A Non-Abelian Geometric Phase for Spin Systems
NASA Astrophysics Data System (ADS)
H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.
Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28
NASA Technical Reports Server (NTRS)
Wing, David J.; Capone, Francis J.
1993-01-01
The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.
Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
2017-04-01
Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.
Geometric Model for Tracker-Target Look Angles and Line of Slight Distance
2015-10-20
412TW-PA-15239 Geometric Model for Tracker -Target Look Angles and Line of Slight Distance DANIEL T. LAIRD AIR FORCE TEST CENTER EDWARDS...15 – 23 OCT 15 4. TITLE AND SUBTITLE Geometric Model for Tracker -Target Look Angles and Line of Slight Distance 5a. CONTRACT...include area code) 661-277-8615 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 GEOMETRIC MODEL FOR TRACKER -TARGET LOOK ANGLES
NASA Astrophysics Data System (ADS)
Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.
2002-10-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
NASA Astrophysics Data System (ADS)
Zhen, Wu; Wanji, Chen
2007-05-01
Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.
ERIC Educational Resources Information Center
Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.
2014-01-01
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…
Kinoform optics applied to X-ray photon correlation spectroscopy.
Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A
2010-05-01
Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
Corrections for the geometric distortion of the tube detectors on SANS instruments at ORNL
He, Lilin; Do, Changwoo; Qian, Shuo; ...
2014-11-25
Small-angle neutron scattering instruments at the Oak Ridge National Laboratory's High Flux Isotope Reactor were upgraded in area detectors from the large, single volume crossed-wire detectors originally installed to staggered arrays of linear position-sensitive detectors (LPSDs). The specific geometry of the LPSD array requires that approaches to data reduction traditionally employed be modified. Here, two methods for correcting the geometric distortion produced by the LPSD array are presented and compared. The first method applies a correction derived from a detector sensitivity measurement performed using the same configuration as the samples are measured. In the second method, a solid angle correctionmore » is derived that can be applied to data collected in any instrument configuration during the data reduction process in conjunction with a detector sensitivity measurement collected at a sufficiently long camera length where the geometric distortions are negligible. Furthermore, both methods produce consistent results and yield a maximum deviation of corrected data from isotropic scattering samples of less than 5% for scattering angles up to a maximum of 35°. The results are broadly applicable to any SANS instrument employing LPSD array detectors, which will be increasingly common as instruments having higher incident flux are constructed at various neutron scattering facilities around the world.« less
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
An Investigation of the Fundamental Cause of Asymmetric Separated Flow
1992-10-01
with respect to the geometric symmetry plane as long as the free-stream velocity vector remains in this plane. At angles of attack higher than a ...separation points and sit above the nose near the lee plane of " symmetry ." Below a critical angle of attack, the lee plane is indeed a plane about which...line model was a breakthrough in understanding this phenomenon. Dyer, Fiddes, and Smith (Ref 7) found a bifurcation in the solution to the small
Structural analysis of three space crane articulated-truss joint concepts
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Sutter, Thomas R.
1992-01-01
Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.
Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S
2014-01-01
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Xu, Guoqiang; Zhang, Haochun; Xie, Ming; Jin, Yan
2017-10-01
Thermal harvesting devices based on transformation optics, which can manipulate the heat flux concentration significantly through rational arrangements of the conductivities, have attracted considerable interest owing to several great potential applications of the technique for high-efficiency thermal conversion and collection. However, quantitative studies on the geometrical effects, particularly wedge angles, on the harvesting behaviors are rare. In this paper, we adopt wedge structure-based thermal harvesting schemes, and focus on the effects of the geometrical parameters including the radii ratios and wedge angles on the harvesting performance. The temperature deformations at the boundaries of the compressional region and temperature gradients for the different schemes with varying design parameters are investigated. Moreover, a concept for temperature stabilization was derived to evaluate the fluctuation in the energy distributions. In addition, the effects of interface thermal resistances have been investigated. Considering the changes in the radii ratios and wedge angles, we proposed a modification of the harvesting efficiency to quantitatively assess the concentration performance, which was verified through random tests and previously fabricated devices. In general, this study indicates that a smaller radii ratio contributes to a better harvesting behavior, but causes larger perturbations in the thermal profiles owing to a larger heat loss. We also find that a smaller wedge angle is beneficial to ensuring a higher concentration efficiency with less energy perturbations. These findings can be used to guide the improvement of a thermal concentrator with a high efficiency in reference to its potential applications as novel heat storage, thermal sensors, solar cells, and thermoelectric devices.
Geometrical-optics approximation of forward scattering by gradient-index spheres.
Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen
2007-08-01
By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.
NASA Astrophysics Data System (ADS)
Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.
2012-07-01
The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations follow the same rules. The geometric calibration will mainly be executed during the commissioning phase, later in the mission it is only executed if required, i.e. if the geometric accuracy of the produced images is close to or exceeds the requirements of 100 m or 30 m respectively, whereas the radiometric calibration will be executed periodically during the mission with a higher frequency during commissioning phase.
Samuel, M O; Wanmi, N; Usende, L
2016-01-01
This study evaluated 30 skulls of the grey mongoose divided into three age-groups (6 pups, 10 juveniles and 14 adults) for skull shape variability determination. Specific geometric shapes were drawn from defined points. Angular geometric measurements of shapes derived from rostro-dorsal and rostro-lateral parts of the skull included; orbital angles (with and without the mandible), comprising of viscero-cranium, skull and orbital index that was calculated to evaluate the correlations, if any, with angles measured. It was observed that orbital height and width became higher with age; there was stronger correlation in this regard between pups and juveniles compared with juveniles and adults. There is a reduction (narrowing) in BrEcEc, BrEcN, EcPEc, EcEnN and NwNNw angles with concomitant enlargement of BrEcP, BrEcN, EcNEc, EnNEn, EcNNw and EnNP with age. The decline in the skull index shows a decrease in rate of skull width growth relative to rostro-facial length and demonstrates non-proportionality to zygoma bowing. Significantly varied orbital parameters include the inter-canthii distance and implications of certain significant variables observed in some geometric orbital measurements of the tropical mongoose (Herpestes ichneumon). The survey hypothesizes the observations follow typical carnivoran phylogenic affinity, differentiates this species from similar herpestid versions and is an estimation of functional morphology with respect to bite size. It is further suggested to contribute to visual acuity in timing of bite delivery as well an adaptation in prey summarisation. This study will serve as baseline information in herpestid cranial investigations. Such facial features are useful in population studies, species identification, eco-migrant species surveillance and species ontogenic evolution.
Geometric approach to the design of an imaging probe to evaluate the iridocorneal angle structures
NASA Astrophysics Data System (ADS)
Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin
2017-06-01
Photographic imaging methods allow the tracking of anatomical changes in the iridocorneal angle structures and the monitoring of treatment responses overtime. In this work, we aim to design an imaging probe to evaluate the iridocorneal angle structures using geometrical optics. We first perform an analytical analysis on light propagation from the anterior chamber of the eye to the exterior medium using Snell's law. This is followed by adopting a strategy to achieve uniform near field irradiance, by simplifying the complex non-rotational symmetric irradiance distribution of LEDs tilted at an angle. The optimization is based on the geometric design considerations of an angled circular ring array of 4 LEDs (or a 2 × 2 square LED array). The design equation give insights on variable parameters such as the illumination angle of the LEDs, ring array radius, viewing angle of the LEDs, and the working distance. A micro color CCD video camera that has sufficient resolution to resolve the iridocorneal angle structures at the required working distance is then chosen. The proposed design aspects fulfil the safety requirements recommended by the International Commission on Non-ionizing Radiation Protection.
Effect of aperture geometry on heat transfer in tilted partially open cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.M.; Chakroun, W.
1999-11-01
Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less
NASA Astrophysics Data System (ADS)
Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna
2018-03-01
The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.
Electromagnetic backscattering by corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, C. A.; Griesser, T.
1986-01-01
The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.
Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications
NASA Astrophysics Data System (ADS)
Konopka, Anthony T.
This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.
Djernaes, Julie D; Nielsen, Jon V; Berg, Lise C
2017-03-01
The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired. Sequential radiographs were acquired with each interspinous space in focus. Measurements were performed for each interspinous space in the focus position and up to eight angled positions as the interspinous space moved away from focus (±). Focus position measurements were compared to matching sagittal CT measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous spaces in position +3 (P = 0.038). Changes in width did not follow a consistent pattern. Interspinous space widths in focus position were significantly smaller in radiographs compared to matching reconstructed CT images for backs diagnosed with kissing spine syndrome (P < 0.001). Geometric distortion markedly affected appearance of interspinous space width between planes. In conclusion, X-ray beam angle and geometric distortion influence radiographically measured widths of interspinous spaces in the equine thoracolumbar spine, and this should be taken into consideration when evaluating sport horses. © 2016 American College of Veterinary Radiology.
Geometric structure of thin SiO xN y films on Si(100)
NASA Astrophysics Data System (ADS)
Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.
1998-05-01
Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.
Design study of dedicated brain PET with polyhedron geometry.
Shi, Han; Du, Dong; Xu, JianFeng; Su, Zhihong; Peng, Qiyu
2015-01-01
Despite being the conventional choice, whole body PET cameras with a 76 cm diameter ring are not the optimal means of human brain imaging. In fact, a dedicated brain PET with a better geometrical structure has the potential to achieve a higher sensitivity, a higher signal-to-noise ratio, and a better imaging performance. In this study, a polyhedron geometrical dedicated brain PET (a dodecahedron design) is compared to three other candidates via their geometrical efficiencies by calculating the Solid Angle Fractions (SAF); the three other candidates include a spherical cap design, a cylindrical design, and the conventional whole body PET. The spherical cap and the dodecahedron have an identical SAF that is 58.4% higher than that of a 30 cm diameter cylinder and 5.44 times higher than that of a 76 cm diameter cylinder. The conceptual polygon-shape detectors (including pentagon and hexagon detectors based on the PMT-light-sharing scheme instead of the conventional square-shaped block detector module) are presented for the polyhedron PET design. Monte Carlo simulations are performed in order to validate the detector decoding. The results show that crystals in a pentagon-shape detector can be successfully decoded by Anger Logic. The new detector designs support the polyhedron PET investigation.
Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang
2015-01-01
A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721
Adaptation from restricted geometries: the shell inclination of terrestrial gastropods.
Okajima, Ryoko; Chiba, Satoshi
2013-02-01
The adaptations that occur for support and protection can be studied with regard to the optimal structure that balances these objectives with any imposed constraints. The shell inclination of terrestrial gastropods is an appropriate model to address this problem. In this study, we examined how gastropods improve shell angles to well-balanced ones from geometrically constrained shapes. Our geometric analysis and physical analysis showed that constantly coiled shells are constrained from adopting a well-balanced angle; the shell angle of such basic shells tends to increase as the spire index (shell height/width) increases, although the optimum angle for stability is 90° for flat shells and 0° for tall shells. Furthermore, we estimated the influences of the geometric rule and the functional demands on actual shells by measuring the shell angles of both resting and active snails. We found that terrestrial gastropods have shell angles that are suited for balance. The growth lines of the shells indicated that this adaptation depends on the deflection of the last whorl: the apertures of flat shells are deflected downward, whereas those of tall shells are deflected upward. Our observations of active snails demonstrated that the animals hold their shells at better balanced angles than inactive snails. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Geometric phase in entangled systems: A single-neutron interferometer experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponar, S.; Klepp, J.; Loidl, R.
2010-04-15
The influence of the geometric phase on a Bell measurement, as proposed by Bertlmann et al. [Phys. Rev. A 69, 032112 (2004)] and expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, has been observed for a spin-path-entangled neutron state in an interferometric setup. It is experimentally demonstrated that the effect of geometric phase can be balanced by a change in Bell angles. The geometric phase is acquired during a time-dependent interaction with a radiofrequency field. Two schemes, polar and azimuthal adjustment of the Bell angles, are realized and analyzed in detail. The former scheme yields a sinusoidal oscillation of the correlation functionmore » S, dependent on the geometric phase, such that it varies in the range between 2 and 2{radical}(2) and therefore always exceeds the boundary value 2 between quantum mechanic and noncontextual theories. The latter scheme results in a constant, maximal violation of the Bell-like CHSH inequality, where S remains 2{radical}(2) for all settings of the geometric phase.« less
Comparing artistic and geometrical perspective depictions of space in the visual field
Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert
2014-01-01
Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections. PMID:26034563
Comparing artistic and geometrical perspective depictions of space in the visual field.
Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert
2014-01-01
Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.
NASA Astrophysics Data System (ADS)
Ma, F. M.; Li, W.; Liu, A. H.; Yu, Z. L.; Ruan, M.; Feng, W.; Chen, H. X.; Chen, Y.
2017-09-01
Superhydrophobic surfaces with high water contact angles and low contact angle hysteresis or sliding angles have received tremendous attention for both academic research and industrial applications in recent years. In general, such surfaces possess rough microtextures, particularly, show micro/nano hierarchical structures like lotus leaves. Now it has been recognized that to achieve the artificial superhydrophobic surfaces, the simple and effective strategy is to mimic such hierarchical structures. However, fabrications of such structures for these artificial surfaces involve generally expensive and complex processes. On the other hand, the relationships between structural parameters of various surface topography and wetting properties have not been fully understood yet. In order to provide guidance for the simple fabrication and particularly, to promote practical applications of superhydrophobic surfaces, the geometrical designs of optimal microtextures or patterns have been proposed. In this work, the recent developments on geometrical effect, optimal design and controlled fabrication of various superhydrophobic structures, such as unitary, anisotropic, dual-scale hierarchical, and some other surface geometries, are reviewed. The effects of surface topography and structural parameters on wetting states (composite and noncomposite) and wetting properties (contact angle, contact angle hysteresis and sliding angle) as well as adhesive forces are discussed in detail. Finally, the research prospects in this field are briefly addressed.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent
NASA Technical Reports Server (NTRS)
Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.
2013-01-01
The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the geometric porosity distribution.
The Semiotic and Conceptual Genesis of Angle
ERIC Educational Resources Information Center
Tanguay, Denis; Venant, Fabienne
2016-01-01
In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…
NASA Astrophysics Data System (ADS)
Ashok, M. H.; Shivakumar, J.; Nandurkar, Santosh; Khadakbhavi, Vishwanath; Pujari, Sanjay
2018-02-01
In present work, the thin laminated composite shallow shell as smart structure with AFC material’s ACLD treatment is analyzed for geometrically nonlinear transient vibrations. The AFC material is used to make the constraining layer of the ACLD treatment. Golla-Hughes-McTavish (GHM) is used to model the constrained viscoelastic layer of the ACLD treatment in time domain. Along with a simple first-order shear deformation theory the Von Kármán type non-linear strain displacement relations are used for deriving this electromechanical coupled problem. A 3-dimensional finite element model of smart composite panels integrated with the ACLD treated patches has been modelled to reveal the performance of ACLD treated patches on improving the damping properties of slender anti-symmetric angle-ply laminated shallow shell, in controlling the transient vibrations which are geometrically nonlinear. The mathematical results explain that the ACLD treated patches considerably enhance the damping properties of anti-symmetric angle-ply panels undergoing geometrically nonlinear transient vibrations.
Astronomy in Denver: Polarization of bow shock nebulae around massive stars
NASA Astrophysics Data System (ADS)
Shrestha, Manisha; Hoffman, Jennifer L.; Ignace, Richard; Neilson, Hilding; Richard Ignace
2018-06-01
Stellar wind bow shocks are structures created when stellar winds with supersonic relative velocities interact with the local interstellar medium (ISM). They can be studied to understand the properties of stars as well as the ISM. Since bow shocks are asymmetric, light becomes polarized by scattering in the regions of enhanced density they create. We use a Monte Carlo radiative transfer code calle SLIP to simulate the polarization signatures produced by both resolved and unresolved bow shocks with analytically derived shapes and density structures. When electron scattering is the polarizing mechanism, we find that optical depth plays an important role in the polarization signatures. While results for low optical depths reproduce theoretical predictions, higher optical depths produce higher polarization and position angle rotations at specific viewing angles. This is due to the geometrical properties of the bow shock along with multiple scattering effects. For dust scattering, we find that the polarization signature is strongly affected by wavelength, dust size, dust composition, and viewing angle. Depending on the viewing angle, the polarization magnitude may increase or decrease as a function of wavelength. We will present results from these simulations and preliminary comparisons with observational data.
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports
NASA Technical Reports Server (NTRS)
Re, Richard J.; Mason, Mary L.
1987-01-01
An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.
NASA Astrophysics Data System (ADS)
Liu, Yong-Yang; Xu, Yu-Liang; Liu, Zhong-Qiang; Li, Jing; Wang, Chun-Yang; Kong, Xiang-Mu
2018-07-01
Employing the correlation matrix technique, the spatial distribution of thermal energy in two-dimensional triangular lattices in equilibrium, interacting with linear springs, is studied. It is found that the spatial distribution of thermal energy varies with the included angle of the springs. In addition, the average thermal energy of the longer springs is lower. Springs with different included angle and length will lead to an inhomogeneous spatial distribution of thermal energy. This suggests that the spatial distribution of thermal energy is affected by the geometrical structure of the system: the more asymmetric the geometrical structure of the system is, the more inhomogeneous is the spatial distribution of thermal energy.
Geometrical-optics approximation of forward scattering by coated particles.
Xu, Feng; Cai, Xiaoshu; Ren, Kuanfang
2004-03-20
By means of geometrical optics we present an approximation algorithm with which to accelerate the computation of scattering intensity distribution within a forward angular range (0 degrees-60 degrees) for coated particles illuminated by a collimated incident beam. Phases of emerging rays are exactly calculated to improve the approximation precision. This method proves effective for transparent and tiny absorbent particles with size parameters larger than 75 but fails to give good approximation results at scattering angles at which refractive rays are absent. When the absorption coefficient of a particle is greater than 0.01, the geometrical optics approximation is effective only for forward small angles, typically less than 10 degrees or so.
Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Re, Richard J.; Bare, E. Ann
1992-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.
Landsat-5 bumper-mode geometric correction
Storey, James C.; Choate, Michael J.
2004-01-01
The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.
Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.
Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan
2013-02-01
A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.
Polarimetric Imaging for the Detection of Disturbed Surfaces
2009-06-01
9 Figure 4. Rayleigh Roughness Criterion as a Function of Incident Angle ......................10 Figure 5. Definition of Geometrical...Terms (after Egan & Hallock, 1966).....................11 Figure 6. Haleakala Ash Depolarization for (a) °0 Viewing Angle and (b) °60 Viewing... Angle (from Egan et al., 1968)..........................................................13 Figure 7. Basalt Depolarization at (a) °0 Viewing Angle and
Objectifying the Adjacent and Opposite Angles: A Cultural Historical Analysis
ERIC Educational Resources Information Center
Daher, Wajeeh; Musallam, Nadera
2018-01-01
The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheng-Hung; Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; Jhong, Guan-Heng
The deployment of metallic stents during percutaneous coronary intervention has become common in the treatment of coronary bifurcation lesions. However, restenosis occurs mostly at the bifurcation area even in present era of drug-eluting stents. To achieve adequate deployment, physicians may unintentionally apply force to the strut of the stents through balloon, guiding catheters, or other devices. This force may deform the struts and impose excessive mechanical stresses on the arterial vessels, resulting in detrimental outcomes. This study investigated the relationship between the distribution of stress in a stent and bifurcation angle using finite element analysis. The unintentionally applied force followingmore » stent implantation was measured using a force sensor that was made in the laboratory. Geometrical information on the coronary arteries of 11 subjects was extracted from contrast-enhanced computed tomography scan data. The numerical results reveal that the application of force by physicians generated significantly higher mechanical stresses in the arterial bifurcation than in the proximal and distal parts of the stent (post hoc P < 0.01). The maximal stress on the vessels was significantly higher at bifurcation angle <70° than at angle ≧70° (P < 0.05). The maximal stress on the vessels was negatively correlated with bifurcation angle (P < 0.01). Stresses at the bifurcation ostium may cause arterial wall injury and restenosis, especially at small bifurcation angles. These finding highlight the effect of force-induced mechanical stress at coronary artery bifurcation stenting, and potential mechanisms of in-stent restenosis, along with their relationship with bifurcation angle.« less
NASA Astrophysics Data System (ADS)
Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.
2009-09-01
The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.
Gil, Robert J; Vassilev, Dobrin; Formuszewicz, Radoslaw; Rusicka-Piekarz, Teresa; Doganov, Alexander
2009-12-01
The two main problems unresolved in coronary bifurcation stenting are periprocedural side branch compromise and higher restenosis at long term. The purpose of this study is to reveal the link between periprocedural side branch compromise and long-term results after main vessel stenting only in coronary bifurcations. Eighty-four patients formed the study population. The inclusion criteria were good-quality angiograms, with maximal between-branch angle opening, no overlap, permitting accurate angiographic analysis. Carina angle (alpha)-the distal angle between main vessel (MV) before bifurcation and side branch (SB)-was measured pre- and poststenting. Clinical follow-up 9-12 months was obtained with coronary angiography if needed. The patient population was high-risk with 33% diabetics and 84% two- and three-vessel disease. Ninety-five stents were implanted in 92 lesions, with three T-stenting cases. Drug-eluting stents were implanted in 54%. Kissing-balloon (KBI) or sequential inflation was performed in 35%. SB functional closure occurred in 17.4%, with independent predictors alpha < 40 degrees and diameter ratio MB/SB >1.22. After 12+/-4 months there were five myocardial infarctions (6%) and 13 (15%) target lesion revascularization procedures. Independent predictors of major cardiovascular events were carina angle <40 degrees , MB lesion length >8 mm, negative change of between-branch angle, DES usage, and KBI. Smaller carina angle with straightening of MV-main branch from stent implantation in coronary bifurcations predicted higher SB compromise, restenosis, and MACE rates during follow-up of 1 year.
Making Sense by Measuring Arcs: A Teaching Experiment in Angle Measure
ERIC Educational Resources Information Center
Moore, Kevin C.
2013-01-01
I discuss a teaching experiment that sought to characterize precalculus students' angle measure understandings. The study's findings indicate that the students initially conceived angle measures in terms of geometric objects. As the study progressed, the students formed more robust understandings of degree and radian measures by constructing an…
Bahri, A.; Bendersky, M.; Cohen, F. R.; Gitler, S.
2009-01-01
This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley–Reisner ring of a finite simplicial complex, and natural generalizations. PMID:19620727
Bahri, A; Bendersky, M; Cohen, F R; Gitler, S
2009-07-28
This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley-Reisner ring of a finite simplicial complex, and natural generalizations.
Effect of inlet cone pipe angle in catalytic converter
NASA Astrophysics Data System (ADS)
Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd
2018-03-01
The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.
ERIC Educational Resources Information Center
Lee, Sang Ah; Sovrano, Valeria A.; Spelke, Elizabeth S.
2012-01-01
Geometry is one of the highest achievements of our species, but its foundations are obscure. Consistent with longstanding suggestions that geometrical knowledge is rooted in processes guiding navigation, the present study examines potential sources of geometrical knowledge in the navigation processes by which young children establish their sense…
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles
NASA Astrophysics Data System (ADS)
Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd
2013-12-01
Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).
Interplay between Peptide Bond Geometrical Parameters in Nonglobular Structural Contexts
Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi
2013-01-01
Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides). Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-Cα-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-Cα-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability. PMID:24455689
Interplay between peptide bond geometrical parameters in nonglobular structural contexts.
Esposito, Luciana; Balasco, Nicole; De Simone, Alfonso; Berisio, Rita; Vitagliano, Luigi
2013-01-01
Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides). Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-C(α)-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-C(α)-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability.
Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.
Alagappan, G; Wu, P
2009-07-06
We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r < rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r < rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.
Chin, P W; Spezi, E; Lewis, D G
2003-08-21
A software solution has been developed to carry out Monte Carlo simulations of portal dosimetry using the BEAMnrc/DOSXYZnrc code at oblique gantry angles. The solution is based on an integrated phantom, whereby the effect of incident beam obliquity was included using geometric transformations. Geometric transformations are accurate within +/- 1 mm and +/- 1 degrees with respect to exact values calculated using trigonometry. An application in portal image prediction of an inhomogeneous phantom demonstrated good agreement with measured data, where the root-mean-square of the difference was under 2% within the field. Thus, we achieved a dose model framework capable of handling arbitrary gantry angles, voxel-by-voxel phantom description and realistic particle transport throughout the geometry.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Schirmer, Alberto W.
1993-01-01
An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.
NASA Technical Reports Server (NTRS)
Wright, William B.; Chung, James
1999-01-01
Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.
Axial geometrical aberration correction up to 5th order with N-SYLC.
Hoque, Shahedul; Ito, Hiroyuki; Takaoka, Akio; Nishi, Ryuji
2017-11-01
We present N-SYLC (N-fold symmetric line currents) models to correct 5th order axial geometrical aberrations in electron microscopes. In our previous paper, we showed that 3rd order spherical aberration can be corrected by 3-SYLC doublet. After that, mainly the 5th order aberrations remain to limit the resolution. In this paper, we extend the doublet to quadruplet models also including octupole and dodecapole fields for correcting these higher order aberrations, without introducing any new unwanted ones. We prove the validity of our models by analytical calculations. Also by computer simulations, we show that for beam energy of 5keV and initial angle 10mrad at the corrector object plane, beam size of less than 0.5nm is achieved at the corrector image plane. Copyright © 2017 Elsevier B.V. All rights reserved.
Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber
NASA Astrophysics Data System (ADS)
Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2017-10-01
Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.
Changes in Pelvic Incidence, Pelvic Tilt, and Sacral Slope in Situations of Pelvic Rotation.
Jin, Hai-Ming; Xu, Dao-Liang; Xuan, Jun; Chen, Jiao-Xiang; Chen, Kai; Goswami, Amit; Chen, Yu; Kong, Qiu-Yan; Wang, Xiang-Yang
2017-08-01
Digitally reconstructed radiograph-based study. Using a computer-based method to determine what degree of pelvic rotation is acceptable for measuring the pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). The effectiveness of a geometrical formula used to calculate the angle of pelvic rotation proposed in a previous article was assessed. It is unclear whether PI, PT, and SS are valid with pelvic rotation while acquiring a radiograph. Ten 3-dimensionally reconstructed models were established with software and placed in a neutral orientation to orient all of the bones in a standing position. Next, 140 digitally reconstructed radiographs were obtained by rotating the models around the longitudinal axis of each pelvis in the software from 0 to 30 degrees at 2.5-degree intervals. PI, PT, and SS were measured. The rotation angle was considered to be acceptable when the change in the measured angle (compared with the "correct" position) was <6 degrees. The rotation angle (α) on the images was calculated by a geometrical formula. Consistency between the measured value and the set angle was assessed. The acceptable maximum angle of rotation for reliable measurements of PI was 17.5 degrees, and the changes in PT and SS were within an acceptable range (<6 degrees) when the pelvic rotation increased from 0 to 30 degrees. The effectiveness of the geometrical formula was shown by the consistency between the set and the calculated rotation angles of the pelvis (intraclass correlation coefficient=0.99). Our study provides insight into the influence of pelvic rotation on the PI, PT, and SS. PI changes with pelvic rotation. The acceptable maximum angle for reliable values of PI, PT, and SS was 17.5 degrees, and the rotation angle of the pelvis on a lateral spinopelvic radiograph can be calculated reliably.
Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera
Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing
2018-01-01
The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885
Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters
NASA Astrophysics Data System (ADS)
Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin
2015-11-01
The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Zeng, G. L.
2006-09-15
A rotating slat collimator can be used to acquire planar-integral data. It achieves higher geometric efficiency than a parallel-hole collimator by accepting more photons, but the planar-integral data contain less tomographic information that may result in larger noise amplification in the reconstruction. Lodge evaluated the rotating slat system and the parallel-hole system based on noise behavior for an FBP reconstruction. Here, we evaluate the noise propagation properties of the two collimation systems for iterative reconstruction. We extend Huesman's noise propagation analysis of the line-integral system to the planar-integral case, and show that approximately 2.0(D/dp) SPECT angles, 2.5(D/dp) self-spinning angles atmore » each detector position, and a 0.5dp detector sampling interval are required in order for the planar-integral data to be efficiently utilized. Here, D is the diameter of the object and dp is the linear dimension of the voxels that subdivide the object. The noise propagation behaviors of the two systems are then compared based on a least-square reconstruction using the ratio of the SNR in the image reconstructed using a planar-integral system to that reconstructed using a line-integral system. The ratio is found to be proportional to {radical}(F/D), where F is a geometric efficiency factor. This result has been verified by computer simulations. It confirms that for an iterative reconstruction, the noise tradeoff of the two systems is not only dependent on the increase of the geometric efficiency afforded by the planar projection method, but also dependent on the size of the object. The planar-integral system works better for small objects, while the line-integral system performs better for large ones. This result is consistent with Lodge's results based on the FBP method.« less
A practical implementation of wave front construction for 3-D isotropic media
NASA Astrophysics Data System (ADS)
Chambers, K.; Kendall, J.-M.
2008-06-01
Wave front construction (WFC) methods are a useful tool for tracking wave fronts and are a natural extension to standard ray shooting methods. Here we describe and implement a simple WFC method that is used to interpolate wavefield properties throughout a 3-D heterogeneous medium. Our approach differs from previous 3-D WFC procedures primarily in the use of a ray interpolation scheme, based on approximating the wave front as a `locally spherical' surface and a `first arrival mode', which reduces computation times, where only first arrivals are required. Both of these features have previously been included in 2-D WFC algorithms; however, until now they have not been extended to 3-D systems. The wave front interpolation scheme allows for rays to be traced from a nearly arbitrary distribution of take-off angles, and the calculation of derivatives with respect to take-off angles is not required for wave front interpolation. However, in regions of steep velocity gradient, the locally spherical approximation is not valid, and it is necessary to backpropagate rays to a sufficiently homogenous region before interpolation of the new ray. Our WFC technique is illustrated using a realistic velocity model, based on a North Sea oil reservoir. We examine wavefield quantities such as traveltimes, ray angles, source take-off angles and geometrical spreading factors, all of which are interpolated on to a regular grid. We compare geometrical spreading factors calculated using two methods: using the ray Jacobian and by taking the ratio of a triangular area of wave front to the corresponding solid angle at the source. The results show that care must be taken when using ray Jacobians to calculate geometrical spreading factors, as the poles of the source coordinate system produce unreliable values, which can be spread over a large area, as only a few initial rays are traced in WFC. We also show that the use of the first arrival mode can reduce computation time by ~65 per cent, with the accuracy of the interpolated traveltimes, ray angles and source take-off angles largely unchanged. However, the first arrival mode does lead to inaccuracies in interpolated angles near caustic surfaces, as well as small variations in geometrical spreading factors for ray tubes that have passed through caustic surfaces.
NASA Astrophysics Data System (ADS)
Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.
2014-12-01
Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth and fail catastrophically by tooth failure, whereas larger tip angles exhibit a shear failure of the interfaces. Therefore, larger tip angles and trapezoidal or triangular geometries promote graceful failure, and smaller tip angles and anti-trapezoidal geometries promote more brittle-like failure. This dependence is reminiscent of biological systems, which exhibit a range of failure behaviors with limited materials and varied geometry. Triangular geometries uniquely exhibit uniform stress distributions in its teeth and promote the greatest amplification of mechanical properties. In both the bonded and unbonded cases, the predictions from the presented analytical models and experimental results on 3D printed prototypes show excellent agreement. This validates the analytical models and allows for the models to be used as a tool for the design of new materials and interfaces with tailored mechanical behavior.
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
Objectifying the adjacent and opposite angles: a cultural historical analysis
NASA Astrophysics Data System (ADS)
Daher, Wajeeh; Musallam, Nadera
2018-02-01
The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles' concepts. We videoed the learning of a group of three high-achieving students who used technology, specifically GeoGebra, to explore geometric relations related to the adjacent and opposite angles' concepts. To analyze students' objectification of these concepts, we used the categories of objectification of knowledge (attention and awareness) and the categories of generalization (factual, contextual and symbolic), developed by Radford. The research results indicate that teacher's and students' verbal and visual signs, together with the software dynamic tools, mediated the students' objectification of the adjacent and opposite angles' concepts. Specifically, eye and gestures perceiving were part of the semiosis cycles in which the participating students were engaged and which related to the mathematical signs that signified the adjacent and the opposite angles. Moreover, the teacher's suggestions/requests/questions included/suggested semiotic signs/tools, including verbal signs that helped the students pay attention, be aware of and objectify the adjacent and opposite angles' concepts.
Secondary Mathematics Education in the Soviet Union, an Individual Study Project.
