimuli suggests that they arise from a grouping mechanism that is sensitive to spectral regularity.
Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.
Wang, Yazhou; Li, Guangsheng; Luk, Keith D K; Hu, Yong
2017-05-24
This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.
Silva, Eliane Aparecida; Bosco, Marcia Regina Miras; Mozer, Erika
2012-01-01
Contact dermatitis to cosmetics is a common dermatosis, especially in adults and professionals who handle them. The objective of this study was to evaluate the frequency of sensitization to cosmetics' components in patients with suspected allergic contact dermatitis and to identify the main sensitizers related to occupational contact dermatitis. During the period of January 2008 to June 2010, all the patients with a presumptive diagnosis of allergic contact dermatitis to cosmetics were selected. The patients were submitted to the patch tests of cosmetics series, composed by ten substances. Among the 147 patients studied sensitization to cosmetics components occurred in 31,29% of the cases, 14 of those (19,18%) equally corresponding to BHT and triethanolamine substances, 13 (17,81%) to ammonium thioglycolate, 09 to sorbic acid (12,33%), 08 to tosilamida (10,95%), 06 to germall (8,22%). The other elements tested showed indices of 5% or less. A higher frequency of contact dermatitis to cosmetics was observed in women and the age most affected was concordant with the age range of greatest professional activity of the population. Allergic contact dermatitis was more frequently associated with Triethanolamine, BHT and ammonium thioglycolate, and the relation with occupational contact dermatitis was discreet.
Wang, Shau-Chun; Lin, Chiao-Juan; Chiang, Shu-Min; Yu, Sung-Nien
2008-03-15
This paper reports a simple chemometric technique to alter the noise spectrum of a liquid chromatography-mass spectrometry (LC-MS) chromatogram between two consecutive second-derivative filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one second-derivative filtered LC-MS chromatogram with another artificial chromatogram added with thermal noises prior to the other second-derivative filter. Because the second-derivative filter cannot eliminate frequency components within its own filter bandwidth, more efficient peak S/N ratio improvement cannot be accomplished using consecutive second-derivative filter procedures to process LC-MS chromatograms. In contrast, when the second-derivative filtered LC-MS chromatogram is conditioned with the multiplication alteration prior to the other second-derivative filter, much better ratio improvement is achieved. The noise frequency spectrum of the second-derivative filtered chromatogram, which originally contains frequency components within the filter bandwidth, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the other regimes, the other second-derivative filter, working as a band-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS chromatograms, of which 5-fold peak S/N ratio improvement achieved with two consecutive second-derivative filters remains the same S/N ratio improvement using a one-step second-derivative filter, are improved to accomplish much better ratio enhancement, approximately 25-fold or higher when the noise frequency spectrum is modified between two matched filters. The linear standard curve using the filtered LC-MS signals is validated. The filtered LC-MS signals are also more reproducible. The more accurate determinations of very low-concentration samples (S/N ratio about 5-7) are obtained via standard addition procedures using the filtered signals rather than the determinations using the original signals.
NASA Technical Reports Server (NTRS)
Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce
2010-01-01
The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:
NASA Astrophysics Data System (ADS)
Heikkilä, U.; Shi, X.; Phipps, S. J.; Smith, A. M.
2014-04-01
This study investigates the effect of deglacial climate on the deposition of the solar proxy 10Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 year time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol-climate model, driven with sea-surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10Be production signal, driven by solar variability, from the weather- or climate-driven noise in the 10Be deposition flux during different stages of climate. The production signal varies at lower frequencies, dominated by the 11 year solar cycle within the 30 year timescale of these experiments. The climatic noise is of higher frequencies than 11 years during the 30 year period studied. We first apply empirical orthogonal function (EOF) analysis to global 10Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis to the time series of 10Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low-frequency components and the long-term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high-frequency components represent climate-driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that the 10Be atmospheric production signal is preserved in the deposition flux to surface even during climates very different from today's both in global data and at two specific locations. Secondly, noise can be effectively reduced from 10Be deposition data by simply applying the EOF analysis in the case of a reasonably large number of available data sets, or by decomposing the individual data sets to filter out high-frequency fluctuations.
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki
2003-10-01
We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.
Multi-focus image fusion algorithm using NSCT and MPCNN
NASA Astrophysics Data System (ADS)
Liu, Kang; Wang, Lianli
2018-04-01
Based on nonsubsampled contourlet transform (NSCT) and modified pulse coupled neural network (MPCNN), the paper proposes an effective method of image fusion. Firstly, the paper decomposes the source image into the low-frequency components and high-frequency components using NSCT, and then processes the low-frequency components by regional statistical fusion rules. For high-frequency components, the paper calculates the spatial frequency (SF), which is input into MPCNN model to get relevant coefficients according to the fire-mapping image of MPCNN. At last, the paper restructures the final image by inverse transformation of low-frequency and high-frequency components. Compared with the wavelet transformation (WT) and the traditional NSCT algorithm, experimental results indicate that the method proposed in this paper achieves an improvement both in human visual perception and objective evaluation. It indicates that the method is effective, practical and good performance.
Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang
2014-02-01
As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.
Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas
NASA Astrophysics Data System (ADS)
Droxler, Andre W.; Schlager, Wolfgang
1985-11-01
The southern Tongue of the Ocean is a 1300-m-deep, flat-floored basin in the Bahamas that receives large amounts of sediment from the carbonate platforms surrounding it on three sides. We have examined five 8 13-m-long piston cores and determined bulk sedimentation rates, turbidite frequency, and turbidite accumulation rates for the past two glacial and interglacial periods. The mean of bulk sedimentation rates is four to six times higher in interglacial periods; average accumulation rates of recognizable turbidites are higher by a factor of 21 to 45, and interglacial turbidite frequency is higher by a factor of 6 to 14. Sediment composition indicates that increased interglacial rates are due to higher accumulation of platform-derived material. Additional data from other Bahamian basins as well as published material from the Caribbean strongly suggest that highstand shedding is a general trend in pure carbonate depositional systems. Carbonate platforms without a siliciclastic component export more material during highstands of sea level when the platform tops are flooded and produce sediment. The response of carbonate platforms to Quaternary sea-level cycles is opposed to that of siliciclastic ocean margins, where sediment is stored on the inner shelf during highstands and passed on to continental rises and abyssal plains during lowstands of sea level.
Sek, Aleksander; Moore, Brian C J
2003-05-01
Two experiments were performed to test the concept that the auditory system contains a "modulation filter bank" (MFB). Experiment 1 examined the ability to "hear out" the modulation frequency of the central component of a three-component modulator applied to a 4-kHz sinusoidal carrier. On each trial, three modulated stimuli were presented. The modulator of the first stimulus contained three components. Within a run the frequencies of the outer two components were fixed and the frequency of the central ("target") component was drawn randomly from one of five values. The modulators of second and third stimuli contained one component. One had a frequency equal to that of the target and the other had a frequency randomly selected from one of the other possible values. Subjects indicated whether the target corresponded to the second or third stimulus. Scores were around 80% correct when the components in the three-component modulator were widely spaced and when the frequencies of the target and comparison differed sufficiently. Experiment 2 examined the ability to hear a change in the relative phase of the components in a three-component modulator with harmonically spaced components, using a 31FC task. The frequency of the central component, f(c), was either 50 or 100 Hz. Scores were 80%-90% correct when the component spacing was < or = 0.5 f(c), but decreased markedly for greater spacings. Performance was only slightly impaired by randomizing the overall modulation depth from one stimulus to the next. The results of both experiments are broadly consistent with what would be expected from a MFB with a Q value of 1 or slightly less.
Universal distribution of component frequencies in biological and technological systems
Pang, Tin Yau; Maslov, Sergei
2013-01-01
Bacterial genomes and large-scale computer software projects both consist of a large number of components (genes or software packages) connected via a network of mutual dependencies. Components can be easily added or removed from individual systems, and their use frequencies vary over many orders of magnitude. We study this frequency distribution in genomes of ∼500 bacterial species and in over 2 million Linux computers and find that in both cases it is described by the same scale-free power-law distribution with an additional peak near the tail of the distribution corresponding to nearly universal components. We argue that the existence of a power law distribution of frequencies of components is a general property of any modular system with a multilayered dependency network. We demonstrate that the frequency of a component is positively correlated with its dependency degree given by the total number of upstream components whose operation directly or indirectly depends on the selected component. The observed frequency/dependency degree distributions are reproduced in a simple mathematically tractable model introduced and analyzed in this study. PMID:23530195
Evolution of genuine cross-correlation strength of focal onset seizures.
Müller, Markus F; Baier, Gerold; Jiménez, Yurytzy López; Marín García, Arlex O; Rummel, Christian; Schindler, Kaspar
2011-10-01
To quantify the evolution of genuine zero-lag cross-correlations of focal onset seizures, we apply a recently introduced multivariate measure to broad band and to narrow-band EEG data. For frequency components below 12.5 Hz, the strength of genuine cross-correlations decreases significantly during the seizure and the immediate postseizure period, while higher frequency bands show a tendency of elevated cross-correlations during the same period. We conclude that in terms of genuine zero-lag cross-correlations, the electrical brain activity as assessed by scalp electrodes shows a significant spatial fragmentation, which might promote seizure offset.
Mode Selection for a Single-Frequency Fiber Laser
NASA Technical Reports Server (NTRS)
Liu, Jian
2010-01-01
A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.
Guo, Jing; Zhou, Yong; Liu, Changmeng; Wu, Qianru; Chen, Xianping; Lu, Jiping
2016-10-09
Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz) on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm) and exhibit higher ultimate tensile strength (260 MPa) and yield strength (102 MPa), which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%.
Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser
NASA Astrophysics Data System (ADS)
Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.
2018-05-01
Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.
NASA Astrophysics Data System (ADS)
Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.
2018-05-01
Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Zhen-Zhen; Wang, Feng; Fu, G. Y.
Linear and nonlinear simulations of high-order harmonics q=1 energetic particle modes excited by trapped energetic particles in tokamaks are carried out using kinetic/magnetohydrodynamic hybrid code M3D-K. It is found that with a flat safety factor profile in the core region, the linear growth rate of high-order harmonics (m=n>1) driven by energetic trapped particles can be higher than the m/n=1/1 component. The high m=n>1 modes become more unstable when the pressure of energetic particles becomes higher. Moreover, it is shown that there exist multiple resonant locations satisfying different resonant conditions in the phase space of energetic particles for the high-order harmonicsmore » modes, whereas there is only one precessional resonance for the m/n=1/1 harmonics. The fluid nonlinearity reduces the saturation level of the n=1 component, while it hardly affects those of the high n components, especially the modes with m=n=3,4. The frequency of these modes does not chirp significantly, which is different with the typical fishbone driven by trapped particles. Lastly, in addition, the flattening region of energetic particle distribution due to high-order harmonics excitation is wider than that due to m/n=1/1 component, although the m/n=1/1 component has a higher saturation amplitude.« less
Ren, Zhen-Zhen; Wang, Feng; Fu, G. Y.; ...
2017-04-24
Linear and nonlinear simulations of high-order harmonics q=1 energetic particle modes excited by trapped energetic particles in tokamaks are carried out using kinetic/magnetohydrodynamic hybrid code M3D-K. It is found that with a flat safety factor profile in the core region, the linear growth rate of high-order harmonics (m=n>1) driven by energetic trapped particles can be higher than the m/n=1/1 component. The high m=n>1 modes become more unstable when the pressure of energetic particles becomes higher. Moreover, it is shown that there exist multiple resonant locations satisfying different resonant conditions in the phase space of energetic particles for the high-order harmonicsmore » modes, whereas there is only one precessional resonance for the m/n=1/1 harmonics. The fluid nonlinearity reduces the saturation level of the n=1 component, while it hardly affects those of the high n components, especially the modes with m=n=3,4. The frequency of these modes does not chirp significantly, which is different with the typical fishbone driven by trapped particles. Lastly, in addition, the flattening region of energetic particle distribution due to high-order harmonics excitation is wider than that due to m/n=1/1 component, although the m/n=1/1 component has a higher saturation amplitude.« less
An observation related to directional attenuation of SKS waves propagating in anisotropic media
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xue, Mei
2015-04-01
Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a tilting symmetrical axis. This observed behavior of the SKS wave may arise from the combined effects of frequency-dependent attenuation anisotropy and small-scale heterogeneities in the crust and the upper mantle.
Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz
NASA Technical Reports Server (NTRS)
Yeh, Cavour; Rascoe, Daniel; Shimabukuro, Fred; Tope, Michael; Siegel, Peter
2005-01-01
Ribbon waveguides made of alumina or of semiconductors (Si, InP, or GaAs) have been proposed as low-loss transmission lines for coupling electronic components and circuits that operate at frequencies from 30 to 1,000 GHz. In addition to low losses (and a concomitant ability to withstand power levels higher than would otherwise be possible), the proposed ribbon waveguides would offer the advantage of compatibility with the materials and structures now commonly incorporated into integrated circuits. Heretofore, low-loss transmission lines for this frequency range have been unknown, making it necessary to resort to designs that, variously, place circuits and components to be coupled in proximity of each other and/or provide for coupling via free space through bulky and often lossy optical elements. Even chip-to-chip interconnections have been problematic in this frequency range. Metal wave-guiding structures (e.g., microstriplines and traditional waveguides) are not suitable for this frequency range because the skin depths of electromagnetic waves in this frequency range are so small as to give rise to high losses. Conventional rod-type dielectric waveguide structures are also not suitable for this frequency range because dielectric materials, including ones that exhibit ultralow losses at lower frequencies, exhibit significant losses in this frequency range. Unlike microstripline structures or metallic waveguides, the proposed ribbon waveguides would be free of metal and would therefore not be subject to skin-depth losses. Moreover, although they would be made of materials that are moderately lossy in the frequency range of interest, the proposed ribbon waveguides would cause the propagating electromagnetic waves to configure themselves in a manner that minimizes losses.
Fine structure of the low-frequency spectra of heart rate and blood pressure
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-01-01
Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660
Fine structure of the low-frequency spectra of heart rate and blood pressure.
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-10-13
The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.
Measuring and improving student engagement in clinical training.
Lee, Simin; Valtis, Yannis K; Jun, Tomi; Wang, David; Zhang, Biqi; Chung, Esther H; Yu, Amy; Williams, Rachael; Cohen, Marya J
2018-01-01
Volunteer service learning activities, including Student Run Clinics (SRCs), are becoming an increasingly popular extracurricular component of medical education. While there are reports that student clinicians generally enjoy their educational experiences at SRCs, it is not understood how to optimize and measure student engagement in them. To identify key drivers of student engagement a tool was created to measure volunteer experience at the Crimson Care Collaborative (CCC), a primary care SRC. CCC volunteers were asked to complete an online engagement survey. Cross-sectional survey data were collected for 149 CCC volunteers (53% response rate). Multivariate linear regression showed that overall 'likelihood to recommend CCC to a friend' was significantly associated with students' perception of the clarity of their role within the clinic, frequency of interprofessional interactions, and overall quality of medical education. Students who volunteer more frequently and for longer periods of time had higher engagement scores. Measuring engagement is feasible in volunteer settings. Engagement appears to be dependent on both structural and experiential components. Easily modifiable components of job design (role definition, expected frequency of volunteering), are key drivers of volunteer engagement.
Readers in Adult Basic Education.
Barnes, Adrienne E; Kim, Young-Suk; Tighe, Elizabeth L; Vorstius, Christian
The present study explored the reading skills of a sample of 48 adults enrolled in a basic education program in northern Florida, United States. Previous research has reported on reading component skills for students in adult education settings, but little is known about eye movement patterns or their relation to reading skills for this population. In this study, reading component skills including decoding, language comprehension, and reading fluency are reported, as are eye movement variables for connected-text oral reading. Eye movement comparisons between individuals with higher and lower oral reading fluency revealed within- and between-subject effects for word frequency and word length as well as group and word frequency interactions. Bivariate correlations indicated strong relations between component skills of reading, eye movement measures, and both the Test of Adult Basic Education ( Reading subtest) and the Woodcock-Johnson III Diagnostic Reading Battery Passage Comprehension assessments. Regression analyses revealed the utility of decoding, language comprehension, and lexical activation time for predicting achievement on both the Woodcock Johnson III Passage Comprehension and the Test of Adult Basic Education Reading Comprehension.
Task and spatial frequency modulations of object processing: an EEG study.
Craddock, Matt; Martinovic, Jasna; Müller, Matthias M
2013-01-01
Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.
Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate
Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.
2012-01-01
Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508
NASA Astrophysics Data System (ADS)
Luo, X. M.; Zhang, B.; Zhang, G. P.
2014-09-01
Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.
Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.
Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon
2017-01-01
The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.
EMD-WVD time-frequency distribution for analysis of multi-component signals
NASA Astrophysics Data System (ADS)
Chai, Yunzi; Zhang, Xudong
2016-10-01
Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.
Membrane Electrical Noise in Chara corallina1
Ross, Stephen; Dainty, Jack
1986-01-01
Certain inhibitors have been found to affect the low frequency spectral component of the electrical noise power spectrum in Chara corallina. Application of the ATPase inhibitor N,N′-dicyclohexylcarbodiimide removed the low frequency spectral component, strengthening the case that the component is produced by active proton pumping. Cytocholasin B, which inhibits cyclosis in internodes of C. corallina, removed the low frequency spectral component in a time-dependent fashion which was correlated with the cessation of streaming. The protonophore carbonyl cyanide m-chlorophenylhydrazone did not produce consistent effects on the low frequency spectral component in these cells. PMID:16664898
Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong
2015-01-01
The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.
Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia
2017-01-01
Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.
The relationship between session frequency and psychotherapy outcome in a naturalistic setting.
Erekson, David M; Lambert, Michael J; Eggett, Dennis L
2015-12-01
The dose-response relationship in psychotherapy has been examined extensively, but few studies have included session frequency as a component of psychotherapy "dose." Studies that have examined session frequency have indicated that it may affect both the speed and the amount of recovery. No studies were found examining the clinical significance of this construct in a naturalistic setting, which is the aim of the current study. Using an archival database of session-by-session Outcome Questionnaire 45 (OQ-45) measures over 17 years, change trajectories of 21,488 university counseling center clients (54.9% female, 85.0% White, mean age = 22.5) were examined using multilevel modeling, including session frequency at the occasion level. Of these clients, subgroups that attended therapy approximately weekly or fortnightly were compared to each other for differences in speed of recovery (using multilevel Cox regression) and clinically significant change (using multilevel logistic regression). Results indicated that more frequent therapy was associated with steeper recovery curves (Cohen's f2 = 0.07; an effect size between small and medium). When comparing weekly and fortnightly groups, clinically significant gains were achieved faster for those attending weekly sessions; however, few significant differences were found between groups in total amount of change in therapy. Findings replicated previous session frequency literature and supported a clinically significant effect, where higher session frequency resulted in faster recovery. Session frequency appears to be an impactful component in delivering more efficient psychotherapy, and it is important to consider in individual treatment planning, institutional policy, and future research. (c) 2015 APA, all rights reserved).
Mi, Chris; Li, Siqi
2017-01-31
A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.
Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershman, D. J.; Block, B. P.; Rubin, M.
This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less
Li, Shandong; Xue, Qian; Duh, Jenq-Gong; Du, Honglei; Xu, Jie; Wan, Yong; Li, Qiang; Lü, Yueguang
2014-01-01
RF/microwave soft magnetic films (SMFs) are key materials for miniaturization and multifunctionalization of monolithic microwave integrated circuits (MMICs) and their components, which demand that the SMFs should have higher self-bias ferromagnetic resonance frequency fFMR, and can be fabricated in an IC compatible process. However, self-biased metallic SMFs working at X-band or higher frequency were rarely reported, even though there are urgent demands. In this paper, we report an IC compatible process with two-step superposition to prepare SMFs, where the FeCoB SMFs were deposited on (011) lead zinc niobate–lead titanate substrates using a composition gradient sputtering method. As a result, a giant magnetic anisotropy field of 1498 Oe, 1–2 orders of magnitude larger than that by conventional magnetic annealing method, and an ultrahigh fFMR of up to 12.96 GHz reaching Ku-band, were obtained at zero magnetic bias field in the as-deposited films. These ultrahigh microwave performances can be attributed to the superposition of two effects: uniaxial stress induced by composition gradient and magnetoelectric coupling. This two-step superposition method paves a way for SMFs to surpass X-band by two-step or multi-step, where a variety of magnetic anisotropy field enhancing methods can be cumulated together to get higher ferromagnetic resonance frequency. PMID:25491374
Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders
2014-09-21
Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.
NASA Astrophysics Data System (ADS)
Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders
2014-09-01
Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.
Playing a violent television game affects heart rate variability.
Ivarsson, Malena; Anderson, Martin; Akerstedt, Torbjörn; Lindblad, Frank
2009-01-01
To investigate how playing a violent/nonviolent television game during the evening affects sympathetic and parasympathetic reactions during and after playing as well as sleep quality during the night after playing. In total, 19 boys, 12-15 years of age, played television games on two occasions in their homes and participated once without gaming. Heart rate, heart rate variability (HRV) and physical activity were measured during gaming/participating and the night to follow using a portable combined heart rate and movement sensor. A sleep diary and questionnaires about gaming experiences and session-specific experiences were filled in. Criteria for Selection of Games: Violent game involves/rewards direct physical violence (no handguns) against another person, and nonviolent game involves/rewards no violence; same game design ('third-person game'); conducted in the same manner; no differences concerning motor activity; similar sound and light effects; no sexual content, violence against women or racial overtones. During violent (vs. nonviolent) gaming, there was significantly higher activity of the very low frequency component of the HRV and total power. During the night after playing, very low frequency, low frequency and high frequency components were significantly higher during the violent (vs. nonviolent) condition, just as total power. There were no significant differences between the three conditions (violent/nonviolent/no gaming) with respect to an index reflecting subjectively perceived sleep difficulties. Nor was there any difference between violent and nonviolent condition for any single sleep item. Violent gaming induces different autonomic responses in boys compared to nonviolent gaming--during playing and during the following night--suggesting different emotional responses. Subjectively perceived sleep quality is not influenced after a single gaming experience. Future studies should address the development of the autonomic balance after gaming over longer time than a night, physiological adaptation to frequent gaming and potential gender differences.
Reverse-time migration for subsurface imaging using single- and multi- frequency components
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.
2017-12-01
Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
Cartilage island on stapes: autologous PORP in the hypoventilated middle ear.
Hess-Erga, Jeanette; Engelen, Bart Lambertus Henricus Jozef; Vassbotn, Flemming Slinning
2017-04-01
The most common technique in sound restoration of the middle ear is prosthetic surgery. Hypoventilation of the middle ear may cause adhesive otitis or atelectasis resulting in a higher risk of prosthetic extrusion rate and recurrence of the underlying cholesteatoma. We report long-term results using an island of tragal cartilage as an autologous PORP in selected patients with poor middle ear ventilation. Retrospective chart reviews were performed for procedures involving 52 patients between year 2000 and 2009. All patients that underwent surgery using tragal cartilage interposed between the suprastructure of the stapes and the tympanic membrane were included in this study. Audiological parameters using four frequencies, 0.5, 1, 2 and 3 kHz, according to AAO-HNS guidelines, were assessed pre-and postoperatively. The hearing results on different PTA frequencies were also investigated. We report long-term follow-up of patients with hypoventilated middle ear with a success rate of 71% (ABG <20%). With regards to the ABG, the low frequency component (5 and 1 kHz) showed a significantly (p < 0.05) larger improvement of mean values after surgery as compared to the high-frequency component (2 and 3 kHz). Cartilage island PORP on stapes is a stable and efficient method for selected patients with chronic middle ear disease.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... Identification (``RFID'') Products And Components Thereof; Institution of Investigation Pursuant to 19 U.S.C... sale within the United States after importation of certain radio frequency identification (``RFID... after importation of certain radio frequency identification (``RFID'') products and components thereof...
Full waveform inversion using a decomposed single frequency component from a spectrogram
NASA Astrophysics Data System (ADS)
Ha, Jiho; Kim, Seongpil; Koo, Namhyung; Kim, Young-Ju; Woo, Nam-Sub; Han, Sang-Mok; Chung, Wookeen; Shin, Sungryul; Shin, Changsoo; Lee, Jaejoon
2018-06-01
Although many full waveform inversion methods have been developed to construct velocity models of subsurface, various approaches have been presented to obtain an inversion result with long-wavelength features even though seismic data lacking low-frequency components were used. In this study, a new full waveform inversion algorithm was proposed to recover a long-wavelength velocity model that reflects the inherent characteristics of each frequency component of seismic data using a single-frequency component decomposed from the spectrogram. We utilized the wavelet transform method to obtain the spectrogram, and the decomposed signal from the spectrogram was used as transformed data. The Gauss-Newton method with the diagonal elements of an approximate Hessian matrix was used to update the model parameters at each iteration. Based on the results of time-frequency analysis in the spectrogram, numerical tests with some decomposed frequency components were performed using a modified SEG/EAGE salt dome (A-A‧) line to demonstrate the feasibility of the proposed inversion algorithm. This demonstrated that a reasonable inverted velocity model with long-wavelength structures can be obtained using a single frequency component. It was also confirmed that when strong noise occurs in part of the frequency band, it is feasible to obtain a long-wavelength velocity model from the noise data with a frequency component that is less affected by the noise. Finally, it was confirmed that the results obtained from the spectrogram inversion can be used as an initial velocity model in conventional inversion methods.
Beating motion of a circular cylinder in vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Shen, Linwei; Chan, Eng-Soon; Wei, Yan
2018-04-01
In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.
The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls
Vanderelst, Dieter; Lee, Ya-Fu; Geipel, Inga; Kalko, Elisabeth K. V.; Kuo, Yen-Min; Peremans, Herbert
2013-01-01
Bats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant frequency part of the calls, previous evidence suggests that the noseleaves of these animals are tuned to the frequencies in the frequency modulated components of the calls. In this paper, we seek further support for this hypothesis by simulating the emission beam pattern of the bat Rhinolophus formosae. Filling the furrows of lancet and removing the basal lappets (i.e., two flaps on the noseleaf) we find that these conspicuous features of the noseleaf focus the emitted energy mostly for frequencies in the frequency-modulated components. Based on the assumption that this component of the call is used by the bats for ranging, we develop a qualitative model to assess the increase in performance due to the furrows and/or the lappets. The model confirms that both structures decrease the ambiguity in selecting relevant targets for ranging. The lappets and the furrows shape the emission beam for different spatial regions and frequency ranges. Therefore, we conclude that the presented evidence is in line with the hypothesis that different parts of the noseleaves of Rhinolophidae are tuned to different frequency ranges with at least some of the most conspicuous ones being tuned to the frequency modulated components of the calls—thus yielding strong evidence for the sensory importance of the component. PMID:23882226
Test-retest reliability of infant event related potentials evoked by faces.
Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C
2017-04-05
Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Antennas for 20/30 GHz and beyond
NASA Technical Reports Server (NTRS)
Chen, C. Harry; Wong, William C.; Hamada, S. Jim
1989-01-01
Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications.
When Interpolation-Induced Reflection Artifact Meets Time-Frequency Analysis.
Lin, Yu-Ting; Flandrin, Patrick; Wu, Hau-Tieng
2016-10-01
While extracting the temporal dynamical features based on the time-frequency analyses, like the reassignment and synchrosqueezing transform, attracts more and more interest in biomedical data analysis, we should be careful about artifacts generated by interpolation schemes, in particular when the sampling rate is not significantly higher than the frequency of the oscillatory component we are interested in. We formulate the problem called the reflection effect and provide a theoretical justification of the statement. We also show examples in the anesthetic depth analysis with clear but undesirable artifacts. The artifact associated with the reflection effect exists not only theoretically but practically as well. Its influence is pronounced when we apply the time-frequency analyses to extract the time-varying dynamics hidden inside the signal. We have to carefully deal with the artifact associated with the reflection effect by choosing a proper interpolation scheme.
NASA Astrophysics Data System (ADS)
Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.
2013-12-01
The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.
Schmidt, K; Witte, H
1999-11-01
Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.
Radar sensitivity and antenna scan pattern study for a satellite-based Radar Wind Sounder (RAWS)
NASA Technical Reports Server (NTRS)
Stuart, Michael A.
