Influence of Water Relations and Temperature on Leaf Movements of Rhododendron Species 1
Nilsen, Erik Tallak
1987-01-01
Rhododendron maximum L. and R. Catawbiense L. are subcanopy evergreen shrubs of the eastern United States deciduous forest. Field measurements of climate factors and leaf movements of these species indicated a high correlation between leaf temperature and leaf curling; and between leaf water potential and leaf angle. Laboratory experiments were performed to isolate the influence of temperature and cellular water relations on leaf movements. Significant differences were found between the patterns of temperature induction of leaf curling in the two species. Leaves of the species which curled at higher temperatures (R. catawbiense) also froze at higher leaf temperatures. However, in both cases leaf curling occurred at leaf temperatures two to three degrees above the leaf freezing point. Pressure volume curves indicated that cellular turgor loss was associated with a maximum of 45% curling while 100% or more curling occurred in field leaves which still had positive cell turgor. Moisture release curves indicated that 70% curling requires a loss of greater than 60% of symplastic water which corresponds to leaf water potentials far below those experienced in field situations. Conversely, most laboratory induced changes in leaf angle could be related to leaf cell turgor loss. PMID:16665296
Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo
2015-10-01
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.
Crous, K Y; Wallin, G; Atkin, O K; Uddling, J; Af Ekenstam, A
2017-08-01
Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers and measured the temperature responses of leaf mitochondrial respiration, both in light (RLight) and in darkness (RDark), over a 20-40 °C temperature range and during two different seasons. RLight was assessed using the Laisk method. Respiration rates measured at a standard temperature (25 °C - R25) were higher in warm-grown trees and in the warm season, related to higher total leaf nitrogen (N) investment with higher temperatures (both experimental and seasonal), indicating that leaf N concentrations modulated the respiratory capacity to changes in temperature. Once differences in leaf N were accounted for, there were no differences in R25 but the Q10 (i.e., short-term temperature sensitivity) was higher in late summer compared with early spring. The variation in RLight between experimental treatments and seasons was positively correlated with carboxylation capacity and photorespiration. RLight was less responsive to short-term changes in temperature than RDark, as shown by a lower Q10 in RLight compared with RDark. The overall light inhibition of R was ∼40%. Our results highlight the dynamic nature of leaf respiration to temperature variation and that the responses of RLight do not simply mirror those of RDark. Therefore, it is important not to assume that RLight is the same as RDark in ecosystem models, as doing so may lead to large errors in predicting plant CO2 release and productivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yoshie, Fumio
2008-09-01
Effects of growth temperature and winter duration on leaf longevity were compared between a spring ephemeral, Gagea lutea, and a forest summergreen forb, Maianthemum dilatatum. The plants were grown at day/night temperatures of 25/20 degrees C and 15/10 degrees C after a chilling treatment for variable periods at 2 degrees C. The temperature regime of 25/20 degrees C was much higher than the mean air temperatures for both species in their native habitats. Warm temperature of 25/20 degrees C and/or long chilling treatment shortened leaf longevity in G. lutea, but not in M. dilatatum. The response of G. lutea was consistent with that reported for other spring ephemerals. Air temperature increases as the vegetative season progresses. The decrease in leaf longevity in G. lutea under warm temperature condition ensures leaf senescence in summer, an unfavorable season for its growth. This also implies that early leaf senescence could occur in years with early summers. Warm spring temperatures have been shown to accelerate the leafing-out of forest trees. The decrease in leaf longevity due to warm temperature helps synchronize the period of leaf senescence roughly with the time of the forest canopy leaf-out. Prolonged winter due to late snowmelt has been shown to shorten the vegetative period for spring ephemerals. The decrease in leaf longevity due to long chilling treatment would correspond with this shortened vegetative period.
Snider, John L; Choinski, John S; Wise, Robert R
2009-05-01
We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.
Entling, Martin H.; Mantilla-Contreras, Jasmin
2017-01-01
Microclimate in different positions on a host plant has strong direct effects on herbivores. But little is known about indirect effects due to changes of leaf traits. We hypothesized that herbivory increases from upper canopy to lower canopy and understory due to a combination of direct and indirect pathways. Furthermore, we hypothesized that herbivory in the understory differs between tree species in accordance with their leaf traits. We investigated herbivory by leaf chewing insects along the vertical gradient of mixed deciduous forest stands on the broad-leaved tree species Fagus sylvatica L. (European beech) with study sites located along a 140 km long transect. Additionally, we studied juvenile Acer pseudoplatanus L. (sycamore maple) and Carpinus betulus L. (hornbeam) individuals within the understory as a reference of leaf traits in the same microclimate. Lowest levels of herbivory were observed in upper canopies, where temperatures were highest. Temperature was the best predictor for insect herbivory across forest layers in our study. However, the direction was opposite to the generally known positive relationship. Herbivory also varied between the three tree species with lowest levels for F. sylvatica. Leaf carbon content was highest for F. sylvatica and probably indicates higher amounts of phenolic defense compounds. We conclude that the effect of temperature must have been indirect, whereby the expected higher herbivory was suppressed due to unfavorable leaf traits (lower nitrogen content, higher toughness and carbon content) of upper canopy leaves compared to the understory. PMID:28099483
Vu, Joseph C V; Allen, Leon H
2009-07-15
Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.
Leaf Dynamics of Panicum maximum under Future Climatic Changes
Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto
2016-01-01
Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932
NASA Astrophysics Data System (ADS)
McKee, M.; Royer, D. L.
2017-12-01
The physiognomy (size and shape) of fossilized leaves has been used to reconstruct the mean annual temperature of ancient environments. Colder temperatures often select for larger and more abundant leaf teeth—serrated edges on leaf margins—as well as a greater degree of leaf dissection. However, to be able to accurately predict paleotemperature from the morphology of fossilized leaves, leaves must be able to react quickly and in a predictable manner to changes in temperature. We examined the extent to which temperature affects leaf morphology in four tree species: Carpinus caroliniana, Acer negundo, Ilex opaca, and Ostrya virginiana. Saplings of these species were grown in two growth cabinets under contrasting temperatures (17 and 25 °C). Compared to the cool treatment, in the warm treatment Carpinus caroliniana leaves had significantly fewer leaf teeth and a lower ratio of total number of leaf teeth to internal perimeter; and Acer negundo leaves had a significantly lower feret diameter ratio (a measure of leaf dissection). In addition, a two-way ANOVA tested the influence of temperature and species on leaf physiognomy. This analysis revealed that all plants, regardless of species, tended to develop more highly dissected leaves with more leaf teeth in the cool treatment. Because the cabinets maintained equivalent moisture, humidity, and CO2 concentration between the two treatments, these results demonstrate that these species could rapidly adapt to changes in temperature. However, not all of the species reacted identically to temperature changes. For example, Acer negundo, Carpinus caroliniana, and Ostrya virginiana all had a higher number of total teeth in the cool treatment compared to the warm treatment, but the opposite was true for Ilex opaca. Our work questions a fundamental assumption common to all models predicting paleotemperature from the physiognomy of fossilized leaves: a given climate will inevitably select for the same leaf physiognomy, regardless of species composition. To more accurately compensate for differences among species, models should incorporate phylogenetic information.
Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L
2007-10-01
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.
Rezende, Renan de Souza; Gonçalves Júnior, José Francisco; Lopes, Aline; Piedade, Maria Teresa Fernandez; Cavalcante, Heloide de Lima; Hamada, Neusa
2017-01-01
Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2) on leaf detritus of Hevea spruceana (Benth) Müll. and decomposers (insect shredders and microorganisms). We hypothesized that simulated climate change (warming and elevated CO2) would: i) decrease leaf-litter quality, ii) decrease survival and leaf breakdown by shredders, and iii) increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin) was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity) of global warming for tropical streams. PMID:29190723
Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan.
Doi, Hideyuki
2012-09-01
Changes in leaf phenology lengthen the growing season length (GSL, the days between leaf budburst and leaf fall) under the global warming. GSL and the leaf phenology response to climate change is one of the most important predictors of climate change effect on plants. Empirical evidence of climatic effects on GSL remains scarce, especially at a regional scale and the latitudinal pattern. This study analyzed the datasets of leaf budburst and fall phenology in Morus bombycis (Urticales), which were observed by the agency of the Japan Meteorological Agency (JMA) from 1953 to 2005 over a wide range of latitudes in Japan (31 to 44° N). In the present study, single regression slopes of leaf phenological timing and air temperature across Japan were calculated and their spatial patterns using general linear models were tested. The results showed that the GSL extension was caused mainly by a delay in leaf fall phenology. Relationships between latitude and leaf phenological and GSL responses against air temperature were significantly negative. The response of leaf phenology and GSL to air temperature at lower latitudes was larger than that at higher latitudes. The findings indicate that GSL extension should be considered with regards to latitude and climate change.
Zhang, Na; Xu, Wen Xiu; Li, Lan Hai; Wu, Ni Ping; Wu, Pei Jie; Cheng, Xue Feng
2016-08-01
To optimize the fertilization rate of winter wheat under drip irrigation in Xinjiang region, a field investigation was carried out to assess effects of nitrogen (N) applications on canopy vertical structure, grain-leaf ratio, yield and economic benefit of winter wheat. Four rates of nitrogen application, 0 kg·hm -2 (N 0 ), 104 kg·hm -2 (N 1 ), 173 kg·hm -2 (N 2 ) and 242 kg·hm -2 (N 3 ) were set in a randomized block experimental design. Meantime, leaf and stem morphological characters, canopy temperature and humidity in flowering stage, grain-leaf area ratio, yield and yield components, economic benefits of winter wheat were observed under different treatments. The results showed that the leaf length and width at different positions of wheat under the nitrogen fertilization treatments were significantly higher than that without nitrogen fertilization (P<0.05), and plant height ranged from 65.57 to 81.58 cm. With an increasing rate of nitrogen fertilization, both leafarea index and stem diameter presented a trend of first increasing and then decreasing, and reached the maximum under N 2 treatment, which was 5.48 and 0.49 cm, respectively. Diurnal variation of canopy temperature and humidity were "convex" and "concave" shape, followed an order of N 0 >N 1 >N 2 >N 3 in temperature, but reversely in canopy humidity. The duration of high temperature higher than 35 ℃ were shorten 1 hour to 3.5 hours as the nitrogen application level increased, and there was significant difference between N 1 and N 3 on grain-leaf ratio. Yield and economic be-nefit decreased initially and then increased with increasing nitrogen application. Yield and economic benefit of treatment N 2 were 32.8% and 77.7% higher than those of treatment N 0 , 12.6% and 5.4% higher than those of treatment N 1 , and 5.2% and 4.2% higher than those of treatment N 3 , respectively. These results indicated that nitrogen application at about 173 kg·hm -2 could be recommended as the optimum rate for winter wheat, which had good leaf and plant morphology, appropriate canopy temperature and humidity, high yield and economic efficiency in the experiment area.
Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash
2017-03-01
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.
Costa E Silva, F; Shvaleva, A; Broetto, F; Ortuño, M F; Rodrigues, M L; Almeida, M H; Chaves, M M; Pereira, J S
2009-01-01
We tested the hypothesis that Eucalyptus globulus Labill. genotypes that are more resistant to dry environments might also exhibit higher cold tolerances than drought-sensitive plants. The effect of low temperatures was evaluated in acclimated and unacclimated ramets of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of E. globulus. We studied the plants' response via leaf gas exchanges, leaf water and osmotic potentials, concentrations of soluble sugars, several antioxidant enzymes and leaf electrolyte leakage. Progressively lowering air temperatures (from 24/16 to 10/-2 degrees C, day/night) led to acclimation of both clones. Acclimated ramets exhibited higher photosynthetic rates, stomatal conductances and lower membrane relative injuries when compared to unacclimated ramets. Moreover, low temperatures led to significant increases of soluble sugars and antioxidant enzymes activity (glutathione reductase, ascorbate peroxidase and superoxide dismutases) of both clones in comparison to plants grown at control temperature (24/16 degrees C). On the other hand, none of the clones, either acclimated or not, exhibited signs of photoinhibition under low temperatures and moderate light. The main differences in the responses to low temperatures between the two clones resulted mainly from differences in carbon metabolism, including a higher accumulation of soluble sugars in the drought-resistant clone CN5 as well as a higher capacity for osmotic regulation, as compared to the drought-sensitive clone ST51. Although membrane injury data suggested that both clones had the same inherent freezing tolerance before and after cold acclimation, the results also support the hypothesis that the drought-resistant clone had a greater cold tolerance at intermediate levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a short period can allow a clone to maintain an undamaged leaf surface area along sudden frost events, increasing growth capacity. Moreover, it can enhance survival chances in frost-prone sites expanding the plantation range with more adaptive clones.
Responses of rubber leaf phenology to climatic variations in Southwest China
NASA Astrophysics Data System (ADS)
Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu
2017-11-01
The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.
Pallas, J. E.; Michel, B. E.; Harris, D. G.
1967-01-01
Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered. Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity. PMID:16656488
NASA Astrophysics Data System (ADS)
Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing
2018-04-01
Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs.
Haworth, Matthew; Belcher, Claire M; Killi, Dilek; Dewhirst, Rebecca A; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro
2018-04-18
Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO 2 -uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.
Humidity does not appear to trigger leaf out in woody plants
NASA Astrophysics Data System (ADS)
Zipf, Lucy; Primack, Richard B.
2017-12-01
In order to anticipate the ecological impacts of climate change and model changes to forests, it is important to understand the factors controlling spring leaf out. Leaf out phenology in woody trees and shrubs is generally considered to be strongly controlled by a combination of spring warming, winter chilling requirement, and photoperiod. However, researchers have recently suggested that temperature-related air humidity, rather than temperature itself, might be the main trigger of the spring leaf-out of woody plants. Here, we sought to examine the relationship between air humidity and leaf-out across a range of humidities and plant functional groups. We did not find any consistent, measurable effect of high humidity advancing leaf-out in the 15 woody shrubs and trees examined in this study, and we did not see progressive patterns of earlier leaf-out in successively higher humidities. Our results indicate that more work must be done on this topic before researchers can properly determine the effect of humidity on the leafing out process for woody species.
Jung, Sang-Kyu; McDonald, Karen A; Dandekar, Abhaya M
2015-01-01
Agrobacterium tumefaciens-mediated transient expression is known to be highly dependent on incubation temperature. Compared with early studies that were conducted at constant temperature, we examined the effect of variable leaf incubation temperature on transient expression. As a model system, synthetic endoglucanase (E1) and endoxylanase (Xyn10A) genes were transiently expressed in detached whole sunflower leaves via vacuum infiltration for biofuel applications. We found that the kinetics of transient expression strongly depended on timing of the temperature change as well as leaf incubation temperature. Surprisingly, we found that high incubation temperature (27-30 °C) which is suboptimal for T-DNA transfer, significantly enhanced transient expression if the high temperature was applied during the late phase (Day 3-6) of leaf incubation whereas incubation temperature in a range of 20-25 °C for an early phase (Day 0-2) resulted in higher production. On the basis of these results, we propose that transient expression is governed by both T-DNA transfer and protein synthesis in plant cells that have different temperature dependent kinetics. Because the phases were separated in time and had different optimal temperatures, we were then able to develop a novel two phase optimization strategy for leaf incubation temperature. Applying the time-varying temperature profile, we were able to increase the protein accumulation by fivefold compared with the control at a constant temperature of 20 °C. From our knowledge, this is the first report illustrating the effect of variable temperature profiling for improved transient expression. © 2015 American Institute of Chemical Engineers.
Ehleringer, James R.; Björkman, Olle
1978-01-01
Measurements of the dependence of photosynthesis on light, CO2, and temperature are reported for two species of Encelia (Compositae) which differ in leaf pubescence and in geographical distribution. Encelia californica is glabrous and occurs in relatively mild, but arid habitats and Encelia farinosa is heavily pubescent and occurs in hot, arid habitats. Both species possess the C3 photosynthetic pathway. Under high irradiances and normal atmospheric conditions the two species have high photosynthetic rates, exceeding 3 nanomoles of CO2 per square centimeter per second (48 milligrams of CO2 per square decimeter per hour) and complete light saturation does not occur by full noon sunlight. The high photosynthetic capacity is related to a high efficiency of utilization of intercellular CO2 combined with high stomatal conductance. Leaf estimates of total soluble protein and fraction I protein are higher in these species than in most plants, although the proportion of fraction I protein is not higher. Both E. californica and E. farinosa attain a maximum rate of photosynthesis between 25 and 30 C, despite the fact that the two species grow in very different thermal habitats. Neither E. californica nor E. farinosa shows significant acclimation in the temperature dependence of photosynthesis when grown under different temperature regimes. The presence of leaf hairs which reduce leaf absorptance and consequently leaf temperature plays an important part in the ability of E. farinosa to survive in its native high temperature environment. When the effects of pubescence are taken into account, there are few if any significant differences in the photosynthetic characteristics of the two species. PMID:16660483
Brestic, Marian; Zivcak, Marek; Hauptvogel, Pavol; Misheva, Svetlana; Kocheva, Konstantina; Yang, Xinghong; Li, Xiangnan; Allakhverdiev, Suleyman I
2018-05-01
Assessment of photosynthetic traits and temperature tolerance was performed on field-grown modern genotype (MG), and the local landrace (LR) of wheat (Triticum aestivum L.) as well as the wild relative species (Aegilops cylindrica Host.). The comparison was based on measurements of the gas exchange (A/c i , light and temperature response curves), slow and fast chlorophyll fluorescence kinetics, and some growth and leaf parameters. In MG, we observed the highest CO 2 assimilation rate [Formula: see text] electron transport rate (J max ) and maximum carboxylation rate [Formula: see text]. The Aegilops leaves had substantially lower values of all photosynthetic parameters; this fact correlated with its lower biomass production. The mesophyll conductance was almost the same in Aegilops and MG, despite the significant differences in leaf phenotype. In contrary, in LR with a higher dry mass per leaf area, the half mesophyll conductance (g m ) values indicated more limited CO 2 diffusion. In Aegilops, we found much lower carboxylation capacity; this can be attributed mainly to thin leaves and lower Rubisco activity. The difference in CO 2 assimilation rate between MG and others was diminished because of its higher mitochondrial respiration activity indicating more intense metabolism. Assessment of temperature response showed lower temperature optimum and a narrow ecological valence (i.e., the range determining the tolerance limits of a species to an environmental factor) in Aegilops. In addition, analysis of photosynthetic thermostability identified the LR as the most sensitive. Our results support the idea that the selection for high yields was accompanied by the increase of photosynthetic productivity through unintentional improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.
Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira
2014-01-01
Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.
Copolovici, Lucian O.; Filella, Iolanda; Llusià, Joan; Niinemets, Ülo; Peñuelas, Josep
2005-01-01
Heat stress resistance of foliar photosynthetic apparatus was investigated in the Mediterranean monoterpene-emitting evergreen sclerophyll species Quercus ilex. Leaf feeding with fosmidomycin, which is a specific inhibitor of the chloroplastic isoprenoid synthesis pathway, essentially stopped monoterpene emission and resulted in the decrease of the optimum temperature of photosynthetic electron transport from approximately 38°C to approximately 30°C. The heat stress resistance was partly restored by fumigation with 4 to 5 nmol mol−1 air concentrations of monoterpene α-pinene but not with fumigations with monoterpene alcohol α-terpineol. Analyses of monoterpene physicochemical characteristics demonstrated that α-pinene was primarily distributed to leaf gas and lipid phases, while α-terpineol was primarily distributed to leaf aqueous phase. Thus, for a common monoterpene uptake rate, α-terpineol is less efficient in stabilizing membrane liquid-crystalline structure and as an antioxidant in plant membranes. Furthermore, α-terpineol uptake rate (U) strongly decreased with increasing temperature, while the uptake rates of α-pinene increased with increasing temperature, providing a further explanation of the lower efficiency of thermal protection by α-terpineol. The temperature-dependent decrease of α-terpineol uptake was both due to decreases in stomatal conductance, gw, and increased volatility of α-terpineol at higher temperature that decreased the monoterpene diffusion gradient between the ambient air (FA) and leaf (FI; U = gw[FA − FI]). Model analyses suggested that α-pinene reacted within the leaf at higher temperatures, possibly within the lipid phase, thereby avoiding the decrease in diffusion gradient, FA − FI. Thus, these data contribute to the hypothesis of the antioxidative protection of leaf membranes during heat stress by monoterpenes. These data further suggest that fumigation with the relatively low atmospheric concentrations of monoterpenes that are occasionally observed during warm windless days in the Mediterranean canopies may significantly improve the heat tolerance of nonemitting vegetation that grows intermixed with emitting species. PMID:16126854
Suriyagoda, Lalith D B; Ryan, Megan H; Renton, Michael; Lambers, Hans
2012-10-01
Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species. The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined. The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass. All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.
Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span
Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang
2012-01-01
Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810
Snider, John L; Oosterhuis, Derrick M; Collins, Guy D; Pilon, Cristiane; Fitzsimons, Toby R
2013-03-15
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars. Copyright © 2012 Elsevier GmbH. All rights reserved.
Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia
2016-08-01
Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario.
Vitasse, Yann; Porté, Annabel Josée; Kremer, Antoine; Michalet, Richard; Delzon, Sylvain
2009-08-01
While changes in spring phenological events due to global warming have been widely documented, changes in autumn phenology, and therefore in growing season length, are less studied and poorly understood. However, it may be helpful to assess the potential lengthening of the growing season under climate warming in order to determine its further impact on forest productivity and C balance. The present study aimed to: (1) characterise the sensitivity of leaf phenological events to temperature, and (2) quantify the relative contributions of leaf unfolding and senescence to the extension of canopy duration with increasing temperature, in four deciduous tree species (Acer pseudoplatanus, Fagus sylvatica, Fraxinus excelsior and Quercus petraea). For 3 consecutive years, we monitored the spring and autumn phenology of 41 populations at elevations ranging from 100 to 1,600 m. Overall, we found significant altitudinal trends in leaf phenology and species-specific differences in temperature sensitivity. With increasing temperature, we recorded an advance in flushing from 1.9 +/- 0.3 to 6.6 +/- 0.4 days degrees C(-1) (mean +/- SD) and a 0 to 5.6 +/- 0.6 days degrees C(-1) delay in leaf senescence. Together both changes resulted in a 6.9 +/- 1.0 to 13.0 +/- 0.7 days degrees C(-1) lengthening of canopy duration depending on species. For three of the four studied species, advances in flushing were the main factor responsible for lengthening canopy duration with increasing temperature, leading to a potentially larger gain in solar radiation than delays in leaf senescence. In contrast, for beech, we found a higher sensitivity to temperature in leaf senescence than in flushing, resulting in an equivalent contribution in solar radiation gain. These results suggest that climate warming will alter the C uptake period and forest productivity by lengthening canopy duration. Moreover, the between-species differences in phenological responses to temperature evidenced here could affect biotic interactions under climate warming.
Fu, Yongshuo H; Liu, Yongjie; De Boeck, Hans J; Menzel, Annette; Nijs, Ivan; Peaucelle, Marc; Peñuelas, Josep; Piao, Shilong; Janssens, Ivan A
2016-11-01
The phenology of spring leaf unfolding plays a key role in the structure and functioning of ecosystems. The classical concept of heat requirement (growing degree days) for leaf unfolding was developed hundreds of years ago, but this model does not include the recently reported greater importance of daytime than night-time temperature. A manipulative experiment on daytime vs night-time warming with saplings of three species of temperate deciduous trees was conducted and a Bayesian method was applied to explore the different effects of daytime and night-time temperatures on spring phenology. We found that both daytime and night-time warming significantly advanced leaf unfolding, but the sensitivities to increased daytime and night-time temperatures differed significantly. Trees were most sensitive to daytime warming (7.4 ± 0.9, 4.8 ± 0.3 and 4.8 ± 0.2 d advancement per degree Celsius warming (d °C -1 ) for birch, oak and beech, respectively) and least sensitive to night-time warming (5.5 ± 0.9, 3.3 ± 0.3 and 2.1 ± 0.9 d °C -1 ). Interestingly, a Bayesian analysis found that the impact of daytime temperature on leaf unfolding was approximately three times higher than that of night-time temperatures. Night-time global temperature is increasing faster than daytime temperature, so model projections of future spring phenology should incorporate the effects of these different temperatures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.
The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.
Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M
2017-01-01
Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Yong-Jiang; Bucci, Sandra J; Arias, Nadia S; Scholz, Fabian G; Hao, Guang-You; Cao, Kun-Fang; Goldstein, Guillermo
2016-08-01
Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Distribution of leaf characteristics in relation to orientation within the canopy of woody species
NASA Astrophysics Data System (ADS)
Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia
2013-04-01
Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.
Shahba, Mohamed A; Bauerle, William L
2009-07-01
Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature gradient was modulated by growth temperature in the genotype native to the cooler climate. This indicates that within-crown temperature-induced variations in leaf morphology and chemical content should be accounted for in forest ecosystem models.
Characterization and 2D structural model of corn straw and poplar leaf biochars.
Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen
2017-12-22
The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.
Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar
2017-07-01
Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Heskel, M.; Tang, J.
2017-12-01
Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.
Schwerbrock, R; Leuschner, C
2016-07-01
(1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Technical Reports Server (NTRS)
Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.
1995-01-01
We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.
Leffler, A Joshua; Klein, Eric S; Oberbauer, Steven F; Welker, Jeffrey M
2016-05-01
Climate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska. Winter snow depth was increased using snow fences and warming was accomplished during summer using passive open-top chambers. One of the most important consequences of these experimental treatments was an increase in active layer depth and rate of thaw, which has led to deeper drainage and lower soil moisture content. Vegetation concomitantly shifted from a relatively wet system with high cover of the sedge Eriophorum vaginatum to a drier system, dominated by deciduous shrubs including Betula nana and Salix pulchra. At the individual plant level, we observed higher leaf nitrogen concentration associated with warmer temperatures and increased snow in S. pulchra and B. nana, but high leaf nitrogen concentration did not lead to higher rates of net photosynthesis. At the ecosystem level, we observed higher GPP and NEE in response to summer warming. Our results suggest that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake.
NASA Astrophysics Data System (ADS)
González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.
2016-11-01
In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.
Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest
NASA Astrophysics Data System (ADS)
Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.
2016-12-01
In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.
Sun, Yuming; Wang, Min; Li, Yingrui; Gu, Zechen; Ling, Ning; Shen, Qirong; Guo, Shiwei
2017-09-01
Fusarium wilt is primarily a soil-borne disease and results in yield loss and quality decline in cucumber (Cucumis sativus). The main symptom of fusarium wilt is the wilting of entire plant, which could be caused by a fungal toxin(s) or blockage of water transport. To investigate whether this wilt arises from water shortage, the physiological responses of hydroponically grown cucumber plants subjected to water stress using polyethylene glycol (PEG, 6000) were compared with those of plants infected with Fusarium oxysporum f. sp. cucumerinum (FOC). Parameters reflecting plant water status were measured 8d after the start of treatment. Leaf gas exchange parameters and temperature were measured with a LI-COR portable open photosynthesis system and by thermal imaging. Chlorophyll fluorescence and chloroplast structures were assessed by imaging pulse amplitude-modulated fluorometry and transmission electron microscopy, respectively. Cucumber water balance was altered after FOC infection, with decreased water absorption and hydraulic conductivity. However, the responses of cucumber leaves to FOC and PEG differed in leaf regions. Under water stress, measures of lipid peroxidation (malondialdehyde) and chlorophyll fluorescence indicated that the leaf edge was more seriously injured, with a higher leaf temperature and disrupted leaf water status compared with the centre. Here, abscisic acid (ABA) and proline were negatively correlated with water potential. In contrast, under FOC infection, membrane damage and a higher temperature were observed in the leaf centre while ABA and proline did not vary with water potential. Cytologically, FOC-infected cucumber leaves exhibited circular chloroplasts and swelled starch grains in the leaf centre, in which they again differed from PEG-stressed cucumber leaves. This study illustrates the non-causal relationship between fusarium wilt and water transport blockage. Although leaf wilt occurred in both water stress and FOC infection, the physiological responses were different, especially in leaf spatial distribution. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Muraoka, H.; Nagao, A.; Saitoh, T. M.
2016-12-01
Influences of global warming have been observed or predicted in deciduous forest ecosystems in temperate regions. One of the remarkable changes can be hound in phenology, i.e., seasonality of canopy. Timing and growth rate of leaf expansion (morphological and physiological development), timing and rate of leaf senescence, and timing of leaf fall, and resulting length of photosynthetically active period, are the phenological events that have been focused over wide range of research from single leaf measurements at long-term research sites to satellite remote sensing at continental scales. These phenological changes under global warming have been predicted to influence carbon sequestration as a balance of photosynthesis and respiration. However, we still lack ecophysiological evidence and understandings on such phenological changes, to ask (1) do the phenological changes occur in both leaf morphology and physiology?, (2) does the leaf photosynthetic capacity change by warming?, and (3) do different tree species inhabiting in the same forest respond in a same way?In order to examine these questions, we conducted an open-warming experiments on foliage of matured canopy trees in a cool-temperate deciduous broadleaf forest in central Japan. Warming treatment was made by open-top canopy chambers with 1.5m W x 2m L x 1.8m H. The chamber was made of transparent acrylic boards and vinyl sheet. Three sunlit branches (1-2m) of Quercus crispula (16m height) and one sunlit branch (1m) of Betula ermanii (18m height) were examined at 15m above ground, since 2011 for Quercus and 2013 for Betula. The chambers increased mean daytime air temperature by about 1.5 degreeC.Artificial warming led earlier leaf expansion by about 3 days in Quercus during 2013-2015 and 2 days in Betula, and delayed leaf fall by 2-7 days and 2-3 days in Quercus and Betula, respectively. Quercus leaves showed clear influence of warming: higher seasonal growth, higher capacity and slower senescence of leaf photosynthetic capacity. Although the leaf expansion was stimulated by warming, its relationship with cumulative temperature from spring was consistent with leaves under ambient conditions. Our simple estimation showed that the warming treatment would might increase photosynthetic productivity by 14-21% in Quercus, but not in Betula.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194
Convergence in the temperature response of leaf respiration across biomes and plant functional types
Heskel, Mary A.; O’Sullivan, Odhran S.; Reich, Peter B.; Tjoelker, Mark G.; Weerasinghe, Lasantha K.; Penillard, Aurore; Egerton, John J. G.; Creek, Danielle; Bloomfield, Keith J.; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R.; Martinez-de la Torre, Alberto; Griffin, Kevin L.; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H.; Atkin, Owen K.
2016-01-01
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates. PMID:27001849
Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K
2016-04-05
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro
2015-01-01
Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706
Zhang, Qiang; Liu, Ningfang; Xu, Qingguo
2018-01-01
Low temperature is one of the important limiting factors for growing season and geographical distribution of plants. Zoysiagrass (Zoysia Willd) is one of the widely used warm-season turfgrass that is distribute in many parts of the world. Zoysaigrass native to high latitude may have evolved higher cold tolerance than the ones native to low latitude. The objective of this study was to investigate the cold stress response in zoysiagrass native to diverse latitude at phenotypic, physiological and metabolic levels. Two zoysiagrass (Z. japonica) genotypes, Latitude-40 (higher latitude) and Latitude-22 (lower latitude) were subjected to four temperature treatments (optimum, 30/25°C, day/night; suboptimum, 18/12°C; chilling, 8/2°C; freezing, 2/-4°C) progressively in growth chambers. Low temperature (chilling and freezing) increased leaf electrolyte leakage (EL) and reduced plant growth, turf quality, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm) and photosynthesis (Pn, net photosynthetic rate; gs, stomatal conductance; intercellular CO2; Tr, transpiration rate) in two genotypes, with more rapid changes in Latitude-22. Leaf carbohydrates content (glucose, fructose, sucrose, trehalose, fructan, starch) increased with the decreasing of temperature, to a great extend in Latitude-40. Leaf abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) content increased, while indole-3-acetic acid (IAA), gibberellic acid (GA3) and trans-zeatin ribside (t-ZR) content decreased with the reduction of temperature, with higher content in Latitude-40 than in Latitude-22. Chilling and freezing induced the up-regulation of C-repeat binding factor (ZjCBF), late embryogenesis abundant (ZjLEA3) and dehydration-responsive element binding (ZjDREB1) transcription factors in two genotypes, whereas those genes exhibited higher expression levels in Latitude-40, particularly under freezing temperature. These results suggested that zoysiagrass native to higher latitude exhibited higher freezing tolerance may attribute to the higher carbohydrates serving as energy reserves and stress protectants that stabilize cellular membranes. The phytohormones may serve signals in regulating plant growth, development and adaptation to low temperature as well as inducing the up-regulated ZjCBF, ZjLEA3 and ZjDREB1 expressions thus result in a higher cold tolerance. PMID:29889884
NASA Astrophysics Data System (ADS)
Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.
2014-11-01
Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from leaf to canopy.
Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut
2014-01-01
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746
NASA Astrophysics Data System (ADS)
Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.
2015-04-01
Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest that even up to fairly extreme temperature increases from ambient levels (+6 °C), simulated photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of simulations of the response of Amazonian rainforest to climate change, the mechanistic underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to improve accuracy and consistency in the quantification of processes within and across an ecosystem.
Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?
Cahon, Thomas; Caillon, Robin
2018-01-01
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342
Raeini-Sarjaz, Mahmoud; Chalavi, Vida
2008-11-01
Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42 degrees C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R2 = 0.54; P < 0.01), and photosynthesis rate (R2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.
Larger temperature response of autumn leaf senescence than spring leaf-out phenology.
Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo
2018-05-01
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.
1989-01-01
Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.
NASA Astrophysics Data System (ADS)
Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.
2009-12-01
Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in the control plots with the highest rate being 17.2 μmol/m2/s in OTCs and 16.8 μmol/m2/s in control. Similarly, AMAX of E. vaginatum was also higher in OTCs with the highest rate being 10.4 μmol/m2/s in the control and 11 μmol/m2/s in the OTCs. Leaf area (LAI) was higher in the warming plots (mean = .39(0.095)) than LAI in the control plots (mean =.3 (.067)) in the control plots. This difference was significant as p<0.05. The higher photosynthetic rate and temperature optimum of photosynthesis in B. nana may indicate shrubs ability to cope with rising temperatures more efficiently than E. vagination which may lead to shifts in total leaf area and species composition.
[Indoor simulation on dew formation on plant leaves].
Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong
2014-03-01
Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.
Simulating soybean canopy temperature as affected by weather variables and soil water potential
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1982-01-01
Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.
Gas exchange characteristics of Pinus edulis and Juniperus monosperma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, F.J.
1987-07-01
A shift in the relative dominance of Pinus edulis and Juniperus monosperma is associated with a complex elevational gradient in northern new Mexico. The ecophysiological parameters contributing to this dominance pattern were studied by determining the gas exchange characteristics of the two species in response to temperature, light and water stress under controlled conditions. P. edulis has a higher photosynthetic capacity than J. monosperma, and has a tendency to form ecotypes with individuals from mesic sites having higher rates of carbon gain than xeric site individuals. J. monosperma is more drought-tolerant than P. edulis. As soil moisture decreases, zero carbonmore » gain in J. monosperma occurs at a lower predawn leaf water potential (-4.6 MPa) than in P. edulis (-2.2 MPa). There is no significant difference between species in the temperature of peak carbon gain. J. monosperma has a significantly wider temperature optimum than P. edulis with the additional range being at high temperatures. The observed lower elevational limit of P. edulis coincides with its physiological tolerance of water stress as estimated by seasonal leaf carbon gain. Environmental limitations to the distribution of J. monosperma were not found at higher elevations where P. edulis is dominant.« less
Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing
2015-06-08
The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with increasing elevation, implying that the frequency of distantly related evergreen and deciduous pairs with wide spreading of leaf economic values increases with increasing elevation. Our findings thus suggest that elevation acts as an environmental filter to both select the locally adapted evergreen and deciduous species with sufficient phylogenetic variation and regulate their distribution along the elevational gradient based on their coordinated spreading of phylogenetic divergence and leaf economic variation. Published by Oxford University Press on behalf of the Annals of Botany Company.
Offord, Catherine A.