1982-05-14
Pythagoras and other well-known congruence theorems on angles and triangles. Concepts of set theory are developed in relation to the topics studied. Grades 6...geometry (areas, volumes, etc.). Geometric topics include: use of the ruler, protractor, and compasses in geometric constructions; Theorem of
Application of Nadal Limit in the prediction of wheel climb derailment
DOT National Transportation Integrated Search
2011-03-16
Application of the Nadal Limit to the prediction of wheel climb derailment is presented along with the effect of pertinent geometric and material parameters. Conditions which : contribute to this climb include wheelset angle of attack, contact angle,...
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-08-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.
Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier
2014-01-01
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193
Calibrators measurement system for headlamp tester of motor vehicle base on machine vision
NASA Astrophysics Data System (ADS)
Pan, Yue; Zhang, Fan; Xu, Xi-ping; Zheng, Zhe
2014-09-01
With the development of photoelectric detection technology, machine vision has a wider use in the field of industry. The paper mainly introduces auto lamps tester calibrator measuring system, of which CCD image sampling system is the core. Also, it shows the measuring principle of optical axial angle and light intensity, and proves the linear relationship between calibrator's facula illumination and image plane illumination. The paper provides an important specification of CCD imaging system. Image processing by MATLAB can get flare's geometric midpoint and average gray level. By fitting the statistics via the method of the least square, we can get regression equation of illumination and gray level. It analyzes the error of experimental result of measurement system, and gives the standard uncertainty of synthesis and the resource of optical axial angle. Optical axial angle's average measuring accuracy is controlled within 40''. The whole testing process uses digital means instead of artificial factors, which has higher accuracy, more repeatability and better mentality than any other measuring systems.
Gutkin billiard tables in higher dimensions and rigidity
NASA Astrophysics Data System (ADS)
Bialy, Misha
2018-05-01
Gutkin found a remarkable class of convex billiard tables in a plane that has a constant angle invariant curve. In this paper we prove that in dimension 3 only a round sphere has such a property. For dimensions greater than 3, a hypersurface with a Gutkin property different from a round sphere, if it exists, must be of constant width and, moreover, it must have very special geometric properties. In the 2D case we prove a rigidity result for Gutkin billiard tables. This is done with the help of a new generating function introduced recently for billiards in our joint paper with Mironov. In the present paper a formula for the generating function in higher dimensions is found.
The effect of photometric and geometric context on photometric and geometric lightness effects
Lee, Thomas Y.; Brainard, David H.
2014-01-01
We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects. PMID:24464163
The effect of photometric and geometric context on photometric and geometric lightness effects.
Lee, Thomas Y; Brainard, David H
2014-01-24
We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
Far-side geometrical enhancement in surface-enhanced Raman scattering with Ag plasmonic films
NASA Astrophysics Data System (ADS)
Perera, M. Nilusha M. N.; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.
2018-01-01
Surface-enhanced Raman scattering (SERS) is a surface sensitive technique where the large increase in scattering has primarily been attributed to electromagnetic and chemical enhancements. While smaller geometrical enhancements due to thin film interference and cavity resonances have also been reported, an additional enhancement in the SERS signal, referred to as the `far-side geometrical enhancement', occurs when the SERS substrate is excited through an underlying transparent dielectric substrate. Here the far-side geometrically-enhanced SERS signal has been explored experimentally in more detail. Thermally evaporated Ag plasmonic films functionalised with thiophenol were used to study the dependence of the geometrically-enhanced SERS signal on the excitation wavelength, supporting substrate material and excitation angle of incidence. The results were interpreted using a `geometrical enhancement factor' (GEF), defined as the ratio of far-side to near-side SERS signal intensity. The experimental results confirmed that the highest GEFs of 3.2-3.5× are seen closer to the localized surface plasmon resonance peak of the Ag metallic nanostructures. Interestingly, the GEF for Ag plasmonic films deposited on glass and sapphire were the same within the measurement errors, whereas increasing angle of incidence showed a decrease in the GEF. Given this improved understanding of the far-side geometrical SERS enhancement, the potential for further signal amplification and optimisation for practical sensing applications can now be considered, especially for SERS detection modes at the farend of optical fibre probes and through process windows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P; Backstrom, G; Enger, S
2015-06-15
Purpose: To explain a Monte Carlo (MC) simulation artifact whereby differences in relative biological effectiveness (RBE) in the induction of initial double strand breaks are observed as a function of the proton track incidence angles in a geometric cell nucleus model. Secondly, to offer an alternative isotropic irradiation procedure to mitigate this effect. Methods: MC tracks of 1 MeV protons were generated in an event-by-event mode. They were overlaid on a cylindrical model of a cell nucleus containing 6×109 nucleotide base pairs. The tracks incidence angle θ with respect to the cell nucleus’s axis was varied in 10 degrees intervals,more » each time generating one hundred fractions of ∼2 Gy. Strand breaks were scored in the modeled DNA sugar-phosphate groups and further sub-classified into single or double strand breaks (ssbs or dsbs). For each angle, an RBE for the induction of initial dsbs with reference to Co-60 was calculated. Results: Our results show significant angular dependencies of RBE, with maximum values for incidence angles parallel to the nucleus central axis. Further examination shows that the higher cross-sections for the creation of dsbs is due to the preferential alignment of tracks with geometrical sub-parts of the cell nucleus model, especially the nucleosomes containing the sugar-phosphate groups. To alleviate the impact of this simulation artifact, an average RBE was calculated with a procedure based on a weighted sampling of the angular data. Conclusion: This work demonstrates a possible numerical artifact in estimated RBE if the influence of the particle incidence angle is not correctly taken into account. A correction procedure is presented to better conform the simulations to real-life experimental conditions. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the CREATE Medical Physics Research Training Network grant (number 432290) of NSERC, support from NSERC under grants RGPIN 397711-11 and RGPIN-2014-06475 and support from the CIHR under grants MOP-114910, MOP-136774 and MOP-102550.« less
Influence of the axial rotation angle on tool mark striations.
Garcia, Derrel Louis; Pieterman, René; Baiker, Martin
2017-10-01
A tool's axial rotation influences the geometric properties of a tool mark. The larger the axial rotation angle, the larger the compression of structural details like striations. This complicates comparing tool marks at different axial rotations. Using chisels, tool marks were made from 0° to 75° axial rotation and compared using an automated approach Baiker et al. [10]. In addition, a 3D topographic surface of a chisel was obtained to generate virtual tool marks and to test whether the axial rotation angle of a mark could be predicted. After examination of the tool mark and chisel data-sets it was observed that marks lose information with increasing rotation due to the change in relative distance between geometrical details on the tool and the disappearance of smaller details. The similarity and repeatability were high for comparisons between marks with no difference in axial rotation, but decreasing with increased rotation angle from 0° to 75°. With an increasing difference in the rotation angles, the tool marks had to be corrected to account for the different compression factors between them. For compression up to 7.5%, this was obtained automatically by the tool mark alignment method. For larger compression, manually re-sizing the marks to the uncompressed widths at 0° rotation before the alignment was found suitable for successfully comparing even large differences in axial rotation. The similarity and repeatability were decreasing however, with increasing degree of re-sizing. The quality was assessed by determining the similarity at different detail levels within a tool mark. With an axial rotation up to 75°, tool marks were found to reliably represent structural details down to 100μm. The similarity of structural details below 100μm was dependent on the angle, with the highest similarity at small rotation angles and the lowest similarity at large rotation angles. Filtering to remove the details below 100μm lead to consistently higher similarity between tool marks at all angles and allowed for a comparison of marks up to 75° axial rotation. Finally, generated virtual tool mark profiles with an axial rotation were compared to experimental tool marks. The similarity between virtual and experimental tool marks remained high up to 60° rotation after which it decreased due to the loss in quality in both marks. Predicting the rotation angle is possible under certain conditions up to 45° rotation with an accuracy of 2.667±0.577° rotation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming
2017-12-22
The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.
Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case
Ao, Dongyang; Hu, Cheng; Tian, Weiming
2017-01-01
The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.
Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.
Topology-optimized metasurfaces: impact of initial geometric layout.
Yang, Jianji; Fan, Jonathan A
2017-08-15
Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.
Charging and geometric effects on conduction through Anthracene molecular junctions
NASA Astrophysics Data System (ADS)
Kaur, Rupan Preet; Sawhney, Ravinder Singh; Engles, Derick
We studied the geometric effects on the charge transfer through the anthracenedithiol (ADT) molecular junction using density functional theory combined with the non-equilibrium Green’s function approach. Two major geometric aspects, bond length and bond angle, were moderated to optimize the electrical conduction. From the results established in this paper, we found that the electrical conduction can be tuned from 0.2 G0 to 0.9 G0 by varying the Au-S bond length, whereas the moderation of bonding angle assayed a minor change from 0.37 G0 to 0.47 G0. We attributed this escalating zero bias conductance to the increasing charge on the terminal sulfur atom of the ADT molecule, which increased the energy of the HOMO orbital towards Fermi level and exhibited a semi-metallic behaviour. Therefore, geometry plays a critical role in deciding the charge transport through the metal/molecule interface.
Bioinspired Surface Treatments for Improved Decontamination: Icephobic Surfaces
2017-06-26
standing droplets of water (left) and methyl salicylate (right) immediately following liquid application (top) and 5 min after liquid application...average of nine measurements for each liquid ). Geometric surface energy was calculated based on the water and ethylene glycol interactions using software...supporting platform angle was gradually increased up to 60°. Sliding angles for each of the liquids were identified as the angle for which movement
Asymmetric design for Compound Elliptical Concentrators (CEC) and its geometric flux implications
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2015-08-01
The asymmetric compound elliptical concentrator (CEC) has been a less discussed subject in the nonimaging optics society. The conventional way of understanding an ideal concentrator is based on maximizing the concentration ratio based on a uniformed acceptance angle. Although such an angle does not exist in the case of CEC, the thermodynamic laws still hold and we can produce concentrators with the maximum concentration ratio allowed by them. Here we restate the problem and use the string method to solve this general problem. Built on the solution, we can discover groups of such ideal concentrators using geometric flux field, or flowline method.
PAN AIR application to the F-106B
NASA Technical Reports Server (NTRS)
Ghaffari, F.
1986-01-01
The PAN AIR computer code was employed in the present study to investigate the aerodynamic effects of the various geometrical changes and flow conditions on a configuration similar to the F-106B half-airplane tested in the Langley 30x60-foot wind tunnel. The various geometries studied included two forebodies (original and shortened), two inlet flow conditions (open and closed) two vortex flap situations (off and on). The attached flow theoretical solutions were obtained for Mach number of 0.08 and angle of attack of 8 deg., 10 deg., 12 deg., and 14 deg. In general this investigation revealed that the shortening of the forebody or closing of the inlet produced only a small change in the overall aerodynamic coefficients of the basic F-106B configuration throughout the examined angles of attack. However, closing the inlet of the configuration resulted in a slightly higher drag level at low angles of attack. Furthermore, at and above 10 deg. angle of attack, it was shown that the presence of the vortex flap causes an increase in the total lift and drag. Also, these theoretical results showed the expected reduction in longitudinal stability level with addition of the vortex flap to the basic F-106B configuration.
NASA Astrophysics Data System (ADS)
Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng
2016-06-01
The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.
Comparisons between geometrical optics and Lorenz-Mie theory
NASA Technical Reports Server (NTRS)
Ungut, A.; Grehan, G.; Gouesbet, G.
1981-01-01
Both the Lorenz-Mie and geometrical optics theories are used in calculating the scattered light patterns produced by transparent spherical particles over a wide range of diameters, between 1.0 and 100 microns, and for the range of forward scattering angles from zero to 20 deg. A detailed comparison of the results shows the greater accuracy of the geometrical optics theory in the forward direction. Emphasis is given to the simultaneous sizing and velocimetry of particles by means of pedestal calibration methods.
NASA Astrophysics Data System (ADS)
Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo
2017-05-01
For sake of striking a balance between the need of drilling efficiency and the constrains of power budget on the moon, the penetrations per revolution of drill bit are generally limited in the range around 0.1 mm, and besides the geometric angle of the cutting blade need to be well designed. This paper introduces a simulation approach based on PFC3D (particle flow code 3 dimensions) for analyzing the cutting load feature on lunar rock simulant, which is derived from different geometric-angle blades with a small cutting depth. The mean values of the cutting force of five blades in the survey region (four on the boundary points and one on the center point) are selected as the macroscopic responses of model. The method of experimental design which includes Plackett-Burman (PB) design and central composite design (CCD) method is adopted in the matching procedure of microparameters in PFC model. Using the optimization method of enumeration, the optimum set of microparameters is acquired. Then, the experimental validation is implemented by using other twenty-five blades with different geometric angles, and the results from both simulations and laboratory tests give fair agreements. Additionally, the rock breaking process cut by different blades are quantified from simulation analysis. This research provides the theoretical support for the refinement of the rock cutting load prediction and the geometric design of cutting blade on the drill bit.
Photometric models of disk-integrated observations of the OSIRIS-REx target Asteroid (101955) Bennu
NASA Astrophysics Data System (ADS)
Takir, Driss; Clark, Beth Ellen; Drouet d'Aubigny, Christian; Hergenrother, Carl W.; Li, Jian-Yang; Lauretta, Dante S.; Binzel, Richard P.
2015-05-01
We used ground-based photometric phase curve data of the OSIRIS-REx target Asteroid (101955) Bennu and low phase angle data from Asteroid (253) Mathilde as a proxy to fit Bennu data with Minnaert, Lommel-Seeliger, (RObotic Lunar Orbiter) ROLO, Hapke, and McEwen photometric models, which capture the global light scattering properties of the surface and subsequently allow us to calculate the geometric albedo, phase integral, spherical Bond albedo, and the average surface normal albedo for Bennu. We find that Bennu has low reflectance and geometric albedo values, such that multiple scattering is expected to be insignificant. Our photometric models relate the reflectance from Bennu's surface to viewing geometry as functions of the incidence, emission, and phase angles. Radiance Factor functions (RADFs) are used to model the disk-resolved brightness of Bennu. The Minnaert, Lommel-Seeliger, ROLO, and Hapke photometric models work equally well in fitting the best ground-based photometric phase curve data of Bennu. The McEwen model works reasonably well at phase angles from 20° to 70°. Our calculated geometric albedo values of 0.047-0.014+0.012,0.047-0.014+0.005 , and 0.048-0.022+0.012 for the Minnaert, the Lommel-Seeliger, and the ROLO models respectively are consistent with the geometric albedo of 0.045 ± 0.015 computed by Emery et al. (Emery, J.P. et al. [2014]. Icarus 234, 17-35) and Hergenrother et al. (Hergenrother, C.W. et al. [2014].
Auto calibration of a cone-beam-CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Daniel; Heil, Ulrich; Schulze, Ralf
2012-10-15
Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferablymore » form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to demonstrate the achievable spatial resolution of their calibration procedure. Results: Compared to the results published in the most closely related work [K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)], the simulation proved the greater accuracy of their method, as well as a lower standard deviation of roughly 1 order of magnitude. When compared to another similar approach [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004)], their results were roughly of the same order of accuracy. Their analysis revealed that the method is capable of sufficiently calibrating out-of-plane angles in cases of larger cone angles when neglecting these angles negatively affects the reconstruction. Fine details in the 3D reconstruction of the spine segment and an electronic device indicate a high geometric calibration accuracy and the capability to produce state-of-the-art reconstructions. Conclusions: The method introduced here makes no requirements on the accuracy of the test object. In contrast to many previous autocalibration methods their approach also includes out-of-plane rotations of the detector. Although assuming a perfect rotation, the method seems to be sufficiently accurate for a commercial CBCT scanner. For devices which require higher dimensional geometry models, the method could be used as a initial calibration procedure.« less
Geometric somersaults of a polymer chain through cyclic twisting motions
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Hino, Taiko
2017-01-01
This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation about its longitudinal axis largely, e.g., 120∘, under conditions of zero total angular momentum by changing the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called "falling cat" phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and viscous environment, where the polymer chain is steered by external driving forces. This extension shows that the polymer chain can achieve an orientation change keeping its total angular momentum and total external torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric somersault of the polymer chain by 120∘ may serve as a prototypical and coarse-grained model for the rotary motion of the central shaft of ATP synthase (FOF1 -ATPase). This geometric somersault is in clear contrast to the standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest in twisting and rotary motions of biomolecules.
Analysis of zinc binding sites in protein crystal structures.
Alberts, I L; Nadassy, K; Wodak, S J
1998-08-01
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.
NASA Astrophysics Data System (ADS)
Liu, Zhao-Miao; Liu, Li-Kun; Shen, Feng
2015-10-01
Droplets generation in Y-junctions and anti-Y-junctions microchannels are experimentally studied using a high speed digital microscopic system and numerical simulation. Geometric configuration of a microchannel, such as Y-angle (90°, 135°, -90° and -135°), channel depth and other factors have been taken into consideration. It is found that droplets generated in anti-Y-junctions have a smaller size and a shorter generation cycle compared with those in Y-junctions under the same experimental conditions. Through observing the internal velocity field, the vortex appearing in continuous phase in anti-Y-junctions is one of the key factors for the difference of droplet size and generation cycle. It is found that droplet size is bigger and generation cycle is longer when the absolute angle value of the intersection between the continuous and the dispersed phases (i.e., the angle between the main channel and the continuous phase or the dispersed phase channel) increases. The droplet's size is influenced by the Y-angle, which varies with the channel depth in Y-junctions. The Y-angle has a positive effect on the droplet generation cycle, but a smaller height-width ratio will enhance the impact of a continuous and dispersed phase's intersection angle on the droplet generation cycle in Y-junctions microchannels.
Specific feature of magnetooptical images of stray fields of magnets of various geometrical shapes
NASA Astrophysics Data System (ADS)
Ivanov, V. E.; Koveshnikov, A. V.; Andreev, S. V.
2017-08-01
Specific features of magnetooptical images (MOIs) of stray fields near the faces of prismatic hard magnetic elements have been studied. Attention has primarily been focused on MOIs of fields near faces oriented perpendicular to the magnetic moment of hard magnetic elements. With regard to the polar sensitivity, MOIs have practically uniform brightness and geometrically they coincide with the figures of the bases of the elements. With regard to longitudinal sensitivity, MOIs consist of several sectors, the number of which is determined by the number of angles of the image. Each angle is divided by the bisectrix into two sectors of different brightnesses; therefore, the MOI of a triangular magnet consists of three sectors. A rectangle consists of four sectors separated by the bisectrices of the interior angles. In all types of figures, these lines converge at the center of the figure and form a singular point of the source or sink type.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.
1997-01-01
An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-shroud nonaxisymmetric nozzle equipped with an aft-hood exhaust deflector. Model geometric parameters investigated included nozzle power setting, aft-hood deflector angle, throat area control with the aft-hood deflector deployed, and yaw vector angle. Results indicate that cruise configurations produced peak performance in the range consistent with previous investigations of nonaxisymmetric convergent-divergent nozzles. The aft-hood deflector produced resultant pitch vector angles that were always less than the geometric aft-hood deflector angle when the nozzle throat was positioned upstream of the deflector exit. Significant losses in resultant thrust ratio occurred when the aft-hood deflector was deployed with an upstream throat location. At each aft-hood deflector angle, repositioning the throat to the deflector exit improved pitch vectoring performance and, in some cases, substantially improved resultant thrust ratio performance. Transferring the throat to the deflector exit allowed the flow to be turned upstream of the throat at subsonic Mach numbers, thereby eliminating losses associated with turning supersonic flow. Internal throat panel deflections were largely unsuccessful in generating yaw vectoring.
NASA Astrophysics Data System (ADS)
Cormann, Mirko; Caudano, Yves
2017-07-01
We express modular and weak values of observables of three- and higher-level quantum systems in their polar form. The Majorana representation of N-level systems in terms of symmetric states of N - 1 qubits provides us with a description on the Bloch sphere. With this geometric approach, we find that modular and weak values of observables of N-level quantum systems can be factored in N - 1 contributions. Their modulus is determined by the product of N - 1 ratios involving projection probabilities between qubits, while their argument is deduced from a sum of N - 1 solid angles on the Bloch sphere. These theoretical results allow us to study the geometric origin of the quantum phase discontinuity around singularities of weak values in three-level systems. We also analyze the three-box paradox (Aharonov and Vaidman 1991 J. Phys. A: Math. Gen. 24 2315-28) from the point of view of a bipartite quantum system. In the Majorana representation of this paradox, an observer comes to opposite conclusions about the entanglement state of the particles that were successfully pre- and postselected.
Computational analysis of hydrogenated graphyne folding
NASA Astrophysics Data System (ADS)
Lenear, Christopher; Becton, Matthew; Wang, Xianqiao
2016-02-01
This letter employs molecular mechanics simulations to analyze the geometric changes of foreign-atom-doped graphyne. Simulation results show that higher the density of dopant and the greater area covered by the dopant correlates to a greater folding angle of the graphyne sheet. Compared to graphene, graphyne folding could prove to be more effective for various nanodevices based on its unique band gap, especially when doped, and its tunable interactions with and absorption of foreign molecules. Therefore, our findings may offer unique perspectives into the development of novel graphyne-based nanodevices and stimulate the community's research interest in graphene-related origami.
Study of proton radiation effects among diamond and rectangular gate MOSFET layouts
NASA Astrophysics Data System (ADS)
Seixas, L. E., Jr.; Finco, S.; Silveira, M. A. G.; Medina, N. H.; Gimenez, S. P.
2017-01-01
This paper describes an experimental comparative study of proton ionizing radiation effects between the metal-oxide-semiconductor (MOS) Field Effect Transistors (MOSFETs) implemented with hexagonal gate shapes (diamond) and their respective counterparts designed with the classical rectangular ones, regarding the same gate areas, channel widths and geometrical ratios (W/L). The devices were manufactured by using the 350 nm bulk complementary MOS (CMOS) integrated circuits technology. The diamond MOSFET with α angles higher or equal to 90° tends to present a smaller vulnerability to the high doses ionizing radiation than those observed in the typical rectangular MOSFET counterparts.
How to derotate the cosmic microwave background polarization.
Kamionkowski, Marc
2009-03-20
If the linear polarization of the cosmic microwave background is rotated in a frequency-independent manner as it propagates from the surface of last scatter, it may introduce a B-mode polarization. Here I show that measurement of higher-order TE, EE, EB, and TB correlations induced by this rotation can be used to reconstruct the rotation angle as a function of position on the sky. This technique can be used to distinguish primordial B modes from those induced by rotation. The effects of rotation can be distinguished geometrically from similar effects due to cosmic shear.
Applications of maximally concentrating optics for solar energy collection
NASA Astrophysics Data System (ADS)
O'Gallagher, J.; Winston, R.
1985-11-01
A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.
Expression of the degree of polarization based on the geometrical optics pBRDF model.
Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng
2017-02-01
An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Majjigi, R. K.
1985-01-01
The influence of selected geometric and aerodynamic flow variables of an unsuppressed coannular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor were experimentally determined. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale model nozzles. Also, aerodynamic measurements of four selected plumes were made with a laser velocimeter. The presence of the 180 deg shield produced different mixing characteristics on the shield side compared to the unshield side because of the reduced mixing with ambient air on the shielded side. This resulted in a stretching of the jet, yielding a higher peak mean velocity up to a length of 10 equivalent diameters from the nozzle exit. The 180 deg shield in community orientation around the suppressed coannular plug nozzle yielded acoustic benefit at all observer angles for a simulated takeoff. While the effect of shield-to-outer stream velocity ratio was small at angles up to 120 deg, beyond this angle significant acoustic benefit was realized with a shield-to-outer stream velocity ratio of 0.64.
ERIC Educational Resources Information Center
Metz, James
2014-01-01
Light refracts as it travels from one medium to another. The angle of incidence "i" and the angle of refraction "r" are related by Snell's law, sin"i" ÷ sin"r"="k," where "k" is a constant. The diagram in Fig. 1 shows a geometric representation of the formula for light passing from…
NASA Astrophysics Data System (ADS)
Krivoruchenko, Mikhail I.
2009-08-01
Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).
Optimum Solar Conversion Cell Configurations
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2015-01-01
Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.
Geometrical analysis of circular-cut spiral bevel gears
NASA Technical Reports Server (NTRS)
Huston, R. L.
1983-01-01
Geometrical studies of circular cut spiral bevel gears are reported. Tooth profile changes heel to toe are studied in the transverse plane. Pressure angle changes are determined. The radiuses of curvature of the tooth surfaces generated by various cutter profiles are also determined. The consequences of cutter profile changes are explored. Crown gears are emphasized and the implications for conical gears are discussed.
A higher-order theory for geometrically nonlinear analysis of composite laminates
NASA Technical Reports Server (NTRS)
Reddy, J. N.; Liu, C. F.
1987-01-01
A third-order shear deformation theory of laminated composite plates and shells is developed, the Navier solutions are derived, and its finite element models are developed. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for the von Karman nonlinear strains. Closed-form solutions of the theory for rectangular cross-ply and angle-ply plates and cross-ply shells are developed. The finite element model is based on independent approximations of the displacements and bending moments (i.e., mixed finite element model), and therefore, only C sup o -approximation is required. The finite element model is used to analyze cross-ply and angle-ply laminated plates and shells for bending and natural vibration. Many of the numerical results presented here should serve as references for future investigations. Three major conclusions resulted from the research: First, for thick laminates, shear deformation theories predict deflections, stresses and vibration frequencies significantly different from those predicted by classical theories. Second, even for thin laminates, shear deformation effects are significant in dynamic and geometrically nonlinear analyses. Third, the present third-order theory is more accurate compared to the classical and firt-order theories in predicting static and dynamic response of laminated plates and shells made of high-modulus composite materials.
NASA Astrophysics Data System (ADS)
Le The, Hai; Ta, Bao Quoc; Le Thanh, Hoa; Dong, Tao; Nguyen Thoi, Trung; Karlsen, Frank
2015-09-01
A novel passive micromixer, called a trapezoidal-zigzag micromixer (TZM), is reported. A TZM is composed of trapezoidal channels in a zigzag and split-recombine arrangement that enables multiple mixing mechanisms, including splitting-recombining, twisting, transversal flows, vortices, and chaotic advection. The effects of geometric parameters of the TZM on mixing performance are systematically investigated by the Taguchi method and numerical simulations in COMSOL Multiphysics. The number of mixing units, the slope angle of the trapezoidal channel, the height of the constriction element, and the width ratio between the middle-trapezoidal channel and the side-trapezoidal channel are the four parameters under study. The mixing performance of the TZM is investigated at three different Reynolds number (Re) values of 0.5, 5, and 50. The results showed that a TZM with six mixing units, a trapezoidal slope angle of 75°, a constricting height of 100 µm, and a width ratio of 0.5 has the highest mixing efficiency. This optimal TZM has a mixing efficiency greater than 85% for Re values from 0.1 to 80. In particular, for Re ⩽ 0.9 and Re ⩾ 20, the mixing efficiency of the optimal TZM is greater than 90%. The proposed TZM has a higher mixing efficiency and a smaller footprint than previously reported micromixers.
Sato, Katsufumi; Shiomi, Kozue; Watanabe, Yuuki; Watanuki, Yutaka; Takahashi, Akinori; Ponganis, Paul J.
2010-01-01
It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass−1/3. In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8–2.3 m s−1 were significantly related to mass0.08 and stroke frequencies were proportional to mass−0.29. These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)1/3 independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass0.05; and (iii) stroke frequency is proportional to mass−0.28. The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive. PMID:19906666
Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.
2017-01-01
Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.
NASA Astrophysics Data System (ADS)
Rafat, M. Z.; Melrose, D. B.
2015-05-01
A conventional astrophysical treatment of synchrotron emission is modified to include the refractive index of air, written as n = 1 + 1/(2γ 02), with γ0 ≫ 1. The angular distribution of emission by an electron with Lorentz factor γ is broadened, from a range of |θ - α| ≈ 1/γ in vacuo (θ = emission angle, α = pitch angle) to |θ - α| ≈ max{1/γ, 1/γ0} in air. The emission spectrum in air is almost unchanged from that in vacuo at sufficiently low frequencies and it is modified by extending to higher frequencies with increasing γ/γ0 < 1, and to arbitrarily high frequencies for γ/γ0 ≥ 1. We estimate the frequency at which this enhancement starts, and show that it decreases with increasing γ/γ0 > 1. We interpret the enhanced high-frequency emission as Cerenkov-like, and attribute it to the formation of caustic surfaces that sweep across the observer; we use a geometric model based on Huygens construction to support this interpretation. The geometric model predicts that the so-called Cerenkov ring present at high frequencies may be circular, elliptical, or crescent shaped. In the astrophysical treatment of synchrotron emission, the dependence on azimuthal angle is lost in the expression for emissivity. A motivation for this investigation is the application to extensive air showers, and for this purpose the loss of azimuthal dependence is a limitation. We comment on methods to overcome this limitation. We show that when an observer can see emission from inside the Cerenkov cone, emission from outside the Cerenkov cone, on either side of it, arrives simultaneously; there are three emission times for a given observation time.
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.
Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian
2017-06-01
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.
NASA Technical Reports Server (NTRS)
vanZyl, Jakob J.
2012-01-01
Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth
The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth
2016-12-15
The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less
Angular and Intensity Dependent Spectral Modulations in High Harmonics from N2
NASA Astrophysics Data System (ADS)
McFarland, Brian; Farrell, Joseph; Bucksbaum, Philip; Guehr, Markus
2009-05-01
The spectral amplitude and phase modulation of high harmonics (HHG) in molecules provides important clues to molecular structure and dynamics in strong laser fields. We have studied these effects in aligned N2. Earlier results of HHG experiments claimed that the spectral amplitude modulation was predominantly due to geometrical interference between the recombining electron and the highest occupied molecular orbital (HOMO) [1]. We report evidence that contradicts this simple view. We observe a phase jump accompanied by a spectral minimum for HHG in aligned N2. The minimum shifts to lower harmonics as the angle between the molecular axis and harmonic generation polarization increases, and shifts to higher harmonics with increasing harmonic generation intensity. The features observed cannot be fully explained by a geometrical model. We discuss alternative explanations involving multi orbital effects [2]. [0pt] [1] Lein et al., Phys. Rev. A, 66, 023805 (2002) [2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
Angles No Longer Weigh In: The Effect of Geometric Cue Directness on Reorientation
ERIC Educational Resources Information Center
Huang, Zhenzhen; Hu, Qingfen; Shao, Yi
2017-01-01
Previous research in spatial reorientation, which only presented the target location in the corner, has found that adults weighed angles more than wall lengths. We proposed that in previous research, angular cues were available for direct use whereas length cues had to be associated with the left/right sense. We thus investigated whether the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, B., E-mail: bbora@cchen.cl
2015-10-15
On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found tomore » work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-Ho; Krolik, Julian H.
2017-07-01
Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply towardmore » the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.« less
Refraction corrections for surveying
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.
The geometric curvature of the lumbar spine during restricted and unrestricted squats.
Hebling Campos, Mário; Furtado Alaman, Laizi I; Seffrin-Neto, Aldo A; Vieira, Carlos A; Costa de Paula, Marcelo; Barbosa de Lira, Claudio A
2017-06-01
The main purpose of this study was to analyze the behavior of the geometric curvature of the lumbar spine during restricted and unrestricted squats, using a novel investigative method. The rationale for our hypothesis is that the lumbar curvature has different patterns at different spine levels depending on the squat technique used. Spine motion was collected via stereo-photogrammetric analysis in nineteen participants (11 males, 8 females). The reconstructed spine points at the upright neutral position and at the deepest position of the squat exercise were projected onto the sagittal plane of the trunk, a polynomial was fitted to the data, and were quantified the two-dimensional geometric curvature at lower, central and higher lumbar levels, besides the inclination of trunk and lumbosacral region, the overall geometric curvature and overall angle of the lumbar spine. The mean values for each variable were analysed with paired t-test (P<0.05). The lumbar presents a flexion from upright neutral posture to deepest point of the movement, but for the lower lumbar the flexion is less intense if the knees travel anteriorly past the toes. The trunk and the lumbosacral region lean forward in both squat techniques and these effects are also reduced in unrestricted squats. The data collected in the study are evidence that during barbell squats the lumbar curvature has different patterns at different spinal levels depending on the exercise technique. The lower lumbar spine appears to be less overloaded during unrestricted squats.
A parametric numerical study of mixing in a cylindrical duct
NASA Astrophysics Data System (ADS)
Oechsle, V. L.; Mongia, H. C.; Holderman, J. D.