1992-01-01
Modeling global atmospheric circulations and forecasting the weather would improve greatly if worldwide information on winds aloft were available. Recognition of this led to the inclusion of the LAser Wind Sounder (LAWS) system to measure Doppler shifts from aerosols in the planned for Earth Observation System (EOS). However, gaps will exist in LAWS coverage where heavy clouds are present. The RAdar Wind Sensor (RAWS) is an instrument that could fill these gaps by measuring Doppler shifts from clouds and rain. Previous studies conducted at the University of Kansas show RAWS as a feasible instrument. This thesis pertains to the signal-to-noise ratio (SNR) sensitivity, transmit waveform, and limitations to the antenna scan pattern of the RAWS system. A dop-size distribution model is selected and applied to the radar range equation for the sensitivity analysis. Six frequencies are used in computing the SNR for several cloud types to determine the optimal transmit frequency. the results show the use of two frequencies, one higher (94 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) for better penetration in rain, provide ample SNR. The waveform design supports covariance estimation processing. This estimator eliminates the Doppler ambiguities compounded by the selection of such high transmit frequencies, while providing an estimate of the mean frequency. the unambiguous range and velocity computation shows them to be within acceptable limits. The design goal for the RAWS system is to limit the wind-speed error to less than 1 ms(exp -1). Due to linear dependence between vectors for a three-vector scan pattern, a reasonable wind-speed error is unattainable. Only the two-vector scan pattern falls within the wind-error limits for azimuth angles between 16 deg to 70 deg. However, this scan only allows two components of the wind to be determined. As a result, a technique is then shown, based on the Z-R-V relationships, that permit the vertical component (i.e., rain) to be computed. Thus the horizontal wind components may be obtained form the covariance estimator and the vertical component from the reflectivity factor. Finally, a new candidate system is introduced which summarizes the parameters taken from previous RAWS studies, or those modified in this thesis.
Harmonic generation with a dual frequency pulse.
Keravnou, Christina P; Averkiou, Michalakis A
2014-05-01
Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.
Singh, Karan; Kochar, Ekta; Prasad, N. G.
2015-01-01
Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704
High voltage-high power components for large space power distribution systems
NASA Technical Reports Server (NTRS)
Renz, D. D.
1984-01-01
Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.
NASA Astrophysics Data System (ADS)
Yang, Yang; Peng, Zhike; Dong, Xingjian; Zhang, Wenming; Clifton, David A.
2018-03-01
A challenge in analysing non-stationary multi-component signals is to isolate nonlinearly time-varying signals especially when they are overlapped in time and frequency plane. In this paper, a framework integrating time-frequency analysis-based demodulation and a non-parametric Gaussian latent feature model is proposed to isolate and recover components of such signals. The former aims to remove high-order frequency modulation (FM) such that the latter is able to infer demodulated components while simultaneously discovering the number of the target components. The proposed method is effective in isolating multiple components that have the same FM behavior. In addition, the results show that the proposed method is superior to generalised demodulation with singular-value decomposition-based method, parametric time-frequency analysis with filter-based method and empirical model decomposition base method, in recovering the amplitude and phase of superimposed components.
Jones, Jeffrey S; Fitzpatrick, Joyce J; Drake, Virginia K
2008-12-01
Nurse-Patient boundary violations remain a problem. Efforts to address the problem through postlicensure education and stronger disciplinary measures are well documented. However, efforts to understand this problem based on prelicensure components are less studied. Using data from The Ohio Board of Nursing from 2002 to 2006, the difference in frequency of incidents of violations between associate degree-prepared registered nurses and baccalaureate degree-prepared registered nurses was studied. A statistically significant difference was found through chi-square analysis: Associate degree-prepared nurses had higher frequency of boundary violations. Further studies on prelicensure curricular influences on registered nurses' postlicensure behavior, particularly in relation to curricular content focused on interpersonal skill development, are recommended.
High data rate modem simulation for the space station multiple-access communications system
NASA Technical Reports Server (NTRS)
Horan, Stephen
1987-01-01
The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.
Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo
2013-07-01
The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; ...
2015-04-20
We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less
Systematic study of anharmonic features in a principal component analysis of gramicidin A.
Kurylowicz, Martin; Yu, Ching-Hsing; Pomès, Régis
2010-02-03
We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ogunwuyi, Oluwatosin O.
2004-01-01
With the increase in demand for wireless communication services, most of the operating frequency bands have become very congested. The increase of wireless costumers is only fractional contribution to this phenomenon. The demand for more services such as video streams and internet explorer which require a lot of band width has been a more significant contributor to the congestion in a communication system. One way to increase the amount of information or data per unit of time transmitted with in a wireless communication system is to use a higher radio frequency. However in spite the advantage available in the using higher frequency bands such as, the Ka-band, higher frequencies also implies short wavelengths. And shorter wavelengths are more susceptible to rain attenuation. Until the Advanced Communication Technology Satellite (ACTS) was launched, the Ka- band frequency was virtually unused - the majority of communication satellites operated in lower frequency bands called the C- and Ku- bands. Ka-band is desirable because its higher frequency allows wide bandwidth applications, smaller spacecraft and ground terminal components, and stronger signal strength. Since the Ka-band is a high frequency band, the millimeter wavelengths of the signals are easily degraded by rain. This problem known as rain fade or rain attenuation The Advanced Communication Technology Satellite (ACTS) propagation experiment has collected 5 years of Radio Frequency (RF) attenuation data from December 1993 to November 1997. The objective of my summer work is to help develop the statistics and prediction techniques that will help to better characterize the Ka Frequency band. The statistical analysis consists of seasonal and cumulative five-year attenuation statistics for the 20.2 and 27.5 GHz. The cumulative five-year results give the link outage that occurs for a given link margin. The experiment has seven ground station terminals that can be attributed to a unique rain zone climate. The locations are White Sands, NM, Tampa, Fly Clarksburg, MD, Norman, OK, Ft. Collins, COY Vancouver, BC, and Fairbanks, AK. The analysis will help us to develop and define specific parameters that will help system engineers develop the appropriated instrumentation and structure for a Ka-band wireless communication systems and networks.
Signal Frequency Spectra with Audacity®
ERIC Educational Resources Information Center
Gailey, Alycia
2015-01-01
The primary objective of the activity presented here is to allow students to explore the frequency components of various simple signals, with the ultimate goal of teaching them how to remove unwanted noise from a voice signal. Analysis of the frequency components of a signal allows students to design filters that remove unwanted components of a…
Resonant nonlinear ultrasound spectroscopy
Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.
2001-01-01
Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.
Power components for the Space Station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Power components for the space station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Real-Time, High-Frequency QRS Electrocardiograph
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed
2003-01-01
An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction
A dementia care management intervention: which components improve quality?
Chodosh, Joshua; Pearson, Marjorie L; Connor, Karen I; Vassar, Stefanie D; Kaisey, Marwa; Lee, Martin L; Vickrey, Barbara G
2012-02-01
To analyze whether types of providers and frequency of encounters are associated with higher quality of care within a coordinated dementia care management (CM) program for patients and caregivers. Secondary analysis of intervention-arm data from a dementia CM cluster-randomized trial, where intervention participants interacted with healthcare organization care managers (HOCMs), community agency care managers (CACMs), and/ or healthcare organization primary care providers (HOPCPs) over 18 months. Encounters of 238 patient/caregivers (dyads) with HOCMs, CACMs, and HOPCPs were abstracted from care management electronic records. The quality domains of assessment, treatment, education/support, and safety were measured from medical record abstractions and caregiver surveys. Mean percentages of met quality indicators associated with exposures to each provider type and frequency were analyzed using multivariable regression, adjusting for participant characteristics and baseline quality. As anticipated, for all 4 domains, the mean percentage of met dementia quality indicators was 15.5 to 47.2 percentage points higher for dyads with HOCM--only exposure than for dyads with none (all P < .008); not anticipated were higher mean percentages with increasing combinations of provider-type exposure-up to 73.7 percentage points higher for safety (95% confidence interval 65.2%-82.1%) with exposure to all 3 provider types compared with no exposure. While greater frequency of HOCM-dyad encounters was associated with higher quality (P < .04), this was not so for other provider types. HOCMs' interactions with dyads was essential for dementia care quality improvement. Additional coordinated interactions with primary care and community agency staff yielded even higher quality.
NASA Astrophysics Data System (ADS)
Shabani, H.; Sánchez-Ortiga, E.; Preza, C.
2016-03-01
Surpassing the resolution of optical microscopy defined by the Abbe diffraction limit, while simultaneously achieving optical sectioning, is a challenging problem particularly for live cell imaging of thick samples. Among a few developing techniques, structured illumination microscopy (SIM) addresses this challenge by imposing higher frequency information into the observable frequency band confined by the optical transfer function (OTF) of a conventional microscope either doubling the spatial resolution or filling the missing cone based on the spatial frequency of the pattern when the patterned illumination is two-dimensional. Standard reconstruction methods for SIM decompose the low and high frequency components from the recorded low-resolution images and then combine them to reach a high-resolution image. In contrast, model-based approaches rely on iterative optimization approaches to minimize the error between estimated and forward images. In this paper, we study the performance of both groups of methods by simulating fluorescence microscopy images from different type of objects (ranging from simulated two-point sources to extended objects). These simulations are used to investigate the methods' effectiveness on restoring objects with various types of power spectrum when modulation frequency of the patterned illumination is changing from zero to the incoherent cut-off frequency of the imaging system. Our results show that increasing the amount of imposed information by using a higher modulation frequency of the illumination pattern does not always yield a better restoration performance, which was found to be depended on the underlying object. Results from model-based restoration show performance improvement, quantified by an up to 62% drop in the mean square error compared to standard reconstruction, with increasing modulation frequency. However, we found cases for which results obtained with standard reconstruction methods do not always follow the same trend.
NASA Astrophysics Data System (ADS)
Berezina-Greene, Maria A.; Guinan, John J.
2015-12-01
To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.
Guo, Jing; Zhou, Yong; Liu, Changmeng; Wu, Qianru; Chen, Xianping; Lu, Jiping
2016-01-01
Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz) on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm) and exhibit higher ultimate tensile strength (260 MPa) and yield strength (102 MPa), which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%. PMID:28773944
Magnetosheath electrostatic turbulence
NASA Technical Reports Server (NTRS)
Rodriquez, P.
1977-01-01
The spectrum of electrostatic plasma waves in the terrestrial magnetosheath was studied using the plasma wave experiment on the IMP-6 satellite. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz- 70 kHz) r.m.s. field intensities typically 0.01 - 1.0 millivolts/m. Peak intensities of about 1.0 millivolts/m near the electron plasma frequency (30 - 60 kHz) were detected occasionally. The components usually identified in the spectrum of magnetosheath electrostatic turbulence include a high frequency ( or = 30 kHz) component peaking at the electron plasma frequency f sub pe, a low frequency component with a broad intensity maximum below the nominal ion plasma frequency f sub pi (approximately f sub pe/43), and a less well defined intermediate component in the range f sub pi f f sub pe. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath.
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers
Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-01-01
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy. PMID:29883420
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers.
Gao, Zhenran; Zhu, Yan; Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-05-21
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0⁻100 cm. According to the calibration results, the degree of fitting ( R ²) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0⁻1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R ² of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R ² between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R ² between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy.
Effect of low velocity impact damage on the natural frequency of composite plates
NASA Astrophysics Data System (ADS)
Chok, E. Y. L.; Majid, D. L. A. A.; Harmin, M. Y.
2017-12-01
Biodegradable natural fibers have been suggested to replace the hazardous synthetic fibers in many aerospace applications. However, this notion has been limited due to their low mechanical properties, which leads to the idea of hybridizing the two materials. Many aircraft components such as radome, aft body and wing are highly susceptible to low velocity impact damage while in-service. The damages degrade the structural integrity of the components and change their dynamic characteristics. In worst case scenario, the changes can lead to resonance, which is an excessive vibration. This research is conducted to study the dynamic characteristic changes of low velocity impact damaged hybrid composites that is designed for aircraft radome applications. Three materials, which are glass fiber, kenaf fiber and kenaf/glass fiber hybrid composites, have been impacted with 3J, 6J and 9J of energy. Cantilevered and also vertically clamped boundary conditions are used and the natural frequencies are extracted for each of the specimens. The obtained results show that natural frequency decreases with increasing impact level. Cantilevered condition is found to induce lower modes due to the gravitational pull. To eliminate mass and geometrical effects, normalized modes are computed. Among the three materials considered, glass fiber composites have displayed the highest normalized frequency that reflects on its higher stiffness compared to the other two materials. As the damage level is increased, glass fiber composites have shown the highest frequency reduction to a maximum of 35% while kenaf composites have the least frequency reduction in the range of 1 - 18%. Thus, kenaf fiber is taken to be helpful in stalling the damage progression and reducing the effect of damage. This has been proven when the percentage frequency decrement shown by kenaf/glass fiber composite lies between glass fiber and kenaf fiber composites.
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.
Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M
2012-08-24
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Chang, Shih-Pei; Shih, Kuo-Sen; Chi, Chung-Pu; Chang, Chin-Ming; Hwang, Kai-Lin; Chen, Yu-Hsuan
2016-05-01
This cross-sectional survey study examined exercise, sleep quality, and quality of life (QOL) in 1230 Taiwanese university students. Compared with women, men had higher body mass index (BMI) (22.3 ± 4.1 vs 20.7 ± 3.5 kg/m(2)), higher exercise frequency (2.6 ± 1.7 vs 2.0 ± 1.4 d/wk), better sleep quality (global Pittsburgh Sleep Quality Index 6.0 ± 2.8 vs 6.5 ± 2.7), better physical QOL (physical component summary 52.7 ± 6.2 vs 51.7 ± 6.6), and higher reporting of good self-perceived health (62.2% vs 43.3%) (P <01). However, gender differences were nonsignificant after multivariable adjustment. Exercise frequency, sleep quality, and QOL were significantly intercorrelated. After multivariable adjustment, self-perceived health and satisfaction with exercise participation predicted quality of sleep and QOL (P <01). Exercise frequency was positively correlated (P =012), and exercise intensity was negatively associated (P <001) with physical QOL. In conclusion, those who regularly exercised (at least 1 d/wk or 2.5 h/wk) had better QOL. Students with better self-perceived health or satisfaction with exercise participation also had better quality of sleep and better QOL. © 2016 APJPH.
Influence of atomic densities on propagation property for ultrashort pulses in a two-level medium
NASA Astrophysics Data System (ADS)
Liu, Bingxin; Gong, Shangqing; Song, Xiaohong; Jin, Shiqi
2005-05-01
The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2? ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.
Nishiyama, Tomoki
2016-01-01
The purpose of this study was to compare cardiac sympathetic and parasympathetic balance using heart rate variability (HRV) during induction of anaesthesia between sevoflurane and isoflurane in combination with nitrous oxide. 40 individuals aged from 30 to 60 years, scheduled for general anaesthesia were equally divided into sevoflurane or isoflurane groups. After 100% oxygen inhalation for a few minutes, anaesthesia was induced with nitrous oxide 3 L min-1, oxygen 3 L min-1 and sevoflurane or isoflurane. Sevoflurane or isoflurane concentration was increased by 0.5% every 2 to 3 breaths until 5% was attained for sevoflurane, or 3% for isoflurane. Vecuronium was administered to facilitate tracheal intubation. After intubation, sevoflurane was set to 2% while isoflurane was set to 1% with nitrous oxide with oxygen (1:1) for 5 min. Both sevoflurane and isoflurane provoked a decrease in blood pressure, total power, the low frequency component (LF), and high frequency component (HF) of HRV. Although the heart rate increased during isoflurane anaesthesia, it decreased under sevoflurane. The power of LF and HF also decreased in both groups. LF was higher in the isoflurane group while HF was higher in the sevoflurane group. The LF/HF ratio increased transiently in the isoflurane group, but decreased in the sevoflurane group. Anaesthesia induction with isoflurane-nitrous oxide transiently increased cardiac sympathetic activity, while sevoflurane-nitrous oxide decreased both cardiac sympathetic and parasympathetic activities. The balance of cardiac parasympathetic/sympathetic activity was higher in sevoflurane anaesthesia.
Reimer, D L; Singh, S M
1983-01-01
In vivo cyclophosphamide-induced sister chromatid exchanges (SCEs) micronuclei, and metaphase indices were assessed in two age groups (10.8 +/- 0.9 weeks' an 33.1 +/- 1.3 weeks' old) of female mice from three genetic strains (C3H/S, C57BL/6J, and Balb/c). In general, older animals showed diminished SCE induction over their younger counterparts. The relative difference between individuals of the two ages is strain-dependent. Unlike C57BL/6J and Balb/c, strain C3H/S showed significantly lower SCE values in the older animals at every cyclophosphamide treatment. It may reflect on the possible involvement of genetic determinant(s) for the component(s) of SCE formation during aging. Frequencies of micronuclei, however, were consistently higher in older animals than in their younger counterparts. Furthermore, cytotoxicity of cyclophosphamide, as reflected in metaphase indices, was also higher in older animals. Lower metaphase indices associated with higher micronuclei levels in older individuals may suggest a decline in the rate of cellular replication in these animals. Furthermore, the lower metaphase indices associated with lower SCE values, and increasing micronuclei levels accompanied by decreasing SCE frequencies in older animals, may reflect reduced DNA repair ability during aging. These results support the hypothesis of genotype-dependent decline in the rate of DNA repair and replication during aging, particularly under stressed conditions.
van Hees, Vincent T.; Gorzelniak, Lukas; Dean León, Emmanuel Carlos; Eder, Martin; Pias, Marcelo; Taherian, Salman; Ekelund, Ulf; Renström, Frida; Franks, Paul W.; Horsch, Alexander; Brage, Søren
2013-01-01
Introduction Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. Methods An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22–65 yr), and wrist in 63 women (20–35 yr) in whom daily activity-related energy expenditure (PAEE) was available. Results In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). Conclusion In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in daily human physical activity. PMID:23626718
van Hees, Vincent T; Gorzelniak, Lukas; Dean León, Emmanuel Carlos; Eder, Martin; Pias, Marcelo; Taherian, Salman; Ekelund, Ulf; Renström, Frida; Franks, Paul W; Horsch, Alexander; Brage, Søren
2013-01-01
Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr), and wrist in 63 women (20-35 yr) in whom daily activity-related energy expenditure (PAEE) was available. In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in daily human physical activity.
Feedback and feedforward control of frequency tuning to naturalistic stimuli.
Chacron, Maurice J; Maler, Leonard; Bastian, Joseph
2005-06-08
Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.
KEPLER ECLIPSING BINARIES WITH DELTA SCUTI/GAMMA DORADUS PULSATING COMPONENTS. I. KIC 9851944
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.
2016-07-20
KIC 9851944 is a short-period ( P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R {sub ⊙}, 3.19 R {sub ⊙}) but close masses (1.76 M {sub ⊙}, 1.79 M {sub ⊙}) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star hasmore » evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p -modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.« less
Materials for MW sized aerogenerators. I - The influence of design on operating parameters
NASA Astrophysics Data System (ADS)
Wyatt, L. M.
1983-09-01
Materials and fatigue design deficiencies in the development and production of MW-scale wind turbines with 30-yr, reliable, cost-effective lifetimes are surveyed. Attention is given to existing wind turbines, the performance of materials to date, and fundamental materials properties. Failures thus far have arisen from the coincidence of fundamental vibration frequency or a low order harmonic of components with an exciting frequency, malfunction of control mechanisms, and inadequate engineering. All the failures can be avoided, and most occur in the rotor. Two-bladed horizontal configurations permit use of a through-center section while requiring teetering to reduce stresses; three-bladed designs offer higher output for the same diameter and less of a stress moment on the tower and yaw components. Hydraulic components have caused trouble, which could be eliminated with redundancy. The torsional vibrations to which a Darrieus wind turbine is subject in every revolution can be ameliorated with three blades and eradicated with four. The Musgrove wind turbine requires thin blades to maintain a high aspect ratio, but simultaneously introduces buckling stresses. Blade materials used or proposed are carbon steel, GFRP, wood, stainless steel, CFRP, aluminum, titanium, and prestressed concrete.
Johansen, Kristoffer; Song, Jae Hee; Prentice, Paul
2018-05-01
We describe the design, construction and characterisation of a broadband passive cavitation detector, with the specific aim of detecting low frequency components of periodic shock waves, with high sensitivity. A finite element model is used to guide selection of matching and backing layers for the shock wave passive cavitation detector (swPCD), and the performance is evaluated against a commercially available device. Validation of the model, and characterisation of the swPCD is achieved through experimental detection of laser-plasma bubble collapse shock waves. The final swPCD design is 20 dB more sensitive to the subharmonic component, from acoustic cavitation driven at 220 kHz, than the comparable commercial device. This work may be significant for monitoring cavitation in medical applications, where sensitive detection is critical, and higher frequencies are more readily absorbed by tissue. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Importance of phase alignment for interocular suppression.
Maehara, Goro; Huang, Pi-Chun; Hess, Robert F
2009-07-01
We measured contrast thresholds for Gabor targets in the presence of maskers which had higher or lower spatial frequencies than the targets. A high-pass fractal masker elevated target contrast thresholds at low and intermediate pedestal contrasts in both monocular and dichoptic modes of presentation, suggesting that the masking occurs after a monocular processing stage. Moreover we found that a high-pass checkerboard masker elevated thresholds at the low and intermediate pedestal contrasts and that most of this threshold elevation disappeared when the phase of the masker's spatial components were scrambled. This masking was effective only in the dichoptic presentation, not in the monocular presentation. These results indicate that phase alignment of the high spatial frequency components plays a crucial role for interocular suppression. We speculate that phase alignments signal the existence of a luminance contour in the monocular image and that this signal suppresses processing of information in the other eye when there is no corresponding signal in that eye.
A Predictive Model of Anesthesia Depth Based on SVM in the Primary Visual Cortex
Shi, Li; Li, Xiaoyuan; Wan, Hong
2013-01-01
In this paper, a novel model for predicting anesthesia depth is put forward based on local field potentials (LFPs) in the primary visual cortex (V1 area) of rats. The model is constructed using a Support Vector Machine (SVM) to realize anesthesia depth online prediction and classification. The raw LFP signal was first decomposed into some special scaling components. Among these components, those containing higher frequency information were well suited for more precise analysis of the performance of the anesthetic depth by wavelet transform. Secondly, the characteristics of anesthetized states were extracted by complexity analysis. In addition, two frequency domain parameters were selected. The above extracted features were used as the input vector of the predicting model. Finally, we collected the anesthesia samples from the LFP recordings under the visual stimulus experiments of Long Evans rats. Our results indicate that the predictive model is accurate and computationally fast, and that it is also well suited for online predicting. PMID:24044024
Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T
2011-02-01
The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
A program to evaluate a control system based on feedback of aerodynamic pressure differentials
NASA Technical Reports Server (NTRS)
Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael
2013-01-01
During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two
Grose, John H; Mamo, Sara K
2012-01-01
The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.
NASA Astrophysics Data System (ADS)
Charaziak, Karolina K.; Siegel, Jonathan H.
2015-12-01
Otoacoustic emissions evoked with transient sounds (TEOAEs) are believed to originate within the tonotopic region of the stimulus in the cochlea via the same mechanisms as emissions evoked with single tones. However, we found that emissions evoked by low frequency (< 3 kHz) single-tones have an extended region of generation (> 6 mm) in chinchillas (Charaziak and Siegel, 2014, ARO Abst., 119). Here we test whether a broad region of generation for low-frequency stimuli is also a characteristic of TEOAEs evoked with 1-kHz tone pips extracted with compression and suppression methods. The TEOAE could be revealed with moderate level suppressors with frequencies extending beyond the stimulus bandwidth (up to 12.1 kHz), with the largest responses obtained with 3.1 - 4.1 kHz suppressors. There was a consistent decline in group delays of suppressor-revealed TEOAEs with increasing suppressor frequency, as expected if higher-frequency suppressors acted on more basal TEOAE generators. Effects of mid- to high-frequency acoustic trauma on TEOAE levels confirm the notion that the suppressors interact with emission components arising near the tonotopic place of the suppressor.
NASA Astrophysics Data System (ADS)
Ramazanov, M. A.; Imamaliyev, A. R.; Humbatov, Sh. A.; Agamaliev, Z. A.
2018-02-01
The effect of submicron ferroelectric BaTiO3 particles on the dielectric and electro-optical properties of the smectic-A liquid crystal (LC) with a high negative dielectric anisotropy is investigated. It is shown that the addition of BaTiO3 particles with a weight amount of 1% reduces insignificantly the transverse dielectric permittivity component ɛ ⊥ of, but significantly increases the longitudinal dielectric permittivity component ɛ // of the smectic-A LC. As a result, the anisotropy of the dielectric permittivity Δɛ = ɛ // - ɛ ⊥ of the smectic-A LC decreases. The addition of BaTiO3 particles shifts the dispersion ɛ ⊥ toward lower frequencies. Both components of the electrical conductivity of LC colloid + BaTiO3 are an order of magnitude higher than of the pure LC. The threshold voltage of the homeotropic-planar transition of the colloid is twice smaller, and its velocity is 6 times higher in comparison with the pure LC. A simple model explaining qualitatively all results obtained is presented.
Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk
2016-03-15
Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (p<0.001), but not for postural tremor. Notably, peak frequencies were concentrated around 5 Hz under stress-state condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.
Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu
2014-01-01
The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.
Verhey, Jesko L; Epp, Bastian; Stasiak, Arkadiusz; Winter, Ian M
2013-01-01
A common characteristic of natural sounds is that the level fluctuations in different frequency regions are coherent. The ability of the auditory system to use this comodulation is shown when a sinusoidal signal is masked by a masker centred at the signal frequency (on-frequency masker, OFM) and one or more off-frequency components, commonly referred to as flanking bands (FBs). In general, the threshold of the signal masked by comodulated masker components is lower than when masked by masker components with uncorrelated envelopes or in the presence of the OFM only. This effect is commonly referred to as comodulation masking release (CMR). The present study investigates if CMR is also observed for a sinusoidal signal embedded in the OFM when the centre frequencies of the FBs are swept over time with a sweep rate of one octave per second. Both a common change of different frequencies and comodulation could serve as cues to indicate which of the stimulus components originate from one source. If the common fate of frequency components is the stronger binding cue, the sweeping FBs and the OFM with a fixed centre frequency should no longer form one auditory object and the CMR should be abolished. However, psychoacoustical results with normal-hearing listeners show that a CMR is also observed with sweeping components. The results are consistent with the hypothesis of wideband inhibition as the underlying physiological mechanism, as the CMR should only depend on the spectral position of the flanking bands relative to the inhibitory areas (as seen in physiological recordings using stationary flanking bands). Preliminary physiological results in the cochlear nucleus of the Guinea pig show that a correlate of CMR can also be found at this level of the auditory pathway with sweeping flanking bands.
Ward, Ryan D; Odum, Amy L
2008-01-01
The present experiment developed a methodology for assessing sensitivity of conditional-discrimination performance to within-session variation of reinforcer frequency. Four pigeons responded under a multiple schedule of matching-to-sample components in which the ratio of reinforcers for correct S1 and S2 responses was varied across components within session. Initially, five components, each arranging a different reinforcer-frequency ratio (from 1∶9 to 9∶1), were presented randomly within a session. Under this condition, sensitivity to reinforcer frequency was low. Sensitivity failed to improve after extended exposure to this condition, and under a condition in which only three reinforcer-frequency ratios were varied within session. In a later condition, three reinforcer-frequency ratios were varied within session, but the reinforcer-frequency ratio in effect was differentially signaled within each component. Under this condition, values of sensitivity were similar to those traditionally obtained when reinforcer-frequency ratios for correct responses are varied across conditions. The effects of signaled vs. unsignaled reinforcer-frequency ratios were replicated in two subsequent conditions. The present procedure could provide a practical alternative to parametric variation of reinforcer frequency across conditions and may be useful in characterizing the effects of a variety of manipulations on steady-state sensitivity to reinforcer frequency. PMID:19070338
Fiber-Optic Bragg Gratings and Optical Holography Compared as Vibration Detectors
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory
2003-01-01
The NASA Glenn Research Center is interested in determining structural damage in engine components during flight to evaluate the health of aerospace propulsion systems. On the ground, we can use holography to detect structural damage by examining the characteristic mode shapes and frequencies of vibrating objects. We are studying the feasibility of using embedded fiber Bragg gratings (FBGs) to accomplish this goal in a flight-worthy system, by using the minimal intrusion and high sensitivity afforded by fiber optics. We have recently compared holographically imaged modes of vibrating plates with the corresponding dynamic strains detected by embedded FBGs. We constructed an experimental setup for studying the responses of FBGs to dynamic excitations. One of the plates was made of a polymer matrix composite (PMC) with an FBG embedded in it, and the other one was made of copper with surface-mounted FBGs. The instrumented plates were mounted and vibrated, and time-averaged holography was used to measure their surface displacements. Simultaneously, the signals from the FBGs were detected and sent via fiber-optic cable to a quiet location about 20 m away for interrogation. The the test configuration used for the PMC plate is shown. Experimental results are also shown. The FBG was embedded in the middle of the PMC plates, roughly within the center circular fringe in each of the interferograms shown. Two resonant excitation frequencies were used: 706 and 3062 Hz. The plot in this paper shows a larger FBG signal at the higher frequency; this is because the plate bends more at higher order resonant modes, causing higher strain. This contrasts to the smaller displacements characteristic of higher frequencies, which are measured by holographic techniques.