2011-01-01
Background and Aims Under predicted climate change scenarios, increased temperatures are likely to predispose trees to leaf and other tissue damage, resulting in plant death and contraction of already narrow distribution ranges in many relictual species. The effects of predicted upward temperatures may be further exacerbated by changes in rainfall patterns and damage caused by frosts on trees that have been insufficiently cold-hardened. The Araucariaceae is a relictual family and the seven species found in Australia have limited natural distributions characterized by low frost intensity and frequency, and warm summer temperatures. The temperature limits for these species were determined in order to help understand how such species will fare in a changing climate. Methods Experiments were conducted using samples from representative trees of the Araucariaceae species occurring in Australia, Agathis (A. atropurpurea, A. microstachya and A. robusta), Arauacaria (A. bidwilli, A. cunninghamii and A. heterophylla) and Wollemia nobilis. Samples were collected from plants grown in a common garden environment. Lower and higher temperature limits were determined by subjecting detached winter-hardened leaves to temperatures from 0 to –17 °C and summer-exposed leaves to 25 to 63 °C, then measuring the efficiency of photosystem II (Fv/Fm) and visually rating leaf damage. The exotherm, a sharp rise in temperature indicating the point of ice nucleation within the cells of the leaf, was measured on detached leaves of winter-hardened and summer temperature-exposed leaves. Key Results Lower temperature limits (indicated by FT50, the temperature at which PSII efficiency is 50 %, and LT50 the temperature at which 50 % visual leaf damage occurred) were approx. –5·5 to –7·5 °C for A. atropurpurea, A. microstachya and A. heterophylla, approx. –7 to –9 °C for A. robusta, A. bidwillii and A. cunninghamii, and –10·5 to –11 °C for W. nobilis. High temperature damage began at 47·5 °C for W. nobilis, and occurred in the range 48·5–52 °C for A. bidwillii and A. cunninghamii, and in the range 50·5–53·5 °C for A. robusta, A. microstachya and A. heterophylla. Winter-hardened leaves had ice nucleation temperatures of –5·5 °C or lower, with W. nobilis the lowest at –6·8 °C. All species had significantly higher ice nucleation temperatures in summer, with A. atropurpurea and A. heterophylla forming ice in the leaf at temperatures >3 °C higher in summer than in winter. Wollemia nobilis had lower FT50 and LT50 values than its ice nucleation temperature, indicating that the species has a degree of ice tolerance. Conclusions While lower temperature limits in the Australian Araucariaceae are generally unlikely to affect their survival in wild populations during normal winters, unseasonal frosts may have devastating effects on tree survival. Extreme high temperatures are not common in the areas of natural occurrence, but upward temperature shifts, in combination with localized radiant heating, may increase the heat experienced within a canopy by at least 10 °C and impact on tree survival, and may contribute to range contraction. Heat stress may explain why many landscape plantings of W. nobilis have failed in hotter areas of Australia. PMID:21727080
Offord, Catherine A
2011-08-01
Under predicted climate change scenarios, increased temperatures are likely to predispose trees to leaf and other tissue damage, resulting in plant death and contraction of already narrow distribution ranges in many relictual species. The effects of predicted upward temperatures may be further exacerbated by changes in rainfall patterns and damage caused by frosts on trees that have been insufficiently cold-hardened. The Araucariaceae is a relictual family and the seven species found in Australia have limited natural distributions characterized by low frost intensity and frequency, and warm summer temperatures. The temperature limits for these species were determined in order to help understand how such species will fare in a changing climate. Experiments were conducted using samples from representative trees of the Araucariaceae species occurring in Australia, Agathis (A. atropurpurea, A. microstachya and A. robusta), Arauacaria (A. bidwilli, A. cunninghamii and A. heterophylla) and Wollemia nobilis. Samples were collected from plants grown in a common garden environment. Lower and higher temperature limits were determined by subjecting detached winter-hardened leaves to temperatures from 0 to -17 °C and summer-exposed leaves to 25 to 63 °C, then measuring the efficiency of photosystem II (F(v)/F(m)) and visually rating leaf damage. The exotherm, a sharp rise in temperature indicating the point of ice nucleation within the cells of the leaf, was measured on detached leaves of winter-hardened and summer temperature-exposed leaves. Lower temperature limits (indicated by FT(50), the temperature at which PSII efficiency is 50 %, and LT(50) the temperature at which 50 % visual leaf damage occurred) were approx. -5·5 to -7·5 °C for A. atropurpurea, A. microstachya and A. heterophylla, approx. -7 to -9 °C for A. robusta, A. bidwillii and A. cunninghamii, and -10·5 to -11 °C for W. nobilis. High temperature damage began at 47·5 °C for W. nobilis, and occurred in the range 48·5-52 °C for A. bidwillii and A. cunninghamii, and in the range 50·5-53·5 °C for A. robusta, A. microstachya and A. heterophylla. Winter-hardened leaves had ice nucleation temperatures of -5·5 °C or lower, with W. nobilis the lowest at -6·8 °C. All species had significantly higher ice nucleation temperatures in summer, with A. atropurpurea and A. heterophylla forming ice in the leaf at temperatures >3 °C higher in summer than in winter. Wollemia nobilis had lower FT(50) and LT(50) values than its ice nucleation temperature, indicating that the species has a degree of ice tolerance. While lower temperature limits in the Australian Araucariaceae are generally unlikely to affect their survival in wild populations during normal winters, unseasonal frosts may have devastating effects on tree survival. Extreme high temperatures are not common in the areas of natural occurrence, but upward temperature shifts, in combination with localized radiant heating, may increase the heat experienced within a canopy by at least 10 °C and impact on tree survival, and may contribute to range contraction. Heat stress may explain why many landscape plantings of W. nobilis have failed in hotter areas of Australia.
Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara
2014-09-01
Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Crossett, C.; Lahr, E.; Haas, G.; Schade, G. W.
2014-12-01
Many plants produce isoprene, a volatile organic compound that can mitigate damage to photosynthetic systems during short- or long-term increases in leaf temperature. After its production within leaves, isoprene is emitted to the atmosphere and influences regional atmospheric chemistry. Here, we use an urban-to-rural gradient to explore future effects of climate change on tree eco-physiology and feedbacks to atmospheric chemistry. Urban areas mimic many of the conditions expected to occur in the future; in particular, cities have warmer temperatures due to the urban heat island (UHI) effect, and less water availability relative to rural areas. Along a 90 km urban-to-rural gradient, we measured photosynthesis and isoprene emission from trees at three sites in eastern Texas: Houston (urban), The Woodlands (suburban) and Sam Houston National Forest (rural). Isoprene emission from post oak (Quercus stellata) was higher in Houston than the other sites, and when leaf temperatures were increased above ambient conditions, trees produced more isoprene. Leaves produced more isoprene at high leaf temperatures in early summer than in late summer, suggesting gradual acclimation of photosynthetic processes over the course of the summer. We also found that sweetgum (Liquidambar styraciflua) emitted more isoprene than post oak, but when leaf temperatures were increased, isoprene emission was exhausted more quickly in sweetgum relative to post oak. At the same time, post oak maintained higher levels of photosynthesis seasonally and during short-term temperature increases. Both post oak and sweetgum are significant isoprene emitters and represent approximately two and four percent crown cover in the United States, respectively. Our results suggest that in a warming climate, we can expect trees to produce more isoprene seasonally and in response to short-term temperature extremes, and that species-specific differences in photosynthesis and isoprene emission may play an important role in forest dynamics, particularly in long-term forest growth and carbon storage. Further exploration of the interactive effect of increased CO2, temperature, and drought on tree physiology will improve our understanding of forest dynamics and forest-climate feedbacks.
NASA Astrophysics Data System (ADS)
Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.
2014-06-01
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.
NASA Astrophysics Data System (ADS)
Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.
2014-09-01
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.
The energetic and carbon economic origins of leaf thermoregulation.
Michaletz, Sean T; Weiser, Michael D; McDowell, Nate G; Zhou, Jizhong; Kaspari, Michael; Helliker, Brent R; Enquist, Brian J
2016-08-22
Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of ∼60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.
Zhou, Haoran; Xu, Ming; Pan, Hongli; Yu, Xiubo
2015-11-01
Temperature responses and sensitivity of photosynthesis (A(n_)T) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration (R(dark)), net assimilation (A(n)), maximal velocity of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A(n_)T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower An due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R(dark) and A(n) changed between OLs and YLs, which was represented by a higher R(dark)/A(n) ratio for OLs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors
Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.
2014-01-01
Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Conclusions Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. PMID:24782436
Zohner, Constantin M; Benito, Blas M; Fridley, Jason D; Svenning, Jens-Christian; Renner, Susanne S
2017-04-01
Intuitively, interannual spring temperature variability (STV) should influence the leaf-out strategies of temperate zone woody species, with high winter chilling requirements in species from regions where spring warming varies greatly among years. We tested this hypothesis using experiments in 215 species and leaf-out monitoring in 1585 species from East Asia (EA), Europe (EU) and North America (NA). The results reveal that species from regions with high STV indeed have higher winter chilling requirements, and, when grown under the same conditions, leaf out later than related species from regions with lower STV. Since 1900, STV has been consistently higher in NA than in EU and EA, and under experimentally short winter conditions NA species required 84% more spring warming for bud break, EU ones 49% and EA ones only 1%. These previously unknown continental-scale differences in phenological strategies underscore the need for considering regional climate histories in global change models. © 2017 John Wiley & Sons Ltd/CNRS.
Pastenes, Claudio; Porter, Victor; Baginsky, Cecilia; Horton, Peter; González, Javiera
2004-12-01
In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.
Exploring the importance of within-canopy spatial temperature variation on transpiration predictions
Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.
2009-01-01
Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047
York, Paul H; Gruber, Renee K; Hill, Ross; Ralph, Peter J; Booth, David J; Macreadie, Peter I
2013-01-01
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM'). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM' and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM') declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.
Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun
2008-07-01
Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.
Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.
2015-01-01
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346
Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O
2015-09-15
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.
Ramos, Carolina; Buitrago, Sindy P; Pulido, Karen L; Vanegas, Leidy J
2013-03-01
Polylepis cuadrijuga is an endemic woody species from the Colombian Eastern range, being the only tree species with capacity to live on mountainous environments beyond 4 000m of altitude. Grazing and agriculture have transformed at least 30% of the Guantiva-La Rusia region, turning continuous extensions of high Andean forest in a fragmented landscape, and P cuadrijuga remnants have become smaller and more isolated. The aim of this study was to establish the environmental differences between a matrix of grazing pastures and the interior of fragments, to evaluate the physiological responses of P cuadrijuga and determining the edge effect. Air temperature and humidity, soil water holding capacity and photosynthetic active radiation, were measured along two 50X2m transects from the matrix toward the center of fragment. Six trees inside the transects were chosen in each one of three sites (matrix, edge and interior) to measure the index chlorophyll content and to sample leaves to assess the leaf area, leaf biomass, specific leaf area, anatomy, health condition and pubescence. Results showed significantly differences between the matrix and the interior and intermediate conditions in the edge. Radiation, temperature and air desiccation were higher in the matrix than in the interior, submitting P cuadrijuga trees to a stressing environment, where they presented stratification of epidermis and palisade parenchyma, and a higher leaf area, leaf thickness, chlorophyll content and pubescence than in the interior of fragments. All these physiological traits allow avoiding the photoxidation and damages by freezing or desiccation to which trees are exposed in a grazing pasture matrix. Nevertheless, there was a higher frequency of healthy leaves in the interior of fragments, showing that high irradiations and extreme air temperature and humidity reach adversely affect to P cuadrijuga. Individuals in the edge had ecophysiological traits similar to the matrix ones, which confirm an edge effect that could penetrate 17m inside the fragments. We conclude that P cuadrijuga is a plastic species, able to overcome the stress conditions from anthropogenic transformations, species able to be used in high Andean forest restoration programs
Leaf Assemblages across the Cretaceous-Tertiary Boundary in the Raton Basin, New Mexico and Colorado
NASA Astrophysics Data System (ADS)
Wolfe, Jack A.; Upchurch, Garland R., Jr.
1987-08-01
Analyses of leaf megafossil and dispersed leaf cuticle assemblages indicate that major ecologic disruption and high rates of extinction occurred in plant communities at the Cretaceous-Tertiary boundary in the Raton Basin. In diversity increase, the early Paleocene vegetational sequence mimics normal short-term ecologic succession, but on a far longer time scale. No difference can be detected between latest Cretaceous and early Paleocene temperatures, but precipitation markedly increased at the boundary. Higher survival rate of deciduous versus evergreen taxa supports occurrence of a brief cold interval (<1 year), as predicted in models of an “impact winter.”
Leaf Shape Responds to Temperature but Not CO2 in Acer rubrum
Royer, Dana L.
2012-01-01
The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO2 concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO2 has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO2 conditions. The CO2 treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate. PMID:23152921
Leaf movements and photoinhibition in relation to water stress in field-grown beans.
Pastenes, Claudio; Pimentel, Paula; Lillo, Jacob
2005-01-01
Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.
NASA Astrophysics Data System (ADS)
Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran
2014-05-01
Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated [CO2]-induced increase in CO2 uptake is partly counteracted by substantial increases in autotrophic respiration in boreal spruce. Furthermore, stomatal results suggest conservative leaf-level water use of spruce under rising [CO2] and temperature.
Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.
Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz
2016-07-01
Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.
Atkin, Owen K; Bloomfield, Keith J; Reich, Peter B; Tjoelker, Mark G; Asner, Gregory P; Bonal, Damien; Bönisch, Gerhard; Bradford, Matt G; Cernusak, Lucas A; Cosio, Eric G; Creek, Danielle; Crous, Kristine Y; Domingues, Tomas F; Dukes, Jeffrey S; Egerton, John J G; Evans, John R; Farquhar, Graham D; Fyllas, Nikolaos M; Gauthier, Paul P G; Gloor, Emanuel; Gimeno, Teresa E; Griffin, Kevin L; Guerrieri, Rossella; Heskel, Mary A; Huntingford, Chris; Ishida, Françoise Yoko; Kattge, Jens; Lambers, Hans; Liddell, Michael J; Lloyd, Jon; Lusk, Christopher H; Martin, Roberta E; Maksimov, Ayal P; Maximov, Trofim C; Malhi, Yadvinder; Medlyn, Belinda E; Meir, Patrick; Mercado, Lina M; Mirotchnick, Nicholas; Ng, Desmond; Niinemets, Ülo; O'Sullivan, Odhran S; Phillips, Oliver L; Poorter, Lourens; Poot, Pieter; Prentice, I Colin; Salinas, Norma; Rowland, Lucy M; Ryan, Michael G; Sitch, Stephen; Slot, Martijn; Smith, Nicholas G; Turnbull, Matthew H; VanderWel, Mark C; Valladares, Fernando; Veneklaas, Erik J; Weerasinghe, Lasantha K; Wirth, Christian; Wright, Ian J; Wythers, Kirk R; Xiang, Jen; Xiang, Shuang; Zaragoza-Castells, Joana
2015-04-01
Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs). © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Narayanan, Sruthi; Tamura, Pamela J; Roth, Mary R; Prasad, P V Vara; Welti, Ruth
2016-04-01
Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. © 2015 John Wiley & Sons Ltd.
Narayanan, Sruthi; Tamura, Pamela J.; Roth, Mary R.; Vara Prasad, P.V.; Welti, Ruth
2016-01-01
Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared to optimum temperature. The lower unsaturation was predominantly due to lower levels of 18:3 and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased 3-fold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodeling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, that some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. PMID:26436679
Yamaguchi, Daisuke P; Nakaji, Tatsuro; Hiura, Tsutom; Hikosaka, Kouki
2016-10-01
The effects of warming on the temperature response of leaf photosynthesis have become an area of major concern in recent decades. Although growth temperature (GT) and day length (DL) affect leaf gas exchange characteristics, the way in which these factors influence the temperature dependence of photosynthesis remains uncertain. We established open-top canopy chambers at the canopy top of a deciduous forest, in which average daytime leaf temperature was increased by 1.0 °C. We conducted gas exchange measurements for the canopy leaves of deciduous trees exposed to artificial warming during different seasons. The carbon dioxide assimilation rate at 20 °C (A 20 ) was not affected by warming, whereas that at 25 °C (A 25 ) tended to be higher in leaves exposed to warming. Warming increased the optimal temperature of photosynthesis by increasing the activation energy for the maximum rate of carboxylation. Regression analysis indicated that both GT and DL strongly influenced gas exchange characteristics. Sensitivity analysis revealed that DL affected A without obvious effects on the temperature dependence of A, whereas GT almost maintained constant A 20 and strongly influenced the temperature dependence. These results indicate that GT and DL have different influences on photosynthesis; GT and DL affect the 'slope' and intercept' of the temperature dependence of photosynthesis, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Luján, Rosario; Lledías, Fernando; Martínez, Luz María; Barreto, Rita; Cassab, Gladys I; Nieto-Sotelo, Jorge
2009-12-01
Agaves are perennial crassulacean acid metabolism (CAM) plants distributed in tropical and subtropical arid environments, features that are attractive for studying the heat-shock response. In agaves, the stress response can be analysed easily during leaf development, as they form a spirally shaped rosette, having the meristem surrounded by folded leaves in the centre (spike) and the unfolded and more mature leaves in the periphery. Here, we report that the spike of Agave tequilana is the most thermotolerant part of the rosette withstanding shocks of up to 55 degrees C. This finding was inconsistent with the patterns of heat-shock protein (Hsp) gene expression, as maximal accumulation of Hsp transcripts was at 44 degrees C in all sectors (spike, inner, middle and outer). However, levels of small HSP (sHSP)-CI and sHSP-CII proteins were conspicuously higher in spike leaves at all temperatures correlating with their thermotolerance. In addition, spike leaves showed a higher stomatal density and abated more efficiently their temperature several degrees below that of air. We propose that the greater capacity for leaf cooling during the day in response to heat stress, and the elevated levels of sHSPs, constitute part of a set of strategies that protect the SAM and folded leaves of A. tequilana from high temperatures.
Thermotolerance and responses to short duration heat stress in tropical and temperate species
NASA Astrophysics Data System (ADS)
Marias, D.; Meinzer, F. C.; Still, C. J.
2017-12-01
Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be phenotypically plastic and representative of the environment in which plants were grown, whereas iWUE appeared to reflect ecotypic differentiation and the climate of origin. Considering leaf age, heat stress duration, methodology, functional type, and climate of origin improves our understanding of physiological responses to short term heat stress.
Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress
Crafts-Brandner, Steven J.; Salvucci, Michael E.
2002-01-01
Our objective was to determine the sensitivity of components of the photosynthetic apparatus of maize (Zea mays), a C4 plant, to high temperature stress. Net photosynthesis (Pn) was inhibited at leaf temperatures above 38°C, and the inhibition was much more severe when the temperature was increased rapidly rather than gradually. Transpiration rate increased progressively with leaf temperature, indicating that inhibition was not associated with stomatal closure. Nonphotochemical fluorescence quenching (qN) increased at leaf temperatures above 30°C, indicating increased thylakoid energization even at temperatures that did not inhibit Pn. Compared with CO2 assimilation, the maximum quantum yield of photosystem II (Fv/Fm) was relatively insensitive to leaf temperatures up to 45°C. The activation state of phosphoenolpyruvate carboxylase decreased marginally at leaf temperatures above 40°C, and the activity of pyruvate phosphate dikinase was insensitive to temperature up to 45°C. The activation state of Rubisco decreased at temperatures exceeding 32.5°C, with nearly complete inactivation at 45°C. Levels of 3-phosphoglyceric acid and ribulose-1,5-bisphosphate decreased and increased, respectively, as leaf temperature increased, consistent with the decrease in Rubisco activation. When leaf temperature was increased gradually, Rubisco activation acclimated in a similar manner as Pn, and acclimation was associated with the expression of a new activase polypeptide. Rates of Pn calculated solely from the kinetics of Rubisco were remarkably similar to measured rates if the calculation included adjustment for temperature effects on Rubisco activation. We conclude that inactivation of Rubisco was the primary constraint on the rate of Pn of maize leaves as leaf temperature increased above 30°C. PMID:12177490
Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit
2014-03-24
Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.
NASA Astrophysics Data System (ADS)
Aparecido, L. M. T.; Miller, G. R.; Cahill, A. T.; Andrews, R.; Moore, G. W.
2017-12-01
Tropical water recycling and carbon storage are dependent on canopy-atmosphere dynamics, which are substantially altered when rainfall occurs. However, models only indirectly consider leaf wetness as a driving factor for carbon and water fluxes. To better understand how leaf wetness condition affects stomatal and canopy conductance to water vapor, we tested a set of widely used models for a mature tropical forest of Costa Rica with prolonged periods of wet leaves. We relied on a year of sap flux measurements from 26 trees to estimate transpiration (Ec) and multiple micrometeorological profile measurements from a 40-m tower to be used in the models. Stomatal conductance (gs) models included those proposed by Jones (1992) (gs-J), using shaded and sunlit leaf temperatures, and Monteith and Unsworth (1990) (gs-MU), using air temperature. Canopy conductance (gc) models included those proposed by McNaughton and Jarvis (1983) (gc-MJ) and Penman-Monteith (gc-PM). Between gs and gc, gc had the largest differences within models during dry periods; while estimates were most similar during wet periods. Yet, all gc and gs estimates on wet days were at least as high as on dry days, indicative of their insensitivity to leaf wetness. Shaded leaf gs averaged 26% higher than in sunlit leaves. Additionally, the highly decoupled interface (Ω>0.90) reflected multiple environmental drivers that may influence conductance (e.g. vapor pressure deficit and leaf temperature). This was also seen through large shifts of diurnal peaks of gs and gc (up to 2 hours earlier than Ec) associated with the daily variation of air temperature and net radiation. Overall, this study led to three major insights: 1) gc and gs cannot accurately be predicted under wet conditions without accounting for leaf wetness, 2) even during dry days, low vapor pressure deficits interfere with model accuracy, and 3) intermittent rain during semi-dry and wet days cause large fluctuations in gc and gs estimates. Thus, it is advised that sub-daily scale (5- or 10-min intervals) and direct physiological measurements of conductance under wet conditions should be adopted. While methodologically challenging, improved estimates of conductance of water vapor at leaf-to-canopy scales are critical for improving the mechanistic understanding of plant water fluxes in wet environments.
Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris; Mielewczik, Michael; Schurr, Ulrich; Tardieu, François; Walter, Achim
2010-06-01
Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.
Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D
1998-05-01
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong
2015-09-01
The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Leaf phenological characters of main tree species in urban forest of Shenyang.
Xu, Sheng; Xu, Wenduo; Chen, Wei; He, Xingyuan; Huang, Yanqing; Wen, Hua
2014-01-01
Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the environmental adaptation of plants. However, the leaf lifespan and leaf characteristics of urban forests were not studied up to now. By using statistic, linear regression methods and correlation analysis, leaf phenological characters of main tree species in urban forest of Shenyang were observed for five years to obtain the leafing phenology (including leafing start time, end time, and duration), defoliating phenology (including defoliation start time, end time, and duration), and the leaf lifespan of the main tree species. Moreover, the relationships between temperature and leafing phenology, defoliating phenology, and leaf lifespan were analyzed. The timing of leafing differed greatly among species. The early leafing species would have relatively early end of leafing; the longer it took to the end of leafing would have a later time of completed leafing. The timing of defoliation among different species varied significantly, the early defoliation species would have relatively longer duration of defoliation. If the mean temperature rise for 1°C in spring, the time of leafing would experience 5 days earlier in spring. If the mean temperature decline for 1°C, the time of defoliation would experience 3 days delay in autumn. There is significant correlation between leaf longevity and the time of leafing and defoliation. According to correlation analysis and regression analysis, there is significant correlation between temperature and leafing and defoliation phenology. Early leafing species would have a longer life span and consequently have advantage on carbon accumulation compared with later defoliation species.
Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants
Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław
2016-01-01
Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. PMID:27273581
Silver-Foil Psychrometer for Measuring Leaf Water Potential in situ.
Hoffman, G J; Rawlins, S L
1972-09-01
The water potential of leaves in situ can be measured without temperature control with a miniature, single-junction psychrometer constructed from silver foil and attached to the leaf with a silver-impregnated, conductive coating. The temperature of the psychrometer has been found to stay within 0.025 degrees C of the temperature of a simulated leaf when the latter temperature was changing at a rate of 1 degrees C per minute. Leaf water potentials can be measured with a precision of +/- 1 bar, or better.
Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.
Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M
2014-07-01
Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.
Campanella, M Victoria; Bertiller, Mónica B
2013-07-01
Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.
Effect of greenhouse conditions on the leaf apoplastic proteome of Coffea arabica plants.
Guerra-Guimarães, Leonor; Vieira, Ana; Chaves, Inês; Pinheiro, Carla; Queiroz, Vagner; Renaut, Jenny; Ricardo, Cândido P
2014-06-02
This work describes the coffee leaf apoplastic proteome and its modulation by the greenhouse conditions. The apoplastic fluid (APF) was obtained by leaf vacuum infiltration, and the recovered proteins were separated by 2-DE and subsequently identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry, followed by homology search in EST coffee databases. Prediction tools revealed that the majority of the 195 identified proteins are involved in cell wall metabolism and in stress/defense responses. Although most of the proteins follow the classical secretory mechanism, a low percentage of them seem to result from unconventional secretion (leaderless secreted proteins). Principal components analysis revealed that the APF samples formed two distinct groups, with the temperature amplitude mostly contributing for this separation (higher or lower than 10°C, respectively). Sixty one polypeptide spots allowed defining these two groups and 28 proteins were identified, belonging to carbohydrate metabolism, cell wall modification and proteolysis. Interestingly stress/defense proteins appeared as more abundant in Group I which is associated with a higher temperature amplitude. It seems that the proteins in the coffee leaf APF might be implicated in structural modifications in the extracellular space that are crucial for plant development/adaptation to the conditions of the prevailing environment. This is the first detailed proteomic study of the coffee leaf apoplastic fluid (APF) and of its modulation by the greenhouse conditions. The comprehensive overview of the most abundant proteins present in the extra-cellular compartment is particularly important for the understanding of coffee responses to abiotic/biotic stress. This article is part of a Special Issue entitled: Environmental and structural proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.
Jacquelyn M. Rowe; William B. Perry; Sue A. Perry
1996-01-01
Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...
Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.
Feller, Urs
2016-09-20
Global change is characterized by increased CO 2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO 2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate. Copyright © 2016 Elsevier GmbH. All rights reserved.
Savvides, Andreas; Dieleman, Janneke A; van Ieperen, Wim; Marcelis, Leo F M
2016-04-01
Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs. We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies in dicots have not rigorously demonstrated that apical bud temperature controls LIR independent of other plant organs temperature. Many models assume that apical bud and leaf temperature are the same. In some environments, the temperature of the apical bud, where leaf initiation occurs, may differ by several degrees Celsius from the temperature of other plant organs. In a 28-days study, we maintained temperature differences between the apical bud and the rest of the individual Cucumis sativus plants from -7 to +8 °C by enclosing the apical buds in transparent, temperature-controlled, flow-through, spheres. Our results demonstrate that LIR was completely determined by apical bud temperature independent of other plant organs temperature. These results emphasize the need to measure or model apical bud temperatures in dicots to improve the prediction of crop development rates in simulation models.
Dong, Xian; Ling, Ning; Wang, Min; Shen, Qirong; Guo, Shiwei
2012-11-01
Fusarium wilt of banana is caused by Fusarium oxysporum f. sp. cubense infection. The initial chlorosis symptoms occur progressively from lower to upper leaves, with wilt symptoms subsequently occurring in the whole plant. To determine the effect of the pathogen infection on the gas exchange characteristics and water content in banana leaves, hydroponic experiments with pathogen inoculation were conducted in a greenhouse. Compared with control plants, infected banana seedlings showed a higher leaf temperature as determined by thermal imaging. Reduced stomatal conductance (g(s)) and transpiration rate (E) in infected plants resulted in lower levels of water loss than in control plants. Water potential in heavily diseased plants (II) was significantly reduced and the E/g(s) ratio was higher than in noninfected plants, indicating the occurrence of uncontrolled water loss not regulated by stomata in diseased plants. As no pathogen colonies were detected from the infected plant leaves, the crude toxin was extracted from the pathogen culture and evaluated about the effect on banana plant to further investigate the probable reason of these physiological changes in Fusarium-infected banana leaf. The phytotoxin fusaric acid (FA) was found in the crude toxin, and both crude toxin and pure FA had similar effects as the pathogen infection on the physiological changes in banana leaf. Additionally, FA was present at all positions in diseased plants and its concentration was positively correlated with the incidence of disease symptoms. Taken together, these observations indicated that FA secreted by the pathogen is an important factor involved in the disturbance of leaf temperature, resulting in uncontrolled leaf water loss and electrolyte leakage due to damaging the cell membrane. In conclusion, FA plays a critical role in accelerating the development of Fusarium wilt in banana plants by acting as a phytotoxin. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Radin, J W; Lu, Z; Percy, R G; Zeiger, E
1994-01-01
Responses of stomata to environment have been intensively studied, but little is known of genetic effects on stomatal conductance or their consequences. In Pima cotton (Gossypium barbadense L.), a crop that is bred for irrigated production in very hot environments, stomatal conductance varies genetically over a wide range and has increased with each release of new higher-yielding cultivars. A cross between heat-adapted (high-yielding) and unadapted genotypes produced F2 progeny cosegregating for stomatal conductance and leaf temperature. Within segregating populations in the field, conductance was negatively correlated with foliar temperature because of evaporative cooling. Plants were selected from the F2 generation specifically and solely for differing stomatal conductance. Among F3 and F4 populations derived from these selections, conductance and leaf cooling were significantly correlated with fruiting prolificacy during the hottest period of the year and with yield. Conductance was not associated with other factors that might have affected yield potential (single-leaf photosynthetic rate, leaf water potential). As breeders have increased the yield of this crop, genetic variability for conductance has allowed inadvertent selection for "heat avoidance" (evaporative cooling) in a hot environment. PMID:11607487
Nelson, Jacob A; Bugbee, Bruce
2015-01-01
The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies.
Nelson, Jacob A.; Bugbee, Bruce
2015-01-01
The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies. PMID:26448613
Long, Benedict M; Bahar, Nur H A; Atkin, Owen K
2015-11-01
In intact leaves, mitochondrial populations are highly heterogeneous among contrasting cell types; how such contrasting populations respond to sustained changes in the environment remains, however, unclear. Here, we examined respiratory rates, mitochondrial protein composition and response to growth temperature in photosynthetic (mesophyll) and non-photosynthetic (epidermal) cells from fully expanded leaves of warm-developed (WD) and cold-developed (CD) broad bean (Vicia faba L.). Rates of respiration were significantly higher in mesophyll cell protoplasts (MCPs) than epidermal cell protoplasts (ECPs), with both protoplast types exhibiting capacity for cytochrome and alternative oxidase activity. Compared with ECPs, MCPs contained greater relative quantities of porin, suggesting higher mitochondrial surface area in mesophyll cells. Nevertheless, the relative quantities of respiratory proteins (normalized to porin) were similar in MCPs and ECPs, suggesting that ECPs have lower numbers of mitochondria yet similar protein complement to MCP mitochondria (albeit with lower abundance serine hydroxymethyltransferase). Several mitochondrial proteins (both non-photorespiratory and photorespiratory) exhibited an increased abundance in response to cold in both protoplast types. Based on estimates of individual protoplast respiration rates, combined with leaf cell abundance data, epidermal cells make a small but significant (2%) contribution to overall leaf respiration which increases twofold in the cold. Taken together, our data highlight the heterogeneous nature of mitochondrial populations in leaves, both among contrasting cell types and in how those populations respond to growth temperature. © 2015 John Wiley & Sons Ltd.
York, Paul H.; Gruber, Renee K.; Hill, Ross; Ralph, Peter J.; Booth, David J.; Macreadie, Peter I.
2013-01-01
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios. PMID:24124551
Leaf Phenological Characters of Main Tree Species in Urban Forest of Shenyang
Xu, Sheng; Xu, Wenduo; Chen, Wei; He, Xingyuan; Huang, Yanqing; Wen, Hua
2014-01-01
Background Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the environmental adaptation of plants. However, the leaf lifespan and leaf characteristics of urban forests were not studied up to now. Methods By using statistic, linear regression methods and correlation analysis, leaf phenological characters of main tree species in urban forest of Shenyang were observed for five years to obtain the leafing phenology (including leafing start time, end time, and duration), defoliating phenology (including defoliation start time, end time, and duration), and the leaf lifespan of the main tree species. Moreover, the relationships between temperature and leafing phenology, defoliating phenology, and leaf lifespan were analyzed. Findings The timing of leafing differed greatly among species. The early leafing species would have relatively early end of leafing; the longer it took to the end of leafing would have a later time of completed leafing. The timing of defoliation among different species varied significantly, the early defoliation species would have relatively longer duration of defoliation. If the mean temperature rise for 1°C in spring, the time of leafing would experience 5 days earlier in spring. If the mean temperature decline for 1°C, the time of defoliation would experience 3 days delay in autumn. Interpretation There is significant correlation between leaf longevity and the time of leafing and defoliation. According to correlation analysis and regression analysis, there is significant correlation between temperature and leafing and defoliation phenology. Early leafing species would have a longer life span and consequently have advantage on carbon accumulation compared with later defoliation species. PMID:24963625
NASA Astrophysics Data System (ADS)
Höffle, H.; Thomsen, M. S.; Holmer, M.
2011-03-01
The present study tested for density-dependent effects of the invasive drift macroalgae Gracilaria vermiculophylla (Ohmi) Papenfuss on growth and survival of the native eelgrass, Zostera marina L., under different temperature levels. Three weeks laboratory experiments were conducted in Odense, Denmark, combining three algae densities (control, low 1.9 kg WW m -2, high 4.5 kg WW m -2) with typical Danish summer temperatures (18 °C) and elevated temperatures (21 °C and 27 °C). There was a significant effect of temperature on shoot survival with on average 68% mortality in the high temperature treatment but almost no mortality at the two lower temperatures. The higher mortality was probably caused by high sulphide levels in the sediment pore water (0.6 mmol l -1 at 18 °C compared to 3.7 mmol l -1 at 27 °C). Above-ground growth of the surviving shoots was also significantly affected by temperature, with leaf elongation rates being negatively affected, while the leaf plastochrone interval increased. Relative growth rate was significantly higher at 21 °C than at 18 °C or 27 °C, whereas rhizome elongation was significantly lowest at 27 °C. Elemental sulphur content in the plant tissues increased significantly with temperature and was up to 34 times higher (S 0 in rhizomes) at 27 °C compared to the lower temperatures. In contrast to the temperature effects, cover by G. vermiculophylla did not cause significant effects on any seagrass responses. However, there was a (non-significant) negative effect of algal cover at the highest temperature, where the seagrass is already stressed. The latter results suggest that more studies should test for interaction effects between temperature and other anthropogenic stressors given that temperature is predicted to increase in the near future.
Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.
Monneveux, Philippe; Pastenes, Claudio; Reynolds, Matthew P
2003-06-01
Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).
Haque, Md Moinul; Pramanik, Habibur Rahman; Biswas, Jiban Krishna; Iftekharuddaula, K M; Hasanuzzaman, Mirza
2015-01-01
Hybrid rice varieties have higher yield potential over inbred varieties. This improvement is not always translated to the grain yield and its physiological causes are still unclear. In order to clarify it, two field experiments were conducted including two popular indica hybrids (BRRI hybrid dhan2 and Heera2) and one elite inbred (BRRI dhan45) rice varieties. Leaf area index, chlorophyll status, and photosynthetic rate of flag leaf, postheading crop growth rate, shoot reserve translocation, source-sink relation and yield, and its attributes of each variety were comprehensively analyzed. Both hybrid varieties outyielded the inbred. However, the hybrids and inbred varieties exhibited statistically identical yield in late planting. Both hybrids accumulated higher amount of biomass before heading and exhibited greater remobilization of assimilates to the grain in early plantings compared to the inbred variety. Filled grain (%) declined significantly at delayed planting in the hybrids compared to elite inbred due to increased temperature impaired-inefficient transport of assimilates. Flag leaf photosynthesis parameters were higher in the hybrid varieties than those of the inbred variety. Results suggest that greater remobilization of shoot reserves to the grain rendered higher yield of hybrid rice varieties.