1992-07-01
The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonsik; Chell, Erik; Gertner, Michael
Age-related macular degeneration (ARMD) is a major health problem worldwide. Advanced ARMD, which ultimately leads to profound vision loss, has dry and wet forms, which account for 20% and 80% of cases involving severe vision loss, respectively. A new device and approach for radiation treatment of ARMD has been recently developed by Oraya Therapeutics, Inc. (Newark, CA). The goal of the present study is to provide a initial dosimetry characterization of the proposed radiotherapy treatment via Monte Carlo radiation transport simulation. A 3D eye model including cornea, anterior chamber, lens, orbit, fat, sclera, choroid, retina, vitreous, macula, and optic nervemore » was carefully designed. The eye model was imported into the MCNPX2.5 Monte Carlo code and radiation transport simulations were undertaken to obtain absorbed doses and dose volume histograms (DVH) to targeted and nontargeted structures within the eye. Three different studies were undertaken to investigate (1) available beam angles that maximized the dose to the macula target tissue, simultaneously minimizing dose to normal tissues, (2) the energy dependency of the DVH for different x-ray energies (80, 100, and 120 kVp), and (3) the optimal focal spot size among options of 0.0, 0.4, 1.0, and 5.5 mm. All results were scaled to give 8 Gy to the macula volume, which is the current treatment requirement. Eight beam treatment angles are currently under investigation. In all eight beam angles, the source-to-target distance is 13 cm, and the polar angle of entry is 30 degree sign from the geometric axis of the eye. The azimuthal angle changes in eight increments of 45 degree sign in a clockwise fashion, such that an azimuthal angle of 0 degree sign corresponds to the 12 o'clock position when viewing the treated eye. Based on considerations of nontarget tissue avoidance, as well as facial-anatomical restrictions on beam delivery, treatment azimuthal angles between 135 degree sign and 225 degree sign would be available for this treatment system (i.e., directly upward and entering the eye from below). At beam directions approaching 225 degree sign and higher, some dose contribution to the optic nerve would result under the assumption that the optic nerve is tilted cranially above the geometric axis in a given patient, a feature not typically seen in past studies. A total treatment dose of 24 Gy would be delivered in three 8 Gy treatments at these selected azimuthal angles. Dose coefficients, defined as the macula radiation absorbed dose per unit air kerma in units of Gy/Gy, were 16% higher for 120 kVp x-ray beams in comparison to those at 80 kVp, thus requiring only 86% of the integrated tube current (mAs) for equivalent dose delivery. When 0.0, 0.4, and 1.0 mm focal spot sizes were used, the dose profiles in the macula are very similar and relatively uniform, whereas a 5.5 mm focal spot size produced a more nonuniform dose profile. The results of this study demonstrate the therapeutic promise of this device and provide important information for further design and clinical implementation for radiotherapy treatments for ARMD.« less
Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes.
Lynch, J M; Wood, C G; Luboga, S A
1996-01-01
Traditionally, morphometric studies have relied on statistical analysis of distances, angles or ratios to investigate morphometric variation among taxa. Recently, geometric techniques have been developed for the direct analysis of landmark data. In this paper, we offer a summary (with examples) of three of these newer techniques, namely shape coordinate, thin-plate spline and relative warp analyses. Shape coordinate analysis detected significant craniofacial variation between 4 modern human populations, with African and Australian Aboriginal specimens being relatively prognathous compared with their Eurasian counterparts. In addition, the Australian specimens exhibited greater basicranial flexion than all other samples. The observed relationships between size and craniofacial shape were weak. The decomposition of shape variation into affine and non-affine components is illustrated via a thin-plate spline analysis of Homo and Pan cranial landmarks. We note differences between Homo and Pan in the degree of prognathism and basicranial flexion and the position and orientation of the foramen magnum. We compare these results with previous studies of these features in higher primates and discuss the utility of geometric morphometrics as a tool in primatology and physical anthropology. We conclude that many studies of morphological variation, both within and between taxa, would benefit from the graphical nature of these techniques.
NASA Technical Reports Server (NTRS)
Wing, David J.
1998-01-01
The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.
1981-01-31
geometric factor. For the low energy FSA detectors, the background counts must be subtracted from the measured (actual) counts before the geometric factor...and high energy) each provide a background measure - ment. The background counts for the low energy ESA (LE ESA) were subtracted from the other four LE...perpendicular to the spacecraft +X reference spin axis and 189.660 around from the +Z axis (with this angle measured from the +Z axis in the direction
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
ZY3-02 Laser Altimeter Footprint Geolocation Prediction
Xie, Junfeng; Tang, Xinming; Mo, Fan; Li, Guoyuan; Zhu, Guangbin; Wang, Zhenming; Fu, Xingke; Gao, Xiaoming; Dou, Xianhui
2017-01-01
Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser altimeter is 2 Hz, and the distance between two adjacent laser footprints is about 3.5 km. In this paper, we build an on-orbit rigorous geometric prediction model referenced to the rigorous geometric model of optical remote sensing satellites. The model includes three kinds of data that must be predicted: pointing angle, orbit parameters, and attitude angles. The proposed method is verified by a ZY3-02 laser altimeter on-orbit geometric calibration test. Five laser footprint prediction experiments are conducted based on the model, and the laser footprint prediction accuracy is better than 150 m on the ground. The effectiveness and accuracy of the on-orbit rigorous geometric prediction model are confirmed by the test results. The geolocation is predicted precisely by the proposed method, and this will give a reference to the geolocation prediction of future land laser detectors in other laser altimeter calibration test. PMID:28934160
ZY3-02 Laser Altimeter Footprint Geolocation Prediction.
Xie, Junfeng; Tang, Xinming; Mo, Fan; Li, Guoyuan; Zhu, Guangbin; Wang, Zhenming; Fu, Xingke; Gao, Xiaoming; Dou, Xianhui
2017-09-21
Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser altimeter is 2 Hz, and the distance between two adjacent laser footprints is about 3.5 km. In this paper, we build an on-orbit rigorous geometric prediction model referenced to the rigorous geometric model of optical remote sensing satellites. The model includes three kinds of data that must be predicted: pointing angle, orbit parameters, and attitude angles. The proposed method is verified by a ZY3-02 laser altimeter on-orbit geometric calibration test. Five laser footprint prediction experiments are conducted based on the model, and the laser footprint prediction accuracy is better than 150 m on the ground. The effectiveness and accuracy of the on-orbit rigorous geometric prediction model are confirmed by the test results. The geolocation is predicted precisely by the proposed method, and this will give a reference to the geolocation prediction of future land laser detectors in other laser altimeter calibration test.
The Hidden Geometries of the Arabidopsis thaliana Epidermis
Staff, Lee; Hurd, Patricia; Reale, Lara; Seoighe, Cathal; Rockwood, Alyn; Gehring, Chris
2012-01-01
The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col.) adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 µm2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length∶width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area∶perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT) were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5°) for the largest angles and 110° (± 5°) for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (≥500 µm2) tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of ‘geometrical rules’. PMID:22984433
Aerodynamic characteristics of cruciform missiles at high angles of attack
NASA Technical Reports Server (NTRS)
Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.
1987-01-01
An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.
NASA Technical Reports Server (NTRS)
Perry, S. K.; Schamel, S.
1985-01-01
Tectonic extension within continental crust creates a variety of major features best classed as extensional orogens. These features have come under increasing attention in recent years, with the welding of field observation and theoretical concepts. Most recent advances have come from the Basin and Range Province of the southwestern United States and from the North Sea. Application of these geometric and isostatic concepts, in combination with seismic interpretation, to the southern Gulf of Suez, an active extensional orogen, allows generation of detailed structural maps and geometrically balanced sections which suggest a regional structural model. Geometric models which should prove to be a valuable adjunct to numerical and thermal models for the rifting process are discussed.
Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J
2016-12-08
The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Yongxin; Zhou, Rui; Ge, Yaojun; Du, Yanliang; Zhang, Lihai
2018-06-27
In this study, the influence of two critical geometrical parameters (i.e., angles of wind fairing, α; and lower inclined web, β) in the aerodynamic performance of closed-box girder bridges was systematically investigated through conducting a theoretical analysis and wind tunnel testing using laser displacement sensors. The results show that, for a particular inclined web angle β, a closed-box girder with a sharper wind fairing angle of α = 50° has better flutter and vortex-induced vibration (VIV) performance than that with α = 60°, while an inclined web angle of β = 14° produces the best VIV performance. In addition, the results from particle image velocimetry (PIV) tests indicate that a wind fairing angle of α = 50° produces a better flutter performance by inducing a single vortex structure and a balanced distribution of the strength of vorticity in both upper and lower parts of the wake region. Furthermore, two-dimensional three-degrees-of-freedom (2D-3DOF) analysis results demonstrate that the absolute values of Part A (with a reference of flutter derivative A ₂ * ) and Part D (with a reference of A ₁ * H ₃ * ) generally decrease with the increase of β, while the change of the participation level of heaving degrees of freedom (DOF) in torsion-dominated coupled flutter initially increases, reaches its peak, and then decreases with the increase of β.
Luminosity geometric reduction factor from colliding bunches with different lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdu-Andres, S.
In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.
Full-Scale Wind Tunnel Test of the UH-60A Airloads Rotor
2011-05-01
moment M 2 cn section normal force Mtip hover tip Mach number r radial coordinate, ft R blade radius, ft !c corrected shaft angle, positive aft, deg...s geometric shaft angle, positive aft, deg µ advance ratio Presented at the American...nine radial stations. These data, in combination with other measured parameters (structural loads, control positions, and rotor shaft moments), have
Quantitative evaluation of the lumbosacral sagittal alignment in degenerative lumbar spinal stenosis
Makirov, Serik K.; Jahaf, Mohammed T.; Nikulina, Anastasia A.
2015-01-01
Goal of the study This study intends to develop a method of quantitative sagittal balance parameters assessment, based on a geometrical model of lumbar spine and sacrum. Methods One hundred eight patients were divided into 2 groups. In the experimental group have been included 59 patients with lumbar spinal stenosis on L1-5 level. Forty-nine healthy volunteers without history of any lumbar spine pathlogy were included in the control group. All patients have been examined with supine MRI. Lumbar lordosis has been adopted as circular arc and described either anatomical (lumbar lordosis angle), or geometrical (chord length, circle segment height, the central angle, circle radius) parameters. Moreover, 2 sacral parameters have been assessed for all patients: sacral slope and sacral deviation angle. Both parameters characterize sacrum disposition in horizontal and vertical axis respectively. Results Significant correlation was observed between anatomical and geometrical lumbo-sacral parameters. Significant differences between stenosis group and control group were observed in the value of the “central angle” and “sacral deviation” parameters. We propose additional parameters: lumbar coefficient, as ratio of the lordosis angle to the segmental angle (Kl); sacral coefficient, as ratio of the sacral tilt (ST) to the sacral deviation (SD) angle (Ks); and assessment modulus of the mathematical difference between sacral and lumbar coefficients has been used for determining lumbosacral balance (LSB). Statistically significant differences between main and control group have been obtained for all described coefficients (p = 0.006, p = 0.0001, p = 0.0001, accordingly). Median of LSB value of was 0.18 and 0.34 for stenosis and control groups, accordingly. Conclusion Based on these results we believe that that spinal stenosis is associated with an acquired deformity that is measureable by the described parameters. It's possible that spinal stenosis occurs in patients with an LSB of 0.2 or less, so this value can be predictable for its development. It may suggest that spinal stenosis is more likely to occur in patients with the spinal curvature of this type because of abnormal distribution of the spine loads. This fact may have prognostic significance for develop vertebral column disease and evaluation of treatment results. PMID:26767160
Accounting for optical errors in microtensiometry.
Hinton, Zachary R; Alvarez, Nicolas J
2018-09-15
Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua
2015-12-01
We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic structures with less operating time and high accuracy of modeling.
Spanwise visualization of the flow around a three-dimensional foil with leading edge protuberances
NASA Astrophysics Data System (ADS)
Stanway, M. J.; Techet, A. H.
2006-11-01
Studies of model humpback whale fins have shown that leading edge protuberances, or tubercles, can lead to delayed stall and increased lift at higher angles of attack, compared to foils with geometrically smooth leading edges. Such enhanced performance characteristics could prove highly useful in underwater vehicles such as gliders or long range AUVs (autonomous underwater vehicles). In this work, Particle Imaging Velocimetry (PIV) is performed on two static wings in a water tunnel over a range of angles of attack. These three- dimensional, finite-aspect ratio wings are modeled after a humpback whale flipper and are identical in shape, tapered from root to tip, except for the leading edge. In one of the foils the leading edge is smooth, whereas in the other, regularly spaced leading edge bumps are machined to simulate the whale’s fin tubercles. Results from these PIV tests reveal distinct cells where coherent flow structures are destroyed as a result of the leading edge perturbations. Tests are performed at Reynolds numbers Re ˜ O(10^5), based on chordlength, in a recirculating water tunnel. An inline six-axis load cell is mounted to measure the forces on the foil over a range of static pitch angles. It is hypothesized that this spanwise breakup of coherent vortical structures is responsible for the delayed angle of stall. These quantitative experiments complement exiting qualitative studies with two dimensional foils.
Geometrical and Kinematic Parameters of the Jet of the Blazar S5 0716+71 in a Helical-Jet Model
NASA Astrophysics Data System (ADS)
Butuzova, M. S.
2018-02-01
Periodic variations of the position angle of the inner jet of the blazar S5 0716+71 suggest a helical structure for the jet. The geometrical parameters of a model helical jet are determined. It is shown that, when the trajectories of the jet components are non-ballistic, the angle between their velocity vectors and the line of sight lies in a broader interval than is the case for ballistic motions of the components, in agreement with available estimates. The contradictory results for the apparent speeds of components in the inner and outer jet at epochs 2004 and 2008-2010 can be explained in such a model. The ratio of the apparent speeds in the inner and outer jet are used to derive a lower limit for the physical speed of the components ( β > 0.999) and to determine the pitch angle of the helical jet ( p = 5.5°). The derived parameters can give rise to the conditions required to observe high speeds (right to 37 c) for individual jet components.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Motion of Liquid Droplets on a Superhydrophobic Oleophobic Surface (Postprint)
2010-08-01
prediction , NyCo multifilament plain woven fabric can be superhydro- phobic and oleophobic once the fabric is treated with an LSTM . Figure 4 shows water and...to predict the wetting behavior of superhydrophobic and oleophobic materials. Using chemical and geometrical modifications, a superhydrophobic...oleophobic surface was prepared. Good agreement between the predicted and measured contact angles and roll-off angles were obtained. The effect of the
Zheng, Shi-Biao
2005-08-19
We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.
Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments
NASA Astrophysics Data System (ADS)
Nikiforov, I. I.; Veselova, A. V.
2018-02-01
We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center ( R 0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R 0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R 0 in the sense that an increase in R 0 leads to a growth in the absolute values of the pitch angles.
Moneypenny, Timothy P; Yang, Anna; Walter, Nathan P; Woods, Toby J; Gray, Danielle L; Zhang, Yang; Moore, Jeffrey S
2018-05-02
In the dynamic synthesis of covalent organic frameworks and molecular cages, the typical synthetic approach involves heuristic methods of discovery. While this approach has yielded many remarkable products, the ability to predict the structural outcome of subjecting a multitopic precursor to dynamic covalent chemistry (DCC) remains a challenge in the field. The synthesis of covalent organic cages is a prime example of this phenomenon, where precursors designed with the intention of affording a specific product may deviate dramatically when the DCC synthesis is attempted. As such, rational design principles are needed to accelerate discovery in cage synthesis using DCC. Herein, we test the hypothesis that precursor bite angle contributes significantly to the energy landscape and product distribution in multitopic alkyne metathesis (AM). By subjecting a series of precursors with varying bite angles to AM, we experimentally demonstrate that the product distribution, and convergence toward product formation, is strongly dependent on this geometric attribute. Surprisingly, we discovered that precursors with the ideal bite angle (60°) do not afford the most efficient pathway to the product. The systematic study reported here illustrates how seemingly minor adjustments in precursor geometry greatly affect the outcome of DCC systems. This research illustrates the importance of fine-tuning precursor geometric parameters in order to successfully realize desirable targets.
Polishing mechanism of light-initiated dental composite: Geometric optics approach.
Chiang, Yu-Chih; Lai, Eddie Hsiang-Hua; Kunzelmann, Karl-Heinz
2016-12-01
For light-initiated dental hybrid composites, reinforcing particles are much stiffer than the matrix, which makes the surface rugged after inadequate polish and favors bacterial adhesion and biofilm redevelopment. The aim of the study was to investigate the polishing mechanism via the geometric optics approach. We defined the polishing abilities of six instruments using the obtained gloss values through the geometric optics approach (micro-Tri-gloss with 20°, 60°, and 85° measurement angles). The surface texture was validated using a field emission scanning electron microscope (FE-SEM). Based on the gloss values, we sorted polishing tools into three abrasive levels, and proposed polishing sequences to test the hypothesis that similar abrasive levels would leave equivalent gloss levels on dental composites. The three proposed, tested polishing sequences included: S1, Sof-Lex XT coarse disc, Sof-Lex XT fine disc, and OccluBrush; S2, Sof-Lex XT coarse disc, Prisma Gloss polishing paste, and OccluBrush; and S3, Sof-Lex XT coarse disc, Enhance finishing cups, and OccluBrush. S1 demonstrated significantly higher surface gloss than the other procedures (p < 0.05). The surface textures (FE-SEM micrographs) correlated well with the obtained gloss values. Nominally similar abrasive abilities did not result in equivalent polish levels, indicating that the polishing tools must be evaluated and cannot be judged based on their compositions or abrasive sizes. The geometric optic approach is an efficient and nondestructive method to characterize the polished surface of dental composites. Copyright © 2015. Published by Elsevier B.V.
Compression failure of angle-ply laminates
NASA Technical Reports Server (NTRS)
Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.
1991-01-01
The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.
Flow field and performance characteristics of combustor diffusers: A basic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hestermann, R.; Kim, S.; Ben Khaled, A.
1995-10-01
Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters o the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressuremore » probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser`s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance--all other conditions held constant--an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.« less
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
Tomographic wavefront retrieval by combined use of geometric and plenoptic sensors
NASA Astrophysics Data System (ADS)
Trujillo-Sevilla, J. M.; Rodríguez-Ramos, L. F.; Fernández-Valdivia, Juan J.; Marichal-Hernández, José G.; Rodríguez-Ramos, J. M.
2014-05-01
Modern astronomic telescopes take advantage of multi-conjugate adaptive optics, in which wavefront sensors play a key role. A single sensor capable of measuring wavefront phases at any angle of observation would be helpful when improving atmospheric tomographic reconstruction. A new sensor combining both geometric and plenoptic arrangements is proposed, and a simulation demonstrating its working principle is also shown. Results show that this sensor is feasible, and also that single extended objects can be used to perform tomography of atmospheric turbulence.
NASA Technical Reports Server (NTRS)
Miller, E. F.
1982-01-01
Mathematical models used in the software package developed for use at the 1983 Regional Administrative Radio Conference on broadcasting satellites. The models described are those used in the Spectrum Orbit Utilization Program (SOUP) analysis. The geometric relationships necessary to model broadcasting satellite systems are discussed. Antenna models represent copolarized and cross polarized performance as functions of the off axis angle. The protection ratio is modelled as a co-channel value and a template representing systems with frequency offsets.
Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.
Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo
2018-05-15
We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler; ...
2017-03-31
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
2013-08-01
The SDM was subjected to forced small (0.5) sinusoidal pitching oscillations and derivatives were computed from measured model loads, angles of... aluminium alloy when subjected to both tensile and torsional loading. He joined the Aeronautical Research Laboratories (now called the Defence...oscillations and derivatives were computed from measured model loads, angles of attack, reduced frequency of oscillation and aircraft geometrical parameters
Perceived orientation, spatial layout and the geometry of pictures
NASA Technical Reports Server (NTRS)
Goldstein, E. Bruce
1989-01-01
The purpose is to discuss the role of geometry in determining the perception of spatial layout and perceived orientation in pictures viewed at an angle. This discussion derives from Cutting's (1988) suggestion, based on his analysis of some of the author's data (Goldstein, 1987), that the changes in perceived orientation that occur when pictures are viewed at an angle can be explained in terms of geometrically produced changes in the picture's virtual space.
Nundy, Surajit; Lotto, Beau; Coppola, David; Shimpi, Amita; Purves, Dale
2000-01-01
Although it has long been apparent that observers tend to overestimate the magnitude of acute angles and underestimate obtuse ones, there is no consensus about why such distortions are seen. Geometrical modeling combined with psychophysical testing of human subjects indicates that these misperceptions are the result of an empirical strategy that resolves the inherent ambiguity of angular stimuli by generating percepts of the past significance of the stimulus rather than the geometry of its retinal projection. PMID:10805814
Acquisition and analysis of angle-beam wavefield data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Alexander J.; Michaels, Jennifer E.; Levine, Ross M.
2014-02-18
Angle-beam ultrasonic testing is a common practical technique used for nondestructive evaluation to detect, locate, and characterize a variety of material defects and damage. Greater understanding of the both the incident wavefield produced by an angle-beam transducer and the subsequent scattering from a variety of defects and geometrical features is anticipated to increase the reliability of data interpretation. The focus of this paper is on acquiring and analyzing propagating waves from angle-beam transducers in simple, defect-free plates as a first step in the development of methods for flaw characterization. Unlike guided waves, which excite the plate throughout its thickness, angle-beammore » bulk waves bounce back and forth between the plate surfaces, resulting in the well-known multiple “skips” or “V-paths.” The experimental setup consists of a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. Although laser vibrometry is now routinely used to record guided waves for which the frequency content is below 1 MHz, it is more challenging to acquire higher frequency bulk waves in the 1–10 MHz range. Signals are recorded on the surface of an aluminum plate that were generated from a 5 MHz, 65° refracted angle, shear wave transducer-wedge combination. Data are analyzed directly in the x-t domain, via a slant stack Radon transform in the τ-p (offset time-slowness) domain, and via a 2-D Fourier transform in the ω-k domain, thereby enabling identification of specific arrivals and modes. Results compare well to those expected from a simple ray tracing analysis except for the unexpected presence of a strong Rayleigh wave.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, C., E-mail: colm.fallon5@mail.dcu.ie; Hayden, P.; Walsh, N.
We present the results of a time and space resolved optical-spectroscopic study of colliding plasmas formed at the front surfaces of flat and inclined Cu slab targets as a function of both the distance and the wedge angle between them for angles ranging from 100° to 180° (laterally colliding plasmas). The key parameters studied are stagnation layer density, temperature, duration, and kinetics of atomic/ionic spatial distributions and all have been found to vary significantly with wedge angle. It is found that the density and temperature of the stagnation layer decrease with increasing wedge angle. It is also found that themore » larger the wedge angle, the tighter and more well defined the stagnation layer formed.« less
Design study of the geometry of the blanking tool to predict the burr formation of Zircaloy-4 sheet
NASA Astrophysics Data System (ADS)
Ha, Jisun; Lee, Hyungyil; Kim, Dongchul; Kim, Naksoo
2013-12-01
In this work, we investigated factors that influence burr formation for zircaloy-4 sheet used for spacer grids of nuclear fuel roads. Factors we considered are geometric factors of punch. We changed clearance and velocity in order to consider the failure parameters, and we changed shearing angle and corner radius of L-shaped punch in order to consider geometric factors of punch. First, we carried out blanking test with failure parameter of GTN model using L-shaped punch. The tendency of failure parameters and geometric factors that affect burr formation by analyzing sheared edges is investigated. Consequently, geometric factor's influencing on the burr formation is also high as failure parameters. Then, the sheared edges and burr formation with failure parameters and geometric factors is investigated using FE analysis model. As a result of analyzing sheared edges with the variables, we checked geometric factors more affect burr formation than failure parameters. To check the reliability of the FE model, the blanking force and the sheared edges obtained from experiments are compared with the computations considering heat transfer.
NASA Technical Reports Server (NTRS)
McHenry, M. Q.; Angelaki, D. E.
2000-01-01
To maintain binocular fixation on near targets during fore-aft translational disturbances, largely disjunctive eye movements are elicited the amplitude and direction of which should be tuned to the horizontal and vertical eccentricities of the target. The eye movements generated during this task have been investigated here as trained rhesus monkeys fixated isovergence targets at different horizontal and vertical eccentricities during 10 Hz fore-aft oscillations. The elicited eye movements complied with the geometric requirements for binocular fixation, although not ideally. First, the corresponding vergence angle for which the movement of each eye would be compensatory was consistently less than that dictated by the actual fixation parameters. Second, the eye position with zero sensitivity to translation was not straight ahead, as geometrically required, but rather exhibited a systematic dependence on viewing distance and vergence angle. Third, responses were asymmetric, with gains being larger for abducting and downward compared with adducting and upward gaze directions, respectively. As frequency was varied between 4 and 12 Hz, responses exhibited high-pass filter properties with significant differences between abduction and adduction responses. As a result of these differences, vergence sensitivity increased as a function of frequency with a steeper slope than that of version. Despite largely undercompensatory version responses, vergence sensitivity was closer to ideal. Moreover, the observed dependence of vergence sensitivity on vergence angle, which was varied between 2.5 and 10 MA, was largely linear rather than quadratic (as geometrically predicted). We conclude that the spatial tuning of eye velocity sensitivity as a function of gaze and viewing distance follows the general geometric dependencies required for the maintenance of foveal visual acuity. However, systematic deviations from ideal behavior exist that might reflect asymmetric processing of abduction/adduction responses perhaps because of different functional dependencies of version and vergence eye movement components during translation.
Magnetic solutions in Einstein-massive gravity with linear and nonlinear fields
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Panah, Behzad Eslam; Panahiyan, Shahram; Momennia, Mehrab
2018-06-01
The solutions of U(1) gauge-gravity coupling is one of the interesting models for analyzing the semi-classical nature of spacetime. In this regard, different well-known singular and nonsingular solutions have been taken into account. The paper at hand investigates the geometrical properties of the magnetic solutions by considering Maxwell and power Maxwell invariant (PMI) nonlinear electromagnetic fields in the context of massive gravity. These solutions are free of curvature singularity, but have a conic one which leads to presence of deficit/surplus angle. The emphasize is on modifications that these generalizations impose on deficit angle which determine the total geometrical structure of the solutions, hence, physical/gravitational properties. It will be shown that depending on the background spacetime [being anti de Sitter (AdS) or de Sitter (dS)], these generalizations present different effects and modify the total structure of the solutions differently.
NASA Astrophysics Data System (ADS)
Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.
2017-10-01
Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.
Adiabatic Berry phase in an atom-molecule conversion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Libin; Center for Applied Physics and Technology, Peking University, Beijing 100084; Liu Jie, E-mail: liu_jie@iapcm.ac.c
2010-11-15
We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole.more » We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.« less
NASA Astrophysics Data System (ADS)
Toutin, Thierry; Wang, Huili; Charbonneau, Francois; Schmitt, Carla
2013-08-01
This paper presented two methods for the orthorectification of full/compact polarimetric SAR data: the polarimetric processing is performed in the image space (scientist's idealism) or in the ground space (user's realism) before or after the geometric processing, respectively. Radarsat-2 (R2) fine-quad and simulated very high-resolution RCM data acquired with different look angles over a hilly relief study site were processed using accurate lidar digital surface model. Quantitative evaluations between the two methods as a function of different geometric and radiometric parameters were performed to evaluate the impact during the orthorectification. The results demonstrated that the ground-space method can be safely applied to polarimetric R2 SAR data with an exception with the steep look angles and steep terrain slopes. On the other hand, the ground-space method cannot be applied to simulated compact RCM data due to 17dB noise floor and oversampling.
Color characterization of coatings with diffraction pigments.
Ferrero, A; Bernad, B; Campos, J; Perales, E; Velázquez, J L; Martínez-Verdú, F M
2016-10-01
Coatings with diffraction pigments present high iridescence, which needs to be characterized in order to describe their appearance. The spectral bidirectional reflectance distribution functions (BRDFs) of six coatings with SpectraFlair diffraction pigments were measured using the robot-arm-based goniospectrophotometer GEFE, designed and developed at CSIC. Principal component analysis has been applied to study the coatings of BRDF data. From data evaluation and based on theoretical considerations, we propose a relevant geometric factor to study the spectral reflectance and color gamut variation of coatings with diffraction pigments. At fixed values of this geometric factor, the spectral BRDF component due to diffraction is almost constant. Commercially available portable goniospectrophotometers, extensively used in several industries (automotive and others), should be provided with more aspecular measurement angles to characterize the complex reflectance of goniochromatic coatings based on diffraction pigments, but they would not require either more than one irradiation angle or additional out-of-plane geometries.
Geometry of the Large Magellanic Cloud Using Multi- wavelength Photometry of Classical Cepheids
NASA Astrophysics Data System (ADS)
Deb, Sukanta; Ngeow, Chow-Choong; Kanbur, Shashi M.; Singh, Harinder P.; Wysocki, Daniel; Kumar, Subhash
2018-05-01
We determine the geometrical and viewing angle parameters of the Large Magellanic Cloud (LMC) using the Leavitt law based on a sample of more than 3500 common classical Cepheids (FU and FO) in optical (V, I), near-infrared (JHKs) and mid-infrared ([3.6] μm and [4.5] μm) photometric bands. Statistical reddening and distance modulus free from the effect of reddening to each of the individual Cepheids are obtained using the simultaneous multi-band fit to the apparent distance moduli from the analysis of the resulting Leavitt laws in these seven photometric bands. A reddening map of the LMC obtained from the analysis shows good agreement with the other maps available in the literature. Extinction free distance measurements along with the information of the equatorial coordinates (α, δ) for individual stars are used to obtain the corresponding Cartesian coordinates with respect to the plane of the sky. By fitting a plane solution of the form z = f(x, y) to the observed three dimensional distribution, the following viewing angle parameters of the LMC are obtained: inclination angle i = 25°.110 ± 0°.365, position angle of line of nodes θlon = 154°.702 ± 1°.378. On the other hand, modelling the observed three dimensional distribution of the Cepheids as a triaxial ellipsoid, the following values of the geometrical axes ratios of the LMC are obtained: 1.000 ± 0.003: 1.151 ± 0.003: 1.890 ± 0.014 with the viewing angle parameters: inclination angle of i = 11°.920 ± 0°.315 with respect to the longest axis from the line of sight and position angle of line of nodes θlon = 128°.871 ± 0°.569. The position angles are measured eastwards from north.
Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry
NASA Astrophysics Data System (ADS)
Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus
2018-01-01
It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.
A generalized technique for using cones and dihedral angles in attitude determination, revision 1
NASA Technical Reports Server (NTRS)
Werking, R. D.
1973-01-01
Analytic development is presented for a general least squares attitude determination subroutine applicable to spinning satellites. The method is founded on a geometric approach which is completely divorced from considerations relating to particular types and configurations of onboard attitude sensors. Any mix of sensor measurements which can be first transformed (outside the program) to cone or dihedral angle data can be processed. A cone angle is an angle between the spin axis and a known direction line in space; a dihedral angle is an angle between two planes formed by the spin axis and each of two known direction lines. Many different kinds of sensor data can be transformed to these angles, which in turn constitute the actual program inputs, so that the subroutine can be applied without change to a variety of satellite missions. Either a constant or dynamic spin axis model can be handled. The program is also capable of solving for fixed biases in the input angles, in addition to the spin axis attitude solution.
Ullery, Brant W; Suh, Ga-Young; Kim, John J; Lee, Jason T; Dalman, Ronald L; Cheng, Christopher P
2017-08-01
Aneurysm regression and target vessel patency during early and mid-term follow-up may be related to the effect of stent-graft configuration on the anatomy. We quantified geometry and remodeling of the renal arteries and aneurysm following fenestrated (F-) or snorkel/chimney (Sn-) endovascular aneurysm repair (EVAR). Twenty-nine patients (mean age, 76.8 ± 7.8 years) treated with F- or Sn-EVAR underwent computed tomography angiography at preop, postop, and follow-up. Three-dimensional geometric models of the aorta and renal arteries were constructed. Renal branch angle was defined relative to the plane orthogonal to the aorta. End-stent angle was defined as the angulation between the stent and native distal artery. Aortic volumes were computed for the whole aorta, lumen, and their difference (excluded lumen). Renal patency, reintervention, early mortality, postoperative renal impairment, and endoleak were reviewed. From preop to postop, F-renal branches angled upward, Sn-renal branches angled downward (P < 0.05), and Sn-renals exhibited increased end-stent angulation (12 ± 15°, P < 0.05). From postop to follow-up, branch angles did not change for either F- or Sn-renals, whereas F-renals exhibited increased end-stent angulation (5 ± 10°, P < 0.05). From preop to postop, whole aortic and excluded lumen volumes increased by 5 ± 14% and 74 ± 81%, whereas lumen volume decreased (39 ± 27%, P < 0.05). From postop to follow-up, whole aortic and excluded lumen volumes decreased similarly (P < 0.05), leaving the lumen volume unchanged. At median follow-up of 764 days (range, 7-1,653), primary renal stent patency was 94.1% and renal impairment occurred in 2 patients (6.7%). Although F- and Sn-EVAR resulted in significant, and opposite, changes to renal branch angle, only Sn-EVAR resulted in significant end-stent angulation increase. Longitudinal geometric analysis suggests that these anatomic alterations are primarily generated early as a consequence of the procedure itself and, although persistent, they show no evidence of continued significant change during the subsequent postoperative follow-up period. Copyright © 2017 Elsevier Inc. All rights reserved.