Cooking at Home: A Strategy to Comply With U.S. Dietary Guidelines at No Extra Cost
Tiwari, Arpita; Aggarwal, Anju; Tang, Wesley; Drewnowski, Adam
2017-01-01
Introduction Cooking at home is associated with better diet quality. This study examined the frequency of home-cooked dinners versus eating out in relation to the Healthy Eating Index (HEI), and food expenditures. Methods The Seattle Obesity Study used a stratified random sample of 437 King County adults. In-person computer-assisted interviews collected sociodemographic and behavioral data during 2011–2013. HEI-2010 and 2005 were computed using Food Frequency Questionnaires. Multivariable regression analyses, conducted in 2015, examined associations among HEI scores, food expenditures, and frequency of cooking at home versus eating out variables. Results Frequent home-cooked dinners were associated with being married, unemployed, larger households, presence of children aged <12 years, and lower frequency of eating out, but unrelated to education or income. In adjusted models, frequent at-home cooking was associated with higher HEI-2010 (β=7.4, p<0.001), whereas frequent eating out was associated with lower HEI-2010 (β= −6.6, p<0.001). Frequent home cooking was linked with reduced per capita food expenditures overall ($330/month among low vs $273/month among high cooking group, p<0.001), and reduced away-from-home expenditures ($133 and $65, respectively), without any significant increase in at-home food expenditures. However, frequent eating out was associated with significantly higher per capita food expenditures overall ($261 in low vs $364 among high eating out group, p=0.001), and higher away-from-home expenditures. Conclusions Home-cooked dinners were associated with greater dietary guideline compliance, without significant increase in food expenditures. By contrast, frequent eating out was associated with higher expenditures and lower compliance. Home cooking may be a component of nutrition resilience. PMID:28256283
Cooking at Home: A Strategy to Comply With U.S. Dietary Guidelines at No Extra Cost.
Tiwari, Arpita; Aggarwal, Anju; Tang, Wesley; Drewnowski, Adam
2017-05-01
Cooking at home is associated with better diet quality. This study examined the frequency of home-cooked dinners versus eating out in relation to the Healthy Eating Index (HEI), and food expenditures. The Seattle Obesity Study used a stratified random sample of 437 King County adults. In-person computer-assisted interviews collected sociodemographic and behavioral data during 2011-2013. HEI-2010 and 2005 were computed using Food Frequency Questionnaires. Multivariable regression analyses, conducted in 2015, examined associations among HEI scores, food expenditures, and frequency of cooking at home versus eating out variables. Frequent home-cooked dinners were associated with being married, unemployed, larger households, presence of children aged <12 years, and lower frequency of eating out, but unrelated to education or income. In adjusted models, frequent at-home cooking was associated with higher HEI-2010 (β=7.4, p<0.001), whereas frequent eating out was associated with lower HEI-2010 (β= -6.6, p<0.001). Frequent home cooking was linked with reduced per capita food expenditures overall ($330/month among low vs $273/month among high cooking group, p<0.001), and reduced away-from-home expenditures ($133 and $65, respectively), without any significant increase in at-home food expenditures. However, frequent eating out was associated with significantly higher per capita food expenditures overall ($261 in low vs $364 among high eating out group, p=0.001), and higher away-from-home expenditures. Home-cooked dinners were associated with greater dietary guideline compliance, without significant increase in food expenditures. By contrast, frequent eating out was associated with higher expenditures and lower compliance. Home cooking may be a component of nutrition resilience. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Gamliel, Moriya; Anderson, Karen L; Ebstein, Richard P; Yirmiya, Nurit; Mankuta, David
2016-01-01
Killer-cell immunoglobulin-like receptors (KIRs) are a family of cell surface proteins found on natural killer cells, which are components of the innate immune system. KIRs recognize MHC class I proteins, mainly HLA-C and are further divided into two groups: short-tailed 2/3DS activating receptors and long-tailed 2/3DL inhibitory receptors. Based on the Barker Hypothesis, the origins of illness can be traced back to embryonic development in the uterus, and since KIR:HLA interaction figures prominently in the maternal-fetal interface, we investigated whether specific KIR:HLA combinations may be found in autism spectrum disorders (ASD) children compared with their healthy parents. This study enrolled 49 ASD children from different Israeli families, and their healthy parents. Among the parents, a higher frequency of HLA-C2 allotypes was found in the fathers, while its corresponding ligand 2DS1 was found in higher percentage in the maternal group. However, such skewing in KIR:HLA frequencies did not appear in the ASD children. Additionally, analysis of "overall activation" indicated higher activation in maternal than in paternal cohorts.
75 MHz ultrasound biomicroscopy of anterior segment of eye.
Silverman, Ronald H; Cannata, Jonathan; Shung, K Kirk; Gal, Omer; Patel, Monica; Lloyd, Harriet O; Feleppa, Ernest J; Coleman, D Jackson
2006-07-01
Very high frequency ultrasound (35-50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 microm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (-6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman's layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35-50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment.
NASA Astrophysics Data System (ADS)
Di Salvo, T.; Méndez, M.; van der Klis, M.; Ford, E.; Robba, N. R.
2001-01-01
We study the timing properties of the bursting atoll source 4U 1728-34 as a function of its position in the X-ray color-color diagram. In the island part of the color-color diagram (corresponding to the hardest energy spectra), the power spectrum of 4U 1728-34 shows several features such as a band-limited noise component present up to a few tens of Hz, a low-frequency quasi-periodic oscillation (LFQPO) at frequencies between 20 and 40 Hz, a peaked noise component around 100 Hz, and one or two QPOs at kHz frequencies. In addition to these, in the lower banana (corresponding to softer energy spectra) we also find a very low frequency noise (VLFN) component below ~1 Hz. In the upper banana (corresponding to the softest energy spectra), the power spectra are dominated by the VLFN, with a peaked noise component around 20 Hz. We find that the frequencies of the kHz QPOs are well correlated with the position in the X-ray color-color diagram. For the frequency of the LFQPO and the break frequency of the broadband noise component, the relation appears more complex. Both of these frequencies increase when the frequency of the upper kHz QPO increases from 400 to 900 Hz, but at this frequency a jump in the values of the parameters occurs. We interpret this jump in terms of the gradual appearance of a QPO at the position of the break at high inferred mass accretion rate, while the previous LFQPO disappears. Simultaneously, another kind of noise appears with a break frequency of ~7 Hz, similar to the NBO of Z sources. The 100 Hz peaked noise does not seem to correlate with the position of the source in the color-color diagram but remains relatively constant in frequency. This component may be similar to several 100 Hz QPOs observed in black hole binaries.
Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan
2016-01-01
Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.
1984-03-01
Engineering initiative to develop an orderly plan and procedure to assure that USAF acquire reliable, high quality, supportable avionics with a higher avail...susceptibility te~t~ (radiated and conducted), and emission of radio frequency energy tests."l6) Other electrical stresses can include over/under voltage...jo ints, poor welds, and dielectric defects. Also, instruments with components unable to endu very high temperatures can be safely tested. 1-19
Strogatz, D S; James, S A; Elliott, D; Ramsey, D; Cutchin, L M; Ibrahim, M A
1985-01-01
In a rural, church-based hypertension program in Edgecombe County, North Carolina, screening of the congregations was complemented by a community outreach component targeted at 18-60 year old males, a group at higher risk for untreated hypertension. Compared with its estimated frequency in the community, untreated hypertension was as common in the church congregations and somewhat less prevalent than expected among outreach screenees. PMID:3976968
Ferri, Raffaele; Bruni, Oliviero; Miano, Silvia; Plazzi, Giuseppe; Terzano, Mario G
2005-10-01
To analyze in detail the frequency content of the different EEG components of the Cyclic Alternating Pattern (CAP), taking into account the ongoing EEG background and the nonCAP (NCAP) periods in the whole night polysomnographic recordings of normal young adults. Sixteen normal healthy subjects were included in this study. Each subject underwent one polysomnographic night recording; sleep stages were scored following standard criteria. Subsequently, each CAP A phase was detected in all recordings, during NREM sleep, and classified into 3 subtypes (A1, A2, and A3). The same channel used for the detection of CAP A phases (C3/A2 or C4/A1) was subdivided into 2-s mini-epochs. For each mini-epoch, the corresponding CAP condition was determined and power spectra calculated in the frequency range 0.5-25 Hz. Average spectra were obtained for each CAP condition, separately in sleep stage 2 and SWS, for each subject. Finally, the first 6h of sleep were subdivided into 4 periods of 90 min each and the same spectral analysis was performed for each period. During sleep stage 2, CAP A subtypes differed from NCAP periods for all frequency bins between 0.5 and 25 Hz; this difference was most evident for the lowest frequencies. The B phase following A1 subtypes had a power spectrum significantly higher than that of NCAP, for frequencies between 1 and 11 Hz. The B phase after A2 only differed from NCAP for a small but significant reduction in the sigma band power; this was evident also after A3 subtypes. During SWS, we found similar results. The comparison between the different CAP subtypes also disclosed significant differences related to the stage in which they occurred. Finally, a significant effect of the different sleep periods was found on the different CAP subtypes during sleep stage 2 and on NCAP in both sleep stage 2 and SWS. CAP subtypes are characterized by clearly different spectra and also the same subtype shows a different power spectrum, during sleep stage 2 or SWS. This finding underlines a probable different functional meaning of the same CAP subtype during different sleep stages. We also found 3 clear peaks of difference between CAP subtypes and NCAP in the delta, alpha, and beta frequency ranges which might indicate the presence of 3 frequency components characterizing CAP subtypes, in different proportion in each of them. The B component of CAP differs from NCAP because of a decrease in power in the sigma frequency range. This study shows that A components of CAP might correspond to periods in which the very-slow delta activity of sleep groups a range of different EEG activities, including the sigma and beta bands, while the B phase of CAP might correspond to a period in which this activity is quiescent or inhibited.
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shaposhnikov, Nickolai
2005-01-01
Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic open field lines). We also show that the presence of Fe K(sub alpha), emission-line strengths, QPOs, and the link between them does not depend on radio flux in 4U 1728-34.
Photopatternable low loss polymer dielectric materials for IR metamaterial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasberry, Roger D.; Sinclair, Michael B.; Lee, Yun-Ju
An overwhelming majority of metamaterial designs that have been proposed thus far rely on the use of metallic resonators to afford properties that are unprecedented in nature. Though well suited for applications at radio and microwave frequencies, metals experience severe ohmic losses at higher frequencies rendering their use at such frequencies impractical. Certainly the future of metamaterials lies in their implementation in the visible and long wavelength infrared (LWIR, 8-12 {micro}m). Thus, alternative design protocols and material components tailored specifically for these frequencies are highly attractive. Herein, we present low permittivity, low permeability polymer dielectric materials that are well suitedmore » substrates for LWIR-metamaterial applications. These materials lack vibrational absorption bands in the 8-12 {micro}m range are 3D fabrication compatible, photopatternable, and high temperature tolerant. Thus, these materials are ideal for fabrication of 3D metamaterial structures operating in the LWIR and can also serve as negative photoresists for contact lithography applications.« less
Input current shaped ac-to-dc converters
NASA Technical Reports Server (NTRS)
1985-01-01
Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.
Nonlinear electromagnetic responses of active molecular motors in live cells and organelles
NASA Astrophysics Data System (ADS)
Nawarathna, Dharmakirthi; Gardner, Jeffrey; Cardenas, Gustavo; Warmflash, David; Miller, John; Widger, William; Claycomb, James
2006-03-01
The response of biological cells to an oscillatory electric field contains both linear and nonlinear (eg. induced harmonic) components. At low frequencies (about 10Hz), harmonic generation by budding yeast cells is observed. These induced harmonics are sensitive to sodium metavanadate, an inhibitor, and glucose, a substrate, respectively, of P-type ATPase membrane pumps. At higher frequencies, two peaks, around 3kHz and 12kHz, are observed in the frequency-dependent harmonic responses. These are sensitive to potassium cyanide, a respiratory inhibitor that blocks cytochrome c oxidase, an enzyme of the mitochondrial respiratory chain. We have also measured the response of uncoupled mitochondria extracted from bovine heart cells, for which a second harmonic sensitive to pericidin A and carboxin is detected at applied frequencies of 3-4kHz. Finally, in coupled mouse mitochondria, an ADP sensitive peak (12-15kHz) is observed, likely due to the F0 domain of ATP synthase, which acts as a molecular turbine.
NASA Astrophysics Data System (ADS)
Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.
2018-03-01
Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.
NASA Astrophysics Data System (ADS)
LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.
2015-04-01
The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
NASA Astrophysics Data System (ADS)
Kim, Sungyoung; Martens, William L.
2005-04-01
By industry standard (ITU-R. Recommendation BS.775-1), multichannel stereophonic signals within the frequency range of up to 80 or 120 Hz may be mixed and delivered via a single driver (e.g., a subwoofer) without significant impairment of stereophonic sound quality. The assumption that stereophonic information within such low-frequency content is not significant was tested by measuring discrimination thresholds for changes in interaural cross-correlation (IACC) within spectral bands containing the lowest frequency components of low-pitch musical tones. Performances were recorded for three different musical instruments playing single notes ranging in fundamental frequency from 41 Hz to 110 Hz. The recordings, made using a multichannel microphone array composed of five DPA 4006 pressure microphones, were processed to produce a set of stimuli that varied in interaural cross-correlation (IACC) within a low-frequency band, but were otherwise identical in a higher-frequency band. This correlation processing was designed to have minimal effect upon other psychoacoustic variables such as loudness and timbre. The results show that changes in interaural cross correlation (IACC) within low-frequency bands of low-pitch musical tones are most easily discriminated when decorrelated signals are presented via subwoofers positioned at extreme lateral angles (far from the median plane). [Work supported by VRQ.
Miller, Patrick J O; Samarra, Filipa I P; Perthuison, Aurélie D
2007-06-01
This study investigates how particular received spectral characteristics of stereotyped calls of sexually dimorphic adult killer whales may be influenced by caller sex, orientation, and range. Calls were ascribed to individuals during natural behavior using a towed beamforming array. The fundamental frequency of both high-frequency and low-frequency components did not differ consistently by sex. The ratio of peak energy within the fundamental of the high-frequency component relative to summed peak energy in the first two low-frequency component harmonics, and the number of modulation bands off the high-frequency component, were significantly greater when whales were oriented towards the array, while range and adult sex had little effect. In contrast, the ratio of peak energy in the first versus second harmonics of the low-frequency component was greater in calls produced by adult females than adult males, while orientation and range had little effect. The dispersion of energy across harmonics has been shown to relate to body size or sex in terrestrial species, but pressure effects during diving are thought to make such a signal unreliable in diving animals. The observed spectral differences by signaler sex and orientation suggest that these types of information may be transmitted acoustically by freely diving killer whales.
CASCADE AND DAMPING OF ALFVEN-CYCLOTRON FLUCTUATIONS: APPLICATION TO SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Yanwei; Petrosian, Vahe; Liu Siming
2009-06-10
It is well recognized that the presence of magnetic fields will lead to anisotropic energy cascade and dissipation of astrophysical turbulence. With the diffusion approximation and linear dissipation rates, we study the cascade and damping of Alfven-cyclotron fluctuations in solar plasmas numerically for two diagonal diffusion tensors, one (isotropic) with identical components for the parallel and perpendicular directions (with respect to the magnetic field) and one with different components (nonisotropic). It is found that for the isotropic case the steady-state turbulence spectra are nearly isotropic in the inertial range and can be fitted by a single power-law function with amore » spectral index of -3/2, similar to the Iroshnikov-Kraichnan phenomenology, while for the nonisotropic case the spectra vary greatly with the direction of propagation. The energy fluxes in both cases are much higher in the perpendicular direction than in the parallel direction due to the angular dependence (or inhomogeneity) of the components. In addition, beyond the MHD regime the kinetic effects make the spectrum softer at higher wavenumbers. In the dissipation range the turbulence spectrum cuts off at the wavenumber, where the damping rate becomes comparable to the cascade rate, and the cutoff wavenumber changes with the wave propagation direction. The angle-averaged turbulence spectrum of the isotropic model resembles a broken power law, which cuts off at the maximum of the cutoff wavenumbers or the {sup 4}He cyclotron frequency. Taking into account the Doppler effects, the model naturally reproduces the broken power-law turbulence spectra observed in the solar wind and predicts that a higher break frequency always comes along with a softer dissipation range spectrum that may be caused by the increase of the turbulence intensity, the reciprocal of the plasma {beta}{sub p}, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by detailed comparisons with more accurate observations.« less
Voltage and frequency dependence of prestin-associated charge transfer
Sun, Sean X.; Farrell, Brenda; Chana, Matthew S.; Oster, George; Brownell, William E.; Spector, Alexander A.
2009-01-01
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage-and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degree as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein. PMID:19490917
Terahertz wave techniques using a metal mesh for evaluating the components of the stratum corneum.
Mizukoshi, Koji; Yonekura, Kazuki; Ogura, Hidehiro; Guan, Yu; Kawase, Kodo
2013-02-01
Terahertz waves are located in the region of the spectrum between milliwaves and infrared. We analyzed the feasibility of terahertz spectroscopy to inspect the compositional variations of the stratum corneum (SC). We used a terahertz time-domain spectroscopy system with the metal mesh technique. To investigate whether terahertz can inspect compositional variation of SC, we measured the terahertz frequency spectra of the SC sheet that was treated with chloroform-methanol, lipid mixture, a denaturation agent, and heating with hot air. The chloroform-methanol treatment of the SC shifted the dip position, which represents a convex downward shape of the spectra, to a higher frequency. This dip shift was reversed to an untreated position by the dose-dependent application of a lipid mixture. The heating treatment of the SC shifted the dip position to a higher frequency. The same dip shift was also induced by the application of a denaturation agent to the SC. The technique using terahertz waves with a metal mesh is effective because of its simplicity and its high degree of accuracy in detecting the amount of lipid and the protein conformation state. © 2012 John Wiley & Sons A/S.
Frequency-dependence of the slow force response.
von Lewinski, Dirk; Zhu, Danan; Khafaga, Mounir; Kockskamper, Jens; Maier, Lars S; Hasenfuss, Gerd; Pieske, Burkert
2008-05-01
Stretch induces biphasic inotropic effects in mammalian myocardium. A delayed component (slow force response, SFR) has been demonstrated in various species, however, experimental conditions varied and the underlying mechanisms are controversial. The physiological relevance of the SFR is poorly understood. Experiments were performed in ventricular muscle strips from failing human hearts and non-failing rabbit hearts. Upon stretch, twitch force was assessed at basal conditions (1 Hz, 37 degrees C) and after changing stimulation frequency with and without blockade of the Na+/H+-exchanger-1 (NHE1) or reverse-mode Na+/Ca2+-exchange (NCX). Action potential duration (APD) was assessed using floating electrodes. Low stimulation rates (0.2 Hz) potentiated and higher stimulation rates (2 and 3 Hz) reduced the SFR. The extent of SFR inhibition by NHE1 or NCX inhibition was not affected by stimulation rate. APD decreased at 0.2 Hz but was not altered at higher stimulation rates. The data demonstrate frequency-dependence of the SFR with greater positive inotropic effects at lower stimulation rates. Subcellular mechanisms underlying the SFR are not fundamentally affected by stimulation rate. The SFR may have more pronounced physiological effects at lower heart rates.
Cleland, Dougal; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A; McCluskey, Adam
2014-02-07
The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level of interference from other MIP synthesis components. The effect on PFS-1 interaction by MeOH was significantly lower and thus this system was not adversely affected.
Hearing and spatial behavior in Gryllotalpa major Saussure (Orthoptera: Gryllotalpidae).
Howard, Daniel R; Mason, Andrew C; Hill, Peggy S M
2008-11-01
The prairie mole cricket (Gryllotalpa major Saussure) is a rare orthopteran insect of the tallgrass prairie ecosystem of the south central USA. Populations are known to currently occupy fragmented prairie sites in Oklahoma, Arkansas, Kansas and Missouri, including The Nature Conservancy's Tallgrass Prairie Preserve in north central Oklahoma. Prairie mole cricket populations were surveyed at this site and at another site in Craig County, OK during the spring of 2005 and 2006, using the male cricket's acoustic call to locate advertising aggregations of males. Five males from one large aggregation were removed in a study to describe (1) the hearing thresholds across the call's range of frequencies, (2) the distances over which the higher harmonic components of the male's calls are potentially detectable, (3) the species' sensitivity to ultrasound and (4) the spatio-auditory dynamics of the prairie mole cricket lek. Results indicate that G. major has a bimodal pattern of frequency tuning, with hearing sensitivities greatest at the 2 kHz carrier frequency (41 dB SPL) and declining through the call's frequency range (84 dB at 10 kHz). A second sensitivity peak is evident in the ultrasound range at 25 kHz (62 dB SPL). Spatial analysis of G. major lek sites indicates that approximately 73% of males within the lek are spaced in such a way as to allow acoustic interaction at the species' carrier frequency, while any information in higher harmonic overtones in the call appears to be available only to nearest neighbors.
NASA Astrophysics Data System (ADS)
Park, Jongho; Kam, Minchul; Trippe, Sascha; Kang, Sincheol; Byun, Do-Young; Kim, Dae-Won; Algaba, Juan-Carlos; Lee, Sang-Sung; Zhao, Guang-Yao; Kino, Motoki; Shin, Naeun; Hada, Kazuhiro; Lee, Taeseok; Oh, Junghwan; Hodgson, Jeffrey A.; Sohn, Bong Won
2018-06-01
We study the linear polarization of the radio cores of eight blazars simultaneously at 22, 43, and 86 GHz with observations obtained by the Korean VLBI Network (KVN) in three epochs between late 2016 and early 2017 in the frame of the Plasma-physics of Active Galactic Nuclei project. We investigate the Faraday rotation measure (RM) of the cores; the RM is expected to increase with observing frequency if core positions depend on frequency owing to synchrotron self-absorption. We find a systematic increase of RMs at higher observing frequencies in our targets. The RM–ν relations follow power laws with indices distributed around 2, indicating conically expanding outflows serving as Faraday rotating media. Comparing our KVN data with contemporaneous optical polarization data from the Steward Observatory for a few sources, we find indications that the increase of RM with frequency saturates at frequencies of a few hundred gigahertz. This suggests that blazar cores are physical structures rather than simple τ = 1 surfaces. A single region, e.g., a recollimation shock, might dominate the jet emission downstream of the jet-launching region. We detect a sign change in the observed RMs of CTA 102 on a timescale of ≈1 month, which might be related to new superluminal components emerging from its core undergoing acceleration/deceleration and/or bending. We see indications for quasars having higher core RMs than BL Lac objects, which could be due to denser inflows/outflows in quasars.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Behzad, Mehdi
2014-10-01
A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.
Study on efficiency of different topologies of magnetic coupled resonant wireless charging system
NASA Astrophysics Data System (ADS)
Cui, S.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Liang, L. H.
2017-11-01
This paper analyses the relationship between the output power, the transmission efficiency and the frequency, load and coupling coefficient of the four kinds of magnetic coupled resonant wireless charging system topologies. Based on mutual inductance principle, four kinds of circuit models are established, and the expressions of output power and transmission efficiency of different structures are calculated. The difference between the two power characteristics and efficiency characteristics is compared by simulating the SS (series-series) and SP (series-parallel) type wireless charging systems. With the same parameters of circuit components, the SS structure is usually suitable for small load resistance. The SP structure can be applied to large load resistors, when the transmission efficiency of the system is required to keep high. If the operating frequency deviates from the system resonance frequency, the SS type system has higher transmission efficiency than the SP type system.
Modulating the Neutron Flux from a Mirror Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D
2011-09-01
A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronousmore » detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.« less
Episodic sequence memory is supported by a theta-gamma phase code.
Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila
2016-10-01
The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.
A corticothalamic switch: controlling the thalamus with dynamic synapses
Crandall, Shane R.; Cruikshank, Scott J.; Connors, Barry W.
2015-01-01
SUMMARY Corticothalamic neurons provide massive input to the thalamus. This top-down projection may allow cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity generally suppresses or excites the thalamus remains unclear. Here we show that the corticothalamic influence is dynamic, with the excitatory-inhibitory balance shifting in an activity-dependent fashion. During low-frequency activity corticothalamic effects are mainly suppressive, whereas higher frequency activity (even a short bout of gamma frequency oscillations) converts the corticothalamic influence to enhancement. The mechanism of this switching depends upon distinct forms of short-term synaptic plasticity across multiple corticothalamic circuit components. Our results reveal an activity-dependent mechanism by which corticothalamic neurons can bidirectionally switch the excitability and sensory throughput of the thalamus, possibly to meet changing behavioral demands. PMID:25913856
Gender, music, and distortion product otoacoustic emission components.
Torre, Peter; Grace, Jennifer; Hansen, Christina; Millman, Paige; Martin, Hannah
2013-01-01
The prevalence of personal music (PM) system use with earphones is high among young adults. Although previous research has demonstrated that the majority of these adults may not be listening at levels or for durations considered dangerous, the long-term consequences of PM system use are not fully understood. In this report the relationship between self-reported PM use (i.e., non, light, moderate, or heavy) and peripheral auditory function as assayed through distortion product otoacoustic emission (DPOAE) components and fine structure was explored. The purpose was to evaluate the relationship between PM system use and peripheral auditory function. One hundred and one (N = 101) young adults, 18 to 30 years of age, with normal hearing. Survey data were first obtained to determine PM system user status along with type of earphones used, most common listening volume, and most common listening duration. Once normal-hearing sensitivity was confirmed with a hearing screening, the DPOAE research protocol was administered. DPOAEs (2f1 to f2) were measured between 1 and 6 kHz with stimulus levels fixed at L1, L2 = 55,40 dB SPL and f2/f1 = 1.22. DPOAE level as well as fine-structure depth and spacing in 1/3rd octave (oct) bands around 1, 1.5, 2, 3, 4, and 6 kHz were compared across various PM system user groups. The ear-canal DPOAE was separated into the so-called generator and characteristic frequency (CF) components. The characteristics of the components were also compared across user groups. Almost all participants reported listening to a PM system between < 1 hr/d to 3 hr/d, and 67% of the participants reported medium/comfortable as the most common volume used during a typical day. There was no significant effect of user status on 3rd oct DPOAE data, 1/3rd oct band component data, or fine-structure spacing data. Women exhibited significantly higher DPOAE as well as generator and CF component levels in the lower half of the frequency range evaluated. There were no significant gender differences for fine-structure spacing or depth. The slope of the CF component was significantly steeper in women. In this cross-sectional study, there were no significant effects of self-reported PM use on either the ear-canal DPOAE or its constituent parts. Fine-structure depth varied across user groups in a nonsystematic manner. Women exhibited higher DPOAE and component levels in the lower portion of the frequency range evaluated. It is interesting to note that a greater proportion of men reported listening to their PM system at loud or very loud levels. The size of the effect relative to the sample size of each user group may be masking the deleterious effects of PM system use on the peripheral auditory system.
Polarization of low-frequency electromagnetic radiation in the lobes of Jupiter's magnetotail
NASA Technical Reports Server (NTRS)
Moses, S. L.; Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Kurth, W. S.
1987-01-01
The plasma wave instruments on the Voyager spacecraft have detected intense electromagnetic radiation within the lobes of Jupiter's magnetic tail down to the lowest frequency of the detector (10 Hz). During a yaw maneuver performed by Voyager 1 in the lobe of the Jovian magnetotail, a modulation appeared in the amplitudes of waves detected in the 10-, 17.8- and 31.1-Hz channels of the plasma wave analyzer, well below the local electron cyclotron frequency of 260 Hz. The lowest amplitudes occurred when the antenna axis was most nearly parallel to the magnetic field. Wave amplitudes in the 56.2-Hz and higher frequency channels remained nearly constant during the maneuver. From the cold-plasma theory of electromagnetic waves, it is concluded that the plasma frequency was between the 56.2- and 31.1-Hz channels where the parallel-polarized component of the spectrum cuts off. This implies a tail-lobe density between 0.000032 and 0.000015/cu cm. The left-hand cutoff frequency would then be below 10 Hz, consistent with either the Z-mode (L, X) or whistlers (R-mode) in the modulated channels.
Multi-component separation and analysis of bat echolocation calls.
DiCecco, John; Gaudette, Jason E; Simmons, James A
2013-01-01
The vast majority of animal vocalizations contain multiple frequency modulated (FM) components with varying amounts of non-linear modulation and harmonic instability. This is especially true of biosonar sounds where precise time-frequency templates are essential for neural information processing of echoes. Understanding the dynamic waveform design by bats and other echolocating animals may help to improve the efficacy of man-made sonar through biomimetic design. Bats are known to adapt their call structure based on the echolocation task, proximity to nearby objects, and density of acoustic clutter. To interpret the significance of these changes, a method was developed for component separation and analysis of biosonar waveforms. Techniques for imaging in the time-frequency plane are typically limited due to the uncertainty principle and interference cross terms. This problem is addressed by extending the use of the fractional Fourier transform to isolate each non-linear component for separate analysis. Once separated, empirical mode decomposition can be used to further examine each component. The Hilbert transform may then successfully extract detailed time-frequency information from each isolated component. This multi-component analysis method is applied to the sonar signals of four species of bats recorded in-flight by radiotelemetry along with a comparison of other common time-frequency representations.