Qiu, Changpeng; Ethier, Gilbert; Pepin, Steeve; Dubé, Pascal; Desjardins, Yves; Gosselin, André
2017-09-01
The temperature dependence of mesophyll conductance (g m ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (T leaf ) rise from 20 to 35 °C. Contrary to the great majority of g m temperature responses published to date, we found a pronounced reduction of g m with increasing T leaf irrespective of leaf chamber O 2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (g s ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of g m . However, the concerted diurnal reductions of g m and g s were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of g m under favourable leaf water status. Our results challenge the view that the temperature dependence of g m can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.. © 2017 John Wiley & Sons Ltd.
Martin, C E; Brandmeyer, E A; Ross, R D
2013-01-01
Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
2014-01-01
Background Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. Results The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. Conclusions The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale. PMID:24655599
Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar
2015-01-01
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary. PMID:25851132
Biophysical control of leaf temperature
NASA Astrophysics Data System (ADS)
Dong, N.; Prentice, I. C.; Wright, I. J.
2014-12-01
In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.
Wang, Haimiao; Chen, Yinglong; Hu, Wei; Wang, Shanshan; Snider, John L; Zhou, Zhiguo
2017-11-01
Short-term waterlogging and chronic elevated temperature occur concomitantly in the cotton (Gossypium hirsutum) growing season. While previous research about co-occurring waterlogging and elevated temperature has focused primarily on cotton fiber, no studies have investigated carbohydrate metabolism of the subtending leaf (a major source leaf for boll development) cross-acclimation to aforementioned stressors. To address this, plants were exposed to ambient (31.6/26.5°C) and elevated (34.1/29.0°C) temperatures during the whole flowering and boll formation stage, and waterlogging (0, 3, 6 days) beginning on the day of anthesis. Both waterlogging and high temperature limited boll biomass (reduced by 1.19-32.14%), but effects of different durations of waterlogging coupled with elevated temperature on carbohydrate metabolism in the subtending leaf were quite different. The 6-day waterlogging combined with elevated temperature had the most negative impact on net photosynthetic rate (Pn) and carbohydrate metabolism of any treatment, leading to upregulated GhSusA and GhSusC expression and enhanced sucrose synthase (SuSy, EC 2.4.1.13) activity for sucrose degradation. A prior exposure to waterlogging for 3 days improved subtending leaf performance under elevated temperature. Pn, sucrose concentrations, Rubisco (EC 4.1.1.39) activity, and cytosolic fructose-1,6-bisphosphatase (cy-FBPase, EC 3.1.3.11) activity in the subtending leaf significantly increased, while SuSy activity decreased under 3 days waterlogging and elevated temperature combined relative to elevated temperature alone. Thus, we concluded that previous exposure to a brief (3 days) waterlogging stress improved sucrose composition and accumulation cross-acclimation to high temperature later in development not only by promoting leaf photosynthesis but also inhibiting sucrose degradation. © 2017 Scandinavian Plant Physiology Society.
Wu, B M; van Bruggen, A H C; Subbarao, K V; Scherm, H
2002-06-01
ABSTRACT The effect of temperature on infection of lettuce by Bremia lactucae was investigated in controlled environment studies and in the field. In controlled conditions, lettuce seedlings inoculated with B. lactucae were incubated at 15, 20, 25, or 30 degrees C during a 4-h wet period immediately after inoculation or at the same temperatures during an 8-h dry period after the 4-h postinoculation wet period at 15 degrees C. High temperatures during wet and dry periods reduced subsequent disease incidence. Historical data from field studies in 1991 and 1992, in which days with or without infection had been identified, were analyzed by comparing average air temperatures during 0600 to 1000 and 1000 to 1400 Pacific standard time (PST) between the two groups of days. Days without infection had significantly higher temperatures (mean 21.4 degrees C) than days with infection (20.3 degrees C) during 1000 to 1400 PST (P < 0.01) but not during 0600 to 1000 PST. Therefore, temperature thresholds of 20 and 22 degrees C for the 3-h wet period after sunrise and the subsequent 4-h postpenetration period, respectively, were added to a previously developed disease warning system that predicts infection when morning leaf wetness lasts >/=4 h from 0600 PST. No infection was assumed to occur if average temperature during these periods exceeded the thresholds. Based on nonlinear regression and receiver operating characteristic curve analysis, the leaf wetness threshold of the previous warning system was also modified to >/=3-h leaf wetness (>/=0900 PST). Furthermore, by comparing solar radiation on days with infection and without infection, we determined that high solar radiation during 0500 to 0600 PST in conjunction with leaf wetness ending between 0900 and 1000 PST was associated with downy mildew infection. Therefore, instead of starting at 0600 PST, the calculation of the 3-h morning leaf wetness period was modified to start after sunrise, defined as the hour when measured solar radiation exceeded 8 W m(-2) (or 41 mumol m(-2) s(-1) for photon flux density). The modified warning system was compared with the previously developed system using historical weather and downy mildew data collected in coastal California. The modified system was more conservative when disease potential was high and recommended fewer fungicide applications when conditions were not conducive to downy mildew development.
Physiological Responses of Beech and Sessile Oak in a Natural Mixed Stand During a Dry Summer
RAFTOYANNIS, YANNIS; RADOGLOU, KALLIOPI
2002-01-01
Responses of CO2 assimilation and stomatal conductance to decreasing leaf water potential, and to environmental factors, were analysed in a mixed natural stand of sessile oak (Quercus petraea ssp. medwediewii) and beech (Fagus sylvatica L.) in Greece during the exceptionally dry summer of 1998. Seasonal courses of leaf water potential were similar for both species, whereas mean net photosynthesis and stomatal conductance were always higher in sessile oak than in beech. The relationship between net photosynthesis and stomatal conductance was strong for both species. Sessile oak had high rates of photosynthesis even under very low leaf water potentials and high air temperatures, whereas the photosynthetic rate of beech decreased at low water potentials. Diurnal patterns were similar in both species but sessile oak had higher rates of CO2 assimilation than beech. Our results indicate that sessile oak is more tolerant of drought than beech, due, in part, to its maintenance of photosynthesis at low water potential. PMID:12102528
Crous, Kristine Y; Drake, John E; Aspinwall, Michael J; Sharwood, Robert E; Tjoelker, Mark G; Ghannoum, Oula
2018-05-27
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (T opt ) of photosynthesis and J max responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the T opt of J max during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming. © 2018 John Wiley & Sons Ltd.
Ibrahim, Mohamed A.; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukáš; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K.; Oksanen, Elina J.
2010-01-01
Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees. PMID:20181662
Ludlow, M M; Björkman, O
1984-11-01
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.
Faria, A P de; Marabesi, M A; Gaspar, M; França, M G C
2018-06-01
Leaf gas exchanges, carbohydrate metabolism and growth of three Brazilian Cerrado invasive African grasses were evaluated after growing for 75 days under doubled CO 2 concentration and temperature elevated by 3 °C. Results showed that although the species presented photosynthetic C4 metabolism, they all had some kind of positive response to increased CO 2 . Urochloa brizantha and Megathyrsus maximus showed increased height for all induced environmental conditions. Urochloa decumbens showed only improvement in water use efficiency (WUE), while U. brizantha showed increased CO 2 assimilation and M. maximus presented higher biomass accumulation under doubled CO 2 concentration. The most significant improvement of increased CO 2 in all three species appears to be the increase in WUE. This improvement probably explains the positive increase of photosynthesis and biomass accumulation presented by U. brizantha and M. maximus, respectively. The increase in temperature affected leaf carbohydrate content of M. maximus by reducing sucrose, glucose and fructose content. These reductions were not related to thermal stress since photosynthesis and growth were not harmed. Cellulose content was not affected in any of the three species, just the lignin content in U. decumbens and M. maximus. All treatments promoted lignin content reduction in U. brizantha, suggesting a delay in leaf maturation of this species. Together, the results indicate that climate change may differentially promote changes in leaf gas exchanges, carbohydrate content and growth in C4 plant species studied and all of them could benefit in some way from these changes, constituting a threat to the native Cerrado biodiversity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Martínez-Lüscher, J; Morales, F; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Gomès, E; Pascual, I
2015-07-01
The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fernández-de-Uña, Laura; Aranda, Ismael; Rossi, Sergio; Fonti, Patrick; Cañellas, Isabel; Gea-Izquierdo, Guillermo
2018-04-27
In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.
Perdomo, Juan Alejandro; Conesa, Miquel À; Medrano, Hipólito; Ribas-Carbó, Miquel; Galmés, Jeroni
2015-10-01
This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B t ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B t correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in B t was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with B t under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change. © 2014 Scandinavian Plant Physiology Society.
Mäenpää, Maarit; Riikonen, Johanna; Kontunen-Soppela, Sari; Rousi, Matti; Oksanen, Elina
2011-08-01
Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2 × ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.
Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C
2016-07-01
Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.
Interaction between Silver Nanoparticles and Spinach Leaf
NASA Astrophysics Data System (ADS)
Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.
2013-12-01
Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. CytoViva Hyperspectral Imaging System was also employed to map the distribution of nanoAg in the leaf profile. Significant sorption of nanoAg on spinach leaf should urge the precaution with potential widespread use of ENPs in agriculture.
Ab Hamid, Suhaila; Md Rawi, Che Salmah
2017-01-01
Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT. PMID:28890763
Ab Hamid, Suhaila; Md Rawi, Che Salmah
2017-07-01
Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.
Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges
John-Bejai, C.; Farrell, A. D.; Cooper, F. M.; Oatham, M. P.
2013-01-01
Tropical hyperseasonal savannas provide a rare example of a tropical climax community dominated by graminoid species. Species living in such savannas are frequently exposed to excess heat and light, in addition to drought and waterlogging, and must possess traits to avoid or tolerate these stress factors. Here we examine the contrasting heat and light stress adaptations of two dominant savanna sedges: Lagenocarpus guianensis, which is restricted to the sheltered forest edge, and Lagenocarpus rigidus, which extends from the forest edge to the open savanna. An ecotone extending from the forest edge to the open savanna was used to assess differences in a range of physiological traits (efficiency of photosystem II, cell membrane thermostability, stomatal conductance, leaf surface reflectance and canopy temperature depression) and a range of leaf functional traits (length : width ratio, specific leaf area and degree of folding). Lagenocarpus guianensis showed significantly less canopy temperature depression than L. rigidus, which may explain why this species was restricted to the forest edge. The range of leaf temperatures measured was within the thermal tolerance of L. guianensis and allowed photosystem II to function normally, at least within the cool forest edge. The ability of L. rigidus to extend into the open savanna was associated with an ability to decouple leaf temperature from ambient temperature combined with enhanced cell membrane thermostability. The high degree of canopy temperature depression seen in L. rigidus was not explained by enhanced stomatal conductance or leaf reflectance, but was consistent with a capacity to increase specific leaf area and reduce leaf length: width ratio in the open savanna. Plasticity in leaf functional traits and in cell membrane thermostability are key factors in the ability of this savanna sedge to survive abiotic stress. PMID:24379971
Abdala-Roberts, Luis; Rasmann, Sergio; Berny-Mier Y Terán, Jorge C; Covelo, Felisa; Glauser, Gaétan; Moreira, Xoaquín
2016-12-01
It is generally thought that herbivore pressure is higher at lower elevations where climate is warmer and less seasonal, and that this has led to higher levels of plant defense investment at low elevations. However, the generality of this expectation has been called into question by recent studies. We tested for altitudinal gradients in insect leaf damage, plant defenses (phenolic compounds), and nutritional traits (phosphorus and nitrogen) in leaves of the long-lived tree Quercus robur, and further investigated the abiotic factors associated with such gradients. We sampled 20 populations of Q. robur distributed along an altitudinal gradient spanning 35-869 m above sea level, which covered most of the altitudinal range of this species and varied substantially in abiotic conditions, plant traits, and herbivory. Univariate regressions showed that leaf herbivory, phenolics, and phosphorus increased toward higher elevations, whereas leaf nitrogen did not vary with altitude. Multiple regression analyses indicated that temperature was the single most important factor associated with herbivory and appears to be strongly associated with altitudinal variation in damage. Leaf phenolics were also correlated with herbivory, but in a manner that suggests these chemical defenses do not underlie altitudinal variation in damage. In addition, we found that variation in leaf traits (phenolics and nutrients) was in turn associated with both climatic and soil variables. Overall, these findings suggest that altitudinal gradients in herbivory and defenses in Q. robur are uncoupled and that elevational variation in herbivory and plant traits responds mainly to abiotic factors. © 2016 Botanical Society of America.
Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter
2006-01-01
The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.
Frost and leaf-size gradients in forests: global patterns and experimental evidence.
Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin
2018-05-16
Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong
2017-01-01
Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.
Rattanabunta, Chiranan; Hanboonsong, Yupa
2015-04-01
The work consisted of two experiments, i.e. Experiment 1 was conducted under controlled environments where sugarcane plants were used as hosts. This investigation aimed to monitor the occurrence of the Sugarcane White Leaf disease and the abundance of Leafhopper insect vectors and also the work aimed to provide useful information in understanding some aspects on epidemiology of the Sugarcane White Leaf disease. A Completely Randomized Design with three replications was used to justify growth and development of Leafhopper insects as affected by different temperatures: 20 (T1), 25 (T2), 30 (T3) and 35 degrees C (T4). Experiment 2 was carried out to determine the numbers of Leafhopper insects with the use of light traps in the sugarcane Field 1 (ratoon plants), Field 2 (newly planted), Field 3 (newly planted) and Field 4 (ratoon plants). The results of Experiment 1 showed that growth and development of Leafhopper insects were highly affected by temperatures i.e. the higher the environmental temperature the faster the growth and development of the insects to reach its full adulthood. At 20 degrees C, Leafhopper insects took 12 days to lay eggs whereas at 25 degrees C the insects took only 6 days. Male reached its adulthood approximately 9 days earlier than female when cultured at 25 degrees C and became approximately one week at 30 degrees C or higher. The results of Experiment 2 showed that the majority of Leafhopper insects were found within the months of June and July for both newly planted and ratoon crops. A small amount was found in May and August with an exceptional case of Field 4 where the highest number of Leafhopper insects was found in April followed by June and July. For Sugarcane White Leaf disease, the disease was found in all months of the year except February for Fields 2 and 3. Newly planted sugarcane plants attained much smaller percentages of disease than those of the ratoon plants.
Martínez-Lüscher, Johann; Holmer, Marianne
2010-06-01
The potential threat to seagrasses of the invasive algae, Gracilaria vermiculophylla was assessed through metabolic indicators under experimental conditions. Net leaf photosynthesis (LNP) and dark respiration (LDR) were measured from leaf segments of Zostera marina shoots under different loads of G. vermiculophylla (control, low 2.2kg FW m(-2) and high 4kg FW m(-2)) in mesocosm experiments separated in tanks at four temperatures (19, 23.5, 26 and 30 degrees C). LNP decreased in the presence of the high density G. vermiculophylla mat (25% on average), being the most severe reductions at 30 degrees C (35% less in high). LDR did not respond significantly to differences in algal biomass, whereas a progressive increase was found with increasing temperatures (3.4 times higher at 30 degrees C than at 19 degrees C). Sulphide in porewater was measured weekly in order clarify the role of sediment conditions on seagrass metabolism, and increased both with algal biomass (29% in high) and temperature (from 0.5mM at 26 degrees C to 2.6mM at 30 degrees C), but changes in LNP and LDR were not correlated with sulphide concentrations. Seagrass survival rates showed decreasing trend with algal biomass at all the temperatures (from 74% to 21% survival). G. vermiculophylla showed harmful effects on Z. marina metabolism and survival with synergistic effects of temperature suggesting greater impact of invasive species under future higher water temperatures.
REGULATION OF ISOPRENE EMISSION RESPONSES TO RAPID LEAF TEMPERATURE FLUCTUATIONS
Isoprene emission from leaves is temperature dependent and may protect them from damage at high temperatures. We measured the temperature of white oak (Quercus alba L.) leaves at the top of the canopy. The largest changes in leaf temperature were associated with changes in solar ...
Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B.
2008-12-01
Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
Global Climatic Controls On Leaf Size
NASA Astrophysics Data System (ADS)
Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.
2015-12-01
Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.
He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang
2014-01-01
In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0–10 cm), middle (10–40 cm) and deep soil layers (40–100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect. PMID:25373739
NASA Astrophysics Data System (ADS)
He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang
2014-11-01
In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.
NASA Astrophysics Data System (ADS)
Veljović-Jovanović, S.; Vidović, M.; Morina, F.; Prokić, Lj.; Todorović, D. M.
2016-09-01
Green-white variegated leaves of Pelargonium zonale were studied using the photoacoustic method. Our aim was to characterize photosynthetically active green tissue and nonphotosynthetically active white tissue by the photoacoustic amplitude signals. We observed lower stomatal conductance and higher leaf temperature in white tissue than in green tissue. Besides these thermal differences, significantly higher absorbance in green tissue was based on chlorophyll and carotenoids which were absent in white tissue. However, optical properties of epidermal layers of both tissues were equal. The photoacoustic amplitude of white tissue was over four times higher compared to green tissue, which was correlated with lower stomatal conductance. In addition, at frequencies >700 Hz, the significant differences between the photoacoustic signals of green and white tissue were obtained. We identified the photoacoustic signal deriving from photosynthetic oxygen evolution in green tissue, using high intensity of red light modulated at 10 Hz. Moreover, the photoacoustic amplitude of green tissue increased progressively with time which corresponded to the period of induction of photosynthetic oxygen evolution. For the first time, very high frequencies (1 kHz to 5 kHz) were applied on leaf material.