On the prediction of spray angle of liquid-liquid pintle injectors
NASA Astrophysics Data System (ADS)
Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao
2017-09-01
The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.
Terrestrial laser scanning in monitoring of anthropogenic objects
NASA Astrophysics Data System (ADS)
Zaczek-Peplinska, Janina; Kowalska, Maria
2017-12-01
The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan's density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam's incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.
Calibration and Validation of Airborne InSAR Geometric Model
NASA Astrophysics Data System (ADS)
Chunming, Han; huadong, Guo; Xijuan, Yue; Changyong, Dou; Mingming, Song; Yanbing, Zhang
2014-03-01
The image registration or geo-coding is a very important step for many applications of airborne interferometric Synthetic Aperture Radar (InSAR), especially for those involving Digital Surface Model (DSM) generation, which requires an accurate knowledge of the geometry of the InSAR system. While the trajectory and attitude instabilities of the aircraft introduce severe distortions in three dimensional (3-D) geometric model. The 3-D geometrical model of an airborne SAR image depends on the SAR processor itself. Working at squinted model, i.e., with an offset angle (squint angle) of the radar beam from broadside direction, the aircraft motion instabilities may produce distortions in airborne InSAR geometric relationship, which, if not properly being compensated for during SAR imaging, may damage the image registration. The determination of locations of the SAR image depends on the irradiated topography and the exact knowledge of all signal delays: range delay and chirp delay (being adjusted by the radar operator) and internal delays which are unknown a priori. Hence, in order to obtain reliable results, these parameters must be properly calibrated. An Airborne InSAR mapping system has been developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS) to acquire three-dimensional geo-spatial data with high resolution and accuracy. To test the performance of the InSAR system, the Validation/Calibration (Val/Cal) campaign has carried out in Sichun province, south-west China, whose results will be reported in this paper.
From Fractal Trees to Deltaic Networks
NASA Astrophysics Data System (ADS)
Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.
2013-12-01
Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated. Network Example
Relative Loading on Biplane Wings
1933-01-01
1.00, for which F.=0.675 from figure 6.3gi partially to eperimental errors and partially to the The ratios are then multiplied by obI as required by...plane designers . The definitions have been based on show no change in the value of K,. Figure 13 indicates geometrical angles, which may be mnisleadimg...wrows Axis Moment about ams Angle Velocities Force - = 3 s oiie Dsin. =- Lnear - Designation symbol Designation So" Poitv t=on (cIttgm ngla
The Trigonometry of Twistors and Elementary Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, Karl
2009-03-10
A new trigonometry for twistors is presented. The operator-theoretic maximum twistor turning angle is shown to be related to the space-time geometric angle within the light cone. The corresponding maximally turned twistor antieigenvectors are calculated and interpretted. The two weak interaction CP eigenvectors of neutral kaons are shown to be exactly the two strong interaction strangeness antieigenvectors. Quark mixing is seen trigonometrically. 't Hooft's microcosmos model is connected to the theories of normal degree and complex dynamics.
Photogrammetric Analysis of CPAS Main Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric; Bretz, David
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown with a cluster of two to three Main parachutes. The instantaneous rate of descent varies based on parachute fly-out angles and geometric inlet area. Parachutes in a cluster oscillate between significant fly-out angles and colliding into each other. The former presents a sub-optimal inlet area and the latter lowers the effective drag area as the parachutes interfere with each other. The fly-out angles are also important in meeting a twist torque requirement. Understanding cluster behavior necessitates measuring the Mains with photogrammetric analysis. Imagery from upward looking cameras is analyzed to determine parachute geometry. Fly-out angles are measured from each parachute vent to an axis determined from geometry. Determining the scale of the objects requires knowledge of camera and lens calibration as well as features of known size. Several points along the skirt are tracked to compute an effective circumference, diameter, and inlet area as a function of time. The effects of this geometry are clearly seen in the system drag coefficient time history. Photogrammetric analysis is key in evaluating the effects of design features such as an Over-Inflation Control Line (OICL), Main Line Length Ratio (MLLR), and geometric porosity, which are varied in an attempt to minimize cluster oscillations. The effects of these designs are evaluated through statistical analysis.
Nonimaging optical concentrators using graded-index dielectric.
Zitelli, M
2014-04-01
A new generation of inhomogeneous nonimaging optical concentrators is proposed, able to achieve simultaneously high optical efficiency and acceptance solid angle at a given geometrical concentration factor. General design methods are given, and concentrators are numerically investigated and optimized.
Modifications of Geometric Truncation of the Scattering Phase Function
NASA Astrophysics Data System (ADS)
Radkevich, A.
2017-12-01
Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.
Roy, G; Bissonnette, L R
2001-09-20
Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.
Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots
Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.
2013-01-01
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496
Berry phase and Hannay's angle in a quantum-classical hybrid system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. D.; Wu, S. L.; Yi, X. X.
2011-06-15
The Berry phase, which was discovered more than two decades ago, provides very deep insight into the geometric structure of quantum mechanics. Its classical counterpart, Hannay's angle, is defined if closed curves of action variables return to the same curves in phase space after a time evolution. In this paper we study the Berry phase and Hannay's angle in a quantum-classical hybrid system under the Born-Oppenheimer approximation. By the term quantum-classical hybrid system, we mean a composite system consists of a quantum subsystem and a classical subsystem. The effects of subsystem-subsystem couplings on the Berry phase and Hannay's angle aremore » explored. The results show that the Berry phase has been changed sharply by the couplings, whereas the couplings have a small effect on the Hannay's angle.« less
Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes
NASA Astrophysics Data System (ADS)
Darzi, Milad; Park, Chanwoo
2017-05-01
Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.
Triangulation-based 3D surveying borescope
NASA Astrophysics Data System (ADS)
Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.
2016-04-01
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
Adaptive imaging through far-field turbulence
NASA Astrophysics Data System (ADS)
Troxel, Steven E.; Welsh, Byron M.; Roggemann, Michael C.
1993-11-01
This paper presents a new method for calculating the field angle dependent average OTF of an adaptive optic system and compares this method to calculations based on geometric optics. Geometric optics calculations are shown to be inaccurate due to the diffraction effects created by far-field turbulence and the approximations made in the atmospheric parameters. Our analysis includes diffraction effects and properly accounts for the effect of the atmospheric turbulence scale sizes. We show that for any atmospheric C(superscript 2)(subscript n) profile, the actual OTF is always better than the OTF calculated using geometric optics. The magnitude of the difference between the calculation methods is shown to be dependent on the amount of far- field turbulence and the values of the outer scale dimension.
NASA Astrophysics Data System (ADS)
Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.
2017-10-01
The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.
Suh, Ga-Young; Choi, Gilwoo; Draney, Mary T; Herfkens, Robert J; Dalman, Ronald L; Cheng, Christopher P
2013-12-01
To quantify renal artery deformation due to respiration using magnetic resonance (MR) image-based geometric analysis. Five males were imaged with contrast-enhanced MR angiography during inspiratory and expiratory breath-holds. From 3D models of the abdominal aorta, left and right renal arteries (LRA and RRA), we quantified branching angle, curvature, peak curve angle, axial length, and locations of branch points. With expiration, maximum curvature changes were 0.054 ± 0.025 mm(-1) (P < 0.01), and curve angle at the most proximal curvature peak increased by 8.0 ± 4.5° (P < 0.05) in the LRA. Changes in maximum curvature and curve angles were not significant in the RRA. The first renal bifurcation point translated superiorly and posteriorly by 9.7 ± 3.6 mm (P < 0.005) and 3.5 ± 2.1 mm (P < 0.05), respectively, in the LRA, and 10.8 ± 6.1 mm (P < 0.05) and 3.6 ± 2.5 mm (P < 0.05), respectively, in the RRA. Changes in branching angle, axial length, and renal ostia locations were not significant. The LRA and RRA deformed and translated significantly. Greater deformation of the LRA as compared to the RRA may be due to asymmetric anatomy and mechanical support by the inferior vena cava. The presented methodology can extend to quantification of deformation of diseased and stented arteries to help renal artery implant development. Copyright © 2013 Wiley Periodicals, Inc.
Assessment of scoliosis by direct measurement of the curvature of the spine
NASA Astrophysics Data System (ADS)
Dougherty, Geoff; Johnson, Michael J.
2009-02-01
We present two novel metrics for assessing scoliosis, in which the geometric centers of all the affected vertebrae in an antero-posterior (A-P) radiographic image are used. This is in contradistinction to the existing methods of using selected vertebrae, and determining either their endplates or the intersections of their diagonals, to define a scoliotic angle. Our first metric delivers a scoliotic angle, comparable to the Cobb and Ferguson angles. It measures the sum of the angles between the centers of the affected vertebrae, and avoids the need for an observer to decide on the extent of component curvatures. Our second metric calculates the normalized root-mean-square curvature of the smoothest path comprising piece-wise polynomial splines fitted to the geometric centers of the vertebrae. The smoothest path is useful in modeling the spinal curvature. Our metrics were compared to existing methods using radiographs from a group of twenty subjects with spinal curvatures of varying severity. Their values were strongly correlated with those of the scoliotic angles (r = 0.850 - 0.886), indicating that they are valid surrogates for measuring the severity of scoliosis. Our direct use of positional data removes the vagaries of determining variably shaped endplates, and circumvented the significant interand intra-observer errors of the Cobb and Ferguson methods. Although we applied our metrics to two-dimensional (2- D) data in this paper, they are equally applicable to three-dimensional (3-D) data. We anticipate that they will prove to be the basis for a reliable 3-D measurement and classification system.
Modal propagation angles in ducts with soft walls and their connection with suppressor performance
NASA Technical Reports Server (NTRS)
Rice, E. J.
1979-01-01
The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.
Geometrical and structural properties of an Aeroelastic Research Wing (ARW-2)
NASA Technical Reports Server (NTRS)
Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.; Spain, Charles V.
1989-01-01
Transonic steady and unsteady pressure tests were conducted on a large elastic wing known as the DAST ARW-2 wing. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading edge sweepback angle of 28.8 deg and is equipped with two inboard and one outboard trailing edge control surfaces. The geometrical and structural characteristics are presented of this elastic wing, using a combination of measured and calculated data, to permit future analyst to compare the experimental surface pressure data with theoretical predictions.
A NASTRAN primer for the analysis of rotating flexible blades
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Aiello, Robert A.; Ernst, Michael A.; Mcgee, Oliver G.
1987-01-01
This primer provides documentation for using MSC NASTRAN in analyzing rotating flexible blades. The analysis of these blades includes geometrically nonlinear (large displacement) analysis under centrifugal loading, and frequency and mode shape (normal modes) determination. The geometrically nonlinear analysis using NASTRAN Solution sequence 64 is discussed along with the determination of frequencies and mode shapes using Solution Sequence 63. A sample problem with the complete NASTRAN input data is included. Items unique to rotating blade analyses, such as setting angle and centrifugal softening effects are emphasized.
NASA Technical Reports Server (NTRS)
Mcewen, A. S.; Soderblom, L. A.; Becker, T. L.; Lee, E. M.; Batson, R. M.
1993-01-01
About 1000 Viking Orbiter red and violet filter images have been processed to provide global color coverage of Mars at a scale of 1 km/pixel. Individual image frames acquired during a single spacecraft revolution ('rev') were first processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking. A total of 57 'single-rev' mosaics have been produced. Phase angles range from 13 to 85 degrees. All the mosaics are geometrically tied to the Mars digital image mosaic (MDIM), a black-and-white base map with a scale of 231 m/pixel.
Beller, Ebba; Klopp, David; Göttler, Jens; Kaesmacher, Johannes; Zimmer, Claus; Kirschke, Jan S; Prothmann, Sascha
2016-01-01
Stent-assisted coil embolization (SACE) plays an important role in the treatment of intracranial aneurysms. The purpose of this study was to investigate geometrical changes caused by closed-cell design stents in bifurcation and sidewall aneurysms. 31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were graphically determined in 2D angiography projections. Stent assisted coiling resulted in a significant increase of all three angles from a mean value (±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P ≤ .001), δ1 = 129° (±6.4°) to 139° (±6.1°), (P ≤ .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P ≤ .01). Angular change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P ≤ .05). The initial angle of δ1 and δ2 revealed a significantly inverse relationship to the angle increase (δ1: r = -0.41, P ≤ .05 and δ2: r = -0.47, P ≤ .01). Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms (135°±7.1° versus 103°±10.8°, P ≤ .05). Stent deployment modulates the geometry of the aneurysm-vessel complex, which may lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneurysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy, the larger the angular change. Further studies are needed to investigate whether these changes improve the clinical outcome.
Beller, Ebba; Klopp, David; Göttler, Jens; Kaesmacher, Johannes; Zimmer, Claus; Kirschke, Jan S.; Prothmann, Sascha
2016-01-01
Background Stent-assisted coil embolization (SACE) plays an important role in the treatment of intracranial aneurysms. The purpose of this study was to investigate geometrical changes caused by closed-cell design stents in bifurcation and sidewall aneurysms. Methods 31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were graphically determined in 2D angiography projections. Results Stent assisted coiling resulted in a significant increase of all three angles from a mean value (±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P ≤ .001), δ1 = 129° (±6.4°) to 139° (±6.1°), (P ≤ .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P ≤ .01). Angular change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P ≤ .05). The initial angle of δ1 and δ2 revealed a significantly inverse relationship to the angle increase (δ1: r = -0.41, P ≤ .05 and δ2: r = -0.47, P ≤ .01). Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms (135°±7.1° versus 103°±10.8°, P ≤ .05). Conclusion Stent deployment modulates the geometry of the aneurysm-vessel complex, which may lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneurysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy, the larger the angular change. Further studies are needed to investigate whether these changes improve the clinical outcome. PMID:27073908
Numerical Modeling System for Shoreline Change.
1986-10-01
waves and currents remains essentially unchanged, the behavior of a beach fill can be estimated (James 1975; Shore Protection Manual (SPM) 1984... Htp K( 0 ) KR(cxtp, Dip, D) Ks(D) / Ks(Dtp) (15) S.. .G Io Go -ZVI / 4-9 where KD is the diffraction coefficient, 8 is the geometric angle for a line...angle to the x-axis. For the value of the longshore sand transport parameter, K1 in Eq. (5a), Komar and Inman (1979) and the Shore Protection Manual
1983-02-01
ray microscope (Kirkpatrick and Baez, 1948). At present such systems use single layer coatings illminated at very glancing angles. Ikltilayer coatings...might be useful as a means of operating such a system at an increased angle of incidence to the surface (this would reduce the geometrical aberrations...of the focussing elements); however our analysis of the LLE system indicates that one will have to accept a trade-off between collection aperture
LANDSAT-D program. Volume 2: Ground segment
NASA Technical Reports Server (NTRS)
1984-01-01
Raw digital data, as received from the LANDSAT spacecraft, cannot generate images that meet specifications. Radiometric corrections must be made to compensate for aging and for differences in sensitivity among the instrument sensors. Geometric corrections must be made to compensate for off-nadir look angle, and to calculate spacecraft drift from its prescribed path. Corrections must also be made for look-angle jitter caused by vibrations induced by spacecraft equipment. The major components of the LANDSAT ground segment and their functions are discussed.
Interpreting vegetation reflectance measurements as a function of solar zenith angle
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Ranson, K. J.
1979-01-01
Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.
Diffraction effects on angular response of X-ray collimators
NASA Technical Reports Server (NTRS)
Blake, R. L.; Barrus, D. M.; Fenimore, E.
1976-01-01
Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.
Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam
NASA Astrophysics Data System (ADS)
Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.
2018-06-01
We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.
Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun
2016-01-01
Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287
NASA Astrophysics Data System (ADS)
Jaeger, Valentin E.
1989-04-01
The geometrical accuracy and surface roughness of diamond-turned workpieces is influenced by several parameters: the properties of the machine tool, the cutting process and the environmental conditions. A thin-walled electrode made from an aluminium alloy (wall thickness: 1 mm, length: 169 mm, outer diameter: 126 mm) and intended for an electrostatic measuring instrument, serves as an example to show how quasi-optical surfaces with a surface roughness Rα < 10 nm and deviations from roundness of <= 5 μm can be achieved when some of these influence quantities are optimized. The cylindrical part of the electrode was turned by means of a rounded mirror-finish diamond tool, the width of the cutting edge being 2 mm, the rake angle -6° and the clearance angle 2°. Compliance with the tolerances of geometrical accuracy was particularly difficult. As age-hardened wrought aluminium alloys cannot be stress-relieved by annealing, or only insufficiently, the geometrical accuracy - in particular the roundness - of thin-walled, rotationally symmetric bodies decisively depends on the state of stress of the workpiece material, on the clamping fixture and on the balanced condition of this clamping fixture.
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
NASA Astrophysics Data System (ADS)
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope) It is suggested that 4000-5000 points are uniformly sampled in the overlapping regions of the point cloud, and depending on the surface roughness, to measure the discrepancy between swaths. Care must be taken to sample only areas of single return points only. Point-to-Plane distance based data quality measures are determined for each sample point. These measurements are used to determine the above mentioned parameters. This paper details the measurements and analysis of measurements required to determine these metrics, i.e. Discrepancy Angle, Mean and RMSD of errors in flat regions and horizontal errors obtained using measurements extracted from sloping regions (slope greater than 10 degrees). The research is a result of an ad-hoc joint working group of the US Geological Survey and the American Society for Photogrammetry and Remote Sensing (ASPRS) Airborne Lidar Committee.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2014-06-01
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Mechanical oscillatory behavior of a C60 fullerene tunneling through open carbon nanocones
NASA Astrophysics Data System (ADS)
Sadeghi, F.; Ansari, R.
2017-07-01
This paper deals with the mechanical oscillatory behavior of a C60 fullerene inside open carbon nanocones (CNCs). The fullerene molecule is assumed to enter the nanocone through its small end or wide end. Following our previously published study, semi-analytical expressions for the evaluation of vdW interactions are presented which facilitate obtaining a formula for oscillation frequency. The equation of motion is numerically solved to attain the time histories of separation distance and velocity of the fullerene molecule. Based on the conservation of the mechanical energy law, a new semi-analytical formula is also derived to accurately evaluate the oscillation frequency of the system. With respect to the present formulation, a detailed parametric study is conducted to gain an insight into the effects of both geometrical parameters (small-end radius, wide-end radius and vertex angle of nanocone) and initial conditions (initial separation distance and initial velocity) on the oscillatory behavior of C60 fullerene-open CNC oscillators. For given geometrical parameters and initial conditions, it is shown that higher oscillation frequencies can be achieved when the fullerene molecule enters the open nanocone through its small end.
Design and simulation of origami structures with smooth folds
Peraza Hernandez, E. A.; Lagoudas, D. C.
2017-01-01
Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh. PMID:28484322
Design and simulation of origami structures with smooth folds.
Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C
2017-04-01
Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.
Increase of Breakthrough Pressure of Cotton Fabric by Fluoropolymer/Fluoroposs Treatment
2011-11-29
obtaining superhydrophobic and superolcophobic textured surfaces. Geometrical parameters based on these textures have been developed to model predicted...contact angles with liquids of varying surfaces tensions. One way of determining the robustness of the superhydrophobic state is to study the
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
Uncertainty of Videogrammetric Techniques used for Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tianshu; DeLoach, Richard
2002-01-01
The uncertainty of videogrammetric techniques used for the measurement of static aeroelastic wind tunnel model deformation and wind tunnel model pitch angle is discussed. Sensitivity analyses and geometrical considerations of uncertainty are augmented by analyses of experimental data in which videogrammetric angle measurements were taken simultaneously with precision servo accelerometers corrected for dynamics. An analysis of variance (ANOVA) to examine error dependence on angle of attack, sensor used (inertial or optical). and on tunnel state variables such as Mach number is presented. Experimental comparisons with a high-accuracy indexing table are presented. Small roll angles are found to introduce a zero-shift in the measured angles. It is shown experimentally that. provided the proper constraints necessary for a solution are met, a single- camera solution can he comparable to a 2-camera intersection result. The relative immunity of optical techniques to dynamics is illustrated.
A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification
NASA Technical Reports Server (NTRS)
Fries, K. L.; Smith, L. G.; Voss, H. D.
1979-01-01
A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.
Digital breast tomosynthesis geometry calibration
NASA Astrophysics Data System (ADS)
Wang, Xinying; Mainprize, James G.; Kempston, Michael P.; Mawdsley, Gordon E.; Yaffe, Martin J.
2007-03-01
Digital Breast Tomosynthesis (DBT) is a 3D x-ray technique for imaging the breast. The x-ray tube, mounted on a gantry, moves in an arc over a limited angular range around the breast while 7-15 images are acquired over a period of a few seconds. A reconstruction algorithm is used to create a 3D volume dataset from the projection images. This procedure reduces the effects of tissue superposition, often responsible for degrading the quality of projection mammograms. This may help improve sensitivity of cancer detection, while reducing the number of false positive results. For DBT, images are acquired at a set of gantry rotation angles. The image reconstruction process requires several geometrical factors associated with image acquisition to be known accurately, however, vibration, encoder inaccuracy, the effects of gravity on the gantry arm and manufacturing tolerances can produce deviations from the desired acquisition geometry. Unlike cone-beam CT, in which a complete dataset is acquired (500+ projections over 180°), tomosynthesis reconstruction is challenging in that the angular range is narrow (typically from 20°-45°) and there are fewer projection images (~7-15). With such a limited dataset, reconstruction is very sensitive to geometric alignment. Uncertainties in factors such as detector tilt, gantry angle, focal spot location, source-detector distance and source-pivot distance can produce several artifacts in the reconstructed volume. To accurately and efficiently calculate the location and angles of orientation of critical components of the system in DBT geometry, a suitable phantom is required. We have designed a calibration phantom for tomosynthesis and developed software for accurate measurement of the geometric parameters of a DBT system. These have been tested both by simulation and experiment. We will present estimates of the precision available with this technique for a prototype DBT system.
Geometrical-optics code for computing the optical properties of large dielectric spheres.
Zhou, Xiaobing; Li, Shusun; Stamnes, Knut
2003-07-20
Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.
Andrejasic, Miha; Praaenikar, Jure; Turk, Dusan
2008-11-01
The number and variety of macromolecular structures in complex with ;hetero' ligands is growing. The need for rapid delivery of correct geometric parameters for their refinement, which is often crucial for understanding the biological relevance of the structure, is growing correspondingly. The current standard for describing protein structures is the Engh-Huber parameter set. It is an expert data set resulting from selection and analysis of the crystal structures gathered in the Cambridge Structural Database (CSD). Clearly, such a manual approach cannot be applied to the vast and ever-growing number of chemical compounds. Therefore, a database, named PURY, of geometric parameters of chemical compounds has been developed, together with a server that accesses it. PURY is a compilation of the whole CSD. It contains lists of atom classes and bonds connecting them, as well as angle, chirality, planarity and conformation parameters. The current compilation is based on CSD 5.28 and contains 1978 atom classes and 32,702 bonding, 237,068 angle, 201,860 dihedral and 64,193 improper geometric restraints. Analysis has confirmed that the restraints from the PURY database are suitable for use in macromolecular crystal structure refinement and should be of value to the crystallographic community. The database can be accessed through the web server http://pury.ijs.si/, which creates topology and parameter files from deposited coordinates in suitable forms for the refinement programs MAIN, CNS and REFMAC. In the near future, the server will move to the CSD website http://pury.ccdc.cam.ac.uk/.
NASA Astrophysics Data System (ADS)
Yin, An; Kelty, Thomas K.; Davis, Gregory A.
1989-09-01
Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.
Length measurement and spatial orientation reconstruction of single nanowires.
Prestopino, Giuseppe; Orsini, Andrea; Falconi, Christian; Bietti, Sergio; Verona-Rinati, Gianluca; Caselli, Federica; Bisegna, Paolo
2018-06-27
The accurate determination of the geometrical features of quasi one-dimensional nanostructures is mandatory for reducing errors and improving repeatability in the estimation of a number of geometry-dependent properties in nanotechnology. In this paper a method for the reconstruction of length and spatial orientation of single nanowires is presented. Those quantities are calculated from a sequence of scanning electron microscope images taken at different tilt angles using a simple 3D geometric model. The proposed method is evaluated on a collection of scanning electron microscope images of single GaAs nanowires. It is validated through the reconstruction of known geometric features of a standard reference calibration pattern. An overall uncertainty of about 1% in the estimated length of the nanowires is achieved. © 2018 IOP Publishing Ltd.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
Hyde, M W; Schmidt, J D; Havrilla, M J
2009-11-23
A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.
Presentation of a new BRDF measurement device
NASA Astrophysics Data System (ADS)
Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene
1998-12-01
The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.
RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singal, Ashok K., E-mail: asingal@prl.res.in
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in themore » orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.« less
WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1994-01-01
WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.
Relativistic Doppler Beaming and Misalignments in AGN Jets
NASA Astrophysics Data System (ADS)
Singal, Ashok K.
2016-08-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
NASA Astrophysics Data System (ADS)
Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.
2009-11-01
Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.
NASA Technical Reports Server (NTRS)
Calloway, R. L.
1983-01-01
An investigation was conducted to compare measured and predicted pressure distributions, forces and moments, and shock shapes on a geometrically matched sphere-cone and hyperboloid. A hyperboloid with a nose radius of 0.5276 in. and an asymptotic angle of 39.9871 deg was matched to a sphere-cone with a nose radius of 0.750 in. and a cone half-angle of 45 deg. Experimental results in helium at a free-stream Mach number of 20.3 and a free-stream unit Reynolds number of 6.83 x 10 to the 6th power per foot were combined with predicted results from a theoretical method to compare the two shapes. Comparisons of experimental results showed small differences in the two shapes, but the prediction method provided better results for the hyperboloid than for the sphere-cone.
NASA Astrophysics Data System (ADS)
Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.
2000-05-01
We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.
Ray-leakage-free discal solar concentrators of a novel design
NASA Astrophysics Data System (ADS)
Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Hai, Yina
2017-12-01
For high concentration ratio of the planar concentrator which is mainly used for photovoltaic or solar-thermal applications, the ray-leakage must be prevented during rays propagated in the lightguide. In this paper, the design of a ray-leakage-free discal solar concentrator is proposed which provides a high concentration ratio while acquiring a high optical efficiency. The design structure of the coupling structure is a straightforward hemisphere instead of complicated structure in other concentrators because the emergent rays from the hybrid collectors have any tilt angle, which prompts the ray-leakage-free propagating length can be raised greatly. A mathematical model between geometrical concentration ratio, reflection times and the corresponding parameters is established, where the corresponding parameters include the parabola coefficient, outermost collector width, collector height, the expanding angle and the collector quantity. Numerical simulation results show that more than 1200x geometrical concentration ratio of the proposed concentrator is achieved without any leakage from the lightguide.
Reduction and relative equilibria for the two-body problem on spaces of constant curvature
NASA Astrophysics Data System (ADS)
Borisov, A. V.; García-Naranjo, L. C.; Mamaev, I. S.; Montaldi, J.
2018-06-01
We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each q>0 we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except π /2. When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (`isosceles RE') and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At π /2, the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.
Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jian; Moon, Seoksu; Nishida, Keiya
This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The imagesmore » show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)« less
Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu
2014-10-14
The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.
Development of a benchmark factor to detect wrinkles in bending parts
NASA Astrophysics Data System (ADS)
Engel, Bernd; Zehner, Bernd-Uwe; Mathes, Christian; Kuhnhen, Christopher
2013-12-01
The rotary draw bending process finds special use in the bending of parts with small bending radii. Due to the support of the forming zone during the bending process, semi-finished products with small wall thicknesses can be bent. One typical quality characteristic is the emergence of corrugations and wrinkles at the inside arc. Presently, the standard for the evaluation of wrinkles is insufficient. The wrinkles' distribution along the longitudinal axis of the tube results in an average value [1]. An evaluation of the wrinkles is not carried out. Due to the lack of an adequate basis of assessment, coordination problems between customers and suppliers occur. They result from an imprecision caused by the lack of quantitative evaluability of the geometric deviations at the inside arc. The benchmark factor for the inside arc presented in this article is an approach to holistically evaluate the geometric deviations at the inside arc. The classification of geometric deviations is carried out according to the area of the geometric characteristics and the respective flank angles.
A geometric construction of the Riemann scalar curvature in Regge calculus
NASA Astrophysics Data System (ADS)
McDonald, Jonathan R.; Miller, Warner A.
2008-10-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
Multi-function diamond film fiberoptic probe and measuring system employing same
Young, Jack P.
1998-01-01
A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.
2010-10-01
The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.
Experimentally validated modification to Cook-Torrance BRDF model for improved accuracy
NASA Astrophysics Data System (ADS)
Butler, Samuel D.; Ethridge, James A.; Nauyoks, Stephen E.; Marciniak, Michael A.
2017-09-01
The BRDF describes optical scatter off realistic surfaces. The microfacet BRDF model assumes geometric optics but is computationally simple compared to wave optics models. In this work, MERL BRDF data is fitted to the original Cook-Torrance microfacet model, and a modified Cook-Torrance model using the polarization factor in place of the mathematically problematic cross section conversion and geometric attenuation terms. The results provide experimental evidence that this modified Cook-Torrance model leads to improved fits, particularly for large incident and scattered angles. These results are expected to lead to more accurate BRDF modeling for remote sensing.
Lattice Cleaving: A Multimaterial Tetrahedral Meshing Algorithm with Guarantees
Bronson, Jonathan; Levine, Joshua A.; Whitaker, Ross
2014-01-01
We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded using this approach. PMID:24356365
Distributed proximity sensor system having embedded light emitters and detectors
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1990-01-01
A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.
Pirouettes and Protractors: Dancing through Mathematics
ERIC Educational Resources Information Center
Hall, Jennifer; Jao, Limin
2017-01-01
In this article, the authors present two activities in which students explore angles and related geometric properties in the context of dance, namely ballet. The activities have been successfully implemented in pre-service numeracy classes at Monash University's two-year, post-degree teacher education program (MTeach). Specifically, the activities…
Orientation-independent measures of ground motion
Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.
2006-01-01
The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large datasets. A preliminary analysis contained in a companion article by Beyer and Bommer finds that the reduction is small-to-nonexistent for equations based on a wide range of magnitudes and distances. The results of Beyer and Bommer do suggest, however, that there is an increasing reduction as period increases. Whether the reduction increases with other subdivisions of the dataset for which strongly correlated motions might be expected (e.g., pulselike motions close to faults) awaits further analysis.
The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo
2017-02-01
The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.
Reliability of the pair-defect-sum approximation for the strength of valence-bond orbitals
Pauling, Linus; Herman, Zelek S.; Kamb, Barclay J.
1982-01-01
The pair-defect-sum approximation to the bond strength of a hybrid orbital (angular wave functions only) is compared to the rigorous value as a function of bond angle for seven types of bonding situations, with between three and eight bond directions equivalent by geometrical symmetry operations and with only one independent bond angle. The approximation is seen to be an excellent one in all cases, and the results provide a rationale for the application of this approximation to a variety of problems. PMID:16593167
Controlled alignment of carbon nanofibers in a large-scale synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Whealton, J. H.; Raridon, R. J.
2002-06-01
Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the electric field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the electric field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.
Image synthesis for SAR system, calibration and processor design
NASA Technical Reports Server (NTRS)
Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.
1978-01-01
The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.
Gap probability - Measurements and models of a pecan orchard
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI
1992-01-01
Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.
Kinoform design with an optimal-rotation-angle method.
Bengtsson, J
1994-10-10
Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.
2006-01-01
A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.
Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept
NASA Technical Reports Server (NTRS)
Wing, David J.
1994-01-01
The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated and the location of the sonic plane may be further stabilized.