Complex metabolic oscillations in plants forced by harmonic irradiance.
Nedbal, Ladislav; Brezina, Vítezslav
2002-01-01
Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435
NASA Astrophysics Data System (ADS)
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
NASA Astrophysics Data System (ADS)
Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar
2008-02-01
Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.
A new ultrasonic transducer for improved contrast nonlinear imaging
NASA Astrophysics Data System (ADS)
Bouakaz, Ayache; ten Cate, Folkert; de Jong, Nico
2004-08-01
Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of such a transducer design for improved contrast detection.
Adherence to the healthy Nordic food index, dietary composition, and lifestyle among Swedish women
Roswall, Nina; Eriksson, Ulf; Sandin, Sven; Löf, Marie; Olsen, Anja; Skeie, Guri; Adami, Hans-Olov; Weiderpass, Elisabete
2015-01-01
Background Studies examining diet scores in relation to health outcomes are gaining ground. Thus, control for dietary factors not part of the score, and lifestyle associated with adherence, is required to allow for a causal interpretation of studies on diet scores and health outcomes. Objective The study objective is to describe and investigate dietary composition, micronutrient density, lifestyle, socioeconomic factors, and adherence to the Nordic Nutrition Recommendations across groups defined by their level of adherence to a healthy Nordic food index (HNFI). The paper examines both dietary components included in the HNFI as well as dietary components, which are not part of the HNFI, to get a broad picture of the diet. Design The study is cross-sectional and conducted in the Swedish Women's Lifestyle and Health cohort. We included 45,277 women, aged 29–49 years at baseline (1991–1992). The HNFI was defined by six items: wholegrain bread, oatmeal, apples/pears, cabbages, root vegetables and fish/shellfish, using data from a food frequency questionnaire. Proportions, means and standard deviations were calculated in the entire cohort and by adherence groups. Results Women scoring high on the HNFI had a higher energy intake, compared to low adherers. They had a higher intake of fiber and a higher micronutrient density (components of the HNFI), but also a higher intake of items not included in the HNFI: red/processed meats, sweets, and potatoes. They were on average more physically active and less likely to smoke. Conclusions Adherence to the HNFI was associated with a generally healthier lifestyle and a high intake of health-beneficial components. However, it was also associated with a higher energy intake and a higher intake of foods without proven health benefits. Therefore, future studies on the HNFI and health outcomes should take into account potential confounding of dietary and lifestyle factors associated with the HNFI. PMID:25773303
Spanwise measurements of vertical components of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Sleeper, Robert K.
1990-01-01
Correlation and spectrum magnitude estimates are computed for vertical gust velocity measurements at the nose and wing tips of a NASA B-57B aircraft for six level flight, low speed and low altitude runs and are compared with those of the von Karman atmospheric turbulence model extended for spanwise relationships. The distance between the wing tips was 62.6 ft. Airspeeds ranged from about 330 to 400 ft/sec, heights above the ground ranged from near ground level to about 5250 ft. and gust velocity standard deviations ranged from 4.10 to 8.86 ft/sec. Integral scale lengths, determined by matching measured autocorrelation estimates with those of the model, ranged from 410 to 2050 ft. Digital signals derived from piezoelectric sensors provided continuous pressure and airspeed measurements. Some directional acceleration sensitivity of the sensors was eliminated by sensor orientation, and their performance was spectrally verified for the higher frequencies with supplemental onboard piezoresistive sensors. The model appeared to satisfactorily predict the trends of the measured cross-correlations and cross-spectrum magnitudes, particularly between the nose and wing tips. However, the measured magnitude estimates of the cross-spectra between the wing tips exceeded the predicted levels at the higher frequencies. Causes for the additional power across the wing tips were investigated. Vertical gust velocity components evaluated along and lateral to the flight path implied that the frozen-turbulence-field assumption is a suitable approximation.
Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling
NASA Astrophysics Data System (ADS)
Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan
2016-09-01
Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in accumulation rate, whereas amplitude modulation identifies eccentricity-modulated precession. The functioning of the time-variant sinusoidal model is illustrated and validated using a synthetic insolation signal. The new modeling approach is tested on two case studies: (1) a Pliocene-Pleistocene benthic δ18O record from Ocean Drilling Program (ODP) Site 846 and (2) a Danian magnetic susceptibility record from the Contessa Highway section, Gubbio, Italy.
Robillard, Tony; Montealegre-Z, Fernando; Desutter-Grandcolas, Laure; Grandcolas, Philippe; Robert, Daniel
2013-06-01
Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts causes harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short-winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (>8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterised the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrated that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We placed these specialisations in a phylogenetic framework and show that they serve to exploit high-frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high-frequency songs evolved stepwise, by a form of punctuated evolution that could be related to functional constraints, rather than by only the progressive increase of the ancestral fundamental frequency.
Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs
NASA Technical Reports Server (NTRS)
Simmons, Rainee N.; Wintucky, Edwin G.
2013-01-01
A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.
NASA Technical Reports Server (NTRS)
Kawata, T.; Ito, H.; Uno, T.; Saito, M.; Yamamoto, S.; Furusawa, Y.; Durante, M.; George, K.; Wu, H.; Cucinotta, F. A.
2004-01-01
Radiation-induced chromosome damage can be measured in interphase using the Premature Chromosome Condensation (PCC) technique. With the introduction of a new PCC technique using the potent phosphatase inhibitor calyculin-A, chromosomes can be condensed within five minutes, and it is now possible to examine the early damage induced by radiation. Using this method, it has been shown that high-LET radiation induces a higher frequency of chromatid breaks and a much higher frequency of isochromatid breaks than low-LET radiation. The kinetics of chromatid break rejoining consists of two exponential components representing a rapid and a slow time constant, which appears to be similar for low- and high- LET radiations. However, after high-LET radiation exposures, the rejoining process for isochromatid breaks influences the repair kinetics of chromatid-type breaks, and this plays an important role in the assessment of chromatid break rejoining in the G2 phase of the cell cycle.
[Comparison of noise characteristics of direct and indirect conversion flat panel detectors].
Murai, Masami; Kishimoto, Kenji; Tanaka, Katsuhisa; Oota, Kenji; Ienaga, Akinori
2010-11-20
Flat-panel detector (FPD) digital radiography systems have direct and indirect conversion systems, and the 2 conversion systems provide different imaging performances. We measured some imaging performances [input-output characteristic, presampled modulation transfer function (presampled MTF), noise power spectrum (NPS)] of direct and indirect FPD systems. Moreover, some image samples of the NPSs were visually evaluated by the pair comparison method. As a result, the presampled MTF of the direct FPD system was substantially higher than that of the indirect FPD system. The NPS of the direct FPD system had a high value for all spatial frequencies. In contrast, the NPS of the indirect FPD system had a lower value as the frequency became higher. The results of visual evaluations showed the same tendency as that found for NPSs. We elucidated the cause of the difference in NPSs in a simulation study, and we determined that the cause of the difference in the noise components of the direct and indirect FPD systems was closely related to the presampled MTF.
A Modified Normalization Technique for Frequency-Domain Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Hwang, J.; Jeong, G.; Min, D. J.; KIM, S.; Heo, J. Y.
2016-12-01
Full waveform inversion (FWI) is a technique to estimate subsurface material properties minimizing the misfit function built with residuals between field and modeled data. To achieve computational efficiency, FWI has been performed in the frequency domain by carrying out modeling in the frequency domain, whereas observed data (time-series data) are Fourier-transformed.One of the main drawbacks of seismic FWI is that it easily gets stuck in local minima because of lacking of low-frequency data. To compensate for this limitation, damped wavefields are used, as in the Laplace-domain waveform inversion. Using damped wavefield in FWI plays a role in generating low-frequency components and help recover long-wavelength structures. With these newly generated low-frequency components, we propose a modified frequency-normalization technique, which has an effect of boosting contribution of low-frequency components to model parameter update.In this study, we introduce the modified frequency-normalization technique which effectively amplifies low-frequency components of damped wavefields. Our method is demonstrated for synthetic data for the SEG/EAGE salt model. AcknowledgementsThis work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830) and by the Dual Use Technology Program, granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.
NASA Astrophysics Data System (ADS)
Biswal, Milan; Mishra, Srikanta
2018-05-01
The limited information on origin and nature of stimulus frequency otoacoustic emissions (SFOAEs) necessitates a thorough reexamination into SFOAE analysis procedures. This will lead to a better understanding of the generation of SFOAEs. The SFOAE response waveform in the time domain can be interpreted as a summation of amplitude modulated and frequency modulated component waveforms. The efficiency of a technique to segregate these components is critical to describe the nature of SFOAEs. Recent advancements in robust time-frequency analysis algorithms have staked claims on the more accurate extraction of these components, from composite signals buried in noise. However, their potential has not been fully explored for SFOAEs analysis. Indifference to distinct information, due to nature of these analysis techniques, may impact the scientific conclusions. This paper attempts to bridge this gap in literature by evaluating the performance of three linear time-frequency analysis algorithms: short-time Fourier transform (STFT), continuous Wavelet transform (CWT), S-transform (ST) and two nonlinear algorithms: Hilbert-Huang Transform (HHT), synchrosqueezed Wavelet transform (SWT). We revisit the extraction of constituent components and estimation of their magnitude and delay, by carefully evaluating the impact of variation in analysis parameters. The performance of HHT and SWT from the perspective of time-frequency filtering and delay estimation were found to be relatively less efficient for analyzing SFOAEs. The intrinsic mode functions of HHT does not completely characterize the reflection components and hence IMF based filtering alone, is not recommended for segregating principal emission from multiple reflection components. We found STFT, WT, and ST to be suitable for canceling multiple internal reflection components with marginal altering in SFOAE.
Geller, Alan C.; Hayes, Rashelle B.; Leone, Frank; Churchill, Linda C.; Leung, Katherine; Reed, George; Jolicoeur, Denise; Okuliar, Catherine; Adams, Michael; Murray, David M.; Liu, Qin; Waugh, Jonathan; David, Sean; Ockene, Judith K.
2013-01-01
Objective To determine factors associated with tobacco cessation counseling in medical school clerkships Methods Third-year medical students at 10 medical schools across the United States completed a 100-item survey, measuring the frequency with which they experienced their preceptors’ providing clinical teaching components: clear instruction, feedback, modeling behavior, setting clear objectives, and responding to questions about tobacco dependence counseling as well as frequency of use of tobacco prompts and office systems. Our primary dependent measure was student self-reported skill level for items of tobacco dependence treatment (e.g. “5As”). Results Surveys were completed by 1213 students. For both family medicine and internal medicine clerkships, modeling and providing clear instruction on ways to provide tobacco counseling were reported most commonly. In contrast, providing feedback and clear objectives for tobacco dependence treatment lagged behind. Overall, students who reported preceptors’ provision of optimal clinical teaching components and office system prompts in both family medicine and internal medicine clerkships had higher self-reported skill (p<0.001) than students with no exposure or exposure during only one of the clerkships. Conclusions Future educational interventions intended to help students adopt effective tobacco dependence treatment techniques should be engineered to facilitate these critical precepting components. PMID:23623894
Hanley, Torrance C; Kimbro, David L; Hughes, Anne Randall
2017-07-01
Environmental perturbations can strongly affect community processes and ecosystem functions by acting primarily as a subsidy that increases productivity, a stress that decreases productivity, or both, with the predominant effect potentially shifting from subsidy to stress as the overall intensity of the perturbation increases. While perturbations are often considered along a single axis of intensity, they consist of multiple components (e.g., magnitude, frequency, and duration) that may not have equivalent stress and/or subsidy effects. Thus, different combinations of perturbation components may elicit community and ecosystem responses that differ in strength and/or direction (i.e., stress or subsidy) even if they reflect a similar overall perturbation intensity. To assess the independent and interactive effects of perturbation components, we experimentally manipulated the magnitude, frequency, and duration of wrack deposition, a common stress-subsidy in a variety of coastal systems. The effects of wrack perturbation on salt marsh community and ecosystem properties were assessed both in the short-term (at the end of a 12-week experimental manipulation) and long-term (6 months after the end of the experiment). In the short-term, plants and associated benthic invertebrates exhibited primarily stress-based responses to wrack perturbation. The extent of these stress effects on density of the dominant plant Spartina alterniflora, total plant percent cover, invertebrate abundance, and sediment oxygen availability were largely determined by perturbation duration. Yet, higher nitrogen content of Spartina, which indicates a subsidy effect of wrack, was influenced primarily by perturbation magnitude in the short-term. In the longer term, perturbation magnitude determined the extent of both stress and subsidy effects of wrack perturbation, with lower subordinate plant percent cover and snail density, and higher Spartina nitrogen content in high wrack biomass treatments. However, stress effects on the marsh community were generally less pronounced 6 months after the wrack perturbation, indicating capacity for recovery. Our results demonstrate that individual perturbation components can determine the degree to which its effects on the community elicit primarily stress- and/or subsidy-based responses. Further, the nature and extent of stress-subsidy effects can change over time, depending on species' relative ability to tolerate and/or recover from perturbation. © 2017 by the Ecological Society of America.
Laser heterodyne surface profiler
Sommargren, G.E.
1980-06-16
A method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference, and splitting the beam into its two components. The separate components are directed onto spaced apart points on the face of the object to be tested for smoothness while the face of the object is rotated on an axis normal to one point, thereby passing the other component over a circular track on the face of the object. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length of one component reflected from one point to the other component reflected from the other point. The phase of the reflected frequency difference is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center, thereby to produce a signal that is plotted as a profile of the surface along the circular track. The phase detector includes a quarter-wave plate to convert the components of the reference beam into circularly polarized components, a half-wave plate to shift the phase of the circularly polarized components, and a polarizer to produce a signal of a shifted phase for comparison with the phase of the frequency difference of the reflected components detected through a second polarizer. Rotation of the half-wave plate can be used for phase adjustment over a full 360/sup 0/ range.
Yang, L G; Sung, J Y; Chow, C W; Yeh, C H; Cheng, K T; Shi, J W; Pan, C L
2014-10-20
We demonstrate experimentally Manchester (MC) coding based W-band (75 - 110 GHz) radio-over-fiber (ROF) system to reduce the low-frequency-components (LFCs) signal distortion generated by two independent low-cost lasers using spectral shaping. Hence, a low-cost and higher performance W-band ROF system is achieved. In this system, direct-beating of two independent low-cost CW lasers without frequency tracking circuit (FTC) is used to generate the millimeter-wave. Approaches, such as delayed self-heterodyne interferometer and heterodyne beating are performed to characterize the optical-beating-interference sub-terahertz signal (OBIS). Furthermore, W-band ROF systems using MC coding and NRZ-OOK are compared and discussed.
Cuing effects for informational masking
NASA Astrophysics Data System (ADS)
Richards, Virginia M.; Neff, Donna L.
2004-01-01
The detection of a tone added to a random-frequency, multitone masker can be very poor even when the maskers have little energy in the frequency region of the signal. This paper examines the effects of adding a pretrial cue to reduce uncertainty for the masker or the signal. The first two experiments examined the effect of cuing a fixed-frequency signal as the number of masker components and presentation methods were manipulated. Cue effectiveness varied across observers, but could reduce thresholds by as much as 20 dB. Procedural comparisons indicated observers benefited more from having two masker samples to compare, with or without a signal cue, than having a single interval with one masker sample and a signal cue. The third experiment used random-frequency signals and compared no-cue, signal-cue, and masker-cue conditions, and also systematically varied the time interval between cue offset and trial onset. Thresholds with a cued random-frequency signal remained higher than for a cued fixed-frequency signal. For time intervals between the cue and trial of 50 ms or longer, thresholds were approximately the same with a signal or a masker cue and lower than when there was no cue. Without a cue or with a masker cue, analyses of possible decision strategies suggested observers attended to the potential signal frequencies, particularly the highest signal frequency. With a signal cue, observers appeared to attend to the frequency of the subsequent signal.
NASA Astrophysics Data System (ADS)
de Wet, P. D.; Bentsen, M.; Bethke, I.
2016-02-01
It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.
2009-01-01
Background Evidence suggests that to facilitate physical activity sedentary people may adhere to one component of exercise prescriptions (intensity, duration or frequency) without adhering to other components. Some experts have provided evidence for determinants of adherence to different components among healthy people. However, our understanding remains scarce in this area for patients with neck or low back pain. The aims of this study are to determine whether patients with neck or low back pain have different rates of adherence to exercise components of frequency per week and duration per session when prescribed with a home exercise program, and to identify if adherence to both exercise components have distinct predictive factors. Methods A cohort of one hundred eighty-four patients with chronic neck or low back pain who attended physiotherapy in eight primary care centers were studied prospectively one month after intervention. The study had three measurement periods: at baseline (measuring characteristics of patients and pain), at the end of physiotherapy intervention (measuring characteristics of the home exercise program) and a month later (measuring professional behaviors during clinical encounters, environmental factors and self-efficacy, and adherence behavior). Results Adherence to duration per session (70.9% ± 7.1) was more probable than adherence to frequency per week (60.7% ± 7.0). Self-efficacy was a relevant factor for both exercise components (p < 0.05). The total number of exercises prescribed was predictive of frequency adherence (p < 0.05). Professional behaviors have a distinct influence on exercise components. Frequency adherence is more probable if patients received clarification of their doubts (adjusted OR: 4.1; p < 0.05), and duration adherence is more probable if they are supervised during the learning of exercises (adjusted OR: 3.3; p < 0.05). Conclusion We have shown in a clinic-based study that adherence to exercise prescription frequency and duration components have distinct levels and predictive factors. We recommend additional study, and advise that differential attention be given in clinical practice to each exercise component for improving adherence. PMID:19995464
AstroSat /LAXPC Observation of Cygnus X-1 in the Hard State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Ranjeev; Pahari, Mayukh; Yadav, J S
2017-02-01
We report the first analysis of data from AstroSat /LAXPC observations of Cygnus X-1 in 2016 January. LAXPC spectra reveals that the source was in the canonical hard state, represented by a prominent thermal Comptonization component having a photon index of ∼1.8 and high temperature of kT{sub e} > 60 keV along with weak reflection and possible disk emission. The power spectrum can be characterized by two broad lorentzian functions centered at ∼0.4 and ∼3 Hz. The rms of the low-frequency component decreases from ∼15% at around 4 keV to ∼10% at around 50 keV, while that of the high-frequencymore » one varies less rapidly from ∼13.5% to ∼11.5% in the same energy range. The time lag between the hard (20–40 keV) and soft (5–10 keV) bands varies in a step-like manner being nearly constant at ∼50 milliseconds from 0.3 to 0.9 Hz, decreasing to ∼8 milliseconds from 2 to 5 Hz and finally dropping to ∼2 milliseconds for higher frequencies. The time lags increase with energy for both the low and high-frequency components. The event mode LAXPC data allows for flux resolved spectral analysis on a timescale of 1 s, which clearly shows that the photon index increased from ∼1.72 to ∼1.80 as the flux increased by nearly a factor of two. We discuss the results in the framework of the fluctuation propagation model.« less
Tailoring noise frequency spectrum to improve NIR determinations.
Xie, Shaofei; Xiang, Bingren; Yu, Liyan; Deng, Haishan
2009-12-15
Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
NASA Astrophysics Data System (ADS)
Cooling, M. P.; Humphrey, V. F.; Wilkens, V.
2011-02-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
NASA Astrophysics Data System (ADS)
Xu, Roger; Stevenson, Mark W.; Kwan, Chi-Man; Haynes, Leonard S.
2001-07-01
At Ford Motor Company, thrust bearing in drill motors is often damaged by metal chips. Since the vibration frequency is several Hz only, it is very difficult to use accelerometers to pick up the vibration signals. Under the support of Ford and NASA, we propose to use a piezo film as a sensor to pick up the slow vibrations of the bearing. Then a neural net based fault detection algorithm is applied to differentiate normal bearing from bad bearing. The first step involves a Fast Fourier Transform which essentially extracts the significant frequency components in the sensor. Then Principal Component Analysis is used to further reduce the dimension of the frequency components by extracting the principal features inside the frequency components. The features can then be used to indicate the status of bearing. Experimental results are very encouraging.
Lekoubou, Alain; Bishu, Kinfe G; Ovbiagele, Bruce
2018-03-01
The proportion of adults with epilepsy using the emergency department (ED) is high. Among this patient population, increased frequency of office-based provider visits may be associated with lesser frequency of ED encounters, and key patient features may be linked to more ED encounters. We analyzed the Medical Expenditure Panel Survey Household Component (MEPS-HC) dataset for years 2003-2014, which represents a weighted sample of 842,249 publicly-insured US adults aged ≥18years. The Hurdle Poisson model that accommodates excess zeros was used to estimate the association between office-based and ED visits. Annual mean ED and office-based visits for publicly-insured adults with epilepsy were 0.70 and 10.8 respectively. Probability of at least one ED visit was 0.4% higher for every unit of office-based visit. Individuals in the high income category were less likely to visit the ED at least once while women with epilepsy had a higher likelihood of visiting the ED at least once. Among those who visited the ED at least once, there was a 0.3% higher likelihood of visiting the ED for every unit of office-based visit. Among individuals who visited the ED at least once, being aged 45-64years, residing in the West, and the year 2011/14 were associated with higher ED visits. In this representative sample of publicly-insured adults with epilepsy, higher frequency of office visits was not associated with lower ED utilization, which may be due to underlying greater disease severity or propensity for more treatment complications. Copyright © 2018 Elsevier Inc. All rights reserved.
Characterizing resonant component in speech: A different view of tracking fundamental frequency
NASA Astrophysics Data System (ADS)
Dong, Bin
2017-05-01
Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
Electrical and contractile activities of the human rectosigmoid.
Sarna, S; Latimer, P; Campbell, D; Waterfall, W E
1982-01-01
Electrical and mechanical activities were recorded from the rectosigmoid of normal subjects using an intraluminal recording tube with two sets of bipolar electrodes and strain gauges. Four distinct types of electrical activities were recorded. (1) Electrical control activity (ECA). This activity varied in amplitude and frequency over time and the control waves were not phase-locked. The means of dominant frequency components in the lower and higher frequency ranges were 3.86 +/- 0.18 SD and 10.41 +/- 0.46 SD c/min, respectively. The overall dominant frequency component was mostly in the lower frequency range of 2.0-9.0 c/min. (2) Discrete electrical response activity (DERA). This activity appeared as short duration bursts (less than 10 s) of response potentials whose repetition rate was in the total colonic electrical control activity frequency range of 2.0-13.0 c/min. The mean duration of this activity was 2.24 +/- 1.30 SD s. (3) Continuous electrical response activity (CERA). This activity appeared as long duration bursts (greater than 10 s) of response potentials which were not related to electrical control activity. Its mean duration was 14.78 +/- 3.68 SD s. This activity generally did not propagate. (4) Contractile electrical complex (CEC). This activity appeared as oscillations in the frequency range of 25-40 c/min and was also not related to electrical control activity. This activity propagated, sometimes proximally and sometimes distally. Its mean duration was 18.87 +/- 9.22 SD s. The latter three types of electrical activities were all associated with different types of contractions. These contractions, however, did not always occlude the lumen. Colonic electrical control activity controls the appearance of discrete electrical response activity in time and space. The mechanism of generation of continuous electrical response activity and contractile electrical complex is not yet known. PMID:7095566
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period
2012-01-01
Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID:22920159
Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations
NASA Astrophysics Data System (ADS)
Salabert, D.; García, R. A.; Turck-Chièze, S.
2015-06-01
Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A137
Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.
Zaari, Ryan R; Brown, Alex
2012-09-14
The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.
New clinical insights for transiently evoked otoacoustic emission protocols.
Hatzopoulos, Stavros; Grzanka, Antoni; Martini, Alessandro; Konopka, Wieslaw
2009-08-01
The objective of the study was to optimize the area of a time-frequency analysis and then investigate any stable patterns in the time-frequency structure of otoacoustic emissions in a population of 152 healthy adults sampled over one year. TEOAE recordings were collected from 302 ears in subjects presenting normal hearing and normal impedance values. The responses were analyzed by the Wigner-Ville distribution (WVD). The TF region of analysis was optimized by examining the energy content of various rectangular and triangular TF regions. The TEOAE components from the initial and recordings 12 months later were compared in the optimized TF region. The best region for TF analysis was identified with base point 1 at 2.24 ms and 2466 Hz, base point 2 at 6.72 ms and 2466 Hz, and the top point at 2.24 ms and 5250 Hz. Correlation indices from the TF optimized region were higher, and were statistically significant, than the traditional indices in the selected time window. An analysis of the TF data within a 12-month period indicated a 85% TEOAE component similarity in 90% of the tested subjects.
A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz
NASA Astrophysics Data System (ADS)
Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James
With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.
A SiC MOSFET Based Inverter for Wireless Power Transfer Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L
2014-01-01
In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less
Design and Development of a Three-Component Force Sensor for Milling Process Monitoring
Li, Yingxue; Zhao, Yulong; Fei, Jiyou; Qin, Yafei; Zhao, You; Cai, Anjiang; Gao, Song
2017-01-01
A strain-type three-component table dynamometer is presented in this paper, which reduces output errors produced by cutting forces imposed on the different milling positions of a workpiece. A sensor structure with eight parallel elastic beams is proposed, and sensitive regions and Wheastone measuring circuits are also designed in consideration of eliminating the influences of the eccentric forces. To evaluate the sensor decoupling performance, both of the static calibration and dynamic milling test were implemented in different positions of the workpiece. Static experiment results indicate that the maximal deviation between the measured forces and the standard inputs is 4.58%. Milling tests demonstrate that with same machining parameters, the differences of the measured forces between different milling positions derived by the developed sensor are no larger than 6.29%. In addition, the natural frequencies of the dynamometer are kept higher than 2585.5 Hz. All the measuring results show that as a strain-type dynamometer, the developed force sensor has an improved eccentric decoupling accuracy with natural frequencies not much decreased, which owns application potential in milling process monitoring. PMID:28441354
Cross-Modulated Amplitudes and Frequencies Characterize Interacting Components in Complex Systems
NASA Astrophysics Data System (ADS)
Gans, Fabian; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Fietze, Ingo
2009-03-01
The dynamics of complex systems is characterized by oscillatory components on many time scales. To study the interactions between these components we analyze the cross modulation of their instantaneous amplitudes and frequencies, separating synchronous and antisynchronous modulation. We apply our novel technique to brain-wave oscillations in the human electroencephalogram and show that interactions between the α wave and the δ or β wave oscillators as well as spatial interactions can be quantified and related with physiological conditions (e.g., sleep stages). Our approach overcomes the limitation to oscillations with similar frequencies and enables us to quantify directly nonlinear effects such as positive or negative frequency modulation.
Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L
2007-11-01
This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.
An algorithm for extraction of periodic signals from sparse, irregularly sampled data
NASA Technical Reports Server (NTRS)
Wilcox, J. Z.
1994-01-01
Temporal gaps in discrete sampling sequences produce spurious Fourier components at the intermodulation frequencies of an oscillatory signal and the temporal gaps, thus significantly complicating spectral analysis of such sparsely sampled data. A new fast Fourier transform (FFT)-based algorithm has been developed, suitable for spectral analysis of sparsely sampled data with a relatively small number of oscillatory components buried in background noise. The algorithm's principal idea has its origin in the so-called 'clean' algorithm used to sharpen images of scenes corrupted by atmospheric and sensor aperture effects. It identifies as the signal's 'true' frequency that oscillatory component which, when passed through the same sampling sequence as the original data, produces a Fourier image that is the best match to the original Fourier space. The algorithm has generally met with succession trials with simulated data with a low signal-to-noise ratio, including those of a type similar to hourly residuals for Earth orientation parameters extracted from VLBI data. For eight oscillatory components in the diurnal and semidiurnal bands, all components with an amplitude-noise ratio greater than 0.2 were successfully extracted for all sequences and duty cycles (greater than 0.1) tested; the amplitude-noise ratios of the extracted signals were as low as 0.05 for high duty cycles and long sampling sequences. When, in addition to these high frequencies, strong low-frequency components are present in the data, the low-frequency components are generally eliminated first, by employing a version of the algorithm that searches for non-integer multiples of the discrete FET minimum frequency.