Łukowski, Adrian; Giertych, Marian J.; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr
2015-01-01
The monophagous beetle, Altica brevicollis coryletorum, is a major leaf pest of Corylus avellana (common hazel). In contrast to majority of the other studied species of shrubs, sunlit leaves are grazed to a much greater extent than shaded leaves. Since the observation of a link between leaf irradiance level and A. brevicollis feeding is unique, we hypothesized that feeding preference of this beetle species is related to the speed needed to escape threats i.e. faster jumping. We also hypothesized that sunlit leaves are more nutritious and easier to consume than the leaves of shaded shrubs. Results indicated that beetle mass was greater in beetles occupying sunlit leaves, which is consistent with our second hypothesis. The study also confirmed under laboratory conditions, that larvae, pupae and beetles that were fed full-light (100% of full light) leaves were significantly heavier than those fed with shaded leaves (15% of full light). In the high irradiance conditions (higher temperature) duration of larval development is also reduced. Further results indicated that neither the concentration of soluble phenols, leaf toughness, or the number of trichomes could explain the insect’s preference for sunlit leaves. Notably, measurements of jump length of beetles of this species, both in the field and under laboratory conditions, indicated that the defense pattern related to jumping was associated with light conditions. The jump length of beetles in the sun was significantly higher than in the shade. Additionally, in laboratory tests, beetle defense (jumping) was more strongly affected by temperature (15, 25, or 35°C for 24h) than by leaf type. The effect of sunlit, higher nutrient leaves (greater level of non-structural carbohydrates) on defense (jumping) appears to be indirect, having a positive effect on insect mass in all developmental stages. PMID:25927706
NASA Astrophysics Data System (ADS)
Staudt, M.; Lhoutellier, L.
2011-09-01
Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90% of the total BVOC release (mean ± SD: 738 ± 378 ng m-2 projected leaf area s-1 or 13.1 ± 6.9 μg g-1 leaf dry weight h-1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments, decreases of MT-hc emissions under high temperatures were correlated with decreases in CO2-assimilation and/or photosynthetic electron transport. We conclude that light and temperature can have interactive short-term effects on the quantity and quality of BVOC emissions from Q. coccifera through substrate limitations of MT biosynthesis occurring at temperatures supraoptimal for photosynthetic processes that are exacerbated by oxidative stress and membrane damages. Such interactive effects are likely to occur frequently during hot and dry summers and simulations made in this work showed that they may have important consequences for emission predictions.
NASA Astrophysics Data System (ADS)
Staudt, M.; Lhoutellier, L.
2011-06-01
Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90 % of the total BVOC release (mean ± SD: 738 ± 378 ng m-2 projected leaf area s-1 or 13.1 ± 6.9 μg g-1 leaf dry weight h-1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked already around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments, decreases of MT-hc emissions under high temperatures were correlated with decreases in CO2-assimilation and/or photosynthetic electron transport. We conclude that light and temperature can have interactive short-term effects on the quantity and quality of BVOC emissions from Q. coccifera through substrate limitations of MT biosynthesis occurring at temperatures supraoptimal for photosynthetic processes that are exacerbated by oxidative stress and membrane damages. Such interactive effects are likely to occur frequently during hot and dry summers and simulations made in this work showed that they may have important consequences for emission predictions.
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.
1999-01-01
Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.
Modeling light and temperature effects on leaf emergence in wheat and barley
NASA Technical Reports Server (NTRS)
Volk, T.; Bugbee, B.
1991-01-01
Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.
Near-surface Thermal Infrared Imaging of a Mixed Forest
NASA Astrophysics Data System (ADS)
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.
Paciello, Pericle; Mencarelli, Fabio; Palliotti, Alberto; Ceccantoni, Brunella; Thibon, Cécile; Darriet, Philippe; Pasquini, Massimiliano; Bellincontro, Andrea
2017-03-01
The present paper details a new technique based on spraying nebulized water on vine canopy to counteract the negative impact of the current wave of hot summers with temperatures above 30 °C, which usually determine negative effects on vine yield, grape composition and wine quality. The automatized spraying system was able to maintain air temperature at below 30 °C (the threshold temperature to start spraying) for all of August 2013, when in the canopy of uncooled vines the temperature was as high as 36 °C. The maintenance of temperature below 30 °C reduced leaf stress linked to high temperature and irradiance regimes as highlighted by the decrease of H 2 O 2 content and catalase activity in the leaves. A higher amount of total polyphenols and organic acids and lower sugars characterized the grapes of cooled vines. Wine from these grapes had a higher content of some volatile thiols like 3-sulfanylhexanol (3SH) and 3-sulfanylhexylacetate (3SHA), and lower content of 4-methyl-4-sulfanylpentan-2-one (4MSP). Under conditions of high temperature and irradiance regimes, water nebulization on the vine canopy can represent a valid solution to reduce and/or avoid oxidative stress and associated effects in the leaves, ensure a regular berry ripening and maintain high wine quality. The consumption of water during nebulization was acceptable, being 180 L ha -1 min -1 , which lasted an average of about 1 min to reduce the temperature below the threshold value of 30 °C. A total of 85-90 hL (from 0.8 to 0.9 mm) of water per hectare per day was required. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Silver nano fabrication using leaf disc of Passiflora foetida Linn
NASA Astrophysics Data System (ADS)
Lade, Bipin D.; Patil, Anita S.
2017-06-01
The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.
Moura, Bárbara B; Alves, Edenise S
2014-11-01
Phenotypic plasticity of the leaves can interfere with the plant sensitivity to ozone (O3) toxic effect. This study aimed to assess whether the leaf structure of Ipomoea nil changes due to climatic variations and whether these changes affect the species' sensitivity. Field exposures, in different seasons (winter and spring) were made. The leaves that developed during the winter were thinner, with a lower proportion of photosynthetic tissues, higher proportion of intercellular spaces and lower density and stomatal index compared to those developed during the spring. The temperature and relative humidity positively influenced the leaf thickness and stomatal index. The visible injuries during winter were positively correlated with the palisade parenchyma thickness and negatively correlated with the percentage of spongy parenchyma; during the spring, the symptoms were positively correlated with the stomatal density. In conclusion, the leaf structure of I. nil varied among the seasons, interfering in its sensitivity to O3. Copyright © 2014 Elsevier Ltd. All rights reserved.
Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana
2013-11-01
Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.
Zhang, Haicheng; Liu, Shuguang; Regnier, Pierre; Yuan, Wenping
2018-05-01
Constraints of temperature on spring plant phenology are closely related to plant growth, vegetation dynamics, and ecosystem carbon cycle. However, the effects of temperature on leaf onset, especially for winter chilling, are still not well understood. Using long-term, widespread in situ phenology observations collected over China for multiple plant species, this study analyzes the quantitative response of leaf onset to temperature, and compares empirical findings with existing theories and modeling approaches, as implemented in 18 phenology algorithms. Results show that the growing degree days (GDD) required for leaf onset vary distinctly among plant species and geographical locations as well as at organizational levels (species and community), pointing to diverse adaptation strategies. Chilling durations (CHD) needed for releasing bud dormancy decline monotonously from cold to warm areas with very limited interspecies variations. Results also reveal that winter chilling is a crucial component of phenology models, and its effect is better captured with an index that accounts for the inhomogeneous effectiveness of low temperature to chilling rate than with the conventional CHD index. The impact of spring warming on leaf onset is nonlinear, better represented by a logistical function of temperature than by the linear function currently implemented in biosphere models. The optimized base temperatures for thermal accumulation and the optimal chilling temperatures are species-dependent and average at 6.9 and 0.2°C, respectively. Overall, plants' chilling requirement is not a constant, and more chilling generally results in less requirement of thermal accumulation for leaf onset. Our results clearly demonstrate multiple deficiencies of the parameters (e.g., base temperature) and algorithms (e.g., method for calculating GDD) in conventional phenology models to represent leaf onset. Therefore, this study not only advances our mechanistic and quantitative understanding of temperature controls on leaf onset but also provides critical information for improving existing phenology models. © 2017 John Wiley & Sons Ltd.
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-01-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112
NASA Astrophysics Data System (ADS)
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-06-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.
USDA-ARS?s Scientific Manuscript database
The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...
USDA-ARS?s Scientific Manuscript database
Because high temperatures under field conditions are associated with high water vapor pressure deficits, often causing leaf desiccation, we hypothesized that decreased stomatal conductance at elevated carbon dioxide may increase leaf water potential and protect photosynthesis in C4 species from dama...
Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J
2016-11-01
Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Katata, Genki; Held, Andreas; Mauder, Matthias
2014-05-01
The wetness of plant leaf surfaces (leaf wetness) is important in meteorological, agricultural, and environmental studies including plant disease management and the deposition process of atmospheric trace gases and particles. Although many models have been developed to predict leaf wetness, wetness data directly measured at the leaf surface for model validations are still limited. In the present study, the leaf wetness was monitored using seven electrical sensors directly clipped to living leaf surfaces of thin and broad-leaved grasses. The measurements were carried out at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany from September 20 to November 8, 2013. Numerical simulations of a multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors were carried out for analyzing the data. For numerical simulations, the additional routine meteorological data of wind speed, air temperature and humidity, radiation, rainfall, long-wave radiative surface temperature, surface fluxes, ceilometer backscatter, and canopy or snow depth were used. The model reproduced well the observed leaf wetness, net radiation, momentum and heat, water vapor, and CO2 fluxes, surface temperature, and soil temperature and moisture. In rain-free days, a typical diurnal cycle as a decrease and increase during the day- and night-time, respectively, was observed in leaf wetness data. The high wetness level was always monitored under rain, fog, and snowcover conditions. Leaf wetness was also often high in the early morning due to thawing of leaf surface water frozen during a cold night. In general, leaf wetness was well correlated with relative humidity (RH) in condensation process, while it rather depended on wind speed in evaporation process. The comparisons in RH-wetness relations between leaf characteristics showed that broad-leaved grasses tended to be wetter than thin grasses.
Sundararaman, B; Muthuramu, K L
2016-11-01
The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.
Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...
Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.
NASA Astrophysics Data System (ADS)
Maher, B.; Mitchell, R.
2009-05-01
Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
ROSATI, A.; METCALF, S. G.; BUCHNER, R. P.; FULTON, A. E.; LAMPINEN, B. D.
2006-01-01
• Background and Aims Kaolin applications have been used to mitigate the negative effects of water and heat stress on plant physiology and productivity with variable results, ranging from increased to decreased yields and photosynthetic rates. The mechanisms of action of kaolin applications are not clear: although the increased albedo reduces leaf temperature and the consequent heat stress, it also reduces the light available for photosynthesis, possibly offsetting benefits of lower temperature. The objective of this study was to investigate which of these effects are prevalent and under which conditions. • Methods A 6 % kaolin suspension was applied on well-irrigated and water-stressed walnut (Juglans regia) and almond (Prunus dulcis) trees. Water status (i.e. stem water potential, Ψs), gas exchange (i.e. light-saturated CO2 assimilation rate, Amax; stomatal conductance, gs), leaf temperature (Tl) and physiological relationships in treated and control trees were then measured and compared. • Key Results In both species, kaolin did not affect the daily course of Ψs whereas it reduced Amax by 1–4 μmol CO2 m–2 s–1 throughout the day in all combinations of species and irrigation treatments. Kaolin did not reduce gs in any situation. Consequently, intercellular CO2 concentration (Ci) was always greater in treated trees than in controls, suggesting that the reduction of Amax with kaolin was not due to stomatal limitations. Kaolin reduced leaf temperature (Tl) by about 1–3 °C and leaf-to-air vapour pressure difference (VPDl) by about 0·1–0·7 kPa. Amax was lower at all values of gs, Tl and VPDl in kaolin-treated trees. Kaolin affected the photosynthetic response to the photosynthetically active radiation (PAR) in almond leaves: kaolin-coated leaves had similar dark respiration rates and light-saturated photosynthesis, but a higher light compensation point and lower apparent quantum yield, while the photosynthetic light-response curve saturated at higher PAR. When these parameters were used to model the photosynthetic response curve to PAR, it was estimated that the kaolin film allowed 63 % of the incident PAR to reach the leaf. • Conclusions The main effect of kaolin application was the reduction, albeit minor, of photosynthesis, which appeared to be related to the shading of the leaves. The reduction in Tl and VPDl with kaolin did not suffice to mitigate the adverse effects of heat and water stress on Amax. PMID:16735404
Sita, Kumari; Sehgal, Akanksha; Kumar, Jitendra; Kumar, Shiv; Singh, Sarvjeet; Siddique, Kadambot H. M.; Nayyar, Harsh
2017-01-01
Rising temperatures are proving detrimental for various agricultural crops. Cool-season legumes such as lentil (Lens culunaris Medik.) are sensitive to even small increases in temperature during the reproductive stage, hence the need to explore the available germplasm for heat tolerance as well as its underlying mechanisms. In the present study, a set of 38 core lentil accessions were screened for heat stress tolerance by sowing 2 months later (first week of January; max/min temperature >32/20°C during the reproductive stage) than the recommended date of sowing (first week of November; max/min temperature <32/20°C during the reproductive stage). Screening revealed some promising heat-tolerant genotypes (IG2507, IG3263, IG3297, IG3312, IG3327, IG3546, IG3330, IG3745, IG4258, and FLIP2009) which can be used in a breeding program. Five heat-tolerant (HT) genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009) and five heat-sensitive (HS) genotypes (IG2821, IG2849, IG4242, IG3973, IG3964) were selected from the screened germplasm and subjected to further analysis by growing them the following year under similar conditions to probe the mechanisms associated with heat tolerance. Comparative studies on reproductive function revealed significantly higher pollen germination, pollen viability, stigmatic function, ovular viability, pollen tube growth through the style, and pod set in HT genotypes under heat stress. Nodulation was remarkably higher (1.8–22-fold) in HT genotypes. Moreover, HT genotypes produced more sucrose in their leaves (65–73%) and anthers (35–78%) that HS genotypes, which was associated with superior reproductive function and nodulation. Exogenous supplementation of sucrose to in vitro-grown pollen grains, collected from heat-stressed plants, enhanced their germination ability. Assessment of the leaves of HT genotypes suggested significantly less damage to membranes (1.3–1.4-fold), photosynthetic function (1.14–1.17-fold) and cellular oxidizing ability (1.1–1.5-fold) than HS genotypes, which was linked to higher relative leaf water content (RLWC) and stomatal conductance (gS). Consequently, HT genotypes had less oxidative damage (measured as malondialdehyde and hydrogen peroxide concentration), coupled with a higher expression of antioxidants, especially those of the ascorbate–glutathione pathway. Controlled environment studies on contrasting genotypes further supported the impact of heat stress and differentiated the response of HT and HS genotypes to varying temperatures. Our studies indicated that temperatures >35/25°C were highly detrimental for growth and yield in lentil. While HT genotypes tolerated temperatures up to 40/30°C by producing fewer pods, the HS genotypes failed to do so even at 38/28°C. The findings attributed heat tolerance to superior pollen function and higher expression of leaf antioxidants. PMID:28579994
Weber, J A; Tenhunen, J D; Lange, O L
1985-09-01
The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber, and one mesophytic species, Spinacia oleracea. Photosynthesis and transpiration were measured over a range of temperatures, 20-39° C. The external concentration of CO2 was varied from 340 μbar to near CO2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO2 concentration, the CO2 compensation point (Γ), and the extrapolated rate of CO2 released into CO2-free air (R i) were calculated. At an external CO2 concentration of 320-340 μbar CO2, photosynthesis decreased with temperature in all species. The effect of temperature on Γ was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber. The absolut value of R i increased with temperature in S. oleracea, while changing little or decreasing in the sclerophylls. Variations in Γ and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea.
Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao
2016-12-01
Low temperature associated with high light can induce photoinhibition of photosystem I (PSI) and photosystem II (PSII). However, the photosynthetic electron flow and specific photoprotective responses in alpine evergreen broad-leaf plants in winter is unclear. We analyzed seasonal changes in PSI and PSII activities, and energy quenching in PSI and PSII in three alpine broad-leaf tree species, Quercus guyavifolia (Fagaceae), Rhododendron decorum (Ericaceae), Euonymus tingens (Celastraceae). In winter, PSII activity remained stable in Q. guyavifolia but decreased significantly in R. decorum and E. tingens. Q. guyavifolia showed much higher capacities of cyclic electron flow (CEF), water-water cycle (WWC), non-photochemical quenching (NPQ) than R. decorum and E. tingens in winter. These results indicated that in alpine evergreen broad-leaf tree species the PSII activity in winter was closely related to these photoprotective mechanisms. Interestingly, unlike PSII, PSI activity was maintained stable in winter in the three species. Meanwhile, photosynthetic electron flow from PSII to PSI (ETRII) was much higher in Q. guyavifolia, suggesting that the mechanisms protecting PSI activity against photoinhibition in winter differed among the three species. A high level of CEF contributed the stability of PSI activity in Q. guyavifolia. By comparison, R. decorum and E. tingens prevented PSI photoinhibition through depression of electron transport to PSI. Taking together, CEF, WWC and NPQ played important roles in coping with excess light energy in winter for alpine evergreen broad-leaf tree species. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.
1996-01-01
To investigate the effects of environment on plant volatile emissions, 'Waldmann's Green' leaf lettuce was cultivated under different levels of photosynthetic photon flux (PPF), photoperiod, and temperature. A modified growth chamber was used to sample plant volatile emissions nondestructively, over time, and under controlled conditions. Total volatile emission rates were significantly higher from lettuce cultivated under PPF of 360 or 200 micromoles m-2 s-1 compared to 105 micromoles m-2 s-1, and significantly higher under a 16-h photoperiod than an 8-h photoperiod. No differences were detected among emission rates from different temperature treatments. In controlled environments, emissions could be regulated by adjusting environmental conditions accordingly.
Effects of activation energy and activation volume on the temperature-dependent viscosity of water.
Kwang-Hua, Chu Rainer
2016-08-01
Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.
Autumn leaf subsidies influence spring dynamics of freshwater plankton communities.
Fey, Samuel B; Mertens, Andrew N; Cottingham, Kathryn L
2015-07-01
While ecologists primarily focus on the immediate impact of ecological subsidies, understanding the importance of ecological subsidies requires quantifying the long-term temporal dynamics of subsidies on recipient ecosystems. Deciduous leaf litter transferred from terrestrial to aquatic ecosystems exerts both immediate and lasting effects on stream food webs. Recently, deciduous leaf additions have also been shown to be important subsidies for planktonic food webs in ponds during autumn; however, the inter-seasonal effects of autumn leaf subsidies on planktonic food webs have not been studied. We hypothesized that autumn leaf drop will affect the spring dynamics of freshwater pond food webs by altering the availability of resources, water transparency, and the metabolic state of ponds. We created leaf-added and no-leaf-added field mesocosms in autumn 2012, allowed mesocosms to ice-over for the winter, and began sampling the physical, chemical, and biological properties of mesocosms immediately following ice-off in spring 2013. At ice-off, leaf additions reduced dissolved oxygen, elevated total phosphorus concentrations and dissolved materials, and did not alter temperature or total nitrogen. These initial abiotic effects contributed to higher bacterial densities and lower chlorophyll concentrations, but by the end of spring, the abiotic environment, chlorophyll and bacterial densities converged. By contrast, zooplankton densities diverged between treatments during the spring, with leaf additions stimulating copepods but inhibiting cladocerans. We hypothesized that these differences between zooplankton orders resulted from resource shifts following leaf additions. These results suggest that leaf subsidies can alter both the short- and long-term dynamics of planktonic food webs, and highlight the importance of fully understanding how ecological subsidies are integrated into recipient food webs.
Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R
2013-09-01
Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.
Chen, Xiaoqiu; Tian, Youhua; Xu, Lin
2015-10-01
Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.
NASA Astrophysics Data System (ADS)
Chen, Xiaoqiu; Tian, Youhua; Xu, Lin
2015-10-01
Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.
Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars
Zhao, Nan; Yang, Xixiang; Zhang, Jing; Zhu, Ling; Lv, Yizhong
2017-01-01
Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer–Emmett–Teller N2 surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, 13C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m2/g and 0.2302 cm3/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The qmax values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700. PMID:28937637
Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker
2015-01-01
The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051
Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.
Zhao, Nan; Yang, Xixiang; Zhang, Jing; Zhu, Ling; Lv, Yizhong
2017-09-22
Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, 13 C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The q max values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.
Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker
2015-01-01
The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.
Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.
2014-01-01
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213
Possible impacts of climate change on natural vegetation in Saxony (Germany).
Chmielewski, Frank M; Müller, Antje; Küchler, Wilfried
2005-11-01
Recent climate changes have had distinct impacts on plant development in many parts of the world. Higher air temperatures, mainly since the end of the 1980s, have led to advanced timing of phenological phases and consequently to an extension of the general growing season. For this reason it is interesting to know how plants will respond to future climate change. In this study simple phenological models have been developed to estimate the impact of climate change on the natural vegetation in Saxony. The estimations are based on a regional climate scenario for the state of Saxony. The results indicate that changes in the timing of phenophases could continue in the future. Due to distinct temperature changes in winter and in summer, mainly the spring and summer phases will be advanced. Spring phenophases, such as leafing or flowering, show the strongest trends. Depending on the species, the average timing of these phenophases could be advanced by 3-27 days by 2050. Phenophases in autumn show relatively small changes. Thus, the annual growth period of individual trees will be further extended, mainly because of the shift of spring phases. Frequent droughts in summer and in autumn can compensate for the earlier leafing of trees, because in this case leaf colouring and leaf fall would start some weeks earlier. In such cases, the growing period would not be really extended, but shifted to the beginning of the year.
Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K
2017-07-01
Understanding of the extent of acclimation of light-saturated net photosynthesis (A n ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (T growth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO 2 response curves of A n were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (V cmax ) and electron transport (J max ) at each treatment's respective T growth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO 2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and T growth , A n at current atmospheric CO 2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing T growth . Similarly, area-based rates of V cmax at a measurement T of 25 °C (V cmax 25 ) linearly declined with increasing T growth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained V cmax and A n for leaves developed at higher T growth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for T growth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of T growth -mediated declines in V cmax 25 on A n , complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of V cmax 25 . © 2017 John Wiley & Sons Ltd.
Xu, Zhen-feng; Hu, Ting-xing; Zhang, Li; Zhang, Yuan-bin; Xian, Jun-ren; Wang, Kai-yun
2009-01-01
By using open-top chamber (OTC), the effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of Western Sichuan were studied. The results showed that comparing with the control, the mean air temperature at 1.2 m above the ground throughout S. eriostachya growth season in OTC increased by 2.9 degrees C, while the soil temperature at the depth of 5 cm only increased by 0.4 degrees C. The temperature increase in OTC made S. eriostachya budding advanced and defoliation postponed obviously, and the leaf life-span longer. The leaf and branch growth rates as well as the specific leaf area in OTC increased obviously, whereas the leaf nitrogen concentration decreased significantly. In OTC, the stomata conductance, net photosynthetic rate, photorespiration, and dark respiration rate of S. eriostachya all exhibited an increasing trend. It was suggested that S. eriostachya had stronger capability to adapt to warming, and, under the background of future global climate change, the elevation of S. eriostachya distribution in the timberline ecotone would be likely to ascend.
Boreal and temperate trees show strong acclimation of respiration to warming.
Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A
2016-03-31
Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.
Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.
2004-01-01
To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902
Impacts of a spring heat wave on canopy processes in a northern hardwood forest.
Filewod, Ben; Thomas, Sean C
2014-02-01
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.
Hasan, Yaser; Briggs, William; Matschegewski, Claudia; Ordon, Frank; Stützel, Hartmut; Zetzsche, Holger; Groen, Simon; Uptmoor, Ralf
2016-07-01
QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.
Padmavathi, Chintalapati; Katti, Gururaj; Sailaja, V.; Padmakumari, A.P.; Jhansilakshmi, V.; Prabhakar, M.; Prasad, Y.G.
2013-01-01
The rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) is a predominant foliage feeder in all the rice ecosystems. The objective of this study was to examine the development of leaf folder at 7 constant temperatures (18, 20, 25, 30, 32, 34, 35° C) and to estimate temperature thresholds and thermal constants for the forecasting models based on heat accumulation units, which could be developed for use in forecasting. The developmental periods of different stages of rice leaf folder were reduced with increases in temperature from 18 to 34° C. The lower threshold temperatures of 11.0, 10.4, 12.8, and 11.1° C, and thermal constants of 69, 270, 106, and 455 degree days, were estimated by linear regression analysis for egg, larva, pupa, and total development, respectively. Based on the thermodynamic non-linear optimSSI model, intrinsic optimum temperatures for the development of egg, larva, and pupa were estimated at 28.9, 25.1 and 23.7° C, respectively. The upper and lower threshold temperatures were estimated as 36.4° C and 11.2° C for total development, indicating that the enzyme was half active and half inactive at these temperatures. These estimated thermal thresholds and degree days could be used to predict the leaf folder activity in the field for their effective management. PMID:24205891
Schmitt, J L; Windisch, P G
2012-05-01
The leaf production and senescence, formation and release of spores of Cyathea atrovirens (Langsd. & Fisch.) Domin were analysed based on the monthly monitoring of 50 plants growing in a secondary forest, in the municipality of Novo Hamburgo, in the state of Rio Grande do Sul, during the year 2004. The caudex height and number of mature and fertile leaves were recorded annually in 2004-09. In 2004, monthly production and senescence of leaves were concomitant, without total leaf abscission. Population synchrony at emergence (Z = 0.86) and leaf senescence (Z = 0.82) increased in spring but did not correlate with temperature and photoperiod. All individuals were fertile and the sporangia production and spore liberation presented higher and equal synchrony (Z = 0.84) respectively in spring and summer. Sporangia production was related with temperature and photoperiod, however taller plants did not produce more fertile leaves. Phenological events analysed were not influenced by precipitation, as expected for forests in non-seasonal climate. Over five years (2004-09), the annual mean caudex growth varied between 1.19 and 2.50 cm.year-1 and the plants appeared to have an ability to maintain a relatively stable amount of leaves throughout this period.
Millhollon, Eddie P.; Williams, Larry E.
1986-01-01
Patterns of leaf carbohydrate partitioning and nodule activity in soybean plants grown under natural conditions and the irradiance level required to produce sufficient carbohydrate to obtain maximum rates of apparent N2-fixation (acetylene reduction) were measured. Soybean plants, grown outdoors, maintained constant levels of leaf soluble sugars while leaf starch pools varied diurnally. When root temperature was kept at 25°C and shoot temperature was allowed to vary with ambient temperature, the plants maintained constant rates of apparent N2-fixation and root+nodule respiration. Results from a second experiment, in which the entire plant was kept at 25°C, were similar to those of the first experiment. Shoot carbon exchange rate of plants from the second experiment was light saturated at photosynthetic photon flux densities between 400 and 600 micromoles per square meter per second. When plants were subjected to an extended 40-hour dark period to deplete carbohydrate reserves, apparent N2-fixation was unaffected during the first 10 hours of darkness, decreased rapidly between 10 and 16 hours, and plateaued at one-third the initial level thereafter. After the extended dark period, plants were exposed to photosynthetic photon flux density from 200 to 1000 micromoles per square meter per second for 10 hours. Photosynthetic photon flux densities of 200 micromoles per square meter per second and greater resulted in maximum leaf soluble sugar content and nodule activity. Leaf starch content increased with irradiance levels up to 600 micromoles per square meter per second with no further increase at higher irradiance levels. Results presented here indicate that maximum nodule activity occurs at irradiance levels that do not saturate the plant's photosynthetic apparatus. This response would allow for maximum N2-fixation to occur in a nodulated legume during periods of inclement weather. PMID:16664789
Huang, Yong-Ju; Evans, Neal; Li, Zi-Qin; Eckert, Maria; Chèvre, Anne-Marie; Renard, Michel; Fitt, Bruce D L
2006-01-01
Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.
NASA Astrophysics Data System (ADS)
Hafizhah, R.; Juwono, A. L.; Roseno, S.
2017-05-01
The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.
Determining past leaf-out times of New England's deciduous forests from herbarium specimens.
Everill, Peter H; Primack, Richard B; Ellwood, Elizabeth R; Melaas, Eli K
2014-08-01
• There is great interest in studying leaf-out times of temperate forests because of the importance of leaf-out in controlling ecosystem processes, especially in the face of a changing climate. Remote sensing and modeling, combined with weather records and field observations, are increasing our knowledge of factors affecting variation in leaf-out times. Herbarium specimens represent a potential new source of information to determine whether the variation in leaf-out times observed in recent decades is comparable to longer time frames over past centuries.• Here we introduce the use of herbarium specimens as a method for studying long-term changes in leaf-out times of deciduous trees. We collected historical leaf-out data for the years 1834-2008 from common deciduous trees in New England using 1599 dated herbarium specimens with young leaves.• We found that leaf-out dates are strongly affected by spring temperature, with trees leafing out 2.70 d earlier for each degree C increase in mean April temperature. For each degree C increase in local temperature, trees leafed out 2.06 d earlier. Additionally, the mean response of leaf-out dates across all species and sites over time was 0.4 d earlier per decade. Our results are of comparable magnitude to results from studies using remote sensing and direct field observations.• Across New England, mean leaf-out dates varied geographically in close correspondence with those observed in studies using satellite data. This study demonstrates that herbarium specimens can be a valuable source of data on past leaf-out times of deciduous trees. © 2014 Botanical Society of America, Inc.
Mouna, Jrad; Imen, Fendri; Choba Ines, Ben; Nourredine, Drira; Adel, Kadri; Néji, Gharsallah
2015-02-01
The present study aimed to investigate and compare the enzymatic production of endophytic bacteria isolated from healthy and brittle leaf disease affected date palm leaves (pectinase, cellulase, lipase, and amylase). The findings revealed that the enzymatic products from the bacterial isolates of healthy date palm leaves were primarily 33% amylolytic enzyme, 33 % cellulase, 25 % pectinase, and 25 % lipase. The isolates from brittle leaf disease date palm leaves, on the other hand, were noted to produce 16 % amylolytic enzyme, 20 % cellulose, 50 % pectinase, and 50 % lipase. The effects of temperature and pH on amylase, pectinase, and cellulose activities were investigated. The Bacillus subtilis JN934392 strain isolated from healthy date palm leaves produced higher levels of amylase activity at pH 7. A Box Behnken Design (BBD) was employed to optimize amylase extraction. Maximal activity was observed at pH and temperature ranges of pH 6-6.5 and 37-39 °C, respectively. Under those conditions, amylase activity was noted to be attained 9.37 U/ml. The results showed that the enzyme was able to maintain more than 50 % of its activity over a temperature range of 50-80 °C, with an optimum at 70 °C. This bacterial amylase showed high activity compared to other bacteria, which provides support for its promising candidacy for future industrial application.
USDA-ARS?s Scientific Manuscript database
Temperature and drought are major abiotic limitations to crop productivity worldwide. While abiotic stress physiology research has focused primarily on fully expanded leaves, no studies have investigated photosynthetic tolerance to concurrent drought and high temperature during leaf ontogeny. To add...
Changes in host-parasitoid food web structure with elevation.
Maunsell, Sarah C; Kitching, Roger L; Burwell, Chris J; Morris, Rebecca J
2015-03-01
Gradients in elevation are increasingly used to investigate how species respond to changes in local climatic conditions. Whilst many studies have shown elevational patterns in species richness and turnover, little is known about how food web structure is affected by elevation. Contrasting responses of predator and prey species to elevation may lead to changes in food web structure. We investigated how the quantitative structure of a herbivore-parasitoid food web changes with elevation in an Australian subtropical rain forest. On four occasions, spread over 1 year, we hand-collected leaf miners at twelve sites, along three elevational gradients (between 493 m and 1159 m a.s.l). A total of 5030 insects, including 603 parasitoids, were reared, and summary food webs were created for each site. We also carried out a replicated manipulative experiment by translocating an abundant leaf-mining weevil Platynotocis sp., which largely escaped parasitism at high elevations (≥ 900 m a.s.l.), to lower, warmer elevations, to test if it would experience higher parasitism pressure. We found strong evidence that the environmental change that occurs with increasing elevation affects food web structure. Quantitative measures of generality, vulnerability and interaction evenness decreased significantly with increasing elevation (and decreasing temperature), whilst elevation did not have a significant effect on connectance. Mined plant composition also had a significant effect on generality and vulnerability, but not on interaction evenness. Several relatively abundant species of leaf miner appeared to escape parasitism at higher elevations, but contrary to our prediction, Platynotocis sp. did not experience greater levels of parasitism when translocated to lower elevations. Our study indicates that leaf-mining herbivores and their parasitoids respond differently to environmental conditions imposed by elevation, thus producing structural changes in their food webs. Increasing temperatures and changes in vegetation communities that are likely to result from climate change may have a restructuring effect on host-parasitoid food webs. Our translocation experiment, however, indicated that leaf miners currently escaping parasitism at high elevations may not automatically experience higher parasitism under warmer conditions and future changes in food web structure may depend on the ability of parasitoids to adapt to novel hosts. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B. A.
2009-04-01
Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road (Figure 1 c), with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low-temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. XARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 μm. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 μm, with a significant number of iron-rich spherules below 1 μm in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 - 2 m height.
Locke, Anna M.; Sack, Lawren; Bernacchi, Carl J.; Ort, Donald R.
2013-01-01
Background and Aims Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Methods Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. Key results In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Conclusions Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change. PMID:23864003
Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang
2013-01-01
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments. PMID:23776594
Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang
2013-01-01
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments.
Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo
2018-04-01
Leaf photosynthesis of crops acclimates to elevated CO 2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO 2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO 2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO 2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C 3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g s ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO 2 , elevated temperature, and their combination. The combination of elevated CO 2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g s model significantly underestimated g s under the combination of elevated CO 2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g s -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g s hardly improved prediction of leaf photosynthesis under the four combinations of CO 2 and temperature. Therefore, the typical procedure that crop models using the FvCB and g s models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, A.; Sevanto, Sanna Annika; Close, J. D.
Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less
Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...
2016-11-05
Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less
Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants
NASA Astrophysics Data System (ADS)
Zohner, Constantin M.; Benito, Blas M.; Svenning, Jens-Christian; Renner, Susanne S.
2016-12-01
The relative roles of temperature and day length in driving spring leaf unfolding are known for few species, limiting our ability to predict phenology under climate warming. Using experimental data, we assess the importance of photoperiod as a leaf-out regulator in 173 woody species from throughout the Northern Hemisphere, and we also infer the influence of winter duration, temperature seasonality, and inter-annual temperature variability. We combine results from climate- and light-controlled chambers with species’ native climate niches inferred from georeferenced occurrences and range maps. Of the 173 species, only 35% relied on spring photoperiod as a leaf-out signal. Contrary to previous suggestions, these species come from lower latitudes, whereas species from high latitudes with long winters leafed out independent of photoperiod. The strong effect of species’ geographic-climatic history on phenological strategies complicates the prediction of community-wide phenological change.
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo; ...
2017-02-28
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less
Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard
2017-01-01
Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775
Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander
2013-10-01
In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.
Weerasinghe, Lasantha K; Creek, Danielle; Crous, Kristine Y; Xiang, Shuang; Liddell, Michael J; Turnbull, Matthew H; Atkin, Owen K
2014-06-01
We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher
2017-01-01
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.
Perdomo, Juan A.; Carmo-Silva, Elizabete; Hermida-Carrera, Carmen; Flexas, Jaume; Galmés, Jeroni
2016-01-01
The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD) and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat, and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa), and a high temperature (HT, 38°C, VPD 3.5 kPa), both under well-watered (WW) and water deficit (WD) conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax, and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species. PMID:27920782
NASA Astrophysics Data System (ADS)
Ding, J.; Johnson, E. A.; Martin, Y. E.
2017-12-01
Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water potential with respect to net leaf carbon gain. With same leaf area, total xylem resistance of narrow leaf is higher than broad leaf. Given same stoma resistance and petiole water potential, narrow leaf will lose more xylem water potential than broad leaf. Consequently, narrow leaf has smaller size and higher stoma resistance at optimum.
Lester, Gene E; Makus, Donald J; Hodges, D Mark
2010-03-10
Current retail marketing conditions allow produce to receive artificial light 24 h per day during its displayed shelf life. Essential human-health vitamins [ascorbic acid (vit C), folate (vit B(9)), phylloquinone (vit K(1)), alpha-tocopherol (vit E), and the carotenoids lutein, violaxanthin, zeaxanthin, and beta-carotene (provit A)] also are essential for photosynthesis and are biosynthesized in plants by light conditions even under chilling temperatures. Spinach leaves, notably abundant in the aforementioned human-health compounds, were harvested from flat-leaf 'Lazio' and crinkle-leafed 'Samish' cultivars at peak whole-plant maturity as baby (top- and midcanopy) and larger (lower-canopy) leaves. Leaves were placed as a single layer in commercial, clear-polymer retail boxes and stored at 4 degrees C for up to 9 days under continuous light (26.9 micromol.m(2 ).s) or dark. Top-canopy, baby-leaf spinach generally had higher concentrations of all bioactive compounds, on a dry weight basis, with the exception of carotenoids, than bottom-canopy leaves. All leaves stored under continuous light generally had higher levels of all bioactive compounds, except beta-carotene and violaxanthin, and were more prone to wilting, especially the flat-leafed cultivar. All leaves stored under continuous darkness had declining or unchanged levels of the aforementioned bioactive compounds. Findings from this study revealed that spinach leaves exposed to simulated retail continuous light at 4 degrees C, in clear plastic containers, were overall more nutritionally dense (enriched) than leaves exposed to continuous darkness.