Systematic investigations of low energy Ar ion beam sputtering of Si and Ag
NASA Astrophysics Data System (ADS)
Feder, R.; Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B.
2013-12-01
Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done.A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the high-energetic maxima in the energy distribution of the backscattered primary ions, a deviation between simulated and measured data was found, most likely originating in a higher energy loss under experimental conditions than considered in the simulation.
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] This image of the northern plains of Mars shows a surface texture of hundreds of small mounds and numerous small impact craters. The THEMIS imaging team is taking advantage of the late afternoon sun illumination to image places like this where the surface may contain small scale features that are 'washed-out' by higher illumination angles. As the sun dips towards the horizon (to the left side of the image), shadows are cast. The length of the shadows can be used to estimate the height of the feature casting them - or the depth of the crater that contains the shadow. In this image the craters - even very small ones - are now partially filled by shadow making it very easy to identify them. The small bumps are not casting shadows yet, but are easily seen. These small bumps were not easily identified when the sun angle was higher (earlier in the afternoon). As this image shows, late afternoon sun illumination is wonderful for making small scale morphologic features visible.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Baldasso, Rosane Pérez; Tinoco, Rachel Lima Ribeiro; Vieira, Cristina Saft Matos; Fernandes, Mário Marques; Oliveira, Rogério Nogueira
2016-10-01
The process of forensic facial analysis may be founded on several scientific techniques and imaging modalities, such as digital signal processing, photogrammetry and craniofacial anthropometry. However, one of the main limitations in this analysis is the comparison of images acquired with different angles of incidence. The present study aimed to explore a potential approach for the correction of the planar perspective projection (PPP) in geometric structures traced from the human face. A technique for the correction of the PPP was calibrated within photographs of two geometric structures obtained with angles of incidence distorted in 80°, 60° and 45°. The technique was performed using ImageJ ® 1.46r (National Institutes of Health, Bethesda, Maryland). The corrected images were compared with photographs of the same object obtained in 90° (reference). In a second step, the technique was validated in a digital human face created using MakeHuman ® 1.0.2 (Free Software Foundation, Massachusetts, EUA) and Blender ® 2.75 (Blender ® Foundation, Amsterdam, Nederland) software packages. The images registered with angular distortion presented a gradual decrease in height when compared to the reference. The digital technique for the correction of the PPP is a valuable tool for forensic applications using photographic imaging modalities, such as forensic facial analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Guettala, Abdelhamid
2017-05-01
In this paper, an effort is made to understand the effects of geometric singularities on the load bearing capacity and stress distribution in thin laminated plates. Composite plates with variously shaped cutouts are frequently used in both modern and classical aerospace, mechanical and civil engineering structures. Finite element investigation is undertaken to show the effect of geometric singularities on stress distribution. In this study, the stress concentration factors (SCFs) in cross-and-angle-ply laminated as well as in isotropic plates subjected to uniaxial loading are studied using a quadrilateral finite element of four nodes with thirty-two degrees-of-freedom per element. The varying parameters such as the cutout shape and hole sizes (a/b) are considered. The numerical results obtained by the present element are compared favorably with those obtained using the finite element software Freefem++ and the analytic findings published in literature, which demonstrates the accuracy of the present element. Freefem++ is open source software based on the finite element method, which could be helpful to study and improving the analyses of the stress distribution in composite plates with cutouts. The Freefem++ and the quadrilateral finite element formulations will be given in the beginning of this paper. Finally, to show the effect of the fiber orientation angle and anisotropic modulus ratio on the (SCF), number of figures are given for various ratio (a/b).
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.
1990-01-01
An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.
Influence of minor geometric features on Stirling pulse tube cryocooler performance
NASA Astrophysics Data System (ADS)
Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.; Perrella, M.
2017-12-01
Minor geometric features and imperfections are commonly introduced into the basic design of multi-component systems to simplify or reduce the manufacturing expense. In this work, the cooling performance of a Stirling type cryocooler was tested in different driving powers, cold-end temperatures and inclination angles. A series of Computational Fluid Dynamics (CFD) simulations based on a prototypical cold tip was carried out. Detailed CFD model predictions were compared with the experiment and were used to investigate the impact of such apparently minor geometric imperfections on the performance of Stirling type pulse tube cryocoolers. Predictions of cooling performance and gravity orientation sensitivity were compared with experimental results obtained with the cryocooler prototypes. The results indicate that minor geometry features in the cold tip assembly can have considerable negative effects on the gravity orientation sensitivity of a pulse tube cryocooler.
Mathematical Language Skills of Mathematics Prospective Teachers
ERIC Educational Resources Information Center
Gürefe, Nejla
2018-01-01
Effective mathematics teaching can be actualized only with correct use of the mathematical content language which comprises mathematical rules, concepts, symbols and terms. In this research, it was aimed to examine the mathematics prospective teachers' content language skills in some basic geometric concepts which are ray, angle, polygon,…
Using Scratch: An Integrated Problem-Solving Approach to Mathematical Thinking
ERIC Educational Resources Information Center
Calder, Nigel
2010-01-01
"Scratch" is a media-rich digital environment that utilises a building block command structure to manipulate graphic, audio, and video aspects. It incorporates elements of Logo including "tinkerability" in the programming process. In "Scratch" students use geometric and measurement concepts such as coordinates, angle, and length measurements. It…
Map Projections: Approaches and Themes
ERIC Educational Resources Information Center
Steward, H. J.
1970-01-01
Map projections take on new meaning with location systems needed for satellites, other planets and space. A classroom approach deals first with the relationship between the earth and the globe, then with transformations to flat maps. Problems of preserving geometric qualities: distance, angles, directions are dealt with in some detail as are…
The Mechanism of Restructuring in Geometry
1990-05-01
geometric problem solving (Technical Report No. 353). Uppsala, Sweden: Department of Psychology , University of Uppsala. UNCLASSIFIED SECURITY...these questions: Psychological experiments, protocol studies, computer simulations, historical studies, semantic, logical, and mathematical analyses...triangle are congruent, then their opposite angles are congruent; and vice versa. Method Three undergraduate psychology students participated in an
Estimating Geometric Aspects of Relative Satellite Motion Using Angles-Only Measurements
2008-08-01
Clohessy - Wiltshire (HCW) equations2-3, the Cartesian states characterizing the deputy’s relative motion (i.e., its relative position and velocity...the AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI, Aug 19-23, 2007. 2Clohessy, W. H., and Wiltshire , R. S., “Terminal Guidance
Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams
Beims, Marcus W.; Gallas, Jason A. C.
2016-01-01
Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems. PMID:26732416
Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams
NASA Astrophysics Data System (ADS)
Beims, Marcus W.; Gallas, Jason A. C.
2016-01-01
Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems.
Slope angle estimation method based on sparse subspace clustering for probe safe landing
NASA Astrophysics Data System (ADS)
Li, Haibo; Cao, Yunfeng; Ding, Meng; Zhuang, Likui
2018-06-01
To avoid planetary probes landing on steep slopes where they may slip or tip over, a new method of slope angle estimation based on sparse subspace clustering is proposed to improve accuracy. First, a coordinate system is defined and established to describe the measured data of light detection and ranging (LIDAR). Second, this data is processed and expressed with a sparse representation. Third, on this basis, the data is made to cluster to determine which subspace it belongs to. Fourth, eliminating outliers in subspace, the correct data points are used for the fitting planes. Finally, the vectors normal to the planes are obtained using the plane model, and the angle between the normal vectors is obtained through calculation. Based on the geometric relationship, this angle is equal in value to the slope angle. The proposed method was tested in a series of experiments. The experimental results show that this method can effectively estimate the slope angle, can overcome the influence of noise and obtain an exact slope angle. Compared with other methods, this method can minimize the measuring errors and further improve the estimation accuracy of the slope angle.
Dynamic behavior of the weld pool in stationary GMAW
NASA Astrophysics Data System (ADS)
Chapuis, J.; Romero, E.; Bordreuil, C.; Soulié, F.; Fras, G.
2010-06-01
Because hump formation limits welding productivity, better understanding of the humping phenomena during the welding process is needed to access to process modifications that decrease the tendency for hump formation and then allow higher productivity welding. From a physical point of view, the mechanism identified is the Rayleigh instability initiated by strong surface tension gradient which induces a variation of kinetic flow. But the causes of the appearance of this instability are not yet well explained. Because of the phenomena complex and multi-physics, we chose in first step to conduct an analysis of the characteristic times involved in weld pool in pulsed stationary GMAW. The goal is to study the dynamic behavior of the weld pool, using our experimental multi physics approach. The experimental tool and methodology developed to understand these fast phenomena are presented first: frames acquisition with high speed digital camera and specific optical devices, numerical library. The analysis of geometric parameters of the weld pool during welding operation are presented in the last part: we observe the variations of wetting angles (or contact lines angles), the base and the height of the weld pool (macro-drop) versus weld time.
Bistatic scattering from submerged unexploded ordnance lying on a sediment.
Bucaro, J A; Simpson, H; Kraus, L; Dragonette, L R; Yoder, T; Houston, B H
2009-11-01
The broadband bistatic target strengths (TSs) of two submerged unexploded ordnance (UXO) targets have been measured in the NRL sediment pool facility. The targets-a 5 in. rocket and a 155 mm projectile-were among the targets whose monostatic TSs were measured and reported previously by the authors. Bistatic TS measurements were made for 0 degrees (target front) and 90 degrees (target side) incident source directions, and include both backscattered and forward scattered echo angles over a complete 360 degrees with the targets placed proud of the sediment surface. For the two source angles used, each target exhibits two strong highlights: a backscattered specular-like echo and a forward scattered response. The TS levels of the former are shown to agree reasonably well with predictions, based on scattering from rigid disks and cylinders, while the levels of the latter with predictions from radar cross section models, based on simple geometric optics appropriately modified. The bistatic TS levels observed for the proud case provide comparable or higher levels of broadband TS relative to free-field monostatic measurements. It is concluded that access to bistatic echo information in operations aimed at detecting submerged UXO targets could provide an important capability.
Nguyen-Huu, Nghia; Cada, Michael; Pištora, Jaromír
2014-03-10
The expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively. It is found that the grating with attached features at the bottom absorbs more energy than both the one at the top and the perfect grating. In addition, it is shown that the grating with defects in each fourth period exhibits the highest average absorptance (91%) compared with that of the grating having defects in each tenth period (89%), the grating with attached features (89%), and the perfect one (86%). Moreover, the results indicate that the absorptance spectrum of the imperfect structures is insensitive to angles of incidence. Furthermore, the absorptance enhancement is clearly demonstrated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study prove that imperfect geometries of the nanograting structure display a higher absorptance than the perfect one, and provide such a practical guideline for nanofabrication capabilities necessary to be considered by structure designers.
Phan, Hoang Vu; Truong, Quang Tri; Park, Hoon Cheol
2017-04-19
This work presents a parametric study to find a proper wing configuration for achieving economical flight using unsteady blade element theory, which is based on the 3D kinematics of a flapping wing. Power loading was first considered as a performance parameter for the study. The power loadings at each wing section along the wingspan were obtained for various geometric angles of attack (AoAs) by calculating the ratios of the vertical forces generated and the power consumed by that particular wing section. The results revealed that the power loading of a negatively twisted wing could be higher than the power loading that a flat wing can have; the power loading of the negatively twisted wing was approximately 5.9% higher. Given the relatively low average geometric AoA (α A,root ≈ 44° and α A,tip ≈ 25°), the vertical force produced by the twisted wing for the highest power loading was approximately 24.4% less than that produced by the twisted wing for the strongest vertical force. Therefore, for a given wing geometry and flapping amplitude, a flapping-wing micro air vehicle required a 13.5% increase in flapping frequency to generate the same strongest cycle-average vertical force while saving about 24.3% power. However, when force 3 /power 2 and force 2 /power ratios were considered as performance indices, the twisted wings for the highest force 3 /power 2 (α A,root ≈ 43° and α A,tip ≈ 30°) and force 2 /power (α A,root ≈ 43° and α A,tip ≈ 36°) required only 6.5% and 4% increases in flapping frequency and consumed 26.2% and 25.3% less power, respectively. Thus, it is preferable to use a flapping wing operating at a high frequency using the geometric AoAs for the highest power loading, force 3 /power 2 ratio, and force 2 /power ratio over a flapping wing operating at a low frequency using a high geometric AoA with the strongest vertical force. Additionally, by considering both aerodynamic and inertial forces, this study obtained average geometric AoAs in the range of 30° to 40°, which are similar to those of a typical hovering insect's wings. Therefore, the operation of an aerodynamically uneconomical, high AoA in a hovering insect's wings during flight is explainable.
Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring
NASA Technical Reports Server (NTRS)
Berrier, Bobby L.; Taylor, John G.
1990-01-01
The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.
Design data for radars based on 13.9 GHz Skylab scattering coefficient measurements
NASA Technical Reports Server (NTRS)
Moore, R. K. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Measurements made at 13.9 GHz with the radar scatterometer on Skylab have been combined to produce median curves of the variation of scattering coefficient with angle of incidence out to 45 deg. Because of the large number of observations, and the large area averaged for each measured data point, these curves may be used as a new design base for radars. A reasonably good fit at larger angles is obtained using the theoretical expression based on an exponential height correlation function and also using Lambert's law. For angles under 10 deg, a different fit based on the exponential correlation function, and a fit based on geometric optics expressions are both reasonably valid.
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
NASA Astrophysics Data System (ADS)
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
Look up: Human adults use vertical height cues in reorientation.
Du, Yu; Spetch, Marcia L; Mou, Weimin
2016-11-01
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo
2013-02-18
A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2014-06-05
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2013-09-01
In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Investigation of magnetic properties on spin-ordering effects of FeGa2S4 and FeIn2S4
NASA Astrophysics Data System (ADS)
Myoung, Bo Ra; Lim, Jung Tae; Kim, Chul Sung
2017-09-01
We have studied crystal and magnetic properties of chalcogenides FeGa2S4 and FeIn2S4 with X-ray diffractometer (XRD), magnetic property measurement system (MPMS), magnetometer, physical property measurement system (PPMS), and Mössbauer spectrometer. The crystal structure has 2-dimension triangular lattice structure with P-3m1 of FeGa2S4, while FeIn2S4 has inverse spinel with space group Fd3m. The AC magnetic susceptibility measurements show that FeGa2S4 is an insulating spin glass material, exhibiting geometrical frustration, unlike in the antiferromagnetic [AFM] metallic spin glass FeIn2S4. From hysteresis (M-H) curves at 4.2 K, FeGa2S4 has spin-flop behavior with an angle of 120° of triangle, as against linear slope of FeIn2S4 due to anti-parallel spin. The gap energy by splitting of 5T2g, Δ1 and electric quadrupole splitting ΔEQ of FeIn2S4 are much higher than that of FeGa2S4 at 4.2 K because FeGa2S4 is geometrically frustrated magnet having degenerate ground state at low temperature.
Centre-based restricted nearest feature plane with angle classifier for face recognition
NASA Astrophysics Data System (ADS)
Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua
2017-10-01
An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.
Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.
Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen
2015-01-26
We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.
Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.
Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla
2009-04-01
Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.
Incident flux angle induced crystal texture transformation in nanostructured molybdenum films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Lu, T.-M.; Wang, G.-C.
2012-07-15
Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
Symmetric wetting heterogeneity suppresses fluid displacement hysteresis in granular piles
NASA Astrophysics Data System (ADS)
Moosavi, R.; Schröter, M.; Herminghaus, S.
2018-02-01
We investigate experimentally the impact of heterogeneity on the capillary pressure hysteresis in fluid invasion of model porous media. We focus on symmetric heterogeneity, where the contact angles the fluid interface makes with the oil-wet (θ1) and the water-wet (θ2) beads add up to π . While enhanced heterogeneity is usually known to increase hysteresis phenomena, we find that hysteresis is greatly reduced when heterogeneities in wettability are introduced. On the contrary, geometric heterogeneity (like bidisperse particle size) does not lead to such an effect. We provide a qualitative explanation of this surprising result, resting on rather general geometric arguments.
The effect of cyclic feathering motions on dynamic rotor loads. [for helicopters
NASA Technical Reports Server (NTRS)
Harvey, K. W.
1974-01-01
The dynamic loads of a helicopter rotor in forward flight are influenced significantly by the geometric pitch angles between the structural axes of the hub and blade sections and the plane of rotation. The analytical study presented includes elastic coupling between inplane and out-of-plane deflections as a function of geometric pitch between the plane of rotation and the principal axes of inertia of each blade. The numerical evaluation is based on a transient analysis using lumped masses and elastic substructure techniques. A comparison of cases with and without cyclic feathering motion shows the effect on computed dynamic rotor loads.
Pulse height response of an optical particle counter to monodisperse aerosols
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Grice, S. S.; Cuda, V.
1976-01-01
The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.
NASA Astrophysics Data System (ADS)
Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Bora, B.; Kakati, M.; Wyndham, E.; Rawat, R. S.; Schulze, J.
2018-05-01
We investigate the electrical asymmetry effect (EAE) and the current dynamics in a geometrically asymmetric capacitively coupled radio frequency plasma driven by multiple consecutive harmonics based on a nonlinear global model. The discharge symmetry is controlled via the EAE, i.e., by varying the total number of harmonics and tuning the phase shifts ( θ k ) between them. Here, we systematically study the EAE in a low pressure (4 Pa) argon discharge with different geometrical asymmetries driven by a multifrequency rf source consisting of 13.56 MHz and its harmonics. We find that the geometrical asymmetry strongly affects the absolute value of the DC self-bias voltage, but its functional dependence on θ k is similar at different values of the geometrical asymmetry. Also, the values of the DC self-bias are enhanced by adding more consecutive harmonics. The voltage drop across the sheath at the powered and grounded electrode is found to increase/decrease, respectively, with the increase in the number of harmonics of the fundamental frequency. For the purpose of validating the model, its outputs are compared with the results obtained in a geometrically and electrically asymmetric 2f capacitively coupled plasmas experiment conducted by Schuengel et al. [J. Appl. Phys. 112, 053302 (2012)]. Finally, we study the self-excitation of nonlinear plasma series resonance oscillations and its dependence on the geometrical asymmetry as well as the phase angles between the driving frequencies.
Teaching Optics Topics in College Physics Laboratory*
NASA Astrophysics Data System (ADS)
Kezerashvili, Roman Y.
2006-12-01
We propose a list of designed experiments that could be presented at the laboratory class in the second semester of College and University Physics courses to study properties of light. The study of light can be organized into three domains: geometric optics, wave optics and quantum optics. These domains are not strictly disjoint. In the sets of experiments for the first domain students study the laws of reflection and refraction of light by measuring the dependence of the angles of reflection and refraction on the angle of incident, spherical mirrors and lenses, geometric optics of human eye. In the sets of experiments for the second domain students study the wave properties of light: dispersion, interference, diffraction and polarization. Experiments designed to verify the Malus's law and measure the Brewster's angle, determine the wavelength of laser light and study the interference on a transmission and reflection diffraction grating, diffraction on the different size slits and wires. The purposes of experiments for the third domain are to study the spectral lines of different gases, determine the Rydberg's constant from the spectrum of hydrogen atom, and verify the laws of the photoelectric effect and Einstein's quantum idea. The objectives of all experiments are to show the real action of physics laws, help students better understand and visualize the subject of the lecture. *Supported by US Department of Education grant P120A060052
Böhm, Stanislav; Exner, Otto
2004-02-01
The geometrical parameters of molecules of 2-substituted 2-methylpropanes and 1-substituted bicyclo[2.2.2]octanes were calculated at the B3LYP/6-311+G(d,p) level. They agreed reasonably well with the mean crystallographic values retrieved from the Cambridge Structural Database for a set of diverse non-cyclic structures with a tertiary C atom. The angle deformations at this C atom produced by the immediately bonded substituent are also closely related to those observed previously in benzene mono derivatives (either as calculated or as derived from crystallographic data). The calculated geometrical parameters were used to test the classical Walsh rule: It is evidently true that an electron-attracting substituent increases the proportion of C-atom p-electrons in the bond to the substituent and leaves more s-electrons to the remaining bonds; as a consequence the C-C-C angles at a tertiary carbon are widened and the C-C bonds shortened. However, this rule describes only part of the reality since the bond angles and lengths are controlled by other factors as well, for instance by steric crowding. Another imperfection of the Walsh rule is that the sequence of substituents does not correspond to their electronegativities, as measured by any known scale; more probably it is connected with the inductive effect, but then only very roughly.
Spin and wavelength multiplexed nonlinear metasurface holography
NASA Astrophysics Data System (ADS)
Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas
2016-06-01
Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.
Spin and wavelength multiplexed nonlinear metasurface holography
Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas
2016-01-01
Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147
NASA Astrophysics Data System (ADS)
Demasi, L.; Livne, E.
2009-07-01
Two different time domain formulations of integrating commonly used frequency-domain unsteady aerodynamic models based on a modal approach with full order finite element models for structures with geometric nonlinearities are presented. Both approaches are tailored to flight vehicle configurations where geometric stiffness effects are important but where deformations are moderate, flow is attached, and linear unsteady aerodynamic modeling is adequate, such as low aspect ratio wings or joined-wing and strut-braced wings at small to moderate angles of attack. Results obtained using the two approaches are compared using both planar and non-planar wing configurations. Sub-critical and post-flutter speeds are considered. It is demonstrated that the two methods lead to the same steady solution for the sub-critical case after the transients subside. It is also shown that the two methods predict the amplitude and frequency of limit cycle oscillation (when present) with the same accuracy.
NASA Astrophysics Data System (ADS)
Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.
2018-01-01
Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.
Geometric mechanics of periodic pleated origami.
Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L
2013-05-24
Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.
NASA Astrophysics Data System (ADS)
Sabapathy, Manigandan; Kollabattula, Viswas; Basavaraj, Madivala G.; Mani, Ethayaraja
2015-08-01
We present a general yet simple method to measure the contact angle of colloidal particles at fluid-water interfaces. In this method, the particles are spread at the required fluid-water interface as a monolayer. In the water phase a chemical reaction involving reduction of a metal salt such as aurochloric acid is initiated. The metal grows as a thin film or islands of nanoparticles on the particle surface exposed to the water side of the interface. Analyzing the images of particles by high resolution scanning microscopy (HRSEM), we trace the three phase contact line up to which deposition of the metal film occurs. From geometrical relations, the three phase contact angle is then calculated. We report the measurements of the contact angle of silica and polystyrene (PS) particles at different interfaces such as air-water, decane-water and octanol-water. We have also applied this method to measure the contact angle of surfactant treated polystyrene particles at the air-water interface, and we find a non-monotonic change of the contact angle with the concentration of the surfactant. Our results are compared with the well-known gel trapping technique and we find good comparison with previous measurements.We present a general yet simple method to measure the contact angle of colloidal particles at fluid-water interfaces. In this method, the particles are spread at the required fluid-water interface as a monolayer. In the water phase a chemical reaction involving reduction of a metal salt such as aurochloric acid is initiated. The metal grows as a thin film or islands of nanoparticles on the particle surface exposed to the water side of the interface. Analyzing the images of particles by high resolution scanning microscopy (HRSEM), we trace the three phase contact line up to which deposition of the metal film occurs. From geometrical relations, the three phase contact angle is then calculated. We report the measurements of the contact angle of silica and polystyrene (PS) particles at different interfaces such as air-water, decane-water and octanol-water. We have also applied this method to measure the contact angle of surfactant treated polystyrene particles at the air-water interface, and we find a non-monotonic change of the contact angle with the concentration of the surfactant. Our results are compared with the well-known gel trapping technique and we find good comparison with previous measurements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03369a
How Spatial Reasoning and Numerical Reasoning Are Related in Geometric Measurement
ERIC Educational Resources Information Center
Battista, Michael T.; Winer, Michael L.; Frazee, Leah M.
2017-01-01
The positive correlation between spatial ability and mathematical ability has been well-documented, but not well-understood. Examining student work in spatial situations that require numerical operations provides us with insight into this elusive connection. Drawing on student work with angle, length, volume, and area, we examine the ways in which…
Simulation and analysis of tape spring for deployed space structures
NASA Astrophysics Data System (ADS)
Chang, Wei; Cao, DongJing; Lian, MinLong
2018-03-01
The tape spring belongs to the configuration of ringent cylinder shell, and the mechanical properties of the structure are significantly affected by the change of geometrical parameters. There are few studies on the influence of geometrical parameters on the mechanical properties of the tape spring. The bending process of the single tape spring was simulated based on simulation software. The variations of critical moment, unfolding moment, and maximum strain energy in the bending process were investigated, and the effects of different radius angles of section and thickness and length on driving capability of the simple tape spring was studied by using these parameters. Results show that the driving capability and resisting disturbance capacity grow with the increase of radius angle of section in the bending process of the single tape spring. On the other hand, these capabilities decrease with increasing length of the single tape spring. In the end, the driving capability and resisting disturbance capacity grow with the increase of thickness in the bending process of the single tape spring. The research has a certain reference value for improving the kinematic accuracy and reliability of deployable structures.
NASA Astrophysics Data System (ADS)
Topic, Nikola; Gallas, Jason A. C.; Pöschel, Thorsten
2013-11-01
This paper reports a detailed numerical investigation of the geometrical and structural properties of three-dimensional heaps of particles. Our goal is the characterization of very large heaps produced by ballistic deposition from extended circular dropping areas. First, we provide an in-depth study of the formation of monodisperse heaps of particles. We find very large heaps to contain three new geometrical characteristics: they may display two external angles of repose, one internal angle of repose, and four distinct packing fraction (density) regions. Such features are found to be directly connected with the size of the dropping zone. We derive a differential equation describing the boundary of an unexpected triangular packing fraction zone formed under the dropping area. We investigate the impact that noise during the deposition has on the final heap structure. In addition, we perform two complementary experiments designed to test the robustness of the novel features found. The first experiment considers changes due to polydispersity. The second checks what happens when letting the extended dropping zone to become a point-like source of particles, the more common type of source.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
Damage Detection for Historical Architectures Based on Tls Intensity Data
NASA Astrophysics Data System (ADS)
Li, Q.; Cheng, X.
2018-04-01
TLS (Terrestrial Laser Scanner) has long been preferred in the cultural heritage field for 3D documentation of historical sites thanks to its ability to acquire the geometric information without any physical contact. Besides the geometric information, most TLS systems also record the intensity information, which is considered as an important measurement of the spectral property of the scanned surface. Recent studies have shown the potential of using intensity for damage detection. However, the original intensity is affected by scanning geometry such as range and incidence angle and other factors, thus making the results less accurate. Therefore, in this paper, we present a method to detect certain damage areas using the corrected intensity data. Firstly, two data-driven models have been developed to correct the range and incidence angle effect. Then the corrected intensity is used to generate 2D intensity images for classification. After the damage areas being detected, they are re-projected to the 3D point cloud for better visual representation and further investigation. The experiment results indicate the feasibility and validity of the corrected intensity for damage detection.
Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm
NASA Astrophysics Data System (ADS)
Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.
2016-08-01
Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.
NASA Technical Reports Server (NTRS)
Usher, P. D.
1971-01-01
The almucantar radio telescope development and characteristics are presented. The radio telescope consists of a paraboloidal reflector free to rotate in azimuth but limited in altitude between two fixed angles from the zenith. The fixed angles are designed to provide the capability where sources lying between two small circles parallel with the horizon (almucantars) are accessible at any one instant. Basic geometrical considerations in the almucantar design are presented. The capabilities of the almucantar telescope for source counting and for monitoring which are essential to a resolution of the cosmological problem are described.
Ten Years of MISR Observations from Terra: Looking Back, Ahead, and in Between
NASA Technical Reports Server (NTRS)
Diner, David J.; Ackerman, Thomas P.; Braverman, Amy J.; Bruegge, Carol J.; Chopping, Mark J.; Clothiaux, Eugene E.; Davies, Roger; Di Girolamo, Larry; Kahn, Ralph A.; Knyazikhin, Yuri;
2010-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its nine along-track view angles, four visible/near-infrared spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space. The more than 10-year (and counting) MISR data record provides unprecedented opportunities for characterizing long-term trends in aerosol, cloud, and surface properties, and includes 3-D textural information conventionally thought to be accessible only to active sensors.
Freeform lens design for LED collimating illumination.
Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang
2012-05-07
We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.
Comparison of multi-arm VRX CT scanners through computer models
NASA Astrophysics Data System (ADS)
Rendon, David A.; DiBianca, Frank A.; Keyes, Gary S.
2007-03-01
Variable Resolution X-ray (VRX) CT scanners allow imaging of different sized anatomy at the same level of detail using the same device. This is achieved by tilting the x-ray detectors so that the projected size of the detecting elements is varied producing reconstructions of smaller fields of view with higher spatial resolution.1 The detector can be divided in two or more separate segments, called arms, which can be placed at different angles, allowing some flexibility for the scanner design. In particular, several arms can be set at different angles creating a target region of considerably higher resolution that can be used to track the evolution of a previously diagnosed condition, while keeping the patient completely inside the field of view (FOV).2 This work presents newly-developed computer models of single-slice VRX scanners that allow us to study and compare different configurations (that is, various types of detectors arranged in any number of arms arranged in different geometries) in terms of spatial and contrast resolution. In particular, we are interested in comparing the performance of various geometric configurations that would otherwise be considered equivalent (using the same equipment, imaging FOVs of the same sizes, and having a similar overall scanner size). For this, a VRX simulator was developed, along with mathematical phantoms for spatial resolution and contrast analysis. These tools were used to compare scanner configurations that can be reproduced with materials presently available in our lab.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
Closed geometric models in medical applications
NASA Astrophysics Data System (ADS)
Jagannathan, Lakshmipathy; Nowinski, Wieslaw L.; Raphel, Jose K.; Nguyen, Bonnie T.
1996-04-01
Conventional surface fitting methods give twisted surfaces and complicates capping closures. This is a typical character of surfaces that lack rectangular topology. We suggest an algorithm which overcomes these limitations. The analysis of the algorithm is presented with experimental results. This algorithm assumes the mass center lying inside the object. Both capping closure and twisting are results of inadequate information on the geometric proximity of the points and surfaces which are proximal in the parametric space. Geometric proximity at the contour level is handled by mapping the points along the contour onto a hyper-spherical space. The resulting angular gradation with respect to the centroid is monotonic and hence avoids the twisting problem. Inter-contour geometric proximity is achieved by partitioning the point set based on the angle it makes with the respective centroids. Avoidance of capping complications is achieved by generating closed cross curves connecting curves which are reflections about the abscissa. The method is of immense use for the generation of the deep cerebral structures and is applied to the deep structures generated from the Schaltenbrand- Wahren brain atlas.
A geometric analysis of hallux valgus: correlation with clinical assessment of severity
Piqué-Vidal, Carlos; Vila, Joan
2009-01-01
Background Application of plane geometry to the study of bunion deformity may represent an interesting and novel approach in the research field of hallux valgus. For the purpose of contributing to development of a different perspective in the assessment of hallux valgus, this study was conducted with three objectives: a) to determine the position on the intersection point of the perpendicular bisectors of the longitudinal axes of the first metatarsal and proximal phalanx (IP), b) to correlate the location of this point with hallux valgus deformity according to angular measurements and according to visual assessment of the severity carried out by three independent observers, and c) to assess whether this IP correlated with the radius of the first metatarsophalangeal arc circumference. Methods Measurements evaluated were intermetatarsal angle (IMA), hallux valgus angle (HVA), and proximal phalangeal articular angle (PPAA). The Autocad® program computed the location of the IP inside or outside of the foot. Three independent observers rated the severity of hallux valgus in photographs using a 100-mm visual analogue scale (VAS). Results Measurements of all angles except PPAA showed significantly lower values when the IP was located out of the foot more distantly and vice versa, significantly higher values for severe deformities in which the IP was found inside the foot (p < 0.001). The IP correlated significantly with VAS scores and with the length of the radius of the circle that included the first metatarsophalangeal arc circumference (p < 0.001) Conclusion The IP is a useful indicator of hallux valgus deformity because correlated significantly with IMA and HVA measurements, VAS scores obtained by visual inspection of the degree of deformity, and location of the center of the first metatarsophalangeal arc circumference. PMID:19442286
Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering
NASA Astrophysics Data System (ADS)
Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven
2014-09-01
Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.
Braaf, Boy; van de Watering, Thomas Christiaan; Spruijt, Kees; van der Heijde, Rob G.L.; Sicam, Victor Arni D.P.