Jäncke, Lutz; Alahmadi, Nsreen
2016-04-13
The measurement of brain activation during music listening is a topic that is attracting increased attention from many researchers. Because of their high spatial accuracy, functional MRI measurements are often used for measuring brain activation in the context of music listening. However, this technique faces the issues of contaminating scanner noise and an uncomfortable experimental environment. Electroencephalogram (EEG), however, is a neural registration technique that allows the measurement of neurophysiological activation in silent and more comfortable experimental environments. Thus, it is optimal for recording brain activations during pleasant music stimulation. Using a new mathematical approach to calculate intracortical independent components (sLORETA-IC) on the basis of scalp-recorded EEG, we identified specific intracortical independent components during listening of a musical piece and scales, which differ substantially from intracortical independent components calculated from the resting state EEG. Most intracortical independent components are located bilaterally in perisylvian brain areas known to be involved in auditory processing and specifically in music perception. Some intracortical independent components differ between the music and scale listening conditions. The most prominent difference is found in the anterior part of the perisylvian brain region, with stronger activations seen in the left-sided anterior perisylvian regions during music listening, most likely indicating semantic processing during music listening. A further finding is that the intracortical independent components obtained for the music and scale listening are most prominent in higher frequency bands (e.g. beta-2 and beta-3), whereas the resting state intracortical independent components are active in lower frequency bands (alpha-1 and theta). This new technique for calculating intracortical independent components is able to differentiate independent neural networks associated with music and scale listening. Thus, this tool offers new opportunities for studying neural activations during music listening using the silent and more convenient EEG technology.
Effect of centerbody scattering on propeller noise
NASA Technical Reports Server (NTRS)
Glegg, Stewart A. L.
1991-01-01
This paper describes how the effect of acoustic scattering from the hub or centerbody of a propeller will affect the far-field noise levels. A simple correction to Gutin's formula for steady loading noise is given. This is a maximum for the lower harmonics but has a negligible effect on the higher frequency components that are important subjectively. The case of a blade vortex interaction is also considered, and centerbody scattering is shown to have a significant effect on the acoustic far field.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan
2011-07-01
The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance.
Stable radio frequency dissemination by simple hybrid frequency modulation scheme.
Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang
2014-09-15
In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.
NASA Technical Reports Server (NTRS)
Johnson, Dennis A. (Inventor)
1996-01-01
A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.
Crack detection using resonant ultrasound spectroscopy
Migliori, A.; Bell, T.M.; Rhodes, G.W.
1994-10-04
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.
Crack detection using resonant ultrasound spectroscopy
Migliori, Albert; Bell, Thomas M.; Rhodes, George W.
1994-01-01
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.
Digital carrier demodulator employing components working beyond normal limits
NASA Technical Reports Server (NTRS)
Hurd, William J. (Inventor); Sadr, Ramin (Inventor)
1990-01-01
In a digital device, having an input comprised of a digital sample stream at a frequency F, a method is disclosed for employing a component designed to work at a frequency less than F. The method, in general, is comprised of the following steps: dividing the digital sample stream into odd and even digital samples streams each at a frequency of F/2; passing one of the digital sample streams through the component designed to work at a frequency less than F where the component responds only to the odd or even digital samples in one of the digital sample streams; delaying the other digital sample streams for the time it takes the digital sample stream to pass through the component; and adding the one digital sample stream after passing through the component with the other delayed digital sample streams. In the specific example, the component is a finite impulse response filter of the order ((N + 1)/2) and the delaying step comprised passing the other digital sample streams through a shift register for a time (in sampling periods) of ((N + 1)/2) + r, where r is a pipline delay through the finite impulse response filter.
Catto, Sarah; Mutumi, Gregory L.; Finger, Nikita; Webala, Paul W.
2017-01-01
Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature) on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy’s horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455) significantly explained a proportion of the variation in resting frequency across sites (P < 0.05). Specifically, at higher relative humidity (around 60%) prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to decrease the detection volume in echolocating bats and adversely impact their foraging efficiency. PMID:29186147
Jacobs, David S; Catto, Sarah; Mutumi, Gregory L; Finger, Nikita; Webala, Paul W
2017-01-01
Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature) on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455) significantly explained a proportion of the variation in resting frequency across sites (P < 0.05). Specifically, at higher relative humidity (around 60%) prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to decrease the detection volume in echolocating bats and adversely impact their foraging efficiency.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
Very low frequency earthquakes in Tohoku-Oki recorded by short-period ocean bottom seismographs
NASA Astrophysics Data System (ADS)
Takahashi, H.; Hino, R.; Ohta, Y.; Uchida, N.; Suzuki, S.; Shinohara, M.; Nakatani, Y.; Matsuzawa, T.
2017-12-01
Various kind of slow earthquakes have been found along many plate boundary zones in the world (Obara, and Kato, 2016). In the Tohoku subduction zone where slow event activities have been considered insignificant, slow slip events associated with low frequency tremors were identified prior to the 2011 Tohoku-Oki earthquake based on seafloor geodetic and seismographical observations. Recently very low frequency earthquakes (VLFEs) have been discovered by inspecting onshore broad-band seismograms. Although the activity of the detected VLFEs is low and the VLFEs occurred in the limited area, VLFEs tends to occur successively in a short time period. In this study, we try to characterize the VLFEs along the Japan Trench based on the seismograms obtained by the instruments deployed near the estimated epicenters.Temporary seismic observations using Ocean Bottom Seismometers (OBSs) have been carried out several times after the 2011 Tohoku-Oki earthquake, and several VLFE activities were observed during the deployments of the OBSs. Amplitudes of horizontal component seismograms of the OBSs grow shortly after the estimated origin times of the VLFEs identified by the onshore seismograms, even though the sensors are 4.5 Hz geophones. It is difficult to recognize evident onsets of P or S waves, correspondence between order of arrivals of discernible wave packets and their amplitudes suggests that these wave packets are seismic signals radiated from the VLFE sources. The OBSs detect regular local earthquakes of the similar magnitudes as the VLFEs. Signal powers of the possible VLFE seismograms are comparable to the regular earthquakes in the frequency range < 1 Hz, while significant deficiency of higher frequency components are observed.
Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity
Thompson, Garth John; Pan, Wen-Ju
2015-01-01
Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826
Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend
NASA Astrophysics Data System (ADS)
Karastergiou, A.; Chennamangalam, J.; Armour, W.; Williams, C.; Mort, B.; Dulwich, F.; Salvini, S.; Magro, A.; Roberts, S.; Serylak, M.; Doo, A.; Bilous, A. V.; Breton, R. P.; Falcke, H.; Grießmeier, J.-M.; Hessels, J. W. T.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; van Leeuwen, J.; Noutsos, A.; Osłowski, S.; Sobey, C.; Stappers, B. W.; Weltevrede, P.
2015-09-01
Fast radio bursts (FRBs) are millisecond radio signals that exhibit dispersion larger than what the Galactic electron density can account for. We have conducted a 1446 h survey for FRBs at 145 MHz, covering a total of 4193 deg2 on the sky. We used the UK station of the low frequency array (LOFAR) radio telescope - the Rawlings Array - accompanied for a majority of the time by the LOFAR station at Nançay, observing the same fields at the same frequency. Our real-time search backend, Advanced Radio Transient Event Monitor and Identification System - ARTEMIS, utilizes graphics processing units to search for pulses with dispersion measures up to 320 cm-3 pc. Previous derived FRB rates from surveys around 1.4 GHz, and favoured FRB interpretations, motivated this survey, despite all previous detections occurring at higher dispersion measures. We detected no new FRBs above a signal-to-noise threshold of 10, leading to the most stringent upper limit yet on the FRB event rate at these frequencies: 29 sky-1 d-1 for five ms-duration pulses above 62 Jy. The non-detection could be due to scatter-broadening, limitations on the volume and time searched, or the shape of FRB flux density spectra. Assuming the latter and that FRBs are standard candles, the non-detection is compatible with the published FRB sky rate, if their spectra follow a power law with frequency (∝ να), with α ≳ +0.1, demonstrating a marked difference from pulsar spectra. Our results suggest that surveys at higher frequencies, including the low frequency component of the Square Kilometre Array, will have better chances to detect, estimate rates and understand the origin and properties of FRBs.
LF/MF Propagation Modeling for D-Region Ionospheric Remote Sensing
NASA Astrophysics Data System (ADS)
Higginson-Rollins, M. A.; Cohen, M.
2017-12-01
The D-region of the ionosphere is highly inaccessible because it is too high for continuous in-situ measurement techniques and too low for satellite measurements. Very-Low Frequency (VLF) signals have been developed and used as a diagnostic tool for this region of the ionosphere and are favorable because of the low ionospheric attenuation rates, allowing global propagation - but this also creates an ill-posed multi-mode propagation problem. As an alternative, Low-Frequency (LF) and Medium-Frequency (MF) signals could be used as a diagnostic tool of the D-region. These higher frequencies have a higher attenuation rate, and thus only a few modes propagate in the Earth-ionosphere waveguide, creating a much simpler problem to analyze. The United States Coast Guard (USCG) operates a national network of radio transmitters that serve as an enhancement to the Global Positioning System (GPS). This network is termed Differential Global Positioning System (DGPS) and uses fixed reference stations as a method of determining the error in received GPS satellite signals and transmits the correction value using low frequency and medium frequency radio signals between 285 kHz and 385 kHz. Using sensitive receivers, we can detect this signal many hundreds of km away. We present modeling of the propagation of these transmitters' signals for use as a diagnostic tool for characterizing the D-region. The Finite-Difference Time-Domain (FDTD) method is implemented to model the groundwave radiated by the DGPS beacons and account for environmental effects, such as changing soil conductivities and terrain. A full wave numerical solver is used to model the skywave component of the propagating signal and specifically to ascertain the reflection coefficients for various ionospheric conditions. Preliminary results are shown and discussed, and comparisons with collected data are presented.
NASA Technical Reports Server (NTRS)
Mark, W. D.
1979-01-01
Application of the transfer function approach to predict the resulting interior noise contribution requires gearbox vibration sources and paths to be characterized in the frequency domain. Tooth-face deviations from perfect involute surfaces were represented in terms of Legendre polynomials which may be directly interpreted in terms of tooth-spacing errors, mean and random deviations associated with involute slope and fullness, lead mismatch and crowning, and analogous higher-order components. The contributions of these components to the spectrum of the static transmission error is discussed and illustrated using a set of measurements made on a pair of helicopter spur gears. The general methodology presented is applicable to both spur and helical gears.
Method of detecting system function by measuring frequency response
Morrison, John L.; Morrison, William H.
2008-07-01
Real time battery impedance spectrum is acquired using one time record, Compensated Synchronous Detection (CSD). This parallel method enables battery diagnostics. The excitation current to a test battery is a sum of equal amplitude sin waves of a few frequencies spread over range of interest. The time profile of this signal has duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known, synchronous detection processes the time record and each component, both magnitude and phase, is obtained. For compensation, the components, except the one of interest, are reassembled in the time domain. The resulting signal is subtracted from the original signal and the component of interest is synchronously detected. This process is repeated for each component.
Method of Detecting System Function by Measuring Frequency Response
NASA Technical Reports Server (NTRS)
Morrison, John L. (Inventor); Morrison, William H. (Inventor)
2008-01-01
Real time battery impedance spectrum is acquired using one time record, Compensated Synchronous Detection (CSD). This parallel method enables battery diagnostics. The excitation current to a test battery is a sum of equal amplitude sin waves of a few frequencies spread over range of interest. The time profile of this signal has duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known, synchronous detection processes the time record and each component, both magnitude and phase, is obtained. For compensation, the components, except the one of interest, are reassembled in the time domain. The resulting signal is subtracted from the original signal and the component of interest is synchronously detected. This process is repeated for each component.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.
Rajaure, S.; Asimaki, Domniki; Thompson, Eric M.; Hough, Susan E.; Martin, Stacey; Ampuero, J.P.; Dhital, M.R.; Inbal, A; Takai, N; Shigefuji, M.; Bijukchhen, S; Ichiyanagi, M; Sasatani, T; Paudel, L
2017-01-01
We analyze strong motion records and high-rate GPS measurements of the M 7.8 Gorkha mainshock, M 7.3 Dolakha, and two moderate aftershock events recorded at four stations on the Kathmandu basin sediments, and one on rock-outcrop. Recordings on soil from all four events show systematic amplification relative to the rock site at multiple frequencies in the 0.1–2.5 Hz frequency range, and de-amplification of higher frequencies ( >2.5–10 Hz). The soil-to-rock amplification ratios for the M 7.8 and M 7.3 events have lower amplitude and frequency peaks relative to the ratios of the two moderate events, effects that could be suggestive of nonlinear site response. Further, comparisons to ground motion prediction equations show that 1) both soil and rock mainshock recordings were severely depleted of high frequencies, and 2) the depletion at high frequencies is not present in the aftershocks. These observations indicate that the high frequency deamplification is additionally related to characteristics of the source that are not captured by simplified ground motion prediction equations, and allude to seismic hazard analysis models being revised – possibly by treating isolated high frequency radiation sources separately from long period components to capture large magnitude near-source events such as the 2015 Gorkha mainshock.
Binaural auditory beats affect long-term memory.
Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M
2017-12-08
The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.
Viscoelastic properties of a spinal posterior dynamic stabilisation device.
Lawless, Bernard M; Barnes, Spencer C; Espino, Daniel M; Shepherd, Duncan E T
2016-06-01
The purpose of this study was to quantify the frequency dependent viscoelastic properties of two types of spinal posterior dynamic stabilisation devices. In air at 37°C, the viscoelastic properties of six BDyn 1 level, six BDyn 2 level posterior dynamic stabilisation devices (S14 Implants, Pessac, France) and its elastomeric components (polycarbonate urethane and silicone) were measured using Dynamic Mechanical Analysis. The viscoelastic properties were measured over the frequency range 0.01-30Hz. The BDyn devices and its components were viscoelastic throughout the frequency range tested. The mean storage stiffness and mean loss stiffness of the BDyn 1 level device, BDyn 2 level device, silicone component and polycarbonate urethane component all presented a logarithmic relationship with respect to frequency. The storage stiffness of the BDyn 1 level device ranged from 95.56N/mm to 119.29N/mm, while the BDyn 2 level storage stiffness ranged from 39.41N/mm to 42.82N/mm. BDyn 1 level device and BDyn 2 level device loss stiffness ranged from 10.72N/mm to 23.42N/mm and 4.26N/mm to 9.57N/mm, respectively. No resonant frequencies were recorded for the devices or its components. The elastic property of BDyn 1 level device is influenced by the PCU and silicone components, in the physiological frequency range. The viscoelastic properties calculated in this study may be compared to spinal devices and spinal structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1986-01-01
Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.
Lateral Variations of Lg Coda Q in Southern Mexico
NASA Astrophysics Data System (ADS)
Yamamoto, J.; Quintanar, L.; Herrmann, R. B.; Fuentes, C.
Broad band digital three-component data recorded at UNM, a GEOSCOPE station, were used to estimate Lg coda Q for 34 medium size (3.9 <=mb<= 6.3) earthquakes with travel paths laying in different geological provinces of southern Mexico in an effort to establish the possible existence of geological structures acting as wave guides and/or travel paths of low attenuation between the Pacific coast and the Valley of Mexico. The stacked spectral ratio method proposed by XIE and NUTTLI (1988) was chosen for computing the coda Q. The variation range of Q0 (Q at 1Hz) and the frequency dependence parameter η estimates averaged on the frequency interval of 0.5 to 2Hz for the regions and the three components considered are: i) Guerrero region 173 <=Q0<= 182 and 0.6 <=Q0<= 0.7, ii) Oaxaca region 183 <=Q0<= 198 and 0.6 <=Q0<= 0.8, iii) Michoacan-Jalisco region 187 <=Q0<= 204 and 0.7 <=Q0<= 0.8 and iv) eastern portion of the Transmexican Volcanic Belt (TMVB) 313 <=Q0<= 335 and η = 0.9. The results show a very high coda Q for the TMVB as compared to other regions of southern Mexico. This unexpected result is difficult to reconcile with the geophysical characteristics of the TMVB, e.g., low seismicity, high volcanic activity and high heat flow typical of a highly attenuating (low Q) region. Visual inspection of seismograms indicates that for earthquakes with seismic waves traveling along the TMVB, the amplitude decay of Lg coda is anomalously slow as compared to other earthquakes in southern Mexico. Thus, it seems that the high Q value found does not entirely reflect the attenuation characteristics of the TMVB but it is probably contaminated by a wave-guide effect. This phenomenon produces an enhancement in the time duration of the Lg wave trains travelling along this geological structure. This result is important to establish the role played by the transmission medium in the extremely long duration of ground motion observed during the September 19, 1985 Michoacan earthquake. The overall spatial distribution of coda Q values indicates that events with focus in the Michoacan-Jalisco and Oaxaca regions yield slightly higher values than those from Guerrero. This feature is more pronounced for the horizontal component of coda Q. A slight dependence of average coda Q-1 on earthquake focal depth is observed in the frequency range of 0.2 to 1.0Hz approximately on the horizontal component. Deeper (h > 50km) events yield lower values of Q-1 than shallower events. For frequencies higher than 1.0Hz no clear dependence of Q-1 on focal depth is observed. However, due to the estimates uncertainties this result is not clearly established.
Composite Matrix Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Knowles, Timothy R.
1997-01-01
This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.
Design of an electrostatic phase shifting device for biological transmission electron microscopy.
Koeck, Philip J B
2018-04-01
I suggest an electrostatic phase plate designed to broaden the contrast transfer function of a transmission electron microscope operated close to Scherzer defocus primarily in the low resolution direction. At higher defocus the low frequency behavior is equal to that close to Scherzer defocus, but CTF-correction becomes necessary to extend image interpretation to higher resolution. One simple realization of the phase plate consists of two ring shaped electrodes symmetrically surrounding the central beam. Since no physical components come into contact with the central beam and charge on the electrodes is controlled by an external voltage supply, problems with uncontrolled charging are expected to be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.
Noise elimination method using a transmission line for the diagnostics of radio frequency plasma
NASA Astrophysics Data System (ADS)
Shimizu, K.; Hallil, A.; Amemiya, H.
1997-04-01
A filter using a transmission line formed by a cascade connection of inverted L-type networks has been developed to reject the distortion of the probe characteristics by rf (radio-frequency) noise. Each inverse L network consists of two coaxial cables with the same physical constant and length. The filter can remove discrete frequency components including the fundamental and harmonic components, the cut-off frequencies being determined by the distributed circuit constant and the length of the cables. By inserting different kinds of the network in cascade, many noise components associated with the rf frequency can be eliminated at the end section of the filter. Experiments have been performed in rf plasmas by inserting three kinds of inverted L networks with the frequency f (13.56 MHz), 2 f and 4f as the cut-off frequency. Distortion free probe characteristics have been obtained, from which accurate determination of plasma parameter such as the electron energy distribution is possible.
Sheliga, Boris M.; Quaia, Christian; FitzGibbon, Edmond J.; Cumming, Bruce G.
2016-01-01
White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion. PMID:26762277
Respiratory analysis system and method
NASA Technical Reports Server (NTRS)
Liu, F. F. (Inventor)
1973-01-01
A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Metspalu, Mait; Romero, Irene Gallego; Yunusbayev, Bayazit; Chaubey, Gyaneshwer; Mallick, Chandana Basu; Hudjashov, Georgi; Nelis, Mari; Mägi, Reedik; Metspalu, Ene; Remm, Maido; Pitchappan, Ramasamy; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Kivisild, Toomas
2011-01-01
South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes. PMID:22152676
Frequency-dependent micromechanics of cellularized biopolymer networks
NASA Astrophysics Data System (ADS)
Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo
Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.
Face-Evoked Steady-State Visual Potentials: Effects of Presentation Rate and Face Inversion
Gruss, L. Forest; Wieser, Matthias J.; Schweinberger, Stefan R.; Keil, Andreas
2012-01-01
Face processing can be explored using electrophysiological methods. Research with event-related potentials has demonstrated the so-called face inversion effect, in which the N170 component is enhanced in amplitude and latency to inverted, compared to upright, faces. The present study explored the extent to which repetitive lower-level visual cortical engagement, reflected in flicker steady-state visual evoked potentials (ssVEPs), shows similar amplitude enhancement to face inversion. We also asked if inversion-related ssVEP modulation would be dependent on the stimulation rate at which upright and inverted faces were flickered. To this end, multiple tagging frequencies were used (5, 10, 15, and 20 Hz) across two studies (n = 21, n = 18). Results showed that amplitude enhancement of the ssVEP for inverted faces was found solely at higher stimulation frequencies (15 and 20 Hz). By contrast, lower frequency ssVEPs did not show this inversion effect. These findings suggest that stimulation frequency affects the sensitivity of ssVEPs to face inversion. PMID:23205009
Wideband Isolation by Frequency Conversion in a Josephson-Junction Transmission Line
NASA Astrophysics Data System (ADS)
Ranzani, Leonardo; Kotler, Shlomi; Sirois, Adam J.; DeFeo, Michael P.; Castellanos-Beltran, Manuel; Cicak, Katarina; Vale, Leila R.; Aumentado, José
2017-11-01
Nonreciprocal transmission and isolation at microwave frequencies are important in many practical applications. In particular, compact isolators are useful in protecting sensitive quantum circuits operating at cryogenic temperatures from amplifier backaction and other environmental noise such as black-body radiation from higher temperature stages. However, the size of commercial cryogenic isolators limits the ability to measure multiple quantum circuits because of space constraints in typical dilution refrigerator systems. Furthermore, isolators usually require the use of ferrite components that cannot be integrated at the chip level and, since they also need large biasing magnetic fields, are incompatible with superconducting quantum circuits. In this work we show one way to accomplish isolation in a superconducting chip-scale device, a traveling-wave unidirectional frequency converter based on a parametrically pumped superconducting Josephson-junction transmission line, demonstrating better than 4.8 dB of inferred signal isolation from 6.6 to 11.4 GHz, with a maximum of 12 dB at 9.5 GHz. By using frequency diplexing techniques a conventional isolator could be implemented over this bandwidth.
Weiler, Natalie E C; Matai, Anuska S; Sijen, Titia
2012-01-01
Forensic laboratories employ various approaches to obtain short tandem repeat (STR) profiles from minimal traces (<100 pg DNA input). Most approaches aim to sensitize DNA profiling by increasing the amplification level by a higher cycle number or enlarging the amount of PCR products analyzed during capillary electrophoresis. These methods have limitations when unequal mixtures are genotyped, since the major component will be over-amplified or over-loaded. This study explores an alternative strategy for improved detection of the minor components in low template (LT) DNA typing that may be better suited for the detection of the minor component in mixtures. The strategy increases the PCR amplification efficiency by extending the primer annealing time several folds. When the AmpFℓSTR(®) Identifiler(®) amplification parameters are changed to an annealing time of 20 min during all 28 cycles, the drop-out frequency is reduced for both pristine DNA and single or multiple donor mock case work samples. In addition, increased peak heights and slightly more drop-ins are observed while the heterozygous peak balance remains similar as with the conventional Identifiler protocol. By this extended protocol, full DNA profiles were obtained from only 12 sperm heads (which corresponds to 36 pg of DNA) that were collected by laser micro dissection. Notwithstanding the improved detection, allele drop-outs do persist, albeit in lower frequencies. Thus a LT interpretation strategy such as deducing consensus profiles from multiple independent amplifications is appropriate. The use of extended PCR conditions represents a general approach to improve detection of unequal mixtures as shown using four commercially available kits (AmpFℓSTR(®) Identifiler, SEfiler Plus, NGM and Yfiler). The extended PCR protocol seems to amplify more of the molecules in LT samples during PCR, which results in a lower drop-out frequency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gonçalves, Hernâni; Fernandes, Diana; Pinto, Paula; Ayres-de-Campos, Diogo; Bernardes, João
2017-11-01
Male gender is considered a risk factor for several adverse perinatal outcomes. Fetal gender effect on fetal heart rate (FHR) has been subject of several studies with contradictory results. The importance of maternal heart rate (MHR) monitoring during labor has also been investigated, but less is known about the effect of fetal gender on MHR. The aim of this study is to simultaneously assess maternal and FHR variability during labor in relation with fetal gender. Simultaneous MHR and FHR recordings were obtained from 44 singleton term pregnancies during the last 2 hr of labor (H 1, H 2 ). Heart rate tracings were analyzed using linear (time- and frequency-domain) and nonlinear indices. Both linear and nonlinear components were considered in assessing FHR and MHR interaction, including cross-sample entropy (cross-SampEn). Mothers carrying male fetuses (n = 22) had significantly higher values for linear indices related with MHR average and variability and sympatho-vagal balance, while the opposite occurred in the high-frequency component and most nonlinear indices. Significant differences in FHR were only observed in H 1 with higher entropy values in female fetuses. Assessing the differences between FHR and MHR, statistically significant differences were obtained in most nonlinear indices between genders. A significantly higher cross-SampEn was observed in mothers carrying female fetuses (n = 22), denoting lower synchrony or similarity between MHR and FHR. The variability of MHR and the synchrony/similarity between MHR and FHR vary with respect to fetal gender during labor. These findings suggest that fetal gender needs to be taken into account when simultaneously monitoring MHR and FHR. © 2017 Wiley Periodicals, Inc.
Movement patterns of peak-dose levodopa-induced dyskinesias in patients with Parkinson's disease.
Gour, Jackie; Edwards, Roderick; Lemieux, Sarah; Ghassemi, Mehrdad; Jog, Mandar; Duval, Christian
2007-09-14
The present study characterized involuntary movements associated with levodopa-induced dyskinesias (LID) in patients with Parkinson's disease. We used amplitude, proportional energy, frequency dispersion and sample entropy to determine whether LID movement patterns are truly random, as clinical description seems to suggest, or possess some underlying pattern that is not visible to the naked eye. LID was captured using a magnetic tracker system, which provided 3D rendering of whole-body LID. Patients were instructed to maintain a standing position, with arms extended in front of them. We compared the measurements of the dyskinetic PD group (DPD) with 10 patients without dyskinesias (NDPD) and 10 control subjects. In comparison to the other two groups, movement patterns from the DPD group had significantly higher amplitude, confirming the presence of dyskinesias. In addition, higher frequency components in the power spectrum of velocity were detected, suggestive of higher velocity in LID movement. Furthermore, there was a concentration in narrow frequency bands, which suggested stable oscillatory activity. Finally, sample entropy revealed more regularity in the DPD group. Although not statistically significant, we found that the amplitude from the NDPD group had a tendency to be smaller than those of controls. As well, the spectra were often more dispersed for the NDPD group. In conclusion, the present results suggest that LID cannot be considered as purely random movement since they possess some deterministic pattern of motion. This may provide a way for patients to adapt to these involuntary movements while performing voluntary motor acts.
NASA Astrophysics Data System (ADS)
Grunskaya, L. V.; Isakevich, V. V.; Isakevich, D. V.
2018-05-01
A system is constructed, which, on the basis of extensive experimental material and the use of eigenoscopy, has allowed us to detect anomalies in the spectra of uncorrelated components localized near the rotation frequencies and twice the rotation frequencies of relativistic binary star systems with vanishingly low probability of false alarm, not exceeding 10-17.
An ultra-stable iodine-based frequency reference for space applications
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Braxmaier, Claus; Doeringshoff, Klaus; Keetman, Anja; Reggentin, Matthias; Kovalchuk, Evgeny; Peters, Achim
2012-07-01
Future space missions require for ultra-stable optical frequency references. Examples are the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the SpaceTime Asymmetry Research (STAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission exploring Earth's gravity. As high long-term frequency stability is required, lasers stabilized to atomic or molecular transitions are preferred, also offering an absolute frequency reference. Frequency stabilities in the 10 ^{-15} domains at longer integration times (up to several hours) are demonstrated in laboratory experiments using setups based on Doppler-free spectroscopy. Such setups with a frequency stability comparable to the hydrogen maser in the microwave domain, have the potential to be developed space compatible on a relatively short time scale. Here, we present the development of ultra-stable optical frequency references based on modulation-transfer spectroscopy of molecular iodine. Noise levels of 2\\cdot10 ^{-14} at an integration time of 1 s and below 3\\cdot10 ^{-15} at integration times between 100 s and 1000 s are demonstrated with a laboratory setup using an 80 cm long iodine cell in single-pass configuration in combination with a frequency-doubled Nd:YAG laser and standard optical components and optomechanic mounts. The frequency stability at longer integration times is (amongst other things) limited by the dimensional stability of the optical setup, i.e. by th pointing stability of the two counter-propagating beams overlapped in the iodine cell. With the goal of a future space compatible setup, a compact frequency standard on EBB (elegant breadboard) level was realized. The spectroscopy unit utilizes a baseplate made of Clearceram-HS, a glass ceramics with an ultra-low coefficient of thermal expansion of 2\\cdot10 ^{-8} K ^{-1}. The optical components are joint to the baseplate using adhesive bonding technology, which was developed in a cooperation of HTWG Konstanz and Astrium Friedrichshafen. This setup ensures a higher long-term frequency stability due to enhanced pointing stability. Also, it takes into account space mission related criteria such as compactness, robustness, MAIVT and environmental influences (shock, vibration and thermal tests). The assembly-integration technology was already successfully environmentally tested and demonstrated in a previous setup of a compact fiber-coupled heterodyne interferometer, which serves as a demonstrator for the optical readout of the LISA gravitational reference sensor. We present first measurements of the EBB setup and a first design of an iodine frequency standard on engineering model (EM) level. The EM-setup is based on the EBB experience, but features smaller dimensions by using a multipass iodine cell and less optical components. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number 50 QT 1102 is highly appreciated.