2010-01-01
Purpose To develop a method to calculate the angle λ of the human eye using Zernike tilt measurements in specular reflection corneal topography. Methods The meaning of Zernike tilt in specular reflection corneal topography is demonstrated by measurements on translated artificial surfaces using the VU Topographer. The relationship derived from the translation experiments is used to determine the angle λ. Corneal surfaces are measured for a set of eight different fixation points, for which tilt angles ρ are obtained from the Zernike tilt coefficients. The angles ρ are used with respect to the fixation target angles to determine angle λ by fitting a geometrical model. This method is validated with Orbscan II's angle-κ measurements in 9 eyes. Results The translation experiments show that the Zernike tilt coefficient is directly related to an angle ρ, which describes a tilt orientation of the cornea and can therefore be used to derive a value for angle λ. A significant correlation exists between measured values for angle λ with the VU Topographer and the angle κ with the Orbscan II (r=0.95, P<0.001). A Bland-Altman plot indicates a mean difference of -0.52 degrees between the two instruments, but this is not statistically significant as indicated by a matched-pairs Wilcoxon signed-rank test (P≤0.1748). The mean precision for measuring angle λ using the VU topographer is 0.6±0.3 degrees. Conclusion The method described above to determine angle λ is sufficiently repeatable and performs similarly to the angle-κ measurements made with the Orbscan II.
Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2018-03-01
The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.
Yonemoto, Yukihiro; Kunugi, Tomoaki
2014-01-01
The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.
Tunable Snell's law for spin waves in heterochiral magnetic films
NASA Astrophysics Data System (ADS)
Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.
2018-03-01
Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.
Secondary electron emission from textured surfaces
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Patino, M. I.; Wirz, R. E.
2018-04-01
In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.
QUIKVIS- CELESTIAL TARGET AVAILABILITY INFORMATION
NASA Technical Reports Server (NTRS)
Petruzzo, C.
1994-01-01
QUIKVIS computes the times during an Earth orbit when geometric requirements are satisfied for observing celestial objects. The observed objects may be fixed (stars, etc.) or moving (sun, moon, planets). QUIKVIS is useful for preflight analysis by those needing information on the availability of celestial objects to be observed. Two types of analyses are performed by QUIKVIS. One is used when specific objects are known, the other when targets are unknown and potentially useful regions of the sky must be identified. The results are useful in selecting candidate targets, examining the effects of observation requirements, and doing gross assessments of the effects of the orbit's right ascension of the ascending node (RAAN). The results are not appropriate when high accuracy is needed (e.g. for scheduling actual mission operations). The observation duration is calculated as a function of date, orbit node, and geometric requirements. The orbit right ascension of the ascending node can be varied to account for the effects of an uncertain launch time of day. The orbit semimajor axis and inclination are constant throughout the run. A circular orbit is assumed, but a simple program modification will allow eccentric orbits. The geometric requirements that can be processed are: 1) minimum separation angle between the line of sight to the object and the earth's horizon; 2) minimum separation angle between the line of sight to the object and the spacecraft velocity vector; 3) maximum separation angle between the line of sight to the object and the zenith direction; and 4) presence of the spacecraft in the earth's shadow. The user must supply a date or date range, the spacecraft orbit and inclination, up to 700 observation targets, and any geometric requirements to be met. The primary output is the time per orbit that conditions are satisfied, with options for sky survey maps, time since a user-specified orbit event, and bar graphs illustrating overlapping requirements. The output is printed in visually convenient lineprinter form but is also available on data files for use by postprocessors such as external XY plotters. QUIKVIS is written in FORTRAN 77 for batch or interactive execution and has been implemented on a DEC VAX 11/780 operating under VMS with a central memory requirement of approximately 500K of 8 bit bytes. QUIKVIS was developed in 1986 and revised in 1987.
Computer modeling of bidirectional spectra: the role of geometry of illumination/observation
NASA Astrophysics Data System (ADS)
Grynko, Ye.; Shkuratov, Yu.; Mall, U.
Reflectance spectroscopy is widely used in the remote sensing of the Moon. Ground based and space spectrophotometric observations provide information about physical properties and chemical composition of lunar regolith. The main spectral features such as spectral slope and parameters of the absorption bands are different for different minerals and depend on the surface roughness, particle size, degrees of maturity and cristallinity, etc. In order to interpret reflectance measurements a model describing the light interaction with a regolith-like surface is needed. However, the problem of light scattering in dense particulate media consisting of irregular particles larger than the wavelength of light (which is the case for lunar regolith) has not yet been solved and only approximate models exist. Spectrophotometric properties of such surfaces can be analyzed in the geometric optics approach with one-dimensional (1-D) light scattering models (e.g., [1]). Although the 1-D models are successfully applied to interprete planetary regolith spectra they do not give an answer how spectral features depend on the geometrical illumination/observation condition of the surface. Laboratory measurements prove that the changing lighting conditions play a significant role in the formation of the above mentioned spectral features [2, 3]. In the presented work we use computer modeling to simulate light reflection from a regolith-like surface. Our computer experiment includes two stages: The simulation of the medium and ray tracing [4, 5]. Particles with random irregular shape are randomly distributed in a cyclically closed model volume which forms a semi-infinite medium (surface). Their surface is described by flat facets.The applied technique uses a Monte Carlo ray tracing method with parallel rays falling under a given angle relative to the average surface normal. The interaction of a ray with a particle surface facet is determined by Fresnel formulas and Snell's law. The model delivers the absolute surface reflectance as function of wavelength for a given geometrical illumination/observation condition In this paper we study the dependence of the reflectance spectra on the phase angle. The angle of incidence is constant and equals to 70°. The phase angle changes from 0° to 160°. For the substance which the particles are made of we chose average value 1 for the complex refractive index corresponding to lunar mare and highlands. Our calculations reveal a strong dependence of the spectral slopes on the phase angle. This confirms the previous general conclusion given in [2] that the larger the phase angle is the redder is the spectrum. A decomposition of the reflected flux into different scattering components shows that this is caused by the indicatrix of single scattering. Multiple scattering has almost no influence on spectral slope. The shape of the absorption bands also varies with phase angle but this dependence is not regular. The 1 µm feature is more pronounced at small and moderate phase angles and becomes wide and less visible at very large phase angles. References. [1] Yu. Shkuratov et al., Icarus, 137, 235-246 (1999). [2] C. M. Pieters et al., LPSC XXII, Abstract #1069 (1991). [3] A. Cord et al., Icarus, 165, 414-427 (2003). [4] Ye. Grynko and Yu. Shkuratov, J. Quant. Spectrosc. Rad. Trans. 78, 319- 340 (2003). [5] Yu. Shkuratov and Ye. Grynko, Icarus, 173, 16-28 (2006). 2
Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera
NASA Astrophysics Data System (ADS)
Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.
2016-04-01
The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
NASA Astrophysics Data System (ADS)
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the SO(3). MAP can be extended to a neural network, where the synaptic connection of the holonomy attractor is just the mathematical condition adjusting and bridging spaces with positive (spherical) and negative (hyperbolic) curvature allowing for lossless/supra spin currents. Another strategy is to look for existing spin/precession anomalies and corresponding nonlinear holonomy conditions at the most fundamental level from the quark level to the cosmic scale. In these sceneries the geodesic attractor could control holonomy and curvature near the fixed points. It was proposed in 2002 that this should happen with electrons in atomic orbits showing a Berry phase part of the Rydberg or Sommerfeld fine structure constant and in 2003 that this effect could be responsible for (in)stabilities in the nuclear range and in superconductors. In 2008 it was shown that the attractor is part of the chaotic mechanical dynamics successfully at work in the Gyro-twister fitness device, and in 2007-2009 that there could be some deep relevance to "anomalies" in many scenarios even on the cosmic scales. Thus, we will point to and discuss some possible future applications that could be utilized for metric engineering: generating artificial holonomy and curvature (DC effect) for propulsion, or forcing holonomy waves (AC effect) in hyperbolic space-time, which are just gravitational waves interesting for communication.
Large incidence angle and defocus influence cat's eye retro-reflector
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui
2014-11-01
Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.
Measurements of Rayleigh, Compton and resonant Raman scattering cross-sections for 59.536 keV γ-rays
NASA Astrophysics Data System (ADS)
Singh, Prem; Mehta, D.; Singh, N.; Puri, S.; Shahi, J. S.
2004-09-01
The K-L and K-M resonant Raman scattering (RRS) cross-sections have been measured for the first time at the 59.536 keV photon energy in the 70Yb ( BK=61.332 keV), 71Lu ( BK=63.316 keV) and 72Hf ( BK=65.345 keV) elements; BK being the K-shell binding energy. The K-L and K-M RRS measurements have been performed at the 59° and 133° angles, respectively, to avoid interference of the Compton-scatter peak. The Rayleigh and Compton scattering cross-sections for the 59.536 keV γ-rays have also been measured at both the angles in the atomic region 1⩽ Z⩽92. Measurements were performed using the reflection-mode geometrical arrangements involving the 241Am radioisotope as photon source and planar Si(Li) and HPGe detectors. Ratios of the K-M and K-L RRS cross-sections in Yb, Lu and Hf are in general lower than that of the fluorescent Kβ 1,3,5 (K-M) and Kα (K-L) X-ray transition probabilities. Theoretical Rayleigh scattering cross-sections based on the modified form-factors (MFs) corrected for the anomalous scattering factors (ASFs) and the S-matrix calculations are on an average ˜15% and ˜6% higher, respectively, at the 133° angle and exhibit good agreement with the measured data at the 59° angle. Larger deviations ˜30% and ˜20%, respectively, are observed at the 133° angle for the 64Gd, 66Dy, 67Ho and 70Yb elements having the K-shell binding energy in vicinity of the incident photon energy. The measured Compton scattering cross-sections are in general agreement with those calculated using the Klein-Nishina cross-sections and the incoherent scattering function.
Kang, Ho-Jun; Lee, Yoon-Soo; Suh, Sang-Jun; Lee, Jeong-Ho; Ryu, Kee-Young; Kang, Dong-Gee
2013-03-01
Keyhole craniotomy is a modification of pterional craniotomy that allows for use of a minimally invasive approach toward cerebral aneurysms. Currently, mini-pterional (MPKC) and supraorbital keyhole craniotomies (SOKC) are commonly used. In this study, we measured and compared the geometric configurations of surgical exposure provided by MPKC and SOKC. Nine patients underwent MPKC and four underwent SOKC. Their postoperative contrast-enhanced brain computed tomographic scans were evaluated. The transverse and longitudinal diameters and areas of exposure were measured. The locations of the anterior communicating artery, bifurcation of the middle cerebral artery (MCAB), and the internal carotid artery (ICA) terminal were identified, and the working angles and depths for these targets were measured. No significant differences in the transverse diameters of exposure were observed between MPKC and SOKC. However, the longitudinal diameters and the areas were significantly larger, by 1.5 times in MPKC. MPKC provided larger operable working angles for the targets. The angles by MPKC, particularly for the MCAB, reached up to 1.9-fold of those by SOKC. Greater working depths were required in order to reach the targets by SOKC, and the differences were the greatest in the MCAB by 1.6-fold. MPKC provides larger exposure than SOKC with a similar length of skin incision. MPKC allows for use of a direct transsylvian approach, and exposes the target in a wide working angle within a short distance. Despite some limitations in exposure, SOKC is suitable for a direct subfrontal approach, and provides a more anteromedial and basal view. MCAB and posteriorly directing ICA terminal aneurysms can be good candidates for MPKC.
Capability of geometric features to classify ships in SAR imagery
NASA Astrophysics Data System (ADS)
Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li
2016-10-01
Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.
Identifying and Fostering Higher Levels of Geometric Thinking
ERIC Educational Resources Information Center
Škrbec, Maja; Cadež, Tatjana Hodnik
2015-01-01
Pierre M. Van Hiele created five levels of geometric thinking. We decided to identify the level of geometric thinking in the students in Slovenia, aged 9 to 11 years. The majority of students (60.7%) are at the transition between the zero (visual) level and the first (descriptive) level of geometric thinking. Nearly a third (31.7%) of students is…
Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.
2013-12-01
In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value of τ is at 0.5 to 0.6.
Equilibrium shapes of drops on membranes
NASA Astrophysics Data System (ADS)
Sharma, Ishan; Nair, Vineet; Shankar, Viswanathan
2017-11-01
Equilibrium shapes for axisymmetric sessile and pendant drops placed on / attached to geometrically nonlinear elastic membranes, in horizontal as well as inclined configurations, are obtained. The effective contact angle of the drop with the membrane, its contact radius, the maximum membrane displacement, and the volume of the drop is investigated for various values of Bond Number and membrane tension.
Superhydrophobic Superoleophobic Woven Fabrics (Preprint)
2011-06-01
AFRL-RX-TY-TP-2011-0050 SUPERHYDROPHOBIC SUPEROLEOPHOBIC WOVEN FABRICS (PREPRINT) Hoonjoo Lee Department of Textile and Apparel...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) JUN 2011 Book Chapter 20-JUN-2008 -- 30-APR-2011 Superhydrophobic Superoleophobic Woven Fabrics...roll-off angles are analyzed, and finally superhydrophobic , superoleophobic, woven fabric is designed and developed using chemical and geometrical
Foliar spray banding characteristics
A.R. Womac; C.W. Smith; Joseph E. Mulrooney
2004-01-01
Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of daughter droplets is significantly different in both branch channels. Also, it is found that the contact angle hysteresis is strengthened with decreasing the viscosity ratio, leading to an earlier droplet breakup and a decrease in the maximum length that the droplet can reach before the breakup. These simulation results manifest that the present multiphase LBM can be a useful substitute to Ba et al. [Phys. Rev. E 88, 043306 (2013)PLEEE81539-375510.1103/PhysRevE.88.043306] for modeling the contact angle hysteresis, and it can be easily implemented with higher computational efficiency.
Higher-order gravity and the classical equivalence principle
NASA Astrophysics Data System (ADS)
Accioly, Antonio; Herdy, Wallace
2017-11-01
As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.
An ultra-thin compact polarization-independent hexa-band metamaterial absorber
NASA Astrophysics Data System (ADS)
Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav
2018-04-01
In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.
Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching
2005-01-01
In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.
High energy resolution, high angular acceptance crystal monochromator
Alp, E.E.; Mooney, T.M.; Toellner, T.
1996-06-04
A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.
High energy resolution, high angular acceptance crystal monochromator
Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas
1996-06-04
A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.
NASA Astrophysics Data System (ADS)
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido
2013-05-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido
2013-01-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity.
Azéma, Emilien; Radjaï, Farhang; Saint-Cyr, Baptiste; Delenne, Jean-Yves; Sornay, Philippe
2013-05-01
We use three-dimensional contact dynamics simulations to analyze the rheological properties of granular materials composed of rigid aggregates. The aggregates are made from four overlapping spheres and described by a nonconvexity parameter depending on the relative positions of the spheres. The macroscopic and microstructural properties of several sheared packings are analyzed as a function of the degree of nonconvexity of the aggregates. We find that the internal angle of friction increases with the nonconvexity. In contrast, the packing fraction first increases to a maximum value but declines as the nonconvexity increases further. At a high level of nonconvexity, the packings are looser but show a higher shear strength. At the microscopic scale, the fabric and force anisotropy, as well as the friction mobilization, are enhanced by multiple contacts between aggregates and interlocking, thus revealings the mechanical and geometrical origins of shear strength.
NASA Technical Reports Server (NTRS)
Bradley, D.; Ellis, R. R.
1972-01-01
A 0.00227-scale parametric model of an LMSC/MSFC water recoverable booster was tested in the MSFC 14 x 14-inch trisonic wind tunnel. The purpose of the test was to obtain high angle of attack force and static stability data which could be used by MSFC in preliminary design and aerodynamic trade studies. These data were obtained using six-component internal strain gauge balances. One hundred forty-four different geometrical combinations were possible as all model parts were interchangeable (three nose cones, three cylinder lengths, four flare sections and three sets of fins, plus a no-fin case in combination with the other components). However, due to tunnel occupancy limitations, only the most representative combinations were tested. All configurations investigated were tested at Mach 1.96, 2.74 and 4.96 with data obtained at angles of attack from 50 degrees to 90 degrees and at angles of sideslip from -10 degrees to +10 degrees (at an angle of attack of 60 degrees).
Development of a software package for solid-angle calculations using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai
2014-02-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.
Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.
2016-01-01
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197
The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations
NASA Astrophysics Data System (ADS)
Jeong, Myongho; Kwon, Younghi
2000-06-01
Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.
NASA Technical Reports Server (NTRS)
Green, Robert S.; Carson, George T., Jr.
1987-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.
Holonomy transformations and application in the curved structure of graphene
NASA Astrophysics Data System (ADS)
de M. Carvalho, Alexandre M.; de Lima Ribeiro, Carlos A.; Moraes, Fernando; Furtado, Claudio
2013-06-01
In this contribution we show that holonomy transformations are an efficient method to describe some geometrical characteristics. This approach is an alternative proceeding the Gauss-Bonnet theorem to get the deficit angle and it also permits to obtain the phase factor acquired by a vector which was parallel transported through a medium with topological defects. We have applied the holonomy transformation to the system described by González and Herrero formed by two sheets of graphene connected by a carbon nanotube. The result confirms that the angle endowed is equivalent to 12 heptagonal carbon rings, which was shown by the authors.
Disk in a groove with friction: An analysis of static equilibrium and indeterminacy
NASA Astrophysics Data System (ADS)
Donolato, Cesare
2018-05-01
This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.
Exploratory investigation of the aerodynamic characteristics of a biwing vehicle at Mach 20.3
NASA Technical Reports Server (NTRS)
Bernot, P. T.
1984-01-01
Longitudinal and lateral-directional characteristics of a simple biwing configuration were determined over an angle-of-attack range from -3 deg to 50 deg. The body was comprised of a cylindrical section with an ogival forebody having an overall fineness ratio of 6.67. The delta wings had a 38.3 deg sweep angle and were geometrically similar in planform. The upper wing was located slightly forward relative to the lower wing. The model was tested in upright and inverted orientations including component buildups. This investigation was conducted in the 22-inch aerodynamics leg of the Langley Hypersonic Helium Tunnel Facility.
Study of Swept Angle Effects on Grid Fins Aerodynamics Performance
NASA Astrophysics Data System (ADS)
Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad
2018-04-01
Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.
Design data package and operating procedures for MSFC solar simulator test facility
NASA Technical Reports Server (NTRS)
1981-01-01
Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mingsen; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, 550018; Ye, Gui
The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precisemore » control of molecular devices.« less
Constrained variational calculus for higher order classical field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David
2010-11-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Unified formalism for the generalized kth-order Hamilton-Jacobi problem
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2014-08-01
The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.
Coarsening of ion-beam-induced surface ripple in Si: Nonlinear effect vs. geometrical shadowing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Debi Prasad; Chini, Tapas Kumar
The temporal evolution of a periodic ripple pattern on a silicon surface undergoing erosion by 30 keV argon ion bombardment has been studied for two angles of ion incidence of 60 deg. and 70 deg. using ex situ atomic force microscopy (AFM) in ambient condition. The roughness amplitude (w) grows exponentially with sputtering time for both the angle of ion incidence followed by a slow growth process that saturates eventually with almost constant amplitude. Within the exponential growth regime of amplitude, however, ripple wavelength (l) remains constant initially and increases subsequently as a power law fashion l{proportional_to}t{sup n}, where n=0.47{+-}0.02more » for a 60 deg. angle of ion incidence followed by a saturation. Wavelength coarsening was also observed for 70 deg. but ordering in the periodic ripple pattern is destroyed quickly for 70 deg. as compared to 60 deg. . The ripple orientation, average ripple wavelength at the initial stage of ripple evolution, and the exponential growth of ripple amplitude can be described by a linear continuum model. While the wavelength coarsening could possibly be explained in the light of recent hydrodynamic model based continuum theory, the subsequent saturation of wavelength and amplitude was attributed to the effect of geometrical shadowing. This is an experimental result that probably gives a hint about the upper limit of the energy of ion beam rippling for applying the recently developed type of nonlinear continuum model.« less
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.
2007-01-01
An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.
Optimization of VLf/ELF Wave Generation using Beam Painting
NASA Astrophysics Data System (ADS)
Robinson, A.; Moore, R. C.
2017-12-01
A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.
Topographic Correction Module at Storm (TC@Storm)
NASA Astrophysics Data System (ADS)
Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K.
2015-04-01
Different solar position in combination with terrain slope and aspect result in different illumination of inclined surfaces. Therefore, the retrieved satellite data cannot be accurately transformed to the spectral reflectance, which depends only on the land cover. The topographic correction should remove this effect and enable further automatic processing of higher level products. The topographic correction TC@STORM was developed as a module within the SPACE-SI automatic near-real-time image processing chain STORM. It combines physical approach with the standard Minnaert method. The total irradiance is modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the terrain (dependent on sky-view factor and albedo). For computation of diffuse irradiation from the sky we assume an anisotropic brightness of the sky. We iteratively estimate a linear combination from 10 different models, to provide the best results. Dependent on the data resolution, we mask shades based on radiometric (image) or geometric properties. The method was tested on RapidEye, Landsat 8, and PROBA-V data. Final results of the correction were evaluated and statistically validated based on various topography settings and land cover classes. Images show great improvements in shaded areas.
Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.
Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo
2015-11-20
While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.
Edge delamination in angle-ply composite laminates, part 5
NASA Technical Reports Server (NTRS)
Wang, S. S.
1981-01-01
A theoretical method was developed for describing the edge delamination stress intensity characteristics in angle-ply composite laminates. The method is based on the theory of anisotropic elasticity. The edge delamination problem is formulated using Lekhnitskii's complex-variable stress potentials and an especially developed eigenfunction expansion method. The method predicts exact orders of the three-dimensional stress singularity in a delamination crack tip region. With the aid of boundary collocation, the method predicts the complete stress and displacement fields in a finite-dimensional, delaminated composite. Fracture mechanics parameters such as the mixed-mode stress intensity factors and associated energy release rates for edge delamination can be calculated explicity. Solutions are obtained for edge delaminated (theta/-theta theta/-theta) angle-ply composites under uniform axial extension. Effects of delamination lengths, fiber orientations, lamination and geometric variables are studied.
Aerodynamic static stability and control effectiveness of a parametric shuttle launch configuration
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1972-01-01
Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel on a 0.004-scale model of the NR ATP baseline Shuttle launch configuration. The test model consisted of the NR ATP baseline orbiter, external tank, and SRB's with nozzles. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 deg to 10 deg at zero degrees sideslip and angle of sideslip range of minus 10 deg to 10 deg at zero angle of attack for a Mach range of 0.6 to 4.96. Rudder flare was constant at 10 deg during the entire test. The purpose of the test was to define the performance, stability, and control characteristics of the launch configuration as well as to investigate the buildup effect of two geometrical parameters.
Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A
2015-06-01
Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.
Polarized bow shocks reveal features of the winds and environments of massive stars
NASA Astrophysics Data System (ADS)
Shrestha, Manisha
2018-01-01
Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the implications of these model for the stellar winds and interstellar environments of these influential objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Sanat K.; Das, Prasanta K., E-mail: pkd@mech.iitkgp.ernet.in; Maiti, Biswajit
2015-03-14
A rigorous thermodynamic formulation of the geometric model for heterogeneous nucleation including line tension effect is missing till date due to the associated mathematical hurdles. In this work, we develop a novel thermodynamic formulation based on Classical Nucleation Theory (CNT), which is supposed to illustrate a systematic and a more plausible analysis for the heterogeneous nucleation on a planar surface including the line tension effect. The appreciable range of the critical microscopic contact angle (θ{sub c}), obtained from the generalized Young’s equation and the stability analysis, is θ{sub ∞} < θ{sub c} < θ′ for positive line tension and ismore » θ{sub M} < θ{sub c} < θ{sub ∞} for negative line tension. θ{sub ∞} is the macroscopic contact angle, θ′ is the contact angle for which the Helmholtz free energy has the minimum value for the positive line tension, and θ{sub M} is the local minima of the nondimensional line tension effect for the negative line tension. The shape factor f, which is basically the dimensionless critical free energy barrier, becomes higher for lower values of θ{sub ∞} and higher values of θ{sub c} for positive line tension. The combined effect due to the presence of the triple line and the interfacial areas (f{sup L} + f{sup S}) in shape factor is always within (0, 3.2), resulting f in the range of (0, 1.7) for positive line tension. A formerly presumed appreciable range for θ{sub c}(0 < θ{sub c} < θ{sub ∞}) is found not to be true when the effect of negative line tension is considered for CNT. Estimation based on the property values of some real fluids confirms the relevance of the present analysis.« less
Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs
Feito, Norberto; Díaz-Álvarez, José; Díaz-Álvarez, Antonio; Cantero, José Luis; Miguélez, María Henar
2014-01-01
This paper focuses on the effect of the drill geometry on the drilling of woven Carbon Fiber Reinforced Polymer composite (CFRPs). Although different geometrical effects can be considered in drilling CFRPs, the present work focuses on the influence of point angle and wear because they are the important factors influencing hole quality and machining forces. Surface quality was evaluated in terms of delamination and superficial defects. Three different point angles were tested representative of the geometries commonly used in the industry. Two wear modes were considered, being representative of the wear patterns commonly observed when drilling CFRPs: flank wear and honed cutting edge. It was found that the crossed influence of the point angle and wear were significant to the thrust force. Delamination at the hole entry and exit showed opposite trends with the change of geometry. Also, cutting parameters were checked showing the feed’s dominant influence on surface damage. PMID:28788675
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
The radiation from slots in truncated dielectric-covered surfaces
NASA Technical Reports Server (NTRS)
Hwang, Y. M.; Kouyoumjian, R. G.; Pathak, P. H.
1974-01-01
A theoretical approach based on the geometrical theory of diffraction is used to study the electromagnetic radiation from a narrow slot in a dielectric-covered perfectly-conducting surface terminated at an edge. The total far-zone field is composed of a geometrical optics field and a diffracted field. The geometrical optics field is the direct radiation from the slot to the field point. The slot also generates surface waves which are incident at the termination of the dielectric cover, where singly-diffracted rays and reflected surface waves are excited. The diffraction and reflection coefficients are obtained from the canonical problem of the diffraction of a surface wave by a right-angle wedge where the dielectric-covered surface is approximated by an impedance surface. This approximation is satisfactory for a very thin cover; however, the radiation from its vertical and faces cannot be neglected in treating the thicker dielectric cover. This is taken into account by using a Kirchhoff-type approximation, which contributes a second term to the diffraction coefficient previously obtained. The contributions from the geometrical optics field, the singly-diffracted rays and all significant multiply-diffracted rays are summed to give the total radiation. Calculated and measured patterns are found to be in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, E.; Huang, Y.; Chu, S.
We show that cyclic quantum evolution can be realized and the Aharonov-Anandan (AA) geometric phase can be determined for any spin-{ital j} system driven by periodic fields. Two methods are extended for the study of this problem: the generalized spin-coherent-state technique and the Floquet quasienergy approach. Using the former approach, we have developed a {ital generalized} Bloch-sphere model and presented a SU(2) Lie-group formulation of the AA geometric phase in the spin-coherent state. We show that the AA phase is equal to {ital j} times the solid angle enclosed by the trajectory traced out by the tip of a generalizedmore » Bloch vector. General analytic formulas are obtained for the Bloch vector trajectory and the AA geometric phase in terms of external physical parameters. In addition to these findings, we have also approached the same problem from an alternative but complementary point of view without recourse to the concept of coherent-state terminology. Here we first determine the Floquet quasienergy eigenvalues and eigenvectors for the spin-{ital j} system driven by periodic fields. This in turn allows the construction of the time-evolution propagator, the total wave function, and the AA geometric phase in a more general fashion.« less
NASA Astrophysics Data System (ADS)
Gholami, Raheb; Ansari, Reza
2018-02-01
This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2013-09-01
In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterization of Creases in Polymers for Adaptive Origami Structures (Postprint)
2014-10-01
Techniques employed in origami are of interest for the design of actuating structures with multiple defined geometric states. Most research in this...studied in detail. Understanding creasing is crucial for establishing material selection guidelines in origami engineering applications...Identification of the precise failure mechanisms is critical for understanding the residual fold angle and selecting optimal materials for specific origami
The auxetic behavior of an expanded periodic cellular structure
NASA Astrophysics Data System (ADS)
Ciolan, Mihaela A.; Lache, Simona; Velea, Marian N.
2018-02-01
Within nowadays research, when it comes to lightweight sandwich panels, periodic cellular structures are considered real trendsetters. One of the most used type of core in producing sandwich panels is the honeycomb. However, due to its relatively high manufacturing cost, this structure has limited applications; therefore, research has been carried out in order to develop alternative solutions. An example in this sense is the ExpaAsym cellular structure, developed at the Transilvania University of Braşov; it represents a periodic cellular structure manufactured through a mechanically expansion process of a previously cut and perforated sheet material. The relative density of the structure was proven to be significantly lower than the one of the honeycomb. This gives a great advantage to the structure, due to the fact that when the internal angle A of the unit cell is 60°, after the mechanical expansion it results a hexagonal structure. The main objective of this paper is to estimate the in-plane Poisson ratios of the structure, in terms of its geometrical parameters. It is therefore analytically shown that for certain values of the geometric parameters, the in-plane Poisson ratios have negative values when the internal angle exceeds 90°, which determines its auxetic behavior.
Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue
2016-02-20
A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range.
Long-Range Rapidity Correlations in Heavy-Light Ion Collisions
NASA Astrophysics Data System (ADS)
Kovchegov, Yuri; Wertepny, Douglas
2013-04-01
We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger than the other. We calculate the two-gluon production cross section while including all-order saturation effects in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations, (iii) back-to-back correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus and may lead to long-range rapidity correlations for the produced particles without strong azimuthal angle dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around δφ=π with the other one centered around δφ=0 (here δφ is the azimuthal angle between the two produced gluons). This prediction is in agreement with the recent ALICE p+Pb data.
The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie
2012-01-01
One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E.L.
A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less
Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid
Wang, Lixin; Zhou, Qiang
2016-01-01
To investigate the hydrophobicity of slippery zones, static contact angle measurement and microstructure observation of slippery surfaces from two Nepenthes species and a hybrid were conducted. Marginally different static contact angles were observed, as the smallest (133.83°) and greatest (143.63°) values were recorded for the N. alata and N. miranda respectively, and the median value (140.40°) was presented for the N. khasiana. The slippery zones under investigation exhibited rather similar surface morphologies, but different structural dimensions. These findings probably suggest that the geometrical dimensions of surface architecture exert primary effects on differences in the hydrophobicity of the slippery zone. Based on the Wenzel and Cassie-Baxter equations, models were proposed to analyze the manner in which geometrical dimensions affect the hydrophobicity of the slippery surfaces. The results of our analysis demonstrated that the different structural dimensions of lunate cells and wax platelets make the slippery zones present different real area of the rough surface and thereby generate somewhat distinguishable hydrophobicity. The results support a supplementary interpretation of surface hydrophobicity in plant leaves, and provide a theoretical foundation for developing bioinspired materials with hydrophobic properties and self-cleaning abilities. PMID:26813707
NASA Technical Reports Server (NTRS)
Haugstad, B. S.; Eshleman, V. R.
1979-01-01
The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.
Sarkar, Biplab
2018-04-12
This article describe the three dimensional geometrical incompetency of the term "4π radiotherapy"; frequently used in radiation oncology to establish the superiority (or rather complexity) of particular kind of external beam delivery technique. It was claimed by several researchers, to obtain 4π c solid angle at target centre created by the tele-therapy delivery machine in three dimensional Euclidian space. However with the present design of linear accelerator (or any other tele-therapy machine) it is not possible to achieve more than 2π c with the allowed boundary condition of 0 ≤ Gnatry position≤π c and [Formula: see text]≤Couch Position≤[Formula: see text] .This article describes why it is not possible to achieve a 4π c solid angle at any point in three dimensional Euclidian spaces. This article also recommends not to use the terminology "4π radiotherapy" for describing any external beam technique or its complexity as this term is geometrically wrong.
Kowiel, Marcin; Brzezinski, Dariusz; Jaskolski, Mariusz
2016-01-01
The refinement of macromolecular structures is usually aided by prior stereochemical knowledge in the form of geometrical restraints. Such restraints are also used for the flexible sugar-phosphate backbones of nucleic acids. However, recent highly accurate structural studies of DNA suggest that the phosphate bond angles may have inadequate description in the existing stereochemical dictionaries. In this paper, we analyze the bonding deformations of the phosphodiester groups in the Cambridge Structural Database, cluster the studied fragments into six conformation-related categories and propose a revised set of restraints for the O-P-O bond angles and distances. The proposed restraints have been positively validated against data from the Nucleic Acid Database and an ultrahigh-resolution Z-DNA structure in the Protein Data Bank. Additionally, the manual classification of PO4 geometry is compared with geometrical clusters automatically discovered by machine learning methods. The machine learning cluster analysis provides useful insights and a practical example for general applications of clustering algorithms for automatic discovery of hidden patterns of molecular geometry. Finally, we describe the implementation and application of a public-domain web server for automatic generation of the proposed restraints. PMID:27521371
Simple Map in Action-Angle Coordinates.
NASA Astrophysics Data System (ADS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima
2008-04-01
The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).
NASA Astrophysics Data System (ADS)
Ameen, Sheeraz; Taher, Taha; Ahmed, Thamir M.
2018-06-01
Hydrostatics and hydrodynamics forces are generated and applied on the vertical lift tunnel gates due to the influence of a wide range of dam operating conditions. One of the most important forces is the uplift force resulting from the jet flow issuing below the gate. This force is based mainly upon many hydraulic and geometrical parameters. In this work, the uplift force is studied in terms of bottom pressure coefficient. The investigation is made paying particular attention on the effects of various three discharges and three gate lip angles on values of bottom pressure coefficients in addition to four different tunnel longitudinal slopes whose impact has not been studied in many previous works. Hydraulic model is constructed in this work for the sake of measuring all parameters required for estimating the bottom pressure coefficients, which are all examined against gate openings. The results show that the bottom pressure coefficient is related to the said variables, however, its behaviour and values are not necessary regular with variance of studied variables. The values are seen more significantly related to the flow rates and for some extent to the slopes of tunnel. An attempt by using the nonlinear regression of Statistical package of social sciences (SPSS) is made to set equations relating bottom pressure coefficient with gate openings for several angles of gate lips. The obtained equations are shown in good agreement with the selected cases of experimental results. The results are applicable for design purposes for similar geometrical and flow parameters considered in this study.
NASA Astrophysics Data System (ADS)
Verma, Surender; Bhardwaj, Shankita
2018-05-01
We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.
Three-Dimensional Mapping of Microenvironmental Control of Methyl Rotational Barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hembree, William I; Baudry, Jerome Y
2011-01-01
Sterical (van der Waals-induced) rotational barriers of methyl groups are investigated theoretically, using ab initio and empirical force field calculations, for various three-dimensional microenvironmental conditions around the methyl group rotator of a model neopentane molecule. The destabilization (reducing methyl rotational barriers) or stabilization (increasing methyl rotational barriers) of the staggered conformation of the methyl rotator depends on a combination of microenvironmental contributions from (i) the number of atoms around the rotator, (ii) the distance between the rotator and the microenvironmental atoms, and (iii) the dihedral angle between the stator, rotator, and molecular environment around the rotator. These geometrical criteria combinemore » their respective effects in a linearly additive fashion, with no apparent cooperative effects, and their combination in space around a rotator may increase, decrease, or leave the rotator s rotational barrier unmodified. This is exemplified in a geometrical analysis of the alanine dipeptide crystal where microenvironmental effects on methyl rotators barrier of rotation fit the geometrical mapping described in the neopentane model.« less
Measuring the Scalar Curvature with Clocks and Photons: Voronoi-Delaunay Lattices in Regge Calculus
NASA Astrophysics Data System (ADS)
Miller, Warner; McDonald, Jonathan
2008-04-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe it is ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge Calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
Bidirectional Reflectance Distribution Functions For the OSIRIS-REx Target Asteroid (101955) Bennu
NASA Astrophysics Data System (ADS)
Takir, Driss; Clark, Beth E.; Lauretta, Dante S.; d'Aubigny, Christian Drouet; Hergenrother, Carl W.; Li, Jian-Yang; Binzel, Richard P.
2014-11-01
We used ground-based photometric phase curve data of asteroid (101955) Bennu and low phase-angle (proxy) data from asteroid (253) Mathilde to fit precise Modified Minnaert, Modified Lommel-Seeliger, and (RObotic Lunar Orbiter) ROLO photometric models that capture the light scattering properties of the surface and subsequently allow us to calculate the geometric albedo, phase integral, and spherical Bond albedo for this asteroid. Radiance Factor functions (RADFs) are used to model the disk-resolved brightness of Bennu. Our geometric albedo values of 0.047 ,0.047, and 0.048 for the Modified Minnaert, Modified Lommel-Seeliger, and ROLO models, respectively, are consistent with the geometric albedo of 0.030-0.045 computed by Hergenrother et al. (2013), using IAU H-G photometric system. Also, our spherical Bond albedo values of 0.016, 0.015, and 0.015 for the Minnaert model, Lommel-Seeliger, and ROLO models, respectively, are consistent with the value of 0.017 presented by Emery et al. (2014).
Gatenby, J. Christopher; Gore, John C.; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646
Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.
Geometrical calibration of an AOTF hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.
An ice-cream cone model for coronal mass ejections
NASA Astrophysics Data System (ADS)
Xue, X. H.; Wang, C. B.; Dou, X. K.
2005-08-01
In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.
NASA Technical Reports Server (NTRS)
Smith, J. A.
1980-01-01
A study was performed to evaluate the geometrical implication of a Multispectral Resource Sampler; a pointable sensor. Several vegetative targets representative of natural and agricultural canopies were considered in two wavelength bands. All combinations of Sun and view angles between 5 and 85 degrees zenith for a range of azimuths were simulated to examine geometrical dependance arising from seasonal as well as latitudinal variation. The effects of three different atmospheres corresponding to clear, medium and heavy haze conditions are included. An extensive model data base was generated to provide investigators with means for possible further study of atmospheric correction procedures and sensor design questions.
General analysis of slab lasers using geometrical optics.
Chung, Te-yuan; Bass, Michael
2007-02-01
A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.
Bravo-Abad, J; Martín-Moreno, L; García-Vidal, F J
2004-02-01
In this work we explore the transmission properties of a single slit in a metallic screen. We analyze the dependence of these properties on both slit width and angle of incident radiation. We study in detail the crossover between the subwavelength regime and the geometrical-optics limit. In the subwavelength regime, resonant transmission linked to the excitation of waveguide resonances is analyzed. Linewidth of these resonances and their associated electric-field intensities are controlled by just the width of the slit. More complex transmission spectra appear when the wavelength of light is comparable to the slit width. Rapid oscillations associated with the emergence of different propagating modes inside the slit are the main features appearing in this regime.
Lei, Yu; Lee, Sungsik; Low, Ke -Bin; ...
2016-04-26
Compared with Pt/Al 2O 3, sintering-resistant Pt nanoparticle catalysts promoted by ZnO significantly improved the reactivity and selectivity toward hydrogen formation in the aqueous phase reforming (APR) of 1-propanol. The improved performance was found to benefit from both the electronic and geometric effects of ZnO thin films. In situ small-angle X-ray scattering and scanning transmission electron microscopy showed that ZnO-promoted Pt possessed promising thermal stability under APR reaction conditions. In situ X-ray absorption spectroscopy showed clear charge transfer between ZnO and Pt nanoparticles. The improved reactivity and selectivity seemed to benefit from having both Pt-ZnO and Pt-Al 2O 3 interfaces.
Laser radar cross-section estimation from high-resolution image data.
Osche, G R; Seeber, K N; Lok, Y F; Young, D S
1992-05-10
A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.
NASA Astrophysics Data System (ADS)
Luo, Hao; Cheng, Yong Zhi
2018-01-01
We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is
Global Curvature Buckling and Snapping of Spherical Shells.
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas
A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.
Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng
2015-01-01
We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660
Kinematics of reflections in subsurface offset and angle-domain image gathers
NASA Astrophysics Data System (ADS)
Dafni, Raanan; Symes, William W.
2018-05-01
Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.
Simulations of direct and reflected waves trajectories for in situ GNSS-R experiments
NASA Astrophysics Data System (ADS)
Roussel, N.; Frappart, F.; Ramillien, G.; Desjardins, C.; Gegout, P.; Pérosanz, F.; Biancale, R.
2014-01-01
The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, together with the reception of direct GNSS signals offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and the reflected signal gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the accurate location of the reflection points on the surface by modelling the trajectories of GNSS electromagnetic waves that are reflected on the surface of the Earth. Only the geometric problem have been considered using a specular reflection assumption. The orbit of the GNSS constellations satellite (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver are used as input. Three different simulation modes are proposed depending on the choice of the Earth surface (local sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Atmospheric delay effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor efficiently a given study area. In this study, two test sites were considered. The first one at the top of the Cordouan lighthouse (45°35'11'' N; 1°10'24'' W; 65 m) and the second one in the shore of the Geneva lake (46°24'30'' N; 6°43'6'' E, with a 50 m receiver height). This site is hidden by mountains in the South (altitude up to 2000 m), and overlooking the lake in the North (altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The geometric differences between the positions of the specular reflection points obtained considering the Earth as a sphere or as an ellipsoid were found to be on average 44 cm for satellites elevation angle greater than 10° and 1 m for satellite elevation angle between 5° and 10°. The simulations highlight the importance of the DEM integration: differences with and without integrating the DEM were found to be about 3.80 m with the minimum elevation angle equal to 5° and 1.4 m with the minimum elevation angle set to 10°. The correction of the tropospheric effects on the signal leads to geometric differences about 24 m maximum for a 50 m receiver height whereas the maximum is 43 cm for a 5 m receiver height. These errors deeply increase with the receiver height. By setting it to 300 m, the geometric errors reach 103 m for satellite elevation angle lower than 10°. The tests performed with the simulator presented in this paper highlight the importance of the choice of the Earth representation and also the non-negligible effect of the troposphere on the specular reflection points positions. Various outputs (time-varying reflection point coordinates, satellites positions and ground paths, wave trajectories, Fresnel first surfaces, etc.) are provided either as text or KML files for a convenient use.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Dryer, M.; Hearth, D. P.
1957-01-01
The performance of a full-scale translating-spike inlet was obtained at Mach numbers of 1.8 and 2.0 and at angles of attach from 0 deg to 6 deg. Comparisons were made between the full-scale production inlet configuration and a geometrically similar quarter-scale model. The inlet pressure-recovery, cowl pressure-distribution, and compressor-face distortion characteristics of the full-scale inlet agreed fairly well with the quarter-scale results. In addition, the results indicated that bleeding around the periphery ahead of the compressor-face station improved pressure recovery and compressor-face distortion, especially at angle of attack.
Optimization study for high speed radial turbine with special reference to design variables
NASA Technical Reports Server (NTRS)
Khalil, I.; Tabakoff, W.
1977-01-01
Numerical results of a theoretical investigation are presented to provide information about the effect of variation of the different design and operating parameters on radial inflow turbine performance. The effects of variations in the mass flow rate, rotor tip Mach number, inlet flow angles, number of rotor blades and hub to shroud radius ratio, on the internal fluid dynamics of turbine rotors, was investigated. A procedure to estimate the flow deviation angles at the turbine exit is also presented and used to examine the influence of the operating conditions and the rotor geometrical configuration on these deviations. The significance of the results obtained is discussed with respect to improved turbine performance.
NASA Technical Reports Server (NTRS)
Sanger, N. L.
1973-01-01
The flow characteristics of several tandem bladed compressor stators were analytically evaluated over a range of inlet incidence angles. The ratios of rear-segment to front-segment chord and camber were varied. Results were also compared to the analytical performance of a reference solid blade section. All tandem blade sections exhibited lower calculated losses than the solid stator. But no one geometric configuration exhibited clearly superior characteristics. The front segment accepts the major effect of overall incidence angle change. Rear- to front-segment camber ratios of 4 and greater appeared to be limited by boundary-layer separation from the pressure surface of the rear segment.
Efficiency of geometric designs of flexible solar panels: mathematical simulation
NASA Astrophysics Data System (ADS)
Marciniak, Malgorzata; Hassebo, Yasser; Enriquez-Torres, Delfino; Serey-Roman, Maria Ignacia
2017-09-01
The purpose of this study is to analyze various surfaces of flexible solar panels and compare them to the traditional at panels mathematically. We evaluated the efficiency based on the integral formulas that involve flux. We performed calculations for flat panels with different positions, a cylindrical panel, conical panels with various opening angles and segments of a spherical panel. Our results indicate that the best efficiency per unit area belongs to particular segments of spherically-shaped panels. In addition, we calculated the optimal opening angle of a cone-shaped panel that maximizes the annual accumulation of the sun radiation per unit area. The considered shapes are presented below with a suggestion for connections of the cells.
Backscattering from a two-scale rough surface with application to radar sea return
NASA Technical Reports Server (NTRS)
Chan, H. L.; Fung, A. K.
1973-01-01
A two-scale composite surface scattering theory was developed without using the noncoherent assumption. The surface is assumed electrically homogeneous and finitely conducting; the surface roughness may be nonuniform geometrically. The special forms of the terms for excluding the non-coherent assumption and the meanings of these terms are discussed. To gain insight into the mechanisms of backscattering, the results are compared with those obtained by previous theories. The comparison with NRL data shows satisfactory agreement for both horizontal and vertical polarization, especially for incident angles larger than 30 deg. For smaller incident angles, NASA/JSC data have been chosen for comparison and close agreement is again observed.
Effects of Small Oscillations on the Effective Area
NASA Astrophysics Data System (ADS)
Cotroneo, V.; Conconi, P.; Cusumano, G.; Pareschi, G.; Spiga, D.; Tagliaferri, G.
2009-05-01
We analyze the effective area of the Simbol-X mirrors as a function of the off-axis angle for small oscillations. A reduction is expected due to: 1) geometrical effects, because some of the photons miss the secondary mirror surface; 2) reflectivity effects, caused by the variation of the coating reflectivity with the incidence angle. The former are related to the length of the two mirror surfaces, and can be reduced by making the secondary mirror longer. The second ones are energy-dependent, and strongly related to the characteristics of the reflecting coating. These effects are analyzed by means of ray-tracing simulations in order to optimize the mirror and coating design, aiming to improve the effective area stability.
Real time computer controlled weld skate
NASA Technical Reports Server (NTRS)
Wall, W. A., Jr.
1977-01-01
A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.
Encounter Models for the Littoral Regions of the National Airspace System
2010-09-15
Jeff Richardson, Steven Schimmelpfennig, Richard Whitlock, Lt. Han Saydam, Lt. Tanuxay Keooudom, James Evans, TSgt. Christopher Cosper, Lt. Luke Marron...24 17 Correlated geometric feature comparison. 25 A- l Aircraft vertical rate in uncorrelated encounters. 31 A-2 Uncorrelated continuous feature...in correlated encounters. 35 B- l Approach angle (/3) and bearing (x) definition. 39 C- l Horizontal plane encounter initialization. 42 C-2
Deuterium velocity and temperature measurements on the DIII-D tokamak.
Grierson, B A; Burrell, K H; Solomon, W M; Pablant, N A
2010-10-01
Newly installed diagnostic capabilities on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 46, 6114 (2002)] enable the measurement of main ion (deuterium) velocity and temperature by charge exchange recombination spectroscopy. The uncertainty in atomic physics corrections for determining the velocity is overcome by exploiting the geometrical dependence of the apparent velocity on the viewing angle with respect to the neutral beam.
Bending wavefunctions for linear molecules
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per
2018-01-01
The bending motion of a linear triatomic molecule has two unique characteristics: the bending mode is doubly degenerate and only positive values of the bending angle, expressed by the bond angle supplement ρ bar , can be observed. The double degeneracy requires the wavefunction to be described as a two-dimensional oscillator. In the present work, we first review the conventional expressions based on two, symmetrically equivalent normal coordinates. Then we discuss an alternative expression for the bending wavefunction in terms of two geometrical coordinates, the bond angle supplement ρ bar (= π - τ ⩾ 0 , where τ is the bond angle) and the rotation angle χ (0 ⩽ χ < 2 π) describing rotation of the molecule around the molecular axis. In this formalism, defined for the (ρ bar , χ) polar-coordinate space with volume element ρ bar d ρ bar dχ , the one-dimensional wavefunction resulted through re-normalization for χ has zero amplitude at ρ bar = 0 , and the ro-vibrational average of the bending angle, i.e., the expectation value 〈 ρ bar 〉 , attains a non-zero, positive value for any ro-vibrational state including the vibrational ground state. This conclusion appears to cause some controversy since much conventional spectroscopic wisdom insists on 〈 ρ bar 〉 having the value zero.
Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra
NASA Astrophysics Data System (ADS)
Russell, Emily R.; Menon, Govind
2016-06-01
We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.
A new Weyl-like tensor of geometric origin
NASA Astrophysics Data System (ADS)
Vishwakarma, Ram Gopal
2018-04-01
A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Capone, Francis J.
1995-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.
Evaluation of vertical profiles to design continuous descent approach procedure
NASA Astrophysics Data System (ADS)
Pradeep, Priyank
The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of uncertainties in external factors. Analysis from operational feasibility perspective suggests that two key features of the performance based Flight Management System (FMS) i.e. required time of arrival (RTA) and geometric descent path would help in reduction of unpredictability associated with arrival time and vertical profile of aircraft guided by the FMS coupled with auto-pilot (AP) and auto-throttle (AT). The statistical analysis of the vertical profiles of CDA also suggests that for procedure design window type, 'AT or above' and 'AT or below' altitude and FPA constraints are more realistic and useful compared to obsolete 'AT' type altitude constraint.
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2017-06-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "powerlaw" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes in to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2016-01-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "power law" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes on to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
Optimizing highly noncoplanar VMAT trajectories: the NoVo method.
Langhans, Marco; Unkelbach, Jan; Bortfeld, Thomas; Craft, David
2018-01-16
We introduce a new method called NoVo (Noncoplanar VMAT Optimization) to produce volumetric modulated arc therapy (VMAT) treatment plans with noncoplanar trajectories. While the use of noncoplanar beam arrangements for intensity modulated radiation therapy (IMRT), and in particular high fraction stereotactic radiosurgery (SRS), is common, noncoplanar beam trajectories for VMAT are less common as the availability of treatment machines handling these is limited. For both IMRT and VMAT, the beam angle selection problem is highly nonconvex in nature, which is why automated beam angle selection procedures have not entered mainstream clinical usage. NoVo determines a noncoplanar VMAT solution (i.e. the simultaneous trajectories of the gantry and the couch) by first computing a [Formula: see text] solution (beams from every possible direction, suitably discretized) and then eliminating beams by examing fluence contributions. Also all beam angles are scored via geometrical considerations only to find out the usefulness of the whole beam space in a very short time. A custom path finding algorithm is applied to find an optimized, continuous trajectory through the most promising beam angles using the calculated score of the beam space. Finally, using this trajectory a VMAT plan is optimized. For three clinical cases, a lung, brain, and liver case, we compare NoVo to the ideal [Formula: see text] solution, nine beam noncoplanar IMRT, coplanar VMAT, and a recently published noncoplanar VMAT algorithm. NoVo comes closest to the [Formula: see text] solution considering the lung case (brain and liver case: second), as well as improving the solution time by using geometrical considerations, followed by a time effective iterative process reducing the [Formula: see text] solution. Compared to a recently published noncoplanar VMAT algorithm, using NoVo the computation time is reduced by a factor of 2-3 (depending on the case). Compared to coplanar VMAT, NoVo reduces the objective function value by 24%, 49% and 6% for the lung, brain and liver cases, respectively.
Optimizing highly noncoplanar VMAT trajectories: the NoVo method
NASA Astrophysics Data System (ADS)
Langhans, Marco; Unkelbach, Jan; Bortfeld, Thomas; Craft, David
2018-01-01
We introduce a new method called NoVo (Noncoplanar VMAT Optimization) to produce volumetric modulated arc therapy (VMAT) treatment plans with noncoplanar trajectories. While the use of noncoplanar beam arrangements for intensity modulated radiation therapy (IMRT), and in particular high fraction stereotactic radiosurgery (SRS), is common, noncoplanar beam trajectories for VMAT are less common as the availability of treatment machines handling these is limited. For both IMRT and VMAT, the beam angle selection problem is highly nonconvex in nature, which is why automated beam angle selection procedures have not entered mainstream clinical usage. NoVo determines a noncoplanar VMAT solution (i.e. the simultaneous trajectories of the gantry and the couch) by first computing a 4π solution (beams from every possible direction, suitably discretized) and then eliminating beams by examing fluence contributions. Also all beam angles are scored via geometrical considerations only to find out the usefulness of the whole beam space in a very short time. A custom path finding algorithm is applied to find an optimized, continuous trajectory through the most promising beam angles using the calculated score of the beam space. Finally, using this trajectory a VMAT plan is optimized. For three clinical cases, a lung, brain, and liver case, we compare NoVo to the ideal 4π solution, nine beam noncoplanar IMRT, coplanar VMAT, and a recently published noncoplanar VMAT algorithm. NoVo comes closest to the 4π solution considering the lung case (brain and liver case: second), as well as improving the solution time by using geometrical considerations, followed by a time effective iterative process reducing the 4π solution. Compared to a recently published noncoplanar VMAT algorithm, using NoVo the computation time is reduced by a factor of 2-3 (depending on the case). Compared to coplanar VMAT, NoVo reduces the objective function value by 24%, 49% and 6% for the lung, brain and liver cases, respectively.
High Frequency Ground Motion from Finite Fault Rupture Simulations
NASA Astrophysics Data System (ADS)
Crempien, Jorge G. F.
There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.
Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability
NASA Technical Reports Server (NTRS)
Mason, M. L.; Burley, J. R., II
1986-01-01
A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.
Temperature Dependence in Homogeneous and Heterogeneous Nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGraw R. L.; Winkler, P. M.; Wagner, P. E.
2017-08-01
Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneouslymore » on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.« less
Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band
NASA Technical Reports Server (NTRS)
Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.
2005-01-01
High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.
NASA Astrophysics Data System (ADS)
Yurdakul, Ş.; Bilkana, M. T.
2015-10-01
The structural features such as geometric parameters, vibration frequencies and intensities of the vibrational bands of 2,2'-dipyridylamine ligand (DPA), its palladium (Pd(DPA)Cl2) and platinum (Pt(DPA)Cl2) complexes were studied by the density functional theory (DFT). The calculations were carried out by DFT / B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution analysis (TED). Optimized geometric bond lengths and bond angles were compared with experimental X-ray data. Using DPA, K2PtCl4, and Na2PdCl4, the synthesized complex structures were characterized by the combination of elemental analysis, FT-IR (mid and far IR) and Raman spectroscopy.
A geometric model of a V-slit Sun sensor correcting for spacecraft wobble
NASA Technical Reports Server (NTRS)
Mcmartin, W. P.; Gambhir, S. S.
1994-01-01
A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.
Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki
2017-10-20
Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.
NASA Astrophysics Data System (ADS)
Sert, Y.; Ucun, F.
2013-08-01
In the present work, the theoretical vibrational spectra of p-, m- and o-nitrobenzonitrile molecules have been analyzed. The harmonic vibrational frequencies and geometric parameters (bond lengths and bond angles) of these molecules have been calculated using ab initio Hartree-Fock and density functional theory methods with 6-311++G(d,p) basis set by Gaussian 03 W, for the first time. Assignments of the vibrational frequencies have been performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and harmonic vibrational frequencies have been compared with the corresponding experimental data and seen to be in a good agreement with each other. Also, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies have been obtained.
Karge, Lukas; Gilles, Ralph
2017-01-01
An improved data-reduction procedure is proposed and demonstrated for small-angle neutron scattering (SANS) measurements. Its main feature is the correction of geometry- and wavelength-dependent intensity variations on the detector in a separate step from the different pixel sensitivities: the geometric and wavelength effects can be corrected analytically, while pixel sensitivities have to be calibrated to a reference measurement. The geometric effects are treated for position-sensitive 3He proportional counter tubes, where they are anisotropic owing to the cylindrical geometry of the gas tubes. For the calibration of pixel sensitivities, a procedure is developed that is valid for isotropic and anisotropic signals. The proposed procedure can save a significant amount of beamtime which has hitherto been used for calibration measurements. PMID:29021734
Measurement of the dipole in the cross-correlation function of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu
It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less
Numerical and Experimental Determination of the Geometric Far Field for Round Jets
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Brown, Cliff; Khavaran, Abbas
2003-01-01
To reduce ambiguity in the reporting of far field jet noise, three round jets operating at subsonic conditions have recently been studied at the NASA Glenn Research Center. The goal of the investigation was to determine the location of the geometric far field both numerically and experimentally. The combination of the WIND Reynolds-Averaged Navier-Stokes solver and the MGBK jet noise prediction code was used for the computations, and the experimental data was collected in the Aeroacoustic Propulsion Laboratory. While noise sources are distributed throughout the jet plume, at great distances from the nozzle the noise will appear to be emanating from a point source and the assumption of linear propagation is valid. Closer to the jet, nonlinear propagation may be a problem, along with the known geometric issues. By comparing sound spectra at different distances from the jet, both from computational methods that assume linear propagation, and from experiments, the contributions of geometry and nonlinearity can be separately ascertained and the required measurement distance for valid experiments can be established. It is found that while the shortest arc considered here (approx. 8D) was already in the geometric far field for the high frequency sound (St greater than 2.0), the low frequency noise due to its extended source distribution reached the geometric far field at or about 50D. It is also found that sound spectra at far downstream angles does not strictly scale on Strouhal number, an observation that current modeling does not capture.
NASA Technical Reports Server (NTRS)
Guy, Lawrence D; Hadaway, William M
1955-01-01
Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.
Reznikov, Natalie; Chase, Hila; Ben Zvi, Yehonatan; Tarle, Victoria; Singer, Matthew; Brumfeld, Vlad; Shahar, Ron; Weiner, Steve
2016-10-15
Trabecular bone is an intricate 3D network of struts and plates. Although the structure-function relations in trabecular bone have been studied since the time of Julius Wolff, controversy still exists regarding the architectural parameters responsible for its stability and resilience. We present a parameter that measures the angle between two connected trabeculae - the Inter-Trabecular Angle (ITA). We studied the ITA values derived from μCT scans of different regions of the proximal femora of 5 individuals of different age and sex. We show that the ITA angle distribution of nodes with 3 connecting trabeculae has a mean close to 120°, nodes with 4 connecting trabeculae has a mean close to 109° and nodes of higher connectivity have mean ITA values around 100°. This tendency to spread the ITAs around geometrically symmetrical motifs is highly conserved. The implication is that the ITAs are optimized such that the smallest amount of material spans the maximal 3D volume, and possibly by so doing trabecular bone might be better adapted to multidirectional loading. We also draw a parallel between trabecular bone and tensegrity structures - where lightweight, resilient and stable tetrahedron-based shapes contribute to strain redistribution amongst all the elements and to collective impact dampening. The Inter-Trabecular Angle (ITA) is a new topological parameter of trabecular bone. The ITA characterizes the way trabeculae connect with each other at nodes, regardless of their thickness and shape. The mean ITA value of nodes with 3 trabeculae is close to 120°, of nodes with 4 trabeculae is just below 109°, and the mean ITA of nodes with 5 and more trabeculae is around 100°. Thus the connections of trabeculae trend towards adopting symmetrical shapes. This implies that trabeculae can maximally span 3D space using the minimal amount of material. We draw a parallel between this motif and the concept of tensegrity - an engineering premise to which many living creatures conform at multiple levels of organization. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yes, one can obtain better quality structures from routine X-ray data collection.
Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof
2016-01-01
Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.
Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device
NASA Astrophysics Data System (ADS)
Smith, P. Alex; Cohn, William; Metcalfe, Ralph
2017-11-01
A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.
The Ramachandran Number: An Order Parameter for Protein Geometry
Mannige, Ranjan V.; Kundu, Joyjit; Whitelam, Stephen; ...
2016-08-04
Three-dimensional protein structures usually contain regions of local order, called secondary structure, such as α-helices and β-sheets. Secondary structure is characterized by the local rotational state of the protein backbone, quantified by two dihedral angles called Øand Ψ. Particular types of secondary structure can generally be described by a single (diffuse) location on a two-dimensional plot drawn in the space of the angles Ø andΨ, called a Ramachandran plot. By contrast, a recently-discovered nanomaterial made from peptoids, structural isomers of peptides, displays a secondary-structure motif corresponding to two regions on the Ramachandran plot [Mannige et al., Nature 526, 415 (2015)].more » In order to describe such 'higher-order' secondary structure in a compact way we introduce here a means of describing regions on the Ramachandran plot in terms of a single Ramachandran number, R, which is a structurally meaningful combination of Ø andΨ. We show that the potential applications of R are numerous: it can be used to describe the geometric content of protein structures, and can be used to draw diagrams that reveal, at a glance, the frequency of occurrence of regular secondary structures and disordered regions in large protein datasets. We propose that R might be used as an order parameter for protein geometry for a wide range of applications.« less
Motor vehicle-bicycle crashes in Beijing: irregular maneuvers, crash patterns, and injury severity.
Yan, Xinping; Ma, Ming; Huang, Helai; Abdel-Aty, Mohamed; Wu, Chaozhong
2011-09-01
This research presents a comprehensive analysis of motor vehicle-bicycle crashes using 4 years of reported crash data (2004-2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc. Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle-bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists. This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical Investigations of an Optimized Airfoil with a Rotary Cylinder
NASA Astrophysics Data System (ADS)
Gada, Komal; Rahai, Hamid
2015-11-01
Numerical Investigations of an optimized thin airfoil with a rotary cylinder as a control device for reducing separation and improving lift to drag ratio have been performed. Our previous investigations have used geometrical optimization for development of an optimized airfoil with increased torque for applications in a vertical axis wind turbine. The improved performance was due to contributions of lift to torque at low angles of attack. The current investigations have been focused on using the optimized airfoil for micro-uav applications with an active flow control device, a rotary cylinder, to further control flow separation, especially during wind gust conditions. The airfoil has a chord length of 19.66 cm and a width of 25 cm with 0.254 cm thickness. Previous investigations have shown flow separation at approximately 85% chord length at moderate angles of attack. Thus the rotary cylinder with a 0.254 cm diameter was placed slightly downstream of the location of flow separation. The free stream mean velocity was 10 m/sec. and investigations have been performed at different cylinder's rotations with corresponding tangential velocities higher than, equal to and less than the free stream velocity. Results have shown more than 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Graduate Assistant, Center for Energy and Environmental Research and Services (CEERS), College of Engineering, California State University, Long Beach.
Galileo photometry of asteroid 243 Ida
Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Klaasen, K.; Johnson, T.V.; Fanale, F.; Granahan, J.; McEwen, A.S.; Belton, M.; Chapman, C.
1996-01-01
Galileo imaging observations over phase angles 19.5?? to 109.8?? are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at ?? = 0.55 ??m by Hapke parameters ????0 = 0.22, h = 0.020, B0 = 1.5, g = -0.33, and ?? = 18?? with corresponding geometric albedo p = 0.21??0.030.01 and Bond albedo AB = 0.081??0.0170.008. Ida's photometric properties are more similar to those of "average S-asteroids" (P. Helfenstein and J. Veverka 1989, Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-??m absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-??m absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ????0 (0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5?? to 47.6?? suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21). ?? 1990 Academic Press, Inc.
Instabilities of Shallow Dynamic Thermocapillary Liquid Layers
NASA Technical Reports Server (NTRS)
Schwabe, D.; Moeller, U.; Schneider, J.; Scharmann, A.
1992-01-01
In the experiments reported here, correlation measurements with three fixed thermocouples and direct optical observations of the dynamically deformed liquid-gas interface were used to study the spatiotemporal structure of stable and unstable thermocapillary flows. The frequency, wavelength, phase speed, angle of propagation, and stability limits are reported for two geometrically different configurations of thermocapillary flow in side-heated thin liquid layers. A theoretical interpretation of the results is presented.
The Focusing of Light Scattered from Diffuse Reflectors Using Phase Modulation
2012-03-22
was recently demonstrated for imaging otherwise hidden scene information through the collection and radiometric modeling of light reflecting off of...effectively reducing the radiometric model to that of the previously demonstrated dual photography, and leading to much-simplified results. This...angle. The fundamental geometric descriptor of reflectance is given by the bidirectional reflectance distribution function ( BRDF ) fr (θi, φi; θs, φs
NASA Astrophysics Data System (ADS)
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
NASA Astrophysics Data System (ADS)
Vergara, Maximiliano R.; Van Sint Jan, Michel; Lorig, Loren
2016-04-01
The mechanical behavior of rock containing parallel non-persistent joint sets was studied using a numerical model. The numerical analysis was performed using the discrete element software UDEC. The use of fictitious joints allowed the inclusion of non-persistent joints in the model domain and simulating the progressive failure due to propagation of existing fractures. The material and joint mechanical parameters used in the model were obtained from experimental results. The results of the numerical model showed good agreement with the strength and failure modes observed in the laboratory. The results showed the large anisotropy in the strength resulting from variation of the joint orientation. Lower strength of the specimens was caused by the coalescence of fractures belonging to parallel joint sets. A correlation was found between geometrical parameters of the joint sets and the contribution of the joint sets strength in the global strength of the specimen. The results suggest that for the same dip angle with respect to the principal stresses; the uniaxial strength depends primarily on the joint spacing and the angle between joints tips and less on the length of the rock bridges (persistency). A relation between joint geometrical parameters was found from which the resulting failure mode can be predicted.