Pieper, Joy Rickman; Whaley, Shannon E
2011-08-01
The purpose of this research was to examine relationships between eating behaviors and the cognitive environment in primarily Hispanic low-income households with young children receiving WIC benefits in Los Angeles County. Survey data were collected from 3645 low-income families with children age 12-65 mo in Los Angeles County. Eating behaviors were measured through questions about fruit, vegetable, milk, soft drink, and fast food intake. The cognitive environment was evaluated through questions on the home literacy environment (HLE), reading frequency, and preschool enrollment. All healthy eating behaviors measured were significantly and positively associated with reading frequency and HLE scores after adjustment for confounders. HLE and reading frequency scores were 18% and 14% higher, respectively, in children eating two or more servings of fruit per day and 12% and 9% higher, respectively, in children eating three or more servings of vegetables per day. Preschool enrollment was not significantly associated with any eating behavior. Outcomes varied by language-ethnic groups and child sex. Results suggest that healthy eating behaviors are positively associated with stronger cognitive environments in low-income Hispanic families with young children. Interventions to prevent childhood obesity in this group may therefore benefit from including a home literacy component. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.
2017-08-01
In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.
Frequency dispersions of human skin dielectrics.
Poon, C S; Choy, T T
1981-01-01
The electrical properties of many biological materials are known to exhibit frequency dispersions. In the human skin, the impedance measured at various frequencies closely describes a circular locus of the Cole-Cole type in the complex impedance plane. In this report, the formative mechanisms responsible for the anomalous circular-arc behavior of skin impedance were investigated, using data from impedance measurements taken after successive strippings of the skin. The data were analyzed with respect to changes in the parameters of the equivalent Cole-Cole model after each stripping. For an exponential resistivity profile (Tregear, 1966, Physical Functions of Skin; Yamamoto and Yamamoto, 1976, Med. Biol. Eng., 14:151--158), the profile of the dielectric constant was shown to be uniform across the epidermis. Based on these results, a structural model has been formulated in terms of the relaxation theory of Maxwell and Wagner for inhomogeneous dielectric materials. The impedance locus obtained from the model approximates a circular are with phase constant alpha = 0.82, which compares favorably with experimental data. At higher frequencies a constant-phase, frequency-dependent component having the same phase constant alpha is also demonstrated. It is suggested that an approximately rectangular distribution of the relaxation time over the epidermal dielectric sheath is adequate to account for the anomalous frequency characteristics of human skin impedance. PMID:7213928
High-Frequency Response and Voltage Noise in Magnetic Nanocomposites
NASA Astrophysics Data System (ADS)
Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.
We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.
High-Frequency Response and Voltage Noise in Magnetic Nanocomposites
NASA Astrophysics Data System (ADS)
Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.
2010-12-01
We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.
A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps.
Greenwood, J B; Kelly, O; Calvert, C R; Duffy, M J; King, R B; Belshaw, L; Graham, L; Alexander, J D; Williams, I D; Bryan, W A; Turcu, I C E; Cacho, C M; Springate, E
2011-04-01
In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components. © 2011 American Institute of Physics
75 MHz Ultrasound Biomicroscopy of Anterior Segment of Eye
Silverman, Ronald H.; Cannata, Jonathan; Shung, K. Kirk; Gal, Omer; Patel, Monica; Lloyd, Harriet O.; Feleppa, Ernest J.; Coleman, D. Jackson
2006-01-01
Very high frequency ultrasound (35–50 MHz) has had a significant impact upon clinical imaging of the anterior segment of the eye, offering an axial resolution as small as 30 μm. Higher frequencies, while potentially offering even finer resolution, are more affected by absorption in ocular tissues and even in the fluid coupling medium. Our aim was to develop and apply improved transducer technology utilizing frequencies beyond those routinely used for ultrasound biomicroscopy of the eye. A 75-MHz lithium niobate transducer with 2 mm aperture and 6 mm focal length was fabricated. We scanned the ciliary body and cornea of a human eye six years post-LASIK. Spectral parameter images were produced from the midband fit to local calibrated power spectra. Images were compared with those produced using a 35 MHz lithium niobate transducer of similar fractional bandwidth and focal ratio. The 75-MHz transducer was found to have a fractional bandwidth (−6 dB) of 61%. Images of the post-LASIK cornea showed higher stromal backscatter at 75 MHz than at 35 MHz. The improved lateral resolution resulted in better visualization of discontinuities in Bowman’s layer, indicative of microfolds or breaks occurring at the time of surgery. The LASIK surface was evident as a discontinuity in stromal backscatter between the stromal component of the flap and the residual stroma. The iris and ciliary body were visualized despite attenuation by the overlying sclera. Very high frequency ultrasound imaging of the anterior segment of the eye has been restricted to the 35–50 MHz band for over a decade. We showed that higher frequencies can be used in vivo to image the cornea and anterior segment. This improvement in resolution and high sensitivity to backscatter from the corneal stroma will provide benefits in clinical diagnostic imaging of the anterior segment. PMID:17147058
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Christopher, I.; Granroth, L. J.
2001-01-01
We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Zendegui, Elaina A; West, Julia A; Zandberg, Laurie J
2014-04-01
Cognitive behavioral guided self-help (CBTgsh) is an evidence-based, brief, and cost-effective treatment for eating disorders characterized by recurrent binge eating. However, more research is needed to improve patient outcomes and clarify treatment components most associated with symptom change. A main component of CBTgsh is establishing a regular pattern of eating to disrupt dietary restriction, which prior research has implicated in the maintenance of binge eating. The present study used session-by-session assessments of regular eating adherence and weekly binge totals to examine the association between binge frequency and regular eating in a sample of participants (n = 38) receiving 10 sessions of CBTgsh for recurrent binge eating. Analyses were conducted using Hierarchical Linear Modeling (HLM) to allow for data nesting, and a likelihood ratio test determined which out of three regression models best fit the data. Results demonstrated that higher regular eating adherence (3 meals and 2-3 planned snacks daily) was associated with lower weekly binge frequency in this sample, and both the magnitude and direction of the association were maintained after accounting for individual participant differences in binge and adherent day totals. Findings provide additional empirical support for the cognitive behavioral model informing CBTgsh. Possible clinical implications for treatment emphasis and sequencing in CBTgsh are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of damping on the frequency-dependent polarizabilities of doped quantum dot
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-09-01
We investigate the profiles of diagonal components of frequency-dependent linear (αxx and αyy), and first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally focuses on investigating the role of damping on the polarizability components. In view of this the dopant is considered to be propagating under damped condition which is otherwise linear inherently. The frequency-dependent polarizabilities are then analyzed by placing the doped dot to a periodically oscillating external electric field of given intensity. The damping strength, in conjunction with external oscillation frequency and confinement potentials, fabricate the polarizability components in a fascinating manner which is adorned with emergence of maximization, minimization, and saturation. The discrimination in the values of the polarizability components in x and y-directions has also been addressed in the present context.
Dietary patterns and socioeconomic position.
Mullie, P; Clarys, P; Hulens, M; Vansant, G
2010-03-01
To test a socioeconomic hypothesis on three dietary patterns and to describe the relation between three commonly used methods to determine dietary patterns, namely Healthy Eating Index, Mediterranean Diet Score and principal component analysis. Cross-sectional design in 1852 military men. Using mailed questionnaires, the food consumption frequency was recorded. The correlation coefficients between the three dietary patterns varied between 0.43 and 0.62. The highest correlation was found between Healthy Eating Index and Healthy Dietary Pattern (principal components analysis). Cohen's kappa coefficient of agreement varied between 0.10 and 0.20. After age-adjustment, education and income remained associated with the most healthy dietary pattern. Even when both socioeconomic indicators were used together in one model, higher income and education were associated with higher scores for Healthy Eating Index, Mediterranean Diet Score and Healthy Dietary Pattern. The least healthy quintiles of dietary pattern as measured by the three methods were associated with a clustering of unhealthy behaviors, that is, smoking, low physical activity, highest intake of total fat and saturated fatty acids, and low intakes of fruits and vegetables. The three dietary patterns used indicated that the most healthy patterns were associated with a higher socioeconomic position, while lower patterns were associated with several unhealthy behaviors.
Higher-order scene statistics of breast images
NASA Astrophysics Data System (ADS)
Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.
2009-02-01
Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.
Tonal frequency affects amplitude but not topography of rhesus monkey cranial EEG components.
Teichert, Tobias
2016-06-01
The rhesus monkey is an important model of human auditory function in general and auditory deficits in neuro-psychiatric diseases such as schizophrenia in particular. Several rhesus monkey studies have described homologs of clinically relevant auditory evoked potentials such as pitch-based mismatch negativity, a fronto-central negativity that can be observed when a series of regularly repeating sounds is disrupted by a sound of different tonal frequency. As a result it is well known how differences of tonal frequency are represented in rhesus monkey EEG. However, to date there is no study that systematically quantified how absolute tonal frequency itself is represented. In particular, it is not known if frequency affects rhesus monkey EEG component amplitude and topography in the same way as previously shown for humans. A better understanding of the effect of frequency may strengthen inter-species homology and will provide a more solid foundation on which to build the interpretation of frequency MMN in the rhesus monkey. Using arrays of up to 32 cranial EEG electrodes in 4 rhesus macaques we identified 8 distinct auditory evoked components including the N85, a fronto-central negativity that is the presumed homolog of the human N1. In line with human data, the amplitudes of most components including the N85 peaked around 1000 Hz and were strongly attenuated above ∼1750 Hz. Component topography, however, remained largely unaffected by frequency. This latter finding may be consistent with the known absence of certain anatomical structures in the rhesus monkey that are believed to cause the changes in topography in the human by inducing a rotation of generator orientation as a function of tonal frequency. Overall, the findings are consistent with the assumption of a homolog representation of tonal frequency in human and rhesus monkey EEG. Copyright © 2016 Elsevier B.V. All rights reserved.
Pérez Zaballos, María Teresa; Ramos de Miguel, Ángel; Pérez Plasencia, Daniel; Zaballos González, María Luisa; Ramos Macías, Ángel
2015-12-01
To evaluate 1) if air traffic controllers (ATC) perform better than non-air traffic controllers in an open-set speech-in-noise test because of their experience with radio communications, and 2) if high-frequency information (>8000 Hz) substantially improves speech-in-noise perception across populations. The control group comprised 28 normal-hearing subjects, and the target group comprised 48 ATCs aged between 19 and 55 years who were native Spanish speakers. The hearing -in-noise abilities of the two groups were characterized under two signal conditions: 1) speech tokens and white noise sampled at 44.1 kHz (unfiltered condition) and 2) speech tokens plus white noise, each passed through a 4th order Butterworth filter with 70 and 8000 Hz low and high cutoffs (filtered condition). These tests were performed at signal-to-noise ratios of +5, 0, and -5-dB SNR. The ATCs outperformed the control group in all conditions. The differences were statistically significant in all cases, and the largest difference was observed under the most difficult conditions (-5 dB SNR). Overall, scores were higher when high-frequency components were not suppressed for both groups, although statistically significant differences were not observed for the control group at 0 dB SNR. The results indicate that ATCs are more capable of identifying speech in noise. This may be due to the effect of their training. On the other hand, performance seems to decrease when the high frequency components of speech are removed, regardless of training.
Artifacts in time-resolved Kelvin probe force microscopy
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
2018-04-24
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Artifacts in time-resolved Kelvin probe force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Xiong, Li; Tian, Ge; Wang, Li; Lin, Wenhua; Chen, Xiangyan; Leung, Thomas Wai Hong; Soo, Yannie Oi Yan; Wong, Lawrence Ka Sing
2017-07-01
External counterpulsation (ECP) is a noninvasive method used to augment cerebral perfusion in ischemic stroke. However, the response of beat-to-beat heart rate variability (HRV) in patients with ischemic stroke during ECP remains unknown. Forty-eight patients with unilateral ischemic stroke at the subacute stage and 14 healthy controls were recruited. Beat-to-beat heart rate before, during, and after ECP was monitored. The frequency components of HRV were calculated using power spectral analysis. Very low frequency (VLF; <.04 Hz), low frequency (LF; .04-.15 Hz), high frequency (HF; .15-.40 Hz), total power spectral density (TP; <.40 Hz), and LF/HF ratio were calculated. In stroke patients, although there were no statistical differences in all of the HRV components, the HRV at VLF showed a trend of increase during ECP compared with baseline in the left-sided stroke patients (P = .083). After ECP, the HRV at LF and TP remained higher than baseline in the right-sided stroke patients (LF, 209.4 versus 117.9, P = .050; TP, 1275.6 versus 390.2, P = .017, respectively). Besides, the HRV at TP also increased after ECP compared with baseline in the left-sided stroke patients (563.0 versus 298.3, P = .029). Irrespective of the side of the ischemia, patients showed an increased beat-to-beat HRV after ECP. Additionally, sympathetic and parasympathetic cardiac modulations were increased after ECP in patients after right-sided subacute stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Leech, Rebecca M; Livingstone, Katherine M; Worsley, Anthony; Timperio, Anna; McNaughton, Sarah A
2016-10-01
Skipping breakfast is associated with poorer diet quality among adults, but evidence of associations for other eating patterns [e.g., eating occasion (EO), meal, or snack frequency] is equivocal. An understanding of how eating patterns are associated with diet quality is needed to inform population-level dietary recommendations. We aimed in this cross-sectional study to determine the relation between frequency of meals, snacks, and all EOs with nutrient intakes and diet quality in a representative sample of Australian adults. Dietary data for 5242 adults aged ≥19 y collected via two 24-h recalls during the 2011-2012 National Nutrition and Physical Activity Survey were analyzed. EO, meal, and snack frequency was calculated. Adherence to recommendations for healthy eating was assessed with the use of the 2013 Dietary Guidelines Index (DGI) and its subcomponents. Linear regression, adjusted for covariates and energy misreporting, was used to examine associations between eating patterns, energy-adjusted nutrient intakes, and the DGI-2013. The frequency of meals, but not of snacks, was positively associated with micronutrient intakes, overall diet quality [men: β = 5.6 (95% CI: 3.9, 7.3); women: β = 4.1 (95% CI: 2.2, 5.9); P < 0.001], and DGI-2013 component scores for cereals, lean meat and alternatives, and alcohol intake (P < 0.05). A higher frequency of all EOs, meals, and snacks was positively associated with DGI-2013 scores for food variety, fruits, and dairy foods (P < 0.05). Conversely, a higher snack frequency was associated with a lower compliance with guidelines for discretionary foods and added sugars among men (P < 0.05). These findings suggest that meal frequency is an important determinant of nutrient intakes and diet quality in Australian adults. Inconsistent associations for snack frequency suggest that the quality of snack choices is variable. More research examining the dietary profiles of eating patterns and their relations with diet quality is needed to inform the development of meal-based guidelines and messages that encourage healthy eating. © 2016 American Society for Nutrition.
Acoustic Emission Signals in Thin Plates Produced by Impact Damage
NASA Technical Reports Server (NTRS)
Prosser, William H.; Gorman, Michael R.; Humes, Donald H.
1999-01-01
Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.
Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2001-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.
Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems.
Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong
2017-10-23
The impact of high-voltage-high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between -13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers.
Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems
Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong
2017-01-01
The impact of high-voltage–high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between −13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers. PMID:29065526
High-intensity Interval Training Frequency: Cardiometabolic Effects and Quality of Life.
Stavrinou, Pinelopi S; Bogdanis, Gregory C; Giannaki, Christoforos D; Terzis, Gerasimos; Hadjicharalambous, Marios
2018-02-01
The effects of high intensity interval training (HIIT) frequency on cardiometabolic health and quality of life were examined in 35 healthy inactive adults (age: 31.7±2.6 yrs, VO 2 peak: 32.7±7.4 ml·: kg -1 ·: min -1 ). Participants were randomly assigned to a control (CON) and two training groups, which performed 10×60-s cycling at ~83% of peak power, two (HIIT-2) or three times per week (HIIT-3) for eight weeks. Compared with CON, both training regimes resulted in similar improvements in VO 2 peak (HIIT-2: 10.8%, p=0.048, HIIT-3: 13.6%, p=0.017), waist circumference (HIIT-2: -1.4 cm, p=0.048, HIIT-3: -2.4 cm, p=0.028), thigh cross-sectional area (HIIT-2: 11.4 cm 2 , p=0.001, HIIT-3: 9.3 cm 2 , p=0.001) and the physical health component of quality of life (HIIT-2: 8.4, p=0.001, HIIT-3: 12.2, p=0.001). However, HIIT-3 conferred additional health-related benefits by reducing total body and trunk fat percentage (p<0.05, compared with CON), total cholesterol and low-density lipoprotein-cholesterol (p<0.02, compared with CON) and by improving the mental component of quality of life (p=0.045, compared with CON). In conclusion, performing HIIT only twice per week is effective in promoting cardiometabolic health-related adaptations and quality of life in inactive adults. However, higher HIIT frequency is required for an effect on fat deposits, cholesterol and mental component of well-being. © Georg Thieme Verlag KG Stuttgart · New York.
The double high tide at Port Ellen: Doodson's criterion revisited
NASA Astrophysics Data System (ADS)
Byrne, Hannah A. M.; Mattias Green, J. A.; Bowers, David G.
2017-07-01
Doodson proposed a minimum criterion to predict the occurrence of double high (or double low) waters when a higher-frequency tidal harmonic is added to the semi-diurnal tide. If the phasing of the harmonic is optimal, the condition for a double high water can be written bn2/a > 1 where b is the amplitude of the higher harmonic, a is the amplitude of the semi-diurnal tide, and n is the ratio of their frequencies. Here we expand this criterion to allow for (i) a phase difference ϕ between the semi-diurnal tide and the harmonic and (ii) the fact that the double high water will disappear in the event that b/a becomes large enough for the higher harmonic to be the dominant component of the tide. This can happen, for example, at places or times where the semi-diurnal tide is very small. The revised parameter is br2/a, where r is a number generally less than n, although equal to n when ϕ = 0. The theory predicts that a double high tide will form when this parameter exceeds 1 and then disappear when it exceeds a value of order n2 and the higher harmonic becomes dominant. We test these predictions against observations at Port Ellen in the Inner Hebrides of Scotland. For most of the data set, the largest harmonic of the semi-diurnal tide is the sixth diurnal component, for which n = 3. The principal lunar and solar semi-diurnal tides are about equal at Port Ellen and so the semi-diurnal tide becomes very small twice a month at neap tides (here defined as the smallest fortnightly tidal range). A double high water forms when br2/a first exceeds a minimum value of about 1.5 as neap tides are approached and then disappears as br2/a then exceeds a second limiting value of about 10 at neap tides in agreement with the revised criterion.
Attitude control compensator for flexible spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.
NASA Astrophysics Data System (ADS)
Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.
1999-02-01
Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.
L.-H. Huang, Christopher; Fraser, James A.
2011-01-01
Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca2+ release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (GM) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces GM, whereas prolonged activity can markedly elevate GM. Although these observations implicate GM regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of GM on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including GM changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because GM modulation affects only the low-frequency membrane impedance, the GM changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of GM regulation was increased by high Cl− permeability, as in muscle endplate regions, and by increased extracellular [K+], as observed in working muscle. Thus, reduced GM at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated GM after sustained activity would inhibit these processes and thereby accentuate muscle fatigue. PMID:21670208
Determination of seasonals using wavelets in terms of noise parameters changeability
NASA Astrophysics Data System (ADS)
Klos, Anna; Bogusz, Janusz; Figurski, Mariusz
2015-04-01
The reliable velocities of GNSS-derived observations are becoming of high importance nowadays. The fact on how we determine and subtract the seasonals may all cause the time series autocorrelation and affect uncertainties of linear parameters. The periodic changes in GNSS time series are commonly assumed as the sum of annual and semi-annual changes with amplitudes and phases being constant in time and the Least-Squares Estimation (LSE) is used in general to model these sine waves. However, not only seasonals' time-changeability, but also their higher harmonics should be considered. In this research, we focused on more than 230 globally distributed IGS stations that were processed at the Military University of Technology EPN Local Analysis Centre (MUT LAC) in Bernese 5.0 software. The network was divided into 7 different sub-networks with few of overlapping stations and processed separately with newest models. Here, we propose a wavelet-based trend and seasonals determination and removal of whole frequency spectrum between Chandler and quarter-annual periods from North, East and Up components and compare it with LSE-determined values. We used a Meyer symmetric, orthogonal wavelet and assumed nine levels of decomposition. The details from 6 up to 9 were analyzed here as periodic components with frequencies between 0.3-2.5 cpy. The characteristic oscillations for each of frequency band were pointed out. The details lower than 6 summed together with detrended approximation were considered as residua. The power spectral densities (PSDs) of original and decomposed data were stacked for North, East and Up components for each of sub-networks so as to show what power was removed with each of decomposition levels. Moreover, the noises that the certain frequency band follows (in terms of spectral indices of power-law dependencies) were estimated here using a spectral method and compared for all processed sub-networks. It seems, that lowest frequencies up to 0.7 cpy are characterized by lower spectral indices in comparison to higher ones being close to white noise. Basing on the fact, that decomposition levels overlap each other, the frequency-window choice becomes a main point in spectral index estimation. Our results were compared with those obtained by Maximum Likelihood Estimation (MLE) and possible differences as well as their impact on velocity uncertainties pointed out. The results show that the spectral indices estimated in time and frequency domains differ of 0.15 in maximum. Moreover, we compared the removed power basing on wavelet decomposition levels with the one subtracted with LSE, assuming the same periodicities. In comparison to LSE, the wavelet-based approach leaves the residua being closer to white noise with lower power-law amplitudes of them, what strictly reduces velocity uncertainties. The last approximation was analyzed here as long-term trend, being the non-linear and compared with LSE-determined linear one. It seems that these two trends differ at the level of 0.3 mm/yr in the most extreme case, what makes wavelet decomposition being useful for velocity determination.
Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling
NASA Technical Reports Server (NTRS)
Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
1999-01-01
Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.
Power Amplifier Module with 734-mW Continuous Wave Output Power
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara
2010-01-01
Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.
NASA Astrophysics Data System (ADS)
Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.
2017-09-01
Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.
Celestial Reference Frames at Multiple Radio Wavelengths
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.
2012-01-01
In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).
Insight into large-scale topography on analysis of high-frequency Rayleigh waves
NASA Astrophysics Data System (ADS)
Ping, Ping; Chu, Risheng; Chong, Jiajun; Ni, Sidao; Zhang, Yu
2018-03-01
The dispersion of surface waves could be biased in regions where topography is comparable to the wavelength. We investigate the effects on high-frequency Rayleigh waves propagating in a typical massif model through numerical simulations. High-frequency Rayleigh waves have relatively higher signal-to-noise ratios (SNR) using the Q component in the LQT coordinate system, perpendicular to the local free surface in these topographic models. When sources and stations are located at different sides of the massif, the conventional dispersion image overestimates phase velocities of Rayleigh waves, as much as 25% with topographic height/width ratio (H/r) > 0.5. The dispersion perturbation is more distinctive for fundamental modes. Using a two-layer model, the thickness deviation (ΔD/D) may be significant in surface-wave inversion due to the variation of H/r and the thickness of the first layer. These phenomena cannot be ignored in surface-wave interpretations, nevertheless they are trivial for the source and stations located at the same side of the massif.
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.; Morgan, Gareth A.
2018-02-01
The variation of Shallow Radar (SHARAD) echo strength with frequency reveals material dielectric losses and polar layer properties. Loss tangents for Elysium and Amazonis Planitiae deposits are consistent with volcanic flows and sediments, while the Medusae Fossae Formation, lineated valley fill, and lobate debris aprons have low losses consistent with a major component of water ice. Mantling materials in Arcadia and Utopia Planitiae have higher losses, suggesting they are not dominated by ice over large fractions of their thickness. In Gemina Lingula, there are frequent deviations from a simple dependence of loss on depth. Within reflector packets, the brightest reflectors are often different among the frequency subbands, and there are cases of reflectors that occur in only the high- or low-frequency echoes. Many polar radar reflections must arise from multiple thin interfaces, or single deposits of appropriate thickness, that display resonant scattering behaviors. Reflector properties may be linked to climate-controlled polar dust deposition.
Influence of gravity on cat vertical vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Tomko, D. L.; Wall, C., III; Robinson, F. R.; Staab, J. P.
1988-01-01
The vertical vestibulo-ocular reflex (VOR) was recorded in cats using electro-oculography during sinusoidal angular pitch. Peak stimulus velocity was 50 deg/s over a frequency range from 0.01 to 4.0 Hz. To test the effect of gravity on the vertical VOR, the animal was pitched while sitting upright or lying on its side. Upright pitch changed the cat's orientation relative to gravity, while on-side pitch did not. The cumulative slow component position of the eye during on-side pitch was less symmetric than during upright pitch. Over the mid-frequency range (0.1 to 1.0 Hz), the average gain of the vertical VOR was 14.5 percent higher during upright pitch than during on-side pitch. At low frequencies (less than 0.05 Hz) changing head position relative to gravity raised the vertical VOR gain and kept the reflex in phase with stimulus velocity. These results indicate that gravity-sensitive mechanisms make the vertical VOR more compensatory.
Hage, Steffen R; Jiang, Tinglei; Berquist, Sean W; Feng, Jiang; Metzner, Walter
2014-07-15
One of the most efficient mechanisms to optimize signal-to-noise ratios is the Lombard effect - an involuntary rise in call amplitude due to ambient noise. It is often accompanied by changes in the spectro-temporal composition of calls. We examined the effects of broadband-filtered noise on the spectro-temporal composition of horseshoe bat echolocation calls, which consist of a constant-frequency component and initial and terminal frequency-modulated components. We found that the frequency-modulated components became larger for almost all noise conditions, whereas the bandwidth of the constant-frequency component increased only when broadband-filtered noise was centered on or above the calls' dominant or fundamental frequency. This indicates that ambient noise independently modifies the associated acoustic parameters of the Lombard effect, such as spectro-temporal features, and could significantly affect the bat's ability to detect and locate targets. Our findings may be of significance in evaluating the impact of environmental noise on echolocation behavior in bats. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.
2018-05-01
Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.
Vladimirova, Irina A; Lankin, Yuri N; Philyppov, Igor B; Sushiy, Lyudmyla F; Shuba, Yaroslav M
2014-01-01
Bipolar electrosurgical tissue welding uses forceps-like electrodes for grasping the tissues and delivering high-frequency electric current (HFEC) to produce local heat, desiccation, and protein denaturation, resulting in the fusion of the contacting tissues. Although in this technique no electric current is flowing through the whole body to cause electric injury, depending on the frequency of applied energy, it may produce local excitation of intramural nerves, which can propagate beyond the surgical site potentially causing harmful effects. The effects of varying frequency of HFEC on tissue excitability in bipolar electrosurgical modality were studied in vitro using electric field stimulation (EFS) method on multicellular smooth muscle strips of rat vas deferens. Contractile response to 5-s-long sine wave EFS train was taken as the measure of excitation of intramural nerves. EFS-induced contraction consisted of phasic and tonic components. The amplitude of both components decreased with increasing frequency, with tonic component disappearing at about 10 kHz and phasic component at about 50 kHz. Because components of EFS-induced contraction depend on different neurotransmitters, this indicates that various neurotransmitter systems are characterized by distinct frequency dependence, but above 50 kHz they all become inactivated. Bipolar electrosurgical sealing of porcine gut showed no difference in the structure of seal area at HFEC of 67 and 533 kHz. EFS frequency of 50 kHz represents the upper limit for excitation. HFEC above 50 kHz is safe to use for bipolar electrosurgical tissue welding without concerns of excitation propagating beyond the surgical site. Copyright © 2014 Elsevier Inc. All rights reserved.
Image Fusion of CT and MR with Sparse Representation in NSST Domain
Qiu, Chenhui; Wang, Yuanyuan; Zhang, Huan
2017-01-01
Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST) domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR-) based approach. And the dynamic group sparsity recovery (DGSR) algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation. PMID:29250134
Image Fusion of CT and MR with Sparse Representation in NSST Domain.
Qiu, Chenhui; Wang, Yuanyuan; Zhang, Huan; Xia, Shunren
2017-01-01
Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST) domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR-) based approach. And the dynamic group sparsity recovery (DGSR) algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation.