Honda, Michitaka
2014-04-01
Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.
Sert, Yusuf; Sreenivasa, S; Doğan, H; Manojkumar, K E; Suchetan, P A; Ucun, Fatih
2014-06-05
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
Sert, Yusuf; Mahendra, M; Keskinoğlu, S; Chandra; Srikantamurthy, N; Umesha, K B; Çırak, Ç
2015-03-15
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih
2014-06-01
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.
2015-03-01
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.
Geometric design and mechanical behavior of a deployable cylinder with Miura origami
NASA Astrophysics Data System (ADS)
Cai, Jianguo; Deng, Xiaowei; Feng, Jian; Zhou, Ya
2015-12-01
The folding and deployment of a cylinder with Miura origami patterns are studied in this paper. First, the geometric formulation of the design problem is discussed. Then the loading case of the axial strains and corresponding external nodal loads applied on the vertices of the top polygon during the motion is investigated analytically. The influence of the angle between the diagonal and horizontal fold lines α and β and the number of Miura origami elements n on the dynamic behavior of the basic segment is also discussed. Then the dynamic behavior is analyzed using numerical simulations. Finally, the deployment process of a cylinder with multi-stories is discussed. The numerical results agree well with the analytical predictions. The results show that the range of motion, i.e. the maximal displacement of top nodes, will also increase with the increase of angles α and β. This cylinder, with a smaller n, may have a bistable behavior. When n is larger, the influence of n on the axial strains and external nodal loads is slight. The numerical results agree well with the analytical predictions. Moreover, the deployment of the cylinder with multi-stories is non-uniform, which deploys from the upper story to the lower story.
Morgan, M J; Casco, C
1990-10-22
The apparent length and orientation of short lines is altered when they abut against oblique lines (the Zöllner and Judd illusions). Here we present evidence that the length and orientation biases are geometrically related and probably depend upon the same underlying mechanism. Measurements were done with an 'H' figure, in which the apparent length and orientation of the cross-bar was assessed by the method of adjustment while the orientation of the outer flanking lines was varied. When the flanking lines are oblique the apparent length of the central line is reduced and its orientation is shifted so that it appears more nearly at right-angles to the obliques than is in fact the case. Measurements of the orientation and length effects were made in three observers, over a range of flanking-line angles (90, 63, 45, 34 and 27 deg) and central line lengths (9, 17, 33 and 67 arc min). The biases increased with the tilt of the flanking-lines, and decreased with central line length. The extent of the length bias could be accurately predicted from the angular shift by simple trigonometry. We describe physiological and computational models to account for the relation between the orientation and length biases.
A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds
NASA Technical Reports Server (NTRS)
Cler, Daniel L.
1995-01-01
An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.
Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2013-01-01
We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
Köhn, J; Licher, J; Mielke, M; Loutfi-Krauss, B; Blümer, N; Heine, B; Rödel, C; Scherf, C; Ramm, U
2017-02-01
The use of Electronic Portal Imaging Devices (EPIDs) to acquire dosimetric information, especially for 3D-back-projection, has been increasingly extended. For a precise back-projection, the accurate knowledge of the movement characteristics of the EPID during gantry rotation is an essential requirement. Measurements were conducted with different alignments of steel balls, which were mounted on the treatment table to avoid secondary effects such as the mechanical sag of gantry or jaws. The image movement of the EPID was determined by comparing the predicted projections of the phantoms with the EPID acquired image. Effects on dosimetric verifications were evaluated by γ-evaluation. The measurement results showed that the shift of the EPID image is larger in Y direction than in X direction. A maximum rotation of 0.3° and nodding of 2.4° of the detector was calculated. Changes in SDD were found up to 10mm. The angles of nodding are overall higher at discrete gantry angles in comparison to images detected for continuous rotation. Using these results we were able to correct the EPID images used for verification measurements. γ-evaluation revealed a significantly improved agreement between planned and measured EPID signal values. The measurement methods and algorithms introduced in this study are simple and comprehensive. Using these methods and algorithms we were able to quantify the major effects on geometrical and dosimetric characteristics. This allows the correction of EPID signal measurements for these effects related to the gantry angle, leading to an improved γ-evaluation for treatment plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2014-01-01
We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
Backscattering from a Gaussian distributed, perfectly conducting, rough surface
NASA Technical Reports Server (NTRS)
Brown, G. S.
1977-01-01
The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS 3/CFT 2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length ofmore » any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS 3 whose kinematic space is two-dimensional de Sitter space.« less
Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu; Shen, Jianqi
2006-07-10
On the basis of our previous work on the extension of the geometrical-optics approximation to Gaussian beam scattering by a spherical particle, we present a further extension of the method to the scattering of a transparent or absorbing spheroidal particle with the same symmetric axis as the incident beam. As was done for the spherical particle, the phase shifts of the emerging rays due to focal lines, optical path, and total reflection are carefully considered. The angular position of the geometric rainbow of primary order is theoretically predicted. Compared with our results, the Möbius prediction of the rainbow angle has a discrepancy of less than 0.5 degrees for a spheroidal droplet of aspect radio kappa within 0.95 and 1.05 and less than 2 degrees for kappa within 0.89 and 1.11. The flux ratio index F, which qualitatively indicates the effect of a surface wave, is also studied and found to be dependent on the size, refractive index, and surface curvature of the particle.
NASA Astrophysics Data System (ADS)
Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana
2016-10-01
A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.
``High energy Electron exPeriment (HEP)'' onboard the ERG satellite
NASA Astrophysics Data System (ADS)
Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.
2017-12-01
The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.
Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio
2014-10-15
In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.
Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2018-05-01
The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.
A Numerical, Literal, and Converged Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Wiesel, William E.
2017-09-01
The KAM theorem and von Ziepel's method are applied to a perturbed harmonic oscillator, and it is noted that the KAM methodology does not allow for necessary frequency or angle corrections, while von Ziepel does. The KAM methodology can be carried out with purely numerical methods, since its generating function does not contain momentum dependence. The KAM iteration is extended to allow for frequency and angle changes, and in the process apparently can be successfully applied to degenerate systems normally ruled out by the classical KAM theorem. Convergence is observed to be geometric, not exponential, but it does proceed smoothly to machine precision. The algorithm produces a converged perturbation solution by numerical methods, while still retaining literal variable dependence, at least in the vicinity of a given trajectory.
Miller, R.L.; McPherson, B.F.
1995-01-01
A model is developed that uses a simplified geometric description of incident direct solar beam and diffuse skylight. The model incorporates effects of solar elevation angle and cloudiness on the amount of in-air photosynthetically active radiation (PAR) that passes through the air-water interface and on K0 in waters of relatively low turbidity. The value of K0 was estimated to vary as much as 41% on a clear summer day due to changes in solar elevation angle. The model was used to make estimates of the depth to which sea-grasses might receive adequate light for survival for a range of values of K0. -from Authors
Azzam, R M A
2015-12-01
Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.
NASA Astrophysics Data System (ADS)
Nakaki, Hiroshi; Kim, Yong Kwan; Yokoyama, Shintaro; Ikariyama, Rikyu; Funakubo, Hiroshi; Nishida, Ken; Saito, Keisuke
2007-09-01
The authors grew (001)- and (001)/(100)-oriented epitaxial PbTiO3 films with various thicknesses on (100)SrTiO3 substrates. They used x-ray diffraction to measure the angles between surface normal [001] of (001)-oriented domains and [100] of (100)-oriented domains. The angles were found to be approximately 3.6° when the film thickness exceeded 1100nm. This value is consistent with the value obtained by a geometric calculation for strain-free PbTiO3. This result suggests that thick epitaxial PbTiO3 films grown on (100)SrTiO3 substrates have a fully strain-relaxed structure.
NASA Astrophysics Data System (ADS)
Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas
2017-09-01
The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.
The extreme ultraviolet albedos of the planet Mercury and of the moon
NASA Technical Reports Server (NTRS)
Wu, H. H.; Broadfoot, A. L.
1977-01-01
The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1993-01-01
Presented in this study are the results of controlled partially polarimetric measurements of thermal emission at 91.65 GHz from a striated water surface as corroborated by a geometrical optics radiative model. The measurements were obtained outdoors using a precision polarimetric radiometer which directly measured the first three modified Stokes' parameters. Significant variations in these parameters as a function of azimuthal water wave angle were found, with peak-to-peak variations in T(sub u) of up to approximately 10 K. The measurements are well corroborated by the GO model over a range of observations angles from near nadir up to approximately 65 degrees from nadir. The model incorporates both multiple scattering and a realistic downwelling background brightness field.
Stationary nonimaging lenses for solar concentration.
Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay
2010-09-20
A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.
Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT
NASA Astrophysics Data System (ADS)
Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.
2016-09-01
The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.
3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Woo; Ulvestad, Andrew; Manna, Sohini
The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. Here, we investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision. Our study reveals that the strain energy density in five-fold multiply twinned gold nanoparticles ismore » an order of magnitude higher than that of the single nanocrystals such as an octahedron and triangular plate synthesized under the same conditions. This result indicates that the strain developed while accommodating an angular misfit, although partially released through the introduction of structural defects, is still large throughout the crystal.« less
3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle
Kim, Jong Woo; Ulvestad, Andrew; Manna, Sohini; ...
2017-08-11
The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. Here, we investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision. Our study reveals that the strain energy density in five-fold multiply twinned gold nanoparticles ismore » an order of magnitude higher than that of the single nanocrystals such as an octahedron and triangular plate synthesized under the same conditions. This result indicates that the strain developed while accommodating an angular misfit, although partially released through the introduction of structural defects, is still large throughout the crystal.« less
Relativistic wide-angle galaxy bispectrum on the light cone
NASA Astrophysics Data System (ADS)
Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Liguori, Michele; Matarrese, Sabino; Verde, Licia
2018-01-01
Given the important role that the galaxy bispectrum has recently acquired in cosmology and the scale and precision of forthcoming galaxy clustering observations, it is timely to derive the full expression of the large-scale bispectrum going beyond approximated treatments which neglect integrated terms or higher-order bias terms or use the Limber approximation. On cosmological scales, relativistic effects that arise from observing the past light cone alter the observed galaxy number counts, therefore leaving their imprints on N-point correlators at all orders. In this paper we compute for the first time the bispectrum including all general relativistic, local and integrated, effects at second order, the tracers' bias at second order, geometric effects as well as the primordial non-Gaussianity contribution. This is timely considering that future surveys will probe scales comparable to the horizon where approximations widely used currently may not hold; neglecting these effects may introduce biases in estimation of cosmological parameters as well as primordial non-Gaussianity.
Experimental optimization of a free vortex propeller runner for micro hydro application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Punit; Nestmann, Franz
2009-09-15
The turbine technology for low head application in the micro hydro range has been vastly neglected despite niche available in scattered regions of valley flows as well as in wastewater canals and other energy recovery schemes, where the available head does not exceed 2 meters. The goal of this study is to develop hydraulically optimized propeller turbines for the micro hydro range with a particular focus on ease of manufacture. This paper presents a wide range of geometrical optimization steps carried out on a propeller runner, whose blades have been designed using the free vortex theory, and operating with amore » gross head from 1.5 to 2 m and discharge of approximately 75 l/s. It further illustrates 3 stages of geometrical modifications carried out on the runner with an objective of optimizing the runner performance. These modifications comprised of changes to the tip angles (both at the runner inlet and exit) as well as the hub angles (at the runner inlet) of the runner blades. The paper also presents an interesting theoretical methodology to analyze the effects of each optimization stage. This method looks at the relative changes to shaft power and discharge at constant head and speed and gives wonderful insight as to how the internal parameters like Euler shaft work and runner hydraulic losses are behaving with respect to each optimization stage. It was found that the performance of the runner was very sensitive to changes to exit tip angle. At two levels of modification, the discharge increased in the range of 15-30%, while shaft power increased in the range of 12-45%, thus influencing the efficiency characteristics. The results of the runner inlet tip modification were very interesting in that a very significant rise of turbine efficiency was recorded from 55% to 74% at the best efficiency point, which was caused by a reduced discharge consumption as well as a higher power generation. It was also found that the optimization study on a propeller runner has reasonably validated the estimates of the free vortex theory despite small deviations. The final runner configuration demonstrated a maximum efficiency of 74% ({+-}1.8%), which is very encouraging from the perspectives of micro hydro application. The paper concludes with recommendations of a series of optimization steps to increase the efficiency of the runner. It also recommends the attempt of Computational Fluid Dynamics both as a validation and optimization tool for future research on propeller runners. (author)« less
NASA Astrophysics Data System (ADS)
Atli-Veltin, Bilim
In aerospace field, use of honeycombs in energy absorbing applications is a very attractive concept since they are relatively low weight structures and their crushing behavior satisfies the requirements of ideal energy absorbing applications. This dissertation is about the utilization of honeycomb crushing in energy absorbing applications and maximizing their specific energy absorption (SEA) capacity by modifying their geometry. In-plane direction crushing of honeycombs is investigated with the help of simulations conducted with ABAQUS. Due to the nonlinearity of the problem an optimization technique could not be implemented; however, the results of the trend studies lead to geometries with improved SEA. This study has two objectives; the first is to obtain modified cell geometry for a hexagonal honeycomb cell in order to provide higher energy absorption for minimum weight relative to the regular hexagonal cell geometry which has 30° cell angle and walls at equal length. The results of the first objective show that by increasing the cell angle, increasing wall thickness and reducing vertical wall length it is possible to increase the SEA 4.8 times; where the honeycomb with modified geometry provided 3.3 kJ/kg SEA and with regular geometry 0.68 kJ/kg SEA. The second objective considers integration of the energy absorbing honeycombs into the helicopter subfloor, possibly as the web section of a keel beam. In-plane direction crushing of a honeycomb core sandwiched between two facesheets is simulated. Effects of core and facesheet geometric parameters on the energy absorption are investigated, and modified geometries are suggested. For the sandwich structure with thin facesheets increasing cell angle, increasing wall thicknesses and decreasing the cell depth increase the SEA. For the ones with thick facesheet reducing vertical wall length, increasing wall thicknesses and reducing the cell depth increase the SEA. The results show that regular honeycomb geometry with thin facesheets has SEA of 7.24 kJ/kg and with thick facesheets 13.16 kJ/kg. When the geometries are modified the SEA increases to 20.5 kJ/kg for the core with thin facesheets and 53.47 kJ/kg for the core with thick facesheets. The key finding of the dissertation is that the in-plane direction crushing of the honeycombs with facesheets has great potential to be used for the energy absorbing applications since their SEA levels are high enough to make them attractive for applications where high crash loads need to be absorbed such as helicopter crash.
Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.
2016-01-01
A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.
Cardadeiro, Graça; Baptista, Fátima; Janz, Kathleen F.; Rodrigues, Luís A.; Sardinha, Luís B.
2015-01-01
Differences in skeletal geometry may generate different patterns of mechanical loading to bone. Impact and muscle loading during physical activity have been shown to influence skeletal geometry. The purpose of this study was to compare geometric measures of the pelvis and proximal femur (PF) of young children and to analyze the contribution and potential interaction of these geometric measures with physical activity on PF bone mass distribution. Participants were 149 girls and 145 boys, aged 10–11 years. Total body and left hip DXA scans were used to derive pelvic and PF geometric measures and PF bone mineral density (BMD) at the femoral neck (FN), trochanter (TR), and intertrochanter (IT). These subregions were used to represent bone mass distribution via three BMD ratios: FN:PF, TR:PF, and IT:PF. Physical activity was objectively measured using accelerometry, and maturity was estimated as the years of distance from peak height velocity. When compared to boys, girls had a wider pelvic diameter and greater interacetabular distances (p < 0.001), lower BMD at FN, TR, and IT (p < 0.05), and higher TR:PF (p < 0.001). After controlling for maturity, body height, and lean body mass, the interacetabular distance in girls explained 21.1 % (β = 0.713, p < 0.001) in TR:PF and 2.9 % (β = −0.179, p = 0.031) in the IT:PF. Neck–shaft angle explained 5.6 % (β = −0.265, p = 0.001) of the IT:PF and 3.1 % (β = 0.194, p = 0.018) of the FN:PF. In boys, FN axis length explained 2.9 % (β = 0.195, p = 0.040) of TR:PF. There was no main effect of physical activity or interaction effect with pelvic geometry in explaining BMD differences among the subregions of the PF. Even before sexual dimorphism, girls have a wider pelvis than boys, which accounted for proportionally greater BMD of the TR than other subregions of the PF. PMID:23744478
Sliney, David H
2002-01-01
The geographical variations in the incidence of age-related ocular changes such as presbyopia and cataracts and diseases such as pterygium and droplet keratopathies have led to theories pointing to sunlight, ultraviolet radiation (UVR) exposure and ambient temperature as potential etiological factors. Some epidemiological evidence also points to an association of age-related macular degeneration to sunlight exposure. The actual distribution of sunlight exposure and the determination of temperature variations of different tissues within the anterior segment of the eye are difficult to assess. Of greatest importance are the geometrical factors that influence selective UVR exposures to different segments of the lens, cornea and retina. Studies show that the temperature of the lens and cornea varies by several degrees depending upon climate, and that the incidence of nuclear cataract incidence is greater in areas of higher ambient temperature (i.e., in the tropics). Likewise, sunlight exposure to local areas of the cornea, lens and retina varies greatly in different environments. However, epidemiological studies of the influence of environmental UVR in the development of cataract, pterygium, droplet keratopathies and age-related macular degeneration have produced surprisingly inconsistent findings. The lack of consistent results is seen to be due largely to either incomplete or erroneous estimates of outdoor UV exposure dose. Geometrical factors dominate the determination of UVR exposure of the eye. The degree of lid opening limits ocular exposure to rays entering at angles near the horizon. Clouds redistribute overhead UVR to the horizon sky. Mountains, trees and building shield the eye from direct sky exposure. Most ground surfaces reflect little UVR. The result is that highest UVR exposure occurs during light overcast where the horizon is visible and ground surface reflection is high. By contrast, exposure in a high mountain valley (lower ambient temperature) with green foliage results in a much lower ocular dose. Other findings of these studies show that retinal exposure to light and UVR in daylight occurs largely in the superior retina.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin
2017-04-01
The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using the least squares regression with multi-angle observations. In both the half-hourly and daily time steps, the canopy-level two-leaf PRI (PRIt) can effectively enhance (>50% and >35%, respectively) the correlation between PRI and LUE derived from the tower flux measurements over the big-leaf PRI (PRIb) taken as the arithmetic average of the multi-angle measurements in a given time interval. PRIt is very effective in detecting the low-moderate drought stress on LUE at half-hourly time steps, while ineffective in detecting severe atmospheric water and heat stresses, which is probably due to alternative radiative energy sink, i.e. photorespiration. Overall, the two-leaf approach well overcomes some external effects (e.g. sun-target-view geometry) that interfere with PRI signals.
Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J.; Zingler, Sebastian
2017-01-01
Objective The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, “gold standard”) in cephalometric analysis. Methods The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Results Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). Conclusions This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR. PMID:28334054
Heil, Alexander; Lazo Gonzalez, Eduardo; Hilgenfeld, Tim; Kickingereder, Philipp; Bendszus, Martin; Heiland, Sabine; Ozga, Ann-Kathrin; Sommer, Andreas; Lux, Christopher J; Zingler, Sebastian
2017-01-01
The objective of this prospective study was to evaluate whether magnetic resonance imaging (MRI) is equivalent to lateral cephalometric radiographs (LCR, "gold standard") in cephalometric analysis. The applied MRI technique was optimized for short scanning time, high resolution, high contrast and geometric accuracy. Prior to orthodontic treatment, 20 patients (mean age ± SD, 13.95 years ± 5.34) received MRI and LCR. MRI datasets were postprocessed into lateral cephalograms. Cephalometric analysis was performed twice by two independent observers for both modalities with an interval of 4 weeks. Eight bilateral and 10 midsagittal landmarks were identified, and 24 widely used measurements (14 angles, 10 distances) were calculated. Statistical analysis was performed by using intraclass correlation coefficient (ICC), Bland-Altman analysis and two one-sided tests (TOST) within the predefined equivalence margin of ± 2°/mm. Geometric accuracy of the MRI technique was confirmed by phantom measurements. Mean intraobserver ICC were 0.977/0.975 for MRI and 0.975/0.961 for LCR. Average interobserver ICC were 0.980 for MRI and 0.929 for LCR. Bland-Altman analysis showed high levels of agreement between the two modalities, bias range (mean ± SD) was -0.66 to 0.61 mm (0.06 ± 0.44) for distances and -1.33 to 1.14° (0.06 ± 0.71) for angles. Except for the interincisal angle (p = 0.17) all measurements were statistically equivalent (p < 0.05). This study demonstrates feasibility of orthodontic treatment planning without radiation exposure based on MRI. High-resolution isotropic MRI datasets can be transformed into lateral cephalograms allowing reliable measurements as applied in orthodontic routine with high concordance to the corresponding measurements on LCR.
Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo
2008-05-01
Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.
Numerical investigations of the mechanical properties of braided vascular stents.
Fu, Wenyu; Xia, Qixiao; Yan, Ruobing; Qiao, Aike
2018-01-01
Braided stents, such as Pipeline Embolization Device (PED; ev3 Neurovascular, Irvine, CA, USA), are commonly used to treat cerebral aneurysms. However, little information is available on the compression and bending characteristics of such stents. This paper investigates how geometrical parameters of braided stents influence their radial compression and bending characteristics. Six groups of braided stent models with different braiding angles, numbers of wires and wire diameters are constructed. Parametric analyses of these models are conducted using Abaqus/Explicit software. The numerical results of a finite element analysis are validated by comparison with data of theoretical analysis. The results show that the radial stiffness is not uniform along the longitudinal direction of the stent. When the braiding angle increases from 30° to 75°, the minimum radial deformation decreases from 0.85 mm to 0.0325 mm (at a pressure of 500 Pa, for 24 braided wires). When the wire diameter increases from 0.026 mm to 0.052 mm, the minimum radial deformation decreases from 0.65 mm to 0.055 mm (at a pressure of 500 Pa and a braiding angle of 60°, for 24 braided wires). Frictions don't affect stent diameter and its axial length when braided stent is crimping, but the friction must be considered when it is related to the radial pressure required for compression the braided stent. Compared with commonly used intracranial stents, a braided stent with geometrical parameters close to PED stent has a smaller radial stiffness but a considerably greater longitudinal flexibility. The results of this analysis of braided stents can help in the design and selection of flow diverter stents for clinical treatment of cerebral aneurysms.
Formation of Warped Disks by Galactic Flyby Encounters. I. Stellar Disks
NASA Astrophysics Data System (ADS)
Kim, Jeonghwan H.; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae; An, Sung-Ho; Yoon, Suk-Jin
2014-07-01
Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the "flyby scenario" of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called "S"-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.
Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.
Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza
2015-01-01
A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.
Models for electromagnetic scattering from the sea at extremely low grazing angles
NASA Astrophysics Data System (ADS)
Wetzel, Lewis B.
1987-12-01
The present state of understanding in the field of low-grazing-angle sea scatter is reviewed and extended. The important concept of shadowing is approached from the point of view of diffraction theory, and limits in wind speed and radar frequency are found for the application of shadowing theories based on geometrical optics. The implications of shadowing function based on illumination thresholding are shown to compare favorably with a variety of experimental results. Scattering from the exposed surface peaks is treated by a composite-surface Bragg model, and by wedge models using both physical optics and the method of equivalent currents. Curiously, the scattering levels predicted by these widely different approximations are all in fairly good agreement with experimental values for moderately low grazing angles (about 5 deg), with the physical optics wedge model being superior at 1 deg. A new scattering feature, the slosh, is introduced, with scattering behavior that resembles the temporal and polarization dependence of observed low angle returns from calm water. The plume model of scattering from breaking waves (from earlier work) is discussed as a source of high-intensity Sea Spikes. It is emphasized that the prediction of low angle scattering from the sea will require considerably more information about the shape, size, and distribution of the actual scattering features.
Conductance of kinked nanowires
NASA Astrophysics Data System (ADS)
Cook, B. G.; Varga, K.
2011-01-01
The conductance properties of kinked nanowires are studied by first-principles transport calculations within a recently developed complex potential framework. Using prototypical examples of monoatomic Au chains as well as small diameter single-crystalline silicon nanowires we show that transmission strongly depends on the kink geometry and one can tune the conductance properties by the kink angle and other geometrical factors. In the case of a silicon nanowire the presence of a kink drastically reduces the conductance.
Metric analysis of basal sphenoid angle in adult human skulls
Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina
2014-01-01
Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452
Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2
NASA Technical Reports Server (NTRS)
Suchy, Slawomir; Fuerst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Joern; Markowitz, Alex; Rothschild, Richard E.
2012-01-01
We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a CRSF, multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.
Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2
NASA Astrophysics Data System (ADS)
Suchy, Slawomir; Fürst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Jörn; Markowitz, Alex; Rothschild, Richard E.
2012-02-01
We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a cyclotron resonance scattering feature (CRSF), multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.
Unraveling the Tangles of Language Evolution
NASA Astrophysics Data System (ADS)
Petroni, F.; Serva, M.; Volchenkov, D.
2012-07-01
The relationships between languages molded by extremely complex social, cultural and political factors are assessed by an automated method, in which the distance between languages is estimated by the average normalized Levenshtein distance between words from the list of 200 meanings maximally resistant to change. A sequential process of language classification described by random walks on the matrix of lexical distances allows to represent complex relationships between languages geometrically, in terms of distances and angles. We have tested the method on a sample of 50 Indo-European and 50 Austronesian languages. The geometric representations of language taxonomy allows for making accurate interfaces on the most significant events of human history by tracing changes in language families through time. The Anatolian and Kurgan hypothesis of the Indo-European origin and the "express train" model of the Polynesian origin are thoroughly discussed.
On the Stator Slot Geometry of a Cable Wound Generator for Hydrokinetic Energy Conversion
Grabbe, Mårten; Leijon, Mats
2015-01-01
The stator slot geometry of a cable wound permanent magnet synchronous generator for hydrokinetic energy conversion is evaluated. Practical experience from winding two cable wound generators is used to propose optimized dimensions of different parts in the stator slot geometry. A thorough investigation is performed through simulations of how small geometrical changes alter the generator performance. The finite element method (FEM) is used to model the generator and the simulations show that small changes in the geometry can have large effect on the performance of the generator. Furthermore, it is concluded that the load angle is especially sensitive to small geometrical changes. A new generator design is proposed which shows improved efficiency, reduced weight, and a possibility to decrease the expensive permanent magnet material by almost one-fifth. PMID:25879072
Geometric Phase of a Transported Oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittirich, W.
2004-02-25
An oscillator constrained to a plane that is transported along some surface will rotate by an angle dependent only on the path and the surface, not on the speed at which it is transported. This is thus an example of a geometric phase. We analyze this phase using the methods of parallel transport. This concept plays a key role in General Relativity, but it can also be applied in classical mechanics. The Foucault pendulum can be seen as an application of this analysis, where the surface is a sphere and the curve is a line of constant latitude. In viewmore » of some considerable confusion and erroneous treatments in the recent literature, we here present a rather simple way for visualizing the motion of the Foucault pendulum using concepts that are based on Frenet's formulae and the methods of parallel displacement.« less
NASA Astrophysics Data System (ADS)
Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.
2018-05-01
High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.
Medium power hydrogen arcjet performance
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bullock, S. Ray; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.
1991-01-01
An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difiicult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.
NASA Astrophysics Data System (ADS)
Van Volkinburg, Kyle R.; Nguyen, Thao; Pegan, Jonathan D.; Khine, Michelle; Washington, Gregory N.
2016-04-01
The shape memory polymer polystyrene (PS) has been used to create complex hierarchical wrinkling in the fabrication of stretchable thin film bimetallic sensors ideal for wearable based gesture monitoring applications. The film has been bonded to the elastomer polydimethylsiloxane (PDMS) and operates as a strain gauge under the general notion of geometric piezoresistivity. The film was subject to tensile, cyclic, and step loading conditions in order to characterize its dynamic behavior. To measure the joint angle of the metacarpophalangeal (MCP) joint on the right index finger, the sensor was adhered to a fitted golf glove above said joint and a motion study was conducted. At maximum joint angle the sensor experienced roughly 23.5% strain. From the study it was found that two simple curves, one while the finger was in flexion and the other while the finger was in extension, were able to predict the joint angle from measured voltage with an average error of 2.99 degrees.
Significantly high polarization degree of the very low-albedo asteroid (152679) 1998 KU2
NASA Astrophysics Data System (ADS)
Kuroda, Daisuke; Ishiguro, Masateru; Watanabe, Makoto; Hasegawa, Sunao; Sekiguchi, Tomohiko; Naito, Hiroyuki; Usui, Fumihiko; Imai, Masataka; Sato, Mitsuteru; Kuramoto, Kiyoshi
2018-03-01
We present a unique and significant polarimetric result regarding the near-Earth asteroid (152679) 1998 KU2, which has a very low geometric albedo. From our observations, we find that the linear polarization degrees of 1998 KU2 are 44.6 ± 0.5% in the RC band and 44.0 ± 0.6% in the V band at a solar phase angle of 81.0°. These values are the highest of any known airless body in the solar system (i.e., high-polarization comets, asteroids, and planetary satellites) at similar phase angles. This polarimetric observation is not only the first for primitive asteroids at large phase angles, but also for low-albedo (<0.1) airless bodies. Based on spectroscopic similarities and polarimetric measurements of materials that have been sorted by size in previous studies, we conjecture that 1998 KU2 has a highly microporous regolith structure comprising nano-sized carbon grains on the surface.
NASA Technical Reports Server (NTRS)
Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco
2011-01-01
Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.
Medium power hydrogen arcjet performance
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.
1991-01-01
An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.
Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier
2016-09-01
The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Nonlinear electrodynamics and CMB polarization
NASA Astrophysics Data System (ADS)
Mosquera Cuesta, Herman J.; Lambiase, G.
2011-03-01
Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (-2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ~ (X/Λ4)δ-1 X, where X = ¼FαβFαβ, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.
Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom
Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.
2013-01-01
Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503
NASA Astrophysics Data System (ADS)
Bundesmann, Carsten; Lautenschläge, Thomas; Spemann, Daniel; Finzel, Annemarie; Mensing, Michael; Frost, Frank
2017-10-01
The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.
NASA Technical Reports Server (NTRS)
Savage, Howard F.; Edwards, George G.
1959-01-01
A wind-tunnel investigation has been conducted to determine the effects of an unconventional tail arrangement on the subsonic static longitudinal and lateral stability characteristics of a model having a 63 deg sweptback wing of aspect ratio 3.5 and a fuselage. Tail booms, extending rearward from approximately the midsemispan of each wing panel, supported independent tail assemblies well outboard of the usual position at the rear of the fuselage. The horizontal-tail surfaces had the leading edge swept back 45 deg and an aspect ratio of 2.4. The vertical tail surfaces were geometrically similar to one panel of the horizontal tail. For comparative purposes, the wing-body combination was also tested with conventional fuselage-mounted tail surfaces. The wind-tunnel tests were conducted at Mach numbers from 0.25 to 0.95 with a Reynolds number of 2,000,000, at a Mach number of 0.46 with a Reynolds number of 3,500,000, and at a Mach number of 0.20 with a Reynolds number of 7,000,000. The results of the investigation indicate that longitudinal stability existed to considerably higher lift coefficients for the outboard tail configuration than for the configuration with conventional tail. Wing fences were necessary with both configurations for the elimination of sudden changes in longitudinal stability at lift coefficients between 0.3 and 0.5. Sideslip angles up to 15 deg had only small effects upon the pitching-moment characteristics of the outboard tail configuration. There was an increase in the directional stability for the outboard tail configuration at the higher angles of attack as opposed to a decrease for the conventional tail configuration at most of the Mach numbers and Reynolds numbers of this investigation. The dihedral effect increased rapidly with increasing angle of attack for both the outboard and the conventional tail configurations but the increase was greater for the outboard tail configuration. The data indicate that the outboard tail is an effective roll control.