Metal-backed versus all-polyethylene tibial components in primary total knee arthroplasty
2011-01-01
Background and purpose The choice of either all-polyethylene (AP) tibial components or metal-backed (MB) tibial components in total knee arthroplasty (TKA) remains controversial. We therefore performed a meta-analysis and systematic review of randomized controlled trials that have evaluated MB and AP tibial components in primary TKA. Methods The search strategy included a computerized literature search (Medline, EMBASE, Scopus, and the Cochrane Central Register of Controlled Trials) and a manual search of major orthopedic journals. A meta-analysis and systematic review of randomized or quasi-randomized trials that compared the performance of tibial components in primary TKA was performed using a fixed or random effects model. We assessed the methodological quality of studies using Detsky quality scale. Results 9 randomized controlled trials (RCTs) published between 2000 and 2009 met the inclusion quality standards for the systematic review. The mean standardized Detsky score was 14 (SD 3). We found that the frequency of radiolucent lines in the MB group was significantly higher than that in the AP group. There were no statistically significant differences between the MB and AP tibial components regarding component positioning, knee score, knee range of motion, quality of life, and postoperative complications. Interpretation Based on evidence obtained from this study, the AP tibial component was comparable with or better than the MB tibial component in TKA. However, high-quality RCTs are required to validate the results. PMID:21895503
Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors
NASA Technical Reports Server (NTRS)
Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.
2011-01-01
Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.
NASA Astrophysics Data System (ADS)
Cruz, Wellington; Szpigel, Sérgio; Kaufmann, Pierre; Raulin, Jean-Pierre; Klopf, Michael
2017-10-01
Recent observations of solar flares at high-frequencies have provided evidence of a new spectral component with fluxes increasing with frequency in the sub-THz to THz range. This new component occurs simultaneously but is separated from the well-known microwave spectral component that maximizes at frequencies of a few to tens of GHz. The aim of this work is to study in detail a mechanism recently suggested to describe the double-spectrum feature observed in solar flares based on the physical process known as microbunching instability, which occurs with high-energy electron beams in laboratory accelerators.
Miyashita, Atsushi; Kizaki, Hayato; Sekimizu, Kazuhisa; Kaito, Chikara
2016-01-01
The relationship between body size and vocalization parameters has been studied in many animal species. In insect species, however, the effect of body size on song frequency has remained unclear. Here we analyzed the effect of body size on the frequency spectra of mating songs produced by the two-spotted cricket, Gryllus bimaculatus. We recorded the calling songs and courtship songs of male crickets of different body sizes. The calling songs contained a frequency component that peaked at 5.7 kHz. On the other hand, courtship songs contained two frequency components that peaked at 5.8 and 14.7 kHz. The dominant frequency of each component in both the calling and courtship songs was constant regardless of body size. The size of the harp and mirror regions in the cricket forewings, which are the acoustic sources of the songs, correlated positively with body size. These findings suggest that the frequency contents of both the calling and courtship songs of the cricket are unaffected by whole body, harp, or mirror size.
NASA Astrophysics Data System (ADS)
Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.
2018-02-01
Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is much better than CFT frequency band adjustment filter.
Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array
NASA Astrophysics Data System (ADS)
Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.
2015-12-01
The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.
Boore, David M.; Skarlatoudis, A.A.; Margaris, B.N.; Costas, B.P.; Ventouzi, C.
2009-01-01
An M 6.7 intermediate-depth (66 km), in-slab earthquake occurring near the island of Kythera in Greece on 8 January 2006 was well recorded on networks of stations equipped with acceleration sensors and with broadband velocity sensors. All data were recorded digitally using recording instruments with resolutions ranging from almost 11 to 24 bits. We use data from these networks to study the distance dependence of the horizontal-component Fourier acceleration spectra (FAS) and horizontal-component pseudoabsolute response spectral acceleration (PSA). For purposes of simulating motions in the future, we parameterize the distance decay using several forms of the geometrical-spreading function, for each of which we derive Q as a function of frequency. By extrapolating the distance decay back to 1 km, we obtain a reference spectrum that can be used in future simulations. This spectrum requires a more complicated spectral shape than the classic single-corner-frequency model; in particular, there appears to be an enhancement of motion around 0.2-0.3 Hz that may be due to the radiation of a 3-5 sec pulse from the source. We infer a ??0 value of about 0.055 sec for rock stations and a stress parameter in the range of 400-600 bars. We also find distinctive differences in the site response of stations on soft soil and soil; both the FAS and the 5% damped PSA amplifications have similar peak amplitudes (about 2 and 4 for soil and soft-soil sites, respectively, relative to the rock sites) at similar frequencies (between about 0.4 and 2.0 Hz, with the soft-soil amplifications peaking at somewhat lower frequencies than the soil amplifications). One of the most distinctive features of the data is the clear difference in the motions for along-arc and back-arc stations, with the former being significantly higher than the latter over a broad range of frequencies at distances beyond about 250 km. The motions from the Kythera earthquake are roughly comparable to those from intermediate-depth earthquakes elsewhere, but they appear to be significantly higher than those from recordings of shallow earthquakes in Greece of comparable magnitude and hypocentral distance.
Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge
NASA Astrophysics Data System (ADS)
Zavadsky, A.; Shemer, L.
2017-05-01
Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.
NASA Astrophysics Data System (ADS)
Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang
2014-08-01
A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.
Gear fault diagnosis based on the structured sparsity time-frequency analysis
NASA Astrophysics Data System (ADS)
Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong
2018-03-01
Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.
Separation of musical instruments based on amplitude and frequency comodulation
NASA Astrophysics Data System (ADS)
Jacobson, Barry D.; Cauwenberghs, Gert; Quatieri, Thomas F.
2002-05-01
In previous work, amplitude comodulation was investigated as a basis for monaural source separation. Amplitude comodulation refers to similarities in amplitude envelopes of individual spectral components emitted by particular types of sources. In many types of musical instruments, amplitudes of all resonant modes rise/fall, and start/stop together during the course of normal playing. We found that under certain well-defined conditions, a mixture of constant frequency, amplitude comodulated sources can unambiguously be decomposed into its constituents on the basis of these similarities. In this work, system performance was improved by relaxing the constant frequency requirement. String instruments, for example, which are normally played with vibrato, are both amplitude and frequency comodulated sources, and could not be properly tracked under the constant frequency assumption upon which our original algorithm was based. Frequency comodulation refers to similarities in frequency variations of individual harmonics emitted by these types of sources. The analytical difficulty is in defining a representation of the source which properly tracks frequency varying components. A simple, fixed filter bank can only track an individual spectral component for the duration in which it is within the passband of one of the filters. Alternatives are therefore explored which are amenable to real-time implementation.
Pattern masking: the importance of remote spatial frequencies and their phase alignment.
Huang, Pi-Chun; Maehara, Goro; May, Keith A; Hess, Robert F
2012-02-16
To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.46 cpd) and the target was added in phase with the fundamental frequency component of the mask. Under monocular viewing conditions, the strength of masking depends on phase relationships among mask spatial frequencies far removed from that of the target, at least 3 times the target frequency, only when there are common target and mask spatial frequencies. Under dichoptic viewing conditions, S and Q masks produced similar masking to each other and the phase-scrambled masks (Qp and Mp) produced less masking. The results suggest that pattern masking is spatial frequency broadband in nature and sensitive to the phase alignments of spatial components.
2012-01-01
The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1–4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz. PMID:22402654
Yakushin, Sergei B
2012-06-01
The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.
NASA Astrophysics Data System (ADS)
Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain
2011-05-01
Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.
Scialla, Julia J.; Asplin, John; Dobre, Mirela; Chang, Alex; Lash, James; Hsu, Chi-yuan; Kallem, Radhakrishna R.; Hamm, L. Lee; Feldman, Harold I.; Chen, Jing; Appel, Lawrence; Anderson, Cheryl A. M.; Wolf, Myles
2017-01-01
Higher diet-dependent nonvolatile acid load is associated with faster chronic kidney disease (CKD) progression, but most studies have used estimated acid load or measured only components of the gold-standard, net acid excretion (NAE). Here we measured NAE as the sum of urine ammonium and titratable acidity in 24 hour urines from a random subset of 980 participants in the Chronic Renal Insufficiency Cohort (CRIC) Study. In multivariable models accounting for demographics, comorbidity and kidney function, higher NAE was significantly associated with lower serum bicarbonate (0.17 mEq/L lower serum bicarbonate per 10 mEq/day higher NAE), consistent with a larger acid load. Over a median of 6 years follow-up, higher NAE was independently associated with a significantly lower risk of the composite of end stage renal disease or halving of estimated glomerular filtration rate among diabetics (hazard ratio 0.88 per 10 mEq/day higher NAE), but not those without diabetes (hazard ratio 1.04 per 10 mEq/day higher NAE). For comparison, we estimated nonvolatile acid load as net endogenous acid production using self-reported food frequency questionnaires from 2,848 patients and dietary urine biomarkers from 3,385 patients. Higher net endogenous acid production based on biomarkers (urea nitrogen and potassium) was modestly associated with faster CKD progression consistent with prior reports, but only among those without diabetes. Results from the food frequency questionnaires were not associated with CKD progression in any group. Thus, disparate results obtained from analyses of nonvolatile acid load directly measured as NAE and estimated from diet, suggests a novel hypothesis, that the risk of CKD progression related to low NAE, or acid load, may be due to diet-independent changes in acid production in diabetes. PMID:27914710
Application of Time-Frequency Representations To Non-Stationary Radar Cross Section
2009-03-01
The three- dimensional plot produced by a TFR allows one to determine which spectral components of a signal vary with time [25... a range bin ( of width cT 2 ) from the stepped frequency waveform. 2. Cancel the clutter (stationary components) by zeroing out points associated with ...generating an infinite number of bilinear Time Frequency distributions based on a generalized equation and a change- able
NASA Astrophysics Data System (ADS)
Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang
2018-06-01
Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.
Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P
2004-01-01
The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.
Tunable Microwave Components for Ku- and K-Band Satellite Communications
NASA Technical Reports Server (NTRS)
Miranada, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Subramanyam, G.
1998-01-01
The use of conductor/ferroelectric/dielectric thin film multilayer structures for frequency and phase agile components at frequencies at and above the Ku-band will be discussed. Among these components are edge coupled filters, microstripline ring resonators, and phase shifters. These structures were implemented using SrTiO3 (STO) ferroelectric thin films, with gold or YBa2Cu3O7-d (YBCO) high temperature superconducting (HTS) microstrip fines deposited by laser ablation on LaAlO3 (LAO) substrates. The performance of these structures in terms of tunability, operating temperature, frequency, and dc bias will be presented. Because of their small size, light weight, and low loss, these tunable microwave components are being studied very intensely at NASA as well as the commercial communication industry. An assessment of the progress made so far, and the issues yet to be solved for the successful integration of these components into the aforementioned communication systems will be presented.
The State-of-Play of Anomalous Microwave Emission (AME) research
NASA Astrophysics Data System (ADS)
Dickinson, Clive; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E. S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B. T.; Génova-Santos, R.; Harper, S. E.; Hensley, B.; Hill-Valler, J.; Hoang, Thiem; Israel, F. P.; Jew, L.; Lazarian, A.; Leahy, J. P.; Leech, J.; López-Caraballo, C. H.; McDonald, I.; Murphy, E. J.; Onaka, T.; Paladini, R.; Peel, M. W.; Perrott, Y.; Poidevin, F.; Readhead, A. C. S.; Rubiño-Martín, J.-A.; Taylor, A. C.; Tibbs, C. T.; Todorović, M.; Vidal, Matias
2018-02-01
Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈ 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.
A phenomenological pulsar model
NASA Technical Reports Server (NTRS)
Michel, F. C.
1978-01-01
Particle injection energies and rates previously calculated for the stellar wind generation by rotating magnetized neutron stars are adopted. It is assumed that the ambient space-charge density being emitted to form this wind is bunched. These considerations immediately place the coherent radio frequency luminosity from such bunches near 10 to the 28th erg/s for typical pulsar parameters. A comparable amount of incoherent radiation is emitted for typical (1 second) pulsars. For very rapid pulsars, however, the latter component grows more rapidly than the available energy sources. The comparatively low radio luminosity of the Crab and Vela pulsars is attributed to both components being limited in the same ratio. The incoherent radiation essentially has a synchotron spectrum and extends to gamma-ray energies; consequently the small part of the total luminosity that is at optical wavelengths is unobservable. Assuming full coherence at all wavelengths short of a critical length gives a spectral index for the flux density of -8/3 at higher frequencies. The finite energy available from the injected particles would force the spectrum to roll over below about 100 MHz, although intrinsic morphological factors probably enter for any specific pulsar as well.
Gigantic jets between a thundercloud and the ionosphere.
Su, H T; Hsu, R R; Chen, A B; Wang, Y C; Hsiao, W S; Lai, W C; Lee, L C; Sato, M; Fukunishi, H
2003-06-26
Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.
Metspalu, Mait; Romero, Irene Gallego; Yunusbayev, Bayazit; Chaubey, Gyaneshwer; Mallick, Chandana Basu; Hudjashov, Georgi; Nelis, Mari; Mägi, Reedik; Metspalu, Ene; Remm, Maido; Pitchappan, Ramasamy; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Kivisild, Toomas
2011-12-09
South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, B. M. Farid
Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter wavelength has been reduced from 14.86mm to 4.7mm at 2GHz. DC current which is the most convenient and available tuning parameter in a practical circuit board has been used, the developed SWS can function as quarter wave transmission line from 2GHz to 1.80GHz (i.e. 10%). Lead Zirconium Titanate (PZT) is grown and patterned on top of the section with standard sol-gel method to increase capacitance value. The inter digit capacitor type structure along with PZT thin film has been adopted and results showed capacitance value increment by 36%. An electric field between signal and ground has been applied to change the polarization of the thin film which resulted in a tuning of center frequency by 15% (1.75GHz to 2GHz). In addition, a novel approach has been implemented by integrating both the ferromagnetic and the ferroelectric thin films simultaneously to achieve higher slow wave effect, wider tuning range and smaller variation in Characteristics Impedance. The size of the final structure for a quarter wavelengths has been reduced from 14.86mm to 3.98mm while the center frequency has been tuned from 2GHz to 1.5GHz (i.e. 25%). Tunable RF applications of the ferro-magnetic thin films are also demonstrated as a DC current band pass filter, tunable noise suppressor and meander line inductor. A well designed frequency tunable band pass filter (BPF) is implemented at 4GHz with patterned Permalloy. The pass band frequency of a band pass filter has been tuned from 4GHz to 4.02GHz by applying a DC current. The suppression frequency of the developed noise suppressor is tuned from 4.8GHz to 6GHz and 4GHz to 6GHz by changing the aspect ratio of the Py bars and the gap in between them. Moreover, a novel way of tuning the stop band frequency of the noise suppressor by using an external direct current changed the suppression frequency from 6GHz to 4.3GHz. A pass band loss of 1.5%, less than 2° transmitted signal phase distortion, and 3 dB extra return loss of the designed noise suppressor showed the promise the noise suppressors. The increase in the number of turns of a meander line inductor has increased the inductance density from 2565nH/m to 3396nH/m while application of the patterned Py has increased the inductance density from 2565nH/m to 3060nH/m. The tuning of the meander line inductor has been performed by applying DC current until the FMR frequency 4.51GHz.
A new method of hybrid frequency hopping signals selection and blind parameter estimation
NASA Astrophysics Data System (ADS)
Zeng, Xiaoyu; Jiao, Wencheng; Sun, Huixian
2018-04-01
Frequency hopping communication is widely used in military communications at home and abroad. In the case of single-channel reception, it is scarce to process multiple frequency hopping signals both effectively and simultaneously. A method of hybrid FH signals selection and blind parameter estimation is proposed. The method makes use of spectral transformation, spectral entropy calculation and PRI transformation basic theory to realize the sorting and parameter estimation of the components in the hybrid frequency hopping signal. The simulation results show that this method can correctly classify the frequency hopping component signal, and the estimated error of the frequency hopping period is about 5% and the estimated error of the frequency hopping frequency is less than 1% when the SNR is 10dB. However, the performance of this method deteriorates seriously at low SNR.
Physical constraints of cultural evolution of dialects in killer whales.
Filatova, Olga A; Samarra, Filipa I P; Barrett-Lennard, Lance G; Miller, Patrick J O; Ford, John K B; Yurk, Harald; Matkin, Craig O; Hoyt, Erich
2016-11-01
Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4 kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.
Narasimhan, S; Chiel, H J; Bhunia, S
2011-04-01
Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.
Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG
NASA Astrophysics Data System (ADS)
Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar
2018-03-01
The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.
A feasibility work on the applications of MRE to automotive components
NASA Astrophysics Data System (ADS)
Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.
2018-03-01
A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.
Impact of calibration errors on CMB component separation using FastICA and ILC
NASA Astrophysics Data System (ADS)
Dick, Jason; Remazeilles, Mathieu; Delabrouille, Jacques
2010-01-01
The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic cosmic microwave background (CMB) radiation, as performed by the Wilkinson Microwave Anisotropy Probe satellite and the more recent Planck mission, launched on 2009 May 14 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the CMB from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components) and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors (less than 1 per cent) with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise ratio regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.
Task-specific recruitment of motor units for vibration damping.
Wakeling, James M; Liphardt, Anna-Maria
2006-01-01
Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.
Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows
NASA Astrophysics Data System (ADS)
Cadel, Daniel; Lowe, K. Todd
2015-11-01
Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.
Stern, Ian P.
2014-01-01
We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less
Digital Low Level RF Systems for Fermilab Main Ring and Tevatron
NASA Astrophysics Data System (ADS)
Chase, B.; Barnes, B.; Meisner, K.
1997-05-01
At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.
Carrigan, Charles R [Tracy, CA
2011-08-02
A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.
[The noncoherent components of evoked brain activity].
Kovalev, V P; Novototskiĭ-Vlasov, V Iu
1998-01-01
Poststimulus spectral EEG changes and their correlation with evoked potential (EP) were analyzed. The non-stationary components of the brain evoked activity were revealed in 32 volunteers during simple motor reaction and choice reaction to visual stimuli. This nonstationary activity was manifested in poststimulus changes in the mean wave half-period duration (MWHPD) and mean wave half-period power of the delta- and beta-frequency oscillations computed in the EEG realizations after the EP subtraction. The latencies of high-frequency EP components fell into the intervals of the MWHPD decrease and increase in the power of beta-oscillations, and the latencies of low-frequency EP components coincided with the intervals of the MWHPD increase and decrease in the power of delta and beta-oscillations, which pointed to correlation of these changes with the EP.
Novel power MOSFET-based expander for high frequency ultrasound systems.
Choi, Hojong; Shung, K Kirk
2014-01-01
The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel Power MOSFET-Based Expander for High Frequency Ultrasound Systems
Choi, Hojong; Shung, K. Kirk
2014-01-01
The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4 % and 240 % compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. PMID:23835308
Ketamine: differential neurophysiological dynamics in functional networks in the rat brain
Ahnaou, A; Huysmans, H; Biermans, R; Manyakov, N V; Drinkenburg, W H I M
2017-01-01
Recently, the N-methyl-d-aspartate-receptor (NMDAR) antagonist ketamine has emerged as a fast-onset mechanism to achieve antidepressant activity, whereas its psychomimetic, dissociative and amnestic effects have been well documented to pharmacologically model schizophrenia features in rodents. Sleep–wake architecture, neuronal oscillations and network connectivity are key mechanisms supporting brain plasticity and cognition, which are disrupted in mood disorders such as depression and schizophrenia. In rats, we investigated the dynamic effects of acute and chronic subcutaneous administration of ketamine (2.5, 5 and 10 mg kg−1) on sleep–wake cycle, multichannels network interactions assessed by coherence and phase–amplitude cross-frequency coupling, locomotor activity (LMA), cognitive information processing as reflected by the mismatch negativity-like (MMN) component of event-related brain potentials (ERPs). Acute ketamine elicited a short, lasting inhibition of rapid eye movement (REM) sleep, increased coherence in higher gamma frequency oscillations independent of LMA, altered theta-gamma phase–amplitude coupling, increased MMN peak-amplitude response and evoked higher gamma oscillations. In contrast, chronic ketamine reduced large-scale communication among cortical regions by decreasing oscillations and coherent activity in the gamma frequency range, shifted networks activity towards slow alpha rhythm, decreased MMN peak response and enhanced aberrant higher gamma neuronal network oscillations. Altogether, our data show that acute and chronic ketamine elicited differential changes in network connectivity, ERPs and event-related oscillations (EROs), supporting possible underlying alterations in NMDAR–GABAergic signaling. The findings underscore the relevance of intermittent dosing of ketamine to accurately maintain the functional integrity of neuronal networks for long-term plastic changes and therapeutic effect. PMID:28926001
Launch vehicle payload adapter design with vibration isolation features
NASA Astrophysics Data System (ADS)
Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.
2005-05-01
Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is used throughout to qualify the design for vibration isolation performance as well as confirm its static and dynamic strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piner, B. Glenn; Pant, Niraj; Edwards, Philip G., E-mail: gpiner@whittier.ed, E-mail: Philip.Edwards@csiro.a
We present 23 new VLBA images of the six established TeV blazars Markarian 421, Markarian 501, H 1426+428, 1ES 1959+650, PKS 2155-304, and 1ES 2344+514, obtained from 2005 to 2009. Most images were obtained at 43 GHz (7 mm), and they reveal the parsec-scale structures of three of these sources (1ES 1959+650, PKS 2155-304, and 1ES 2344+514) at factors of 2-3 higher resolution than has previously been attained. These images reveal new morphological details, including a high degree of jet bending in the inner milliarcsecond in PKS 2155-304. This establishes strong apparent jet bending on VLBI scales as a commonmore » property of TeV blazars, implying viewing angles close to the line of sight. Most of the remaining images map the linear polarization structures at a lower frequency of 22 GHz (1 cm). We discuss the transverse structures of the jets as revealed by the high-frequency and polarimetric imaging. The transverse structures include significant limb brightening in Mrk 421, and 'spine-sheath' structures in the electric vector position angle and fractional polarization distributions in Mrk 421, Mrk 501, and 1ES 1959+650. We use new measured component positions to update measured apparent jet speeds, in many cases significantly reducing the statistical error over previously published results. With the increased resolution at 43 GHz, we detect new components within 0.1-0.2 mas of the core in most of these sources. No motion is apparent in these new components over the time span of our observations, and we place upper limits on the apparent speeds of the components near the core of <2c. From those limits, we conclude that {Gamma}{sub 2} < ({Gamma}{sub 1}){sup 1/2} at {approx}10{sup 5} Schwarzschild radii, where {Gamma}{sub 1} and {Gamma}{sub 2} are the bulk Lorentz factors in the TeV emitting and 43 GHz emitting regions, respectively, assuming that their velocity vectors are aligned.« less
NASA Astrophysics Data System (ADS)
Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.
2002-11-01
A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.
Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu
2013-11-15
A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelfmore » components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.« less
Evaluation of a multi-Kw, high frequency transformer for space applications
NASA Astrophysics Data System (ADS)
Roth, Mary Ellen
1994-08-01
Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.
Evaluation of a Multi-kw, High Frequency Transformer for Space Applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1994-01-01
Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.
Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations
NASA Astrophysics Data System (ADS)
Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.
2017-12-01
Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.
On the Harmonic Coupling of Components in Pairs of IIIb-III Bursts at Decameter Wavelengths
NASA Astrophysics Data System (ADS)
Brazhenko, A. I.; Melnik, V. N.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.; Panchenko, M.
2015-06-01
The properties of IIIb-III pairs observed by the URAN-2 radioThe properties of IIIb-III pairs observed by the URAN-2 radiotelescope at frequencies 16-32 MHz are analyzed. Observations of these bursts were hold in April, June and September 2011. Durations, frequency drift rates, simultaneous frequency ratio of pairs components and their polarizations are analyzed. Pro and contra of IIIb-III harmonic connection are discussed.
Wall, Clare R.; Gammon, Cheryl S.; Bandara, Dinusha K.; Grant, Cameron C.; Atatoa Carr, Polly E.; Morton, Susan M. B.
2016-01-01
Exploration of dietary pattern associations within a multi-ethnic society context has been limited. We aimed to describe dietary patterns of 5664 pregnant women from the Growing Up in New Zealand study, and investigate associations between these patterns and maternal socio-demographic, place of birth, health and lifestyle factors. Participants completed a food frequency questionnaire prior to the birth of their child. Principal components analysis was used to extract dietary patterns and multivariable analyses used to determine associations. Four dietary components were extracted. Higher scores on, ‘Junk’ and ‘Traditional/White bread’, were associated with decreasing age, lower educational levels, being of Pacific or Māori ethnicity and smoking. Higher scores on, ‘Health conscious’ and ‘Fusion/Protein’, were associated with increasing age, better self-rated health, lower pre-pregnancy body mass index (BMI) and not smoking. Higher scores on ‘Junk’ and ‘Health conscious’ were associated with being born in New Zealand (NZ), whereas higher scores on ‘Fusion/Protein’ was associated with being born outside NZ and being of non-European ethnicity, particularly Asian. High scores on the ‘Health conscious’ dietary pattern showed the highest odds of adherence to the pregnancy dietary guidelines. In this cohort of pregnant women different dietary patterns were associated with migration, ethnicity, socio-demographic characteristics, health behaviors and adherence to dietary guidelines. PMID:27213438
Fuentes, Macarena; Pulgar, Iván; Gallo, Carla; Bortolini, María-Cátira; Canizales-Quinteros, Samuel; Bedoya, Gabriel; González-José, Rolando; Ruiz-Linares, Andrés; Rothhammer, Francisco
2014-03-01
The geographical distribution of genes plays a key role in genetic epidemiology. The Chilean population has three major stem groups (Native American, European and African). To estimate the regional rate of American, European and African admixture of the Chilean population. Forty single nucleotide polymorphisms (SNP´s) which exhibit substantially different frequencies between Amerindian populations (ancestry-informative markers or AIM´s), were genotyped in a sample of 923 Chilean participants to estimate individual genetic ancestry. The American, European and African individual average admixture estimates for the 15 Chilean Regions were relatively homogeneous and not statistically different. However, higher American components were found in northern and southern Chile and higher European components were found in central Chile. A negative correlation between African admixture and latitude was observed. On the average, American and European genetic contributions were similar and significantly higher than the African contribution. Weighted mean American, European and African genetic contributions of 44.34% ± 3 9%, 51.85% ± 5.44% and 3.81% ± 0.45%, were estimated. Fifty two percent of subjects harbor African genes. Individuals with Aymara and Mapuche surnames have an American admixture of 58.64% and 68.33%, respectively. Half of the Chilean population harbors African genes. Participants with Aymara and Mapuche surnames had a higher American genetic contribution than the general Chilean population. These results confirm the usefulness of surnames as a first approximation to determine genetic ancestry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume, E-mail: david.martinez@uib.es
2017-03-01
The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid modelmore » with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.« less
Lovinskaya, A V; Kolumbayeva, S Zh; Abilev, S K; Kolomiets, O L
2016-01-01
There was performed an assessment of genotoxic effects of rocket fuel component--unsymmetrical dimethylhydrazine (UDMH, heptyl)--on forming germ cells of male mice. Immunocytochemically there was studied the structure of meiotic nuclei at different times after the intraperitoneal administration of UDMH to male mice. There were revealed following types of disturbances of the structure of synaptonemal complexes (SCs) of meiotic chromosomes: single and multiple fragments of SCs associations of autosomes with a sex bivalent, atypical structure of the SCs with a frequency higher than the reference level. In addition, there were found the premature desinapsis of sex bivalents, the disorder offormation of the genital corpuscle and ring SCs. Established disorders in SCs of spermatocytes, analyzed at 38th day after the 10-days intoxication of animal by the component of rocket fuel, attest to the risk of permanent persistence of chromosomal abnormalities occurring in the pool of stem cells.
Revised spectroscopic parameters of SH+ from ALMA★ and IRAM 30m★★ observations★★★
Müller, Holger S. P.; Goicoechea, Javier R.; Cernicharo, José; Agúndez, Marcelino; Pety, Jérôme; Cuadrado, Sara; Gerin, Maryvonne; Dumas, Gaëlle; Chapillon, Edwige
2015-01-01
Hydrides represent the first steps of interstellar chemistry. Sulfanylium (SH+), in particular, is a key tracer of energetic processes. We used ALMA and the IRAM 30 m telescope to search for the lowest frequency rotational lines of SH+ toward the Orion Bar, the prototypical photo-dissociation region illuminated by a strong UV radiation field. On the basis of previous Herschel/HIFI observations of SH+, we expected to detect emission of the two SH+ hyperfine structure (HFS) components of the NJ = 10–01 fine structure (FS) component near 346 GHz. While we did not observe any lines at the frequencies predicted from laboratory data, we detected two emission lines, each ~15 MHz above the SH+ predictions and with relative intensities and HFS splitting expected for SH+. The rest frequencies of the two newly detected lines are more compatible with the remainder of the SH+ laboratory data than the single line measured in the laboratory near 346 GHz and previously attributed to SH+. Therefore, we assign these new features to the two SH+ HFS components of the NJ = 10–01 FS component and re-determine its spectroscopic parameters, which will be useful for future observations of SH+, in particular if its lowest frequency FS components are studied. Our observations demonstrate the suitability of these lines for SH+ searches at frequencies easily accessible from the ground. PMID:26525172
Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2017-12-01
Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.
Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran
2017-01-01
This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate. PMID:28524078
Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran
2017-05-18
This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.
Active control of turbulent boundary layer sound transmission into a vehicle interior
NASA Astrophysics Data System (ADS)
Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.
2016-09-01
In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.
Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.
Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo
2011-06-01
The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.
Analysis of sharpness increase by image noise
NASA Astrophysics Data System (ADS)
Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki
2009-02-01
Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.
Effects of long-term exercise training on autonomic control in myocardial infarction patients.
Martinez, Daniel G; Nicolau, José C; Lage, Rony L; Toschi-Dias, Edgar; de Matos, Luciana D N J; Alves, Maria Janieire N N; Trombetta, Ivani C; Dias da Silva, Valdo J; Middlekauff, Holly R; Negrão, Carlos E; Rondon, Maria U P B
2011-12-01
Autonomic dysfunction, including baroreceptor attenuation and sympathetic activation, has been reported in patients with myocardial infarction (MI) and has been associated with increased mortality. We tested the hypotheses that exercise training (ET) in post-MI patients would normalize arterial baroreflex sensitivity (BRS) and muscle sympathetic nerve activity (MSNA), and long-term ET would maintain the benefits in BRS and MSNA. Twenty-eight patients after 1 month of uncomplicated MI were randomly assigned to 2 groups, ET (MI-ET) and untrained. A normal control group was also studied. ET consisted of three 60-minute exercise sessions per week for 6 months. We evaluated MSNA (microneurography), blood pressure (automatic oscillometric method), heart rate (ECG), and spectral analysis of RR interval, systolic arterial pressure (SAP), and MSNA. Baroreflex gain of SAP-RR interval and SAP-MSNA were calculated using the α-index. At 3 to 5 days and 1 month after MI, MSNA and low-frequency SAP were significantly higher and BRS significantly lower in MI patients when compared with the normal control group. ET significantly decreased MSNA (bursts per 100 heartbeats) and the low-frequency component of SAP and significantly increased the low-frequency component of MSNA and BRS of the RR interval and MSNA. These changes were so marked that the differences between patients with MI and the normal control group were no longer observed after ET. MSNA and BRS in the MI-untrained group did not change from baseline over the same time period. ET normalizes BRS, low-frequency SAP, and MSNA in patients with MI. These improvements in autonomic control are maintained by long-term ET. These findings highlight the clinical importance of this nonpharmacological therapy based on ET in the long-term treatment of patients with MI.
NASA Astrophysics Data System (ADS)
Kontorovich, V. M.; Trofymenko, S. V.
2017-12-01
A new mechanism of radiation emission in the polar gap of a pulsar is discussed. It is based on the curvature radiation which is emitted by positrons moving towards the surface of neutron star along field lines of the inclined magnetic field and reflects from the surface. This mechanism explains the mystery of the interpulse shift and appearance of additional components in the emission of Crab pulsar at high frequencies discovered by Moffett and Hankins twenty years ago. We discuss coherence, energy flux and spectrum of the reflected radiation, appearance and disappearance of the interpulse position shift with the frequency increase. It is also possible that a nonlinear reflection (stimulated scattering) from the star surface is observed in the form of HF components. The frequency drift of these components, discovered by Hankins, Jones and Eilek, is discussed. The nonlinear reflection is associated with “Wood’s anomaly” at the diffracted waves grazing along the star surface. Two components can arise due to slow and fast waves which are present in the magnetospheric plasma. The possible scheme of their appearance due to birefringence at the reflection is also proposed.
Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John
2015-06-01
In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.
Statistically generated weighted curve fit of residual functions for modal analysis of structures
NASA Technical Reports Server (NTRS)
Bookout, P. S.
1995-01-01
A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.
Dienes, Zoltan; Hutton, Sam
2013-02-01
According to the cold control theory of hypnosis (Dienes and Perner, 2007), hypnotic response occurs because of inaccurate higher order thoughts of intending. The dorsolateral prefrontal cortex (DLPFC) is a region likely involved in constructing accurate higher order thoughts. Thus, disrupting DLPFC with low frequency repetitive transcranial magnetic stimulation (rTMS) should make it harder to be aware of intending to perform an action. That is, it should be easier to respond to a hypnotic suggestion. Twenty-four medium hypnotisable subjects received low frequency rTMS to the left DLPFC and to a control site, the vertex, in counterbalanced order. The hypnotist was blind to which site had been stimulated. Subjects rated how strongly they expected to respond to each suggestion, and gave ratings on a 0-5 scale of the extent to which they experienced the response, for four suggestions (magnetic hands, arm levitation, rigid arm and taste hallucination). The experimenter also rated behavioural response. Low frequency rTMS to the DLPFC rather than vertex increased the degree of combined behavioural and subjective response. Further, subjects did not differ in their expectancy that they would respond in the two conditions, so the rTMS had an effect on hypnotic response above and beyond expectancies. The results support theories, including cold control theory, postulating a component of hypofrontality in hypnotic response. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of different "relaxing" music styles on the autonomic nervous system.
Perez-Lloret, Santiago; Diez, Joaquín; Domé, María Natalia; Delvenne, Andrea Alvarez; Braidot, Nestor; Cardinali, Daniel P; Vigo, Daniel Eduardo
2014-01-01
The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P < 0.02), while no differences were found with "classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3). These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P < 0.004). Significant differences across melodies were also found for nonlinear HRV indexes. Subjects' preferences did not correlate with autonomic responses to melodies. The results suggest that "new age" music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.
Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity
NASA Astrophysics Data System (ADS)
Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.
2018-03-01
The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.
Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam
2016-11-01
[Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A Tai Chi master was invited to perform Tai Chi and arm ergometer cycling with similar exercise intensity on two separate days. Heart rate variability and prefrontal oxyhemoglobin levels were measured continuously by a RR recorder and near-infrared spectroscopy, respectively. [Results] During Tai Chi exercise, spectral analysis of heart rate variability demonstrated a higher high-frequency power as well as a lower low-frequency/high-frequency ratio than during ergometer cycling, suggesting increased parasympathetic and decreased sympathetic control of the heart. Also, prefrontal oxyhemoglobin and total hemoglobin levels were higher than those during arm ergometer exercise. [Conclusion] These findings suggest that increased parasympathetic control of the heart and prefrontal activities may be associated with Tai Chi practice. Having a "mind" component in Tai Chi could be more beneficial for older adults' cardiac health and cognitive function than body-focused ergometer cycling.
Tsuji, Yoshihiro; Suzuki, Naoki; Hitomi, Yasumasa; Yoshida, Toshiko; Mizuno-Matsumoto, Yuko
2017-06-01
Few studies have focused on the imbalance of the autonomic nervous system in ultrafiltration rate (UFR) subjects without blood pressure variation during maintenance hemodialysis (HD), although the role of autonomic nervous system activation during HD has been proposed to be an important factor for the maintenance of blood pressure. Variations over time in autonomic nervous activity due to differences in UFR were evaluated by measuring heart rate variability (HRV) and approximate entropy (ApEn) in 35 HD patients without blood pressure variations during HD session. The subjects were divided into 3 groups, those with UFR <10 ml/h/kg; ≥10 ml/h/kg but ≤15 ml/h/kg; and >15 ml/h/kg, and Holter ECG was recorded continuously during HD session using frequency analysis of RR intervals. High frequency (HF) and low frequency (LF) spectral components are found to be representative of the parasympathetic nervous system and sympathovagal balance, respectively, with the ratio of LF to HF of HRV providing a measure of sympathetic nervous system. In subjects with UFR >15 ml/h/kg, HF components were significantly lower, and LF/HF and ApEn values were significantly higher, in the latter half of an HD session than before starting HD. Removing water from these subjects would promote sustained sympathetic nervous overactivity. These findings indicate that the UFR during HD needs to be set at ≤15 ml/h/kg.
Talanow, Tobias; Kasparbauer, Anna-Maria; Steffens, Maria; Meyhöfer, Inga; Weber, Bernd; Smyrnis, Nikolaos; Ettinger, Ulrich
2016-08-01
The antisaccade task is a prominent tool to investigate the response inhibition component of cognitive control. Recent theoretical accounts explain performance in terms of parallel programming of exogenous and endogenous saccades, linked to the horse race metaphor. Previous studies have tested the hypothesis of competing saccade signals at the behavioral level by selectively slowing the programming of endogenous or exogenous processes e.g. by manipulating the probability of antisaccades in an experimental block. To gain a better understanding of inhibitory control processes in parallel saccade programming, we analyzed task-related eye movements and blood oxygenation level dependent (BOLD) responses obtained using functional magnetic resonance imaging (fMRI) at 3T from 16 healthy participants in a mixed antisaccade and prosaccade task. The frequency of antisaccade trials was manipulated across blocks of high (75%) and low (25%) antisaccade frequency. In blocks with high antisaccade frequency, antisaccade latencies were shorter and error rates lower whilst prosaccade latencies were longer and error rates were higher. At the level of BOLD, activations in the task-related saccade network (left inferior parietal lobe, right inferior parietal sulcus, left precentral gyrus reaching into left middle frontal gyrus and inferior frontal junction) and deactivations in components of the default mode network (bilateral temporal cortex, ventromedial prefrontal cortex) compensated increased cognitive control demands. These findings illustrate context dependent mechanisms underlying the coordination of competing decision signals in volitional gaze control. Copyright © 2016 Elsevier Inc. All rights reserved.
Genotoxic effects of occupational exposure to benzene in gasoline station workers
SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih
2017-01-01
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767
Genotoxic effects of occupational exposure to benzene in gasoline station workers.
Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih
2018-04-07
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.
Characteristics of Electromagnetic Pulse Propagation in Metal
NASA Technical Reports Server (NTRS)
Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.
2004-01-01
It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with those of a single frequency sinusoidal wave observed over time at difference locations inside a conductor.
CO Component Estimation Based on the Independent Component Analysis
NASA Astrophysics Data System (ADS)
Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki; Takeuchi, Tsutomu T.; Fukui, Yasuo
2014-01-01
Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independent component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.
CO component estimation based on the independent component analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichiki, Kiyotomo; Kaji, Ryohei; Yamamoto, Hiroaki
2014-01-01
Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply FastICA to the component separation problem of the microwave background, including carbon monoxide (CO) line emissions that are found to contaminate the PLANCK High Frequency Instrument (HFI) data. Specifically, we prepare 100 GHz, 143 GHz, and 217 GHz mock microwave sky maps, which include galactic thermal dust, NANTEN CO line, and the cosmic microwave background (CMB) emissions, and then estimate the independent components based on the kurtosis. We find that FastICA can successfully estimate the CO component as the first independentmore » component in our deflection algorithm because its distribution has the largest degree of non-Gaussianity among the components. Thus, FastICA can be a promising technique to extract CO-like components without prior assumptions about their distributions and frequency dependences.« less
Villa, M P; Calcagnini, G; Pagani, J; Paggi, B; Massa, F; Ronchetti, R
2000-02-01
Power spectrum analysis of heart rate variability (HRV) is a noninvasive technique that provides a quantitative assessment of cardiovascular neural control. Using this technique, we studied the autonomic nervous system changes induced by sleep in 14 healthy subjects: 7 infants (mean age, 9.40 +/- 2.32 months) and 7 children (mean age, 8.93 +/- 0.65 years) during a standard all-night polysomnographic recording. Our primary aim was to assess the effect of sleep stage and age on short-term HRV during sleep in healthy infants and children. Power spectral density was estimated by autoregressive modeling over 250 consecutive R-R intervals. In this study, we mainly considered two spectral components: the high-frequency (HF) component (0.15 to 0.40 Hz), which reflects parasympathetic cardiovascular modulation; and the low-frequency (LF) component (0.04 to 0.15 Hz), generally considered due to both parasympathetic and sympathetic modulation. Heart rate was higher (p < 0.01 in all sleep stages) and total power lower (p < 0. 02) in infants than in children. HF power was higher in children than in infants (p < 0.05). In infants and children, the ratio between LF and HF powers changed with the various sleep stages (p < 0.02 in infants; p < 0.01 in children): it decreased during deep sleep and increased during rapid eye movement sleep. However, it was invariably lower in children than in infants. These findings show that the sleep stage and age both significantly influence short-term HRV during sleep in healthy infants and children. Hence, to provide unbiased results, HRV studies investigating the effects of age on autonomic nervous system activity should segment sleep into the five stages. In addition, despite a relatively small study sample, our data confirm greater parasympathetic control during sleep in children than in infants.
NASA Astrophysics Data System (ADS)
Maud, L. T.; Tilanus, R. P. J.; van Kempen, T. A.; Hogerheijde, M. R.; Schmalzl, M.; Yoon, I.; Contreras, Y.; Toribio, M. C.; Asaki, Y.; Dent, W. R. F.; Fomalont, E.; Matsushita, S.
2017-09-01
The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to 30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1 mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5 km) observations. These inherently have poorer phase stability and are taken in low PWV (<1 mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.
Determining Aliasing in Isolated Signal Conditioning Modules
NASA Technical Reports Server (NTRS)
2009-01-01
The basic concept of aliasing is this: Converting analog data into digital data requires sampling the signal at a specific rate, known as the sampling frequency. The result of this conversion process is a new function, which is a sequence of digital samples. This new function has a frequency spectrum, which contains all the frequency components of the original signal. The Fourier transform mathematics of this process show that the frequency spectrum of the sequence of digital samples consists of the original signal s frequency spectrum plus the spectrum shifted by all the harmonics of the sampling frequency. If the original analog signal is sampled in the conversion process at a minimum of twice the highest frequency component contained in the analog signal, and if the reconstruction process is limited to the highest frequency of the original signal, then the reconstructed signal accurately duplicates the original analog signal. It is this process that can give birth to aliasing.
Dichromatic Langmuir waves in degenerate quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.
2015-06-15
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
System stability and calibrations for hand-held electromagnetic frequency domain instruments
NASA Astrophysics Data System (ADS)
Saksa, Pauli J.; Sorsa, Joona
2017-05-01
There are a few multiple-frequency domain electromagnetic induction (EMI) hand-held rigid boom systems available for shallow geophysical resistivity investigations. They basically measure secondary field real and imaginary components after the system calibrations. One multiple-frequency system, the EMP-400 Profiler from Geophysical Survey Systems Inc., was tested for system calibrations, stability and various effects present in normal measurements like height variation, tilting, signal stacking and time stability. Results indicated that in test conditions, repeatable high-accuracy imaginary component values can be recorded for near-surface frequency soundings. In test conditions, real components are also stable but vary strongly in normal surveying measurements. However, certain calibration issues related to the combination of user influence and measurement system height were recognised as an important factor in reducing for data errors and for further processing like static offset corrections.
Xu, J; Durand, L G; Pibarot, P
2000-10-01
This paper describes a new approach based on the time-frequency representation of transient nonlinear chirp signals for modeling the aortic (A2) and the pulmonary (P2) components of the second heart sound (S2). It is demonstrated that each component is a narrow-band signal with decreasing instantaneous frequency defined by its instantaneous amplitude and its instantaneous phase. Each component is also a polynomial phase signal, the instantaneous phase of which can be accurately represented by a polynomial having an order of thirty. A dechirping approach is used to obtain the instantaneous amplitude of each component while reducing the effect of the background noise. The analysis-synthesis procedure is applied to 32 isolated A2 and 32 isolated P2 components recorded in four pigs with pulmonary hypertension. The mean +/- standard deviation of the normalized root-mean-squared error (NRMSE) and the correlation coefficient (rho) between the original and the synthesized signal components were: NRMSE = 2.1 +/- 0.3% and rho = 0.97 +/- 0.02 for A2 and NRMSE = 2.52 +/- 0.5% and rho = 0.96 +/- 0.02 for P2. These results confirm that each component can be modeled as mono-component nonlinear chirp signals of short duration with energy distributions concentrated along its decreasing instantaneous frequency.
Orbital component extraction by time-variant sinusoidal modeling.
NASA Astrophysics Data System (ADS)
Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan
2016-04-01
Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model is applied to well-established Pleistocene benthic isotope records to evaluate its performance. Zivanovic M. and Schoukens J. (2010) On The Polynomial Approximation for Time-Variant Harmonic Signal Modeling. IEEE Transactions On Audio, Speech, and Language Processing vol. 19, no. 3, pp. 458-467. Doi: 10.1109/TASL.2010.2049673. Zivanovic M. and Schoukens J. (2012) Single and Piecewise Polynomials for Modeling of Pitched Sounds. IEEE Transactions On Audio, Speech, and Language Processing vol. 20, no. 4, pp. 1270-1281. Doi: 10.1109/TASL.2011.2174228.
Soyupek, Feray; Aydogan, Cigdem; Guney, Mehmet; Kose, Seyit Ali
2017-07-01
We aimed to investigate the association between Premenstrual syndrome (PMS) and fibromyalgia syndrome (FMS), to assess common symptoms and quality of life (QOL) of them. Patients with PMS formed the PMS group and age-matched healthy normal controls were included in the control group. The diagnosis of the FMS and PMS were based on new American College of Rheumatology FMS criteria and DSM-IV PMS criteria. FMS-related symptoms assessed by visual analog scale and number of tender points (TePs) were analyzed. QOL, PMS severity and FMS severity were assessed with SF-36, fibromyalgia impact questionnaire (FIQ) and premenstrual assessment form (PAF), respectively. Patients with PMS were divided into two subgroups according to coexistence of FMS or not. The frequency of FMS in PMS and control group were 20 and 0%, respectively (p = 0.002). FMS-related symptoms, number of TePs in the PMS group were higher than those in the control group. The mean mental component summary (MCS) score of SF-36 was low in the PMS group. The mean PAF score in PMS with FMS subgroup was higher than those in without FMS subgroup. The mean physical component summary of SF-36 was low in the PMS patient with FMS. There was correlation between PAF score and FIQ score (r = 0.476, p < 0.001). FMS was common among the patients with PMS and frequently seen in the PMS patients having severe premenstrual complaints. Mental QOL was distressed in the patients with PMS but while FMS accompanied to PMS, the physical QOL was decreased.
Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.;
2017-01-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Astrosat/LAXPC Reveals the High-energy Variability of GRS 1915+105 in the X Class
NASA Astrophysics Data System (ADS)
Yadav, J. S.; Misra, Ranjeev; Verdhan Chauhan, Jai; Agrawal, P. C.; Antia, H. M.; Pahari, Mayukh; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Manchanda, R. K.; Paul, B.; Shah, Parag; Ishwara-Chandra, C. H.
2016-12-01
We present the first quick look analysis of data from nine AstroSat's Large Area X-ray Proportional Counter (LAXPC) observations of GRS 1915+105 during 2016 March when the source had the characteristics of being in the Radio-quiet χ class. We find that a simple empirical model of a disk blackbody emission, with Comptonization and a broad Gaussian Iron line can fit the time-averaged 3-80 keV spectrum with a systematic uncertainty of 1.5% and a background flux uncertainty of 4%. A simple dead time corrected Poisson noise level spectrum matches well with the observed high-frequency power spectra till 50 kHz and as expected the data show no significant high-frequency (\\gt 20 {Hz}) features. Energy dependent power spectra reveal a strong low-frequency (2-8 Hz) quasi-periodic oscillation and its harmonic along with broadband noise. The QPO frequency changes rapidly with flux (nearly 4 Hz in ˜5 hr). With increasing QPO frequency, an excess noise component appears significantly in the high-energy regime (\\gt 8 keV). At the QPO frequencies, the time-lag as a function of energy has a non-monotonic behavior such that the lags decrease with energy till about 15-20 keV and then increase for higher energies. These first-look results benchmark the performance of LAXPC at high energies and confirms that its data can be used for more sophisticated analysis such as flux or frequency-resolved spectro-timing studies.
Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock
NASA Astrophysics Data System (ADS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.
2017-06-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Energy dependence of the band-limited noise in black hole X-ray binaries★
NASA Astrophysics Data System (ADS)
Stiele, H.; Yu, W.
2015-10-01
Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.; Arai, Y.; Suzuki, J.
1996-01-01
1. The adaptive plasticity of the vestibuloocular reflex (VOR) following a selective lesion of the peripheral vestibular organs was investigated in rhesus monkeys whose lateral semicircular canals were inactivated by plugging of the canal lumen in both ears. Gain and phase of horizontal, vertical, and torsional slow-phase eye velocity were determined from three-dimensional eye movement recordings obtained acutely after the plugging operation, as well as in regular intervals up to 10 mo later. 2. Acutely after plugging, horizontal VOR was minimal during yaw rotation with gains of < 0.1 at all frequencies. Horizontal VOR gain gradually increased over time, reaching gains of 0.4-0.5 for yaw oscillations at 1.1 Hz approximately 5 mo after lateral canal inactivation. This response recovery was strongly frequency dependent: horizontal VOR gains were largest at the highest frequency tested and progressively decreased for lower frequencies. Below approximately 0.1 Hz, no consistent horizontal VOR could be elicited even 10 mo after plugging. 3. The frequency-dependent changes in gain paralleled changes in horizontal VOR phase. Below approximately 0.1-0.05 Hz large phase leads were present, similarly as in semicircular canal primary afferents. Smaller phase leads were also present at higher frequencies, particularly at 1.1 Hz (the highest frequency tested). 4. Consistent with the afferent-like dynamics of the adapted horizontal VOR, per- and postrotatory horizontal responses to constant-velocity yaw rotations were short lasting. Time constants of the slow-phase eye velocity envelope of the horizontal postrotatory nystagmus were approximately 2 s. Nonetheless, a consistent horizontal optokinetic afternystagmus was evoked in plugged animals. 5. A torsional component that was absent in intact animals was consistently present during yaw rotation acutely after lateral canal inactivation and remained approximately constant thereafter. The frequency response characteristics of this torsional component resembled those of the adapted horizontal slow-phase responses: gain decreased and large phase leads were introduced at frequencies below approximately 0.05-0.1 Hz. Torsional responses elicited by roll oscillations in supine position, on the other hand, were indistinguishable in their dynamics from intact animals. No consistent vertical nystagmus was elicited during yaw rotation. 6. Our results show that there is a slow, frequency-specific recovery of horizontal VOR after selective inactivation of the lateral semicircular canals. Both the spatial organization and the dynamic properties of the adapted VOR responses are distinctly different from responses in intact animals, suggesting complex changes in the underlying vestibuloocular circuitry.
NASA Astrophysics Data System (ADS)
Felder, Raymond; Touahri, D.; Acef, Ouali; Hilico, L.; Zondy, Jean-Jacques; Clairon, Andre; de Beauvoir, Beatrice; Biraben, Francois; Julien, Lucile; Nez, Francois; Millerioux, Yves P.
1995-04-01
The absolute frequency measurement of each hyperfine component of the 5S3/2 and 5S5/2 levels in rubidium was done at ENS more than one year ago using Ti-Sa lasers. We built two devices based on diode lasers to study some metrological properties. We measure the frequency differences between hyperfine components of the 5S5/2 level and we calculate the corresponding hyperfine constants. We also measure the frequency interval between the 5S3/2 and 5S5/2 levels using a Schottky diode. The measured stability in terms of Allan variance is 3*10-13t-1/2 up to 2000 s. The light shift is investigated and the difference between our two systems is 1.7 kHz. The repeatability of one system is better than 10-12 and will allow the absolute frequency measurement at this level via the LPTF frequency synthesis chain.
Kamp, Siri-Maria; Brumback, Ty; Donchin, Emanuel
2013-11-01
We examined the degree to which ERP components elicited by items that are isolated from their context, either by their font size ("size isolates") or by their frequency of usage, are correlated with subsequent immediate recall. Study lists contained (a) 15 words including a size isolate, (b) 14 high frequency (HF) words with one low frequency word ("LF isolate"), or (c) 14 LF words with one HF word. We used spatiotemporal PCA to quantify ERP components. We replicated previously reported P300 subsequent memory effects for size isolates and found additional correlations with recall in the novelty P3, a right lateralized positivity, and a left lateralized slow wave that was distinct from the slow wave correlated with recall for nonisolates. LF isolates also showed evidence of a P300 subsequent memory effect and also elicited the left lateralized subsequent memory effect, supporting a role of distinctiveness in word frequency effects in recall. Copyright © 2013 Society for Psychophysiological Research.
Calculating rhythmicity of infant breathing using wavelets
NASA Astrophysics Data System (ADS)
Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.
2000-12-01
Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.
NASA Astrophysics Data System (ADS)
Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.
2017-12-01
Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (<20 µm). Short-term (10d) aerobic incubation of high and low saturation frequency soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C-labeled substrates will link the observed chemical characteristics (13C-NMR, C K-edge XANES, and Fe XAS) of mineral-organic associations resulting from varying saturation frequency with mechanisms driving mineralization processes.
Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke
Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio
2015-01-01
Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different peripheral frequency of CD28 null cells in relation of each TOAST subtype of stroke. PMID:25997053
High frequency oscillations evoked by peripheral magnetic stimulation.
Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J
2011-01-01
The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.
Visual stimulus eccentricity affects human gamma peak frequency.
van Pelt, Stan; Fries, Pascal
2013-09-01
The peak frequency of neuronal gamma-band synchronization has received much attention in recent years. Gamma peak frequency shifts to higher frequency values for higher contrast, faster moving, and attended stimuli. In monkey V1, gamma peak frequency for a drifting grating is higher for a parafoveal as compared to an eccentric stimulus (Lima et al., 2010). This effect might be due to the cortical magnification factor: the higher cortical magnification for parafoveal stimuli increases the velocity with which the cortical representations of the moving grating stripes move across the cortical surface. Since faster moving stimuli lead to higher gamma frequency, a faster moving cortical representation might do the same. This explanation predicts that the eccentricity effect on gamma peak frequency is absent for stationary stimuli. To test this, we investigated the effect of eccentricity on gamma peak frequency by recording magnetoencephalography in human subjects while they viewed moving or stationary gratings. We found that both the moving and the stationary stimuli induced lower peak frequencies for larger eccentricities, arguing against an explanation based on the cortical magnification factor. We further investigated whether this eccentricity effect was explained by differences in the size or the spatial frequency of the expected cortical activation. Neither of those explained the eccentricity effect. We propose that the different stimulus and top-down factors leading to higher gamma peak frequency all result in higher stimulus salience, that salience is translated into gamma peak frequency, and that gamma peak frequency might subserve the preferential processing of neuronal activity induced by salient stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Sanghee; Hwang, Seung-On; Kim, Jhoon; Ahn, Myoung-Hwan
2018-03-01
Clouds are an important component of the atmosphere that affects both climate and weather, however, their contributions can be very difficult to determine. Ceilometer measurements can provide high resolution information on atmospheric conditions such as cloud base height (CBH) and vertical frequency of cloud occurrence (CVF). This study presents the first comprehensive analysis of CBH and CVF derived using Vaisala CL51 ceilometers at two urban stations in Seoul, Korea, during a three-year period from January 2014 to December 2016. The average frequency of cloud occurrence detected by the ceilometers is 54.3%. It is found that the CL51 is better able to capture CBH as compared to another ceilometer CL31 at a nearby meteorological station because it could detect high clouds more accurately. Frequency distributions for CBH up to 13,000 m providing detailed vertical features with 500-m interval show 55% of CBHs below 2 km for aggregated CBHs. A bimodal frequency distribution was observed for three-layers CBHs. A monthly variation of CVF reveals that frequency concentration of lower clouds is found in summer and winter, and higher clouds more often detected in spring and autumn. Monthly distribution features of cloud occurrence and precipitation are depending on seasons and it might be easy to define their relationship due to higher degree of variability of precipitation than cloud occurrence. However, a fluctuation of cloud occurrence frequency in summer is similar to precipitation in trend, whereas clouds in winter are relatively frequent but precipitation is not accompanied. In addition, recent decrease of summer precipitation could be mostly explained by a decrease of cloud occurrence. Anomalous precipitation recorded sometimes is considerably related to corresponding cloud occurrence. The diurnal and daily variations of CBH and CVF from ceilometer observations and the analysis of microwave radiometer measurements for two typical cloudiness cases are also reviewed in parallel. This analysis in finer temporal scale exhibits that utilization of ground-based observations together could help to analyze the cloud behaviors.
The Multiple Gyrotron System on the DIII-D Tokamak
Lohr, J.; Anderson, J.; Brambila, R.; ...
2015-08-28
A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less
Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham
2016-07-01
Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.
Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.
Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham
2016-07-01
Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.
Effect of higher frequency on the classification of steady-state visual evoked potentials
NASA Astrophysics Data System (ADS)
Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan
2016-02-01
Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.