Walker, Berkley J; Orr, Douglas J; Carmo-Silva, Elizabete; Parry, Martin A J; Bernacchi, Carl J; Ort, Donald R
2017-06-01
Rates of carbon dioxide assimilation through photosynthesis are readily modeled using the Farquhar, von Caemmerer, and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C 3 photosynthesis. As models of CO 2 assimilation rate are used more broadly for simulating photosynthesis among species and across scales, it is increasingly important that their temperature dependencies are accurately parameterized. A vital component of the FvCB model, the photorespiratory CO 2 compensation point (Γ * ), combines the biochemistry of Rubisco with the stoichiometry of photorespiratory release of CO 2 . This report details a comparison of the temperature response of Γ * measured using different techniques in three important model and crop species (Nicotiana tabacum, Triticum aestivum, and Glycine max). We determined that the different Γ * determination methods produce different temperature responses in the same species that are large enough to impact higher-scale leaf models of CO 2 assimilation rate. These differences are largest in N. tabacum and could be the result of temperature-dependent increases in the amount of CO 2 lost from photorespiration per Rubisco oxygenation reaction.
Bollazzi, Martin; Roces, Flavio
2010-01-01
The construction of mound-shaped nests by ants is considered as a behavioral adaptation to low environmental temperatures, i.e., colonies achieve higher and more stables temperatures than those of the environment. Besides the well-known nests of boreal Formica wood-ants, several species of South American leaf-cutting ants of the genus Acromyrmex construct thatched nests. Acromyrmex workers import plant fragments as building material, and arrange them so as to form a thatch covering a central chamber, where the fungus garden is located. Thus, the degree of thermoregulation attained by the fungus garden inside the thatched nest largely depends on how the thatch affects the thermal relations between the fungus and the environment. This work was aimed at studying the thermoregulatory function of the thatched nests built by the grass-cutting ant Acromyrmex heyeri Forel (Hymenoptera: Formicidae: Myrmicinae). Nest and environmental temperatures were measured as a function of solar radiation on the long-term. The thermal diffusivity of the nest thatch was measured and compared to that of the surrounding soil, in order to assess the influence of the building material on the nest's thermoregulatory ability. The results showed that the average core temperature of thatched nests was higher than that of the environment, but remained below values harmful for the fungus. This thermoregulation was brought about by the low thermal diffusivity of the nest thatch built by workers with plant fragments, instead of the readily-available soil particles that have a higher thermal diffusivity. The thatch prevented diurnal nest overheating by the incoming solar radiation, and avoided losses of the accumulated daily heat into the cold air during the night. The adaptive value of thatching behavior in Acromyrmex leaf-cutting ants occurring in the southernmost distribution range is discussed. PMID:20883129
Schulze, E -D; Lange, O L; Koch, W
1972-12-01
The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO 2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.
NASA Astrophysics Data System (ADS)
Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar
2017-04-01
Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the speed of the temperature increase. Most importantly, the decline of photosynthesis was accompanied by a rapid and complete depletion of leaf starch reserves followed by the prompt death of the plants. We therefore conclude, that temperature increases to 29 - 33°C lead to carbon starvation in epiphytic orchids of tropical cloud forests that is driven by the break-down of photosynthesis. The physiological reason for the observed dysfunction of photosynthesis at only moderately warm temperatures are currently not well understood. Within an ongoing phytotron study, we thus are aiming to confirm and deepen the findings in the genus Dracula in Masdevallia, another orchid genera native and endemic to tropical cloud forests.
Variations in the methane budget over the last two millennia
NASA Astrophysics Data System (ADS)
Derendorp, L.
2012-06-01
Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the emission of C2-C5 hydrocarbons, molecular hydrogen (H2), carbon monoxide (CO) and methyl chloride (CH3Cl) from leaf litter and the factors that control the emissions were investigated. For different plant species, the emission rates of several C2-C5 hydrocarbons increased with temperature between 20 and 100°C according to the Arrhenius relation. When leaf litter was irradiated with UV, the emission increased linearly with the intensity of the UV. UVB radiation was more efficient in the generation of hydrocarbons from leaf litter than UVA. A simple upscaling showed that C2-C5 hydrocarbon emissions from leaf litter are likely insignificant for their global budgets, but may have a small influence on atmospheric chemistry on the local scale. Senescent and dead plant material releases carbon monoxide (CO), methane and larger hydrocarbons upon heating or irradiation with UV, but emissions of hydrogen (H2) have not been reported. In this study, H2 was released from leaf litter of Sequoiadendron giganteum in detectable amounts at temperatures above 45°C, whereas CO was also emitted at ambient temperature. Leaf litter has been identified as a potentially important source of CH3Cl. However, the factors controlling the emissions are unclear. Laboratory experiments have been performed in which CH3Cl emissions were measured from leaf litter of different plant species. For each investigated plant species, the CH3Cl emission rate strongly increased with temperature according to the Arrhenius relation. However, at constant temperature, large differences between different plants were observed. Therefore, CH3Cl emissions were measured from halophyte leaf litter with a varying chloride content, but no significant correlation between the CH3Cl emission rate and the chloride content of the plant material was observed. A limited set of field experiments was performed in which CH3Cl emissions were measured. Leaf litter emitted CH3Cl, but only in periods with fresh leaf litter fall. Outside these periods, the flux from leaf litter was zero or even slightly negative. The CH3Cl emission rate increased with temperature, but the temperature increase did not follow the Arrhenius relation as was observed in the laboratory experiments. The global importance of leaf litter as a source of CH3Cl was investigated using the global chemistry transport model TM5. Forward simulations with different emission scenarios indicated that at station Trinidad Head (mid-latitudes of North America), a substantial seasonal emission from leaf litter was required to match the measured CH3Cl mixing ratios at this station. Inversions performed with the TM4-4D-Var system indicated that the main CH3Cl sources were located in the Tropics, whereas the mid- and high latitudes were only a minor source. Sensitivity studies performed to investigate the robustness of the optimized emissions indicated that more than 90% of the global net emissions was located in the Tropics.
Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming
2015-10-01
The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.
Spring leaf phenology and the diurnal temperature range in a temperate maple forest.
Hanes, Jonathan M
2014-03-01
Spring leaf phenology in temperate climates is intricately related to numerous aspects of the lower atmosphere [e.g., surface energy balance, carbon flux, humidity, the diurnal temperature range (DTR)]. To further develop and improve the accuracy of ecosystem and climate models, additional investigations of the specific nature of the relationships between spring leaf phenology and various ecosystem and climate processes are required in different environments. This study used visual observations of maple leaf phenology, below-canopy light intensities, and micrometeorological data collected during the spring seasons of 2008, 2009, and 2010 to examine the potential influence of leaf phenology on a seasonal transition in the trend of the DTR. The timing of a reversal in the DTR trend occurred near the time when the leaves were unfolding and expanding. The results suggest that the spring decline in the DTR can be attributed primarily to the effect of canopy closure on daily maximum temperature. These findings improve our understanding of the relationship between leaf phenology and the diurnal temperature range in temperate maple forests during the spring. They also demonstrate the necessity of incorporating accurate phenological data into ecosystem and climate models and warrant a careful examination of the extent to which canopy phenology is currently incorporated into existing models.
Rodríguez-Calcerrada, Jesús; Limousin, Jean-Marc; Martin-StPaul, Nicolas K; Jaeger, Carsten; Rambal, Serge
2012-04-01
Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO(2) assimilation (A(max)), dark respiration (R(d)) and the proportional change in R(d) per 10 °C change in temperature (Q(10) of R(d)) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. A(max) and R(d) were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of A(max) and R(d) expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in A(max) in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q(10) of R(d) did not differ significantly between leaf cohorts; however, failure to account for distinct R(d) between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in A(max) in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as R(d) and nutrient resorption during senescence. Accounting for leaf age as a source of variation of R(d) improves the estimation of foliar respiratory carbon release at the stand scale.
Du, Yanjun; Chen, Jingru; Willis, Charles G; Zhou, Zhiqiang; Liu, Tong; Dai, Wujun; Zhao, Yuan; Ma, Keping
2017-09-01
Climate change has resulted in major changes in plant phenology across the globe that includes leaf-out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf-out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf-out date to climate factors exhibits phylogenetic signal. We used a 52-year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf-out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf-out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf-out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf-out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non-native species. Earlier leaf-out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf-out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf-out sensitivity.
Wang, Haimiao; Chen, Yinglong; Xu, Bingjie; Hu, Wei; Snider, John L; Meng, Yali; Chen, Binglin; Wang, Youhua; Zhao, Wenqing; Wang, Shanshan; Zhou, Zhiguo
2018-02-01
Short-term waterlogging and chronic elevated temperature occur frequently in the Yangtze River Valley, yet the effects of these co-occurring environments on nitrogen metabolism of the subtending leaf (a major source leaf for boll development) have received little attention. In this study, plants were exposed to two temperature regimes (31.6/26.5 °C and 34.1/29.0 °C) and waterlogging events (0 d, 3 d, 6 d) during flowering and boll development. The results showed that the effects of waterlogging stress and elevated temperature in isolation on nitrogen metabolism were quite different. Waterlogging stress not only limited NR (EC 1.6.6.1) and GS (EC 6.3.1.2) activities through the down-regulation of GhNR and GhGS expression for amino acid synthesis, but also promoted protein degradation by enhanced protease activity and peptidase activity, leading to lower organ and total biomass (reduced by 12.01%-27.63%), whereas elevated temperature inhibited protein degradation by limited protease activity and peptidase activity, promoting plant biomass accumulation. Furthermore, 2-3 °C chronic elevated temperature alleviated the negative impacts of a brief (3 d) waterlogging stress on cotton leaves, with the expression of GhNiR up-regulated, the activities of NR, GS and GOGAT (EC 1.4.7.1) increased and the activities of protease and peptidase decreased, leading to higher protein concentration and enhanced leaf biomass for EW 3 relative to AW 3 . The results of the study suggested that exposure to slightly elevated air temperature improves the cotton plants' ability to recover from short-term (3 d) waterlogging stress by sustaining processes associated with nitrogen assimilation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effects of dew deposition on transpiration and carbon uptake in leaves
NASA Astrophysics Data System (ADS)
Gerlein-Safdi, C.; Koohafkan, M.; Chung, M.; Rockwell, F. E.; Thompson, S. E.; Caylor, K. K.
2017-12-01
Dew deposition occurs in ecosystems worldwide, even in the driest deserts and in times of drought. Although some species absorb dew water directly via foliar uptake, a ubiquitous effect of dew on plant water balance is the interference of dew droplets with the leaf energy balance, which increases leaf albedo and emissivity and decreases leaf temperature through dew evaporation. Dew deposition frequency and amount are expected to be affected by changing environmental conditions, with unknown consequences for plant water stress and ecosystem carbon, water and energy fluxes. Here we present a simple leaf energy balance that characterizes the effect of deposition and the evaporation of dew on leaf energy balance, transpiration, and carbon uptake. The model is driven by five common meteorological variables and shows very good agreement with leaf wetness sensor data from the Blue Oak Ranch Reserve in California. We explore the tradeoffs between energy, water, and carbon balances for leaves of different sizes across a range of relative humidity, wind speed, and air temperature conditions. Our results show significant water savings from transpiration suppression up to 30% for leaf characteristic lengths of 50 cm due to the decrease in leaf temperature. C. 25% of water savings from transpiration suppression in smaller leaves arise from the effect of dew droplets on leaf albedo. CO2 assimilation is decreased by up to 15% by the presence of dew, except for bigger leaves in windspeed conditions below 1 m/s when an increase in assimilation is expected.
Buchner, Othmar; Neuner, Gilbert
2010-07-01
Leaflets of Sphagnum capillifolium were exposed to temperatures from -5 degrees C to +60 degrees C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at -1.1 degrees C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 microm indicates a cell volume reduction of approximately -82%. Simultaneous measurement of chlorophyll fluorescence of PS II was possible even through the frozen water in which the leaf samples were submersed. Freezing cytorrhysis was accompanied by a sudden rise of basic chlorophyll fluorescence. The critical freezing temperature threshold of PS II was identical to the ice nucleation temperature (-1.1 degrees C). This is significantly above the temperature threshold at which frost damage to S. capillifolium leaflets occurs (-16.1 degrees C; LT(50)) which is higher than observed in most higher plants from the European Alps during summer. High temperature thresholds of PS II were 44.5 degrees C which is significantly below the heat tolerance of chlorophyllous cells (49.9 degrees C; LT(50)). It is demonstrated that light and fluorescence microscopic techniques combined with simultaneous chlorophyll fluorescence measurements may act as a useful tool to study heat, low temperature, and ice-encasement effects on the cellular structure and primary photosynthetic processes of intact leaf tissues.
Drake, John E; Tjoelker, Mark G; Vårhammar, Angelica; Medlyn, Belinda E; Reich, Peter B; Leigh, Andrea; Pfautsch, Sebastian; Blackman, Chris J; López, Rosana; Aspinwall, Michael J; Crous, Kristine Y; Duursma, Remko A; Kumarathunge, Dushan; De Kauwe, Martin G; Jiang, Mingkai; Nicotra, Adrienne B; Tissue, David T; Choat, Brendan; Atkin, Owen K; Barton, Craig V M
2018-06-01
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO 2 and H 2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. © 2018 John Wiley & Sons Ltd.
Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang
2016-01-01
Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048
Impacts of urban wastewater discharge on seagrass meadows ( Zostera noltii)
NASA Astrophysics Data System (ADS)
Cabaço, Susana; Machás, Raquel; Vieira, Vasco; Santos, Rui
2008-06-01
The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158-663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z. noltii. This impact is spatially restricted to areas up to 600 m distant from the WWTW discharge, probably due to the high water renewal of the lagoon.
Carlson, Jane E.; Adams, Christopher A.; Holsinger, Kent E.
2016-01-01
Background and Aims Trait–environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. Methods In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait–trait and trait–environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Key Results Across 19 populations in a common garden, stomatal density increased with the source population’s mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. Conclusions The parallel patterns of broad-scale variation, differences in selection and differences in trait–ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by increasing transpiration and cooling, but predominately in drier, hotter climates. This study uniquely shows context-dependent benefits of stomatal density – a trait rarely linked to local adaptation in plants. PMID:26424782
Wang, Ying; Ren, Yulong; Zhou, Kunneng; Liu, Linglong; Wang, Jiulin; Xu, Yang; Zhang, Huan; Zhang, Long; Feng, Zhiming; Wang, Liwei; Ma, Weiwei; Wang, Yunlong; Guo, Xiuping; Zhang, Xin; Lei, Cailin; Cheng, Zhijun; Wan, Jianmin
2017-01-01
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice. PMID:28694820
Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-07-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.
Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon
2014-05-15
Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. Copyright © 2014 Elsevier B.V. All rights reserved.
Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model
Bridge, L. J.; Franklin, K. A.; Homer, M. E.
2013-01-01
Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity. PMID:23720538
Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum
Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.
2009-01-01
Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620
Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin
2011-12-01
Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.
NASA Astrophysics Data System (ADS)
Holmberg, Madeleine; Paille, Christel; Lasseur, Christophe
The ESA project Micro Ecological Life Support System Alternative (MELiSSA) is an ecosystem of micro-organisms and higher plants, constructed with the objective of being operated as a tool to understand artificial ecosystems to be used for a long-term or permanent manned planetary base (e.g. Moon or Mars). The purpose of such a system is to provide for generation of food, water recycling, atmospheric regeneration and waste management within defined standards of quality and reliability. As MELiSSA consists of individual compartments which are connected to each other, the robustness of the system is fully dependent on the control of each compartment, as well as the flow management between them. Quality of consumables and reliability of the ecosystem rely on the knowledge, understanding and control of each of the components. This includes the full understanding of all processes related to the higher plants. To progress in that direction, this paper focuses on the mechanical processes driving the gas and liquid exchanges between the plant leaf and its environment. The process responsible for the mass transfer on the surface of plant leaves is diffusion. The diffusion flux is dependent on the behaviour of the stoma of the leaf and also on the leaf boundary layer (BL). In this paper, the physiology of the leaf is briefly examined in order to relate parameters such as light quality, light quantity, CO2 concentration, temperature, leaf water potential, humidity, vapour pressure deficit (VPD) gradients and pollutants to the opening or closing of stomata. The diffusion process is described theoretically and the description is compared to empirical approaches. The variables of the BL are examined and the effect airflow in the compartment has on the BL is investigated. Also presented is the impact changes in different environmental parameters may have on the fluid exchanges. Finally, some tests, to evaluate the accuracy of the concluded model, are suggested.
Zhu, Yuan-Gang; Dong, Shu-Ting; Zhang, Ji-Wang; Liu, Peng; Yang, Jin-Sheng; Jia, Chun-Lan; Liu, Jing-Guo; Li, Deng-Hai
2010-06-01
In order to investigate the effects of interplanting and direct seeding on the photosynthesis characteristics of summer maize and its utilization of solar and heat resources, two summer maize cultivars (Zhengdan 958 and Denghai 661) were planted in the farmlands of Denghai Seed Co. Ltd in Laizhou City of Shandong Province, with 67500 plants x hm(-2) and three sowing dates. The above-ground biomass, plant growth rate, leaf area index, and net photosynthetic rate per ear leaf were measured to reveal the photosynthesis characteristics of test cultivars. In the meantime, the characters of grain-filling were simulated by Richards' model, and the solar resource utilization efficiency of the cultivars was calculated, in combining with meteorological data. Comparing with interplanting, direct seeding increased the grain yield by 1.17%-3.33%, but decreased the thousand-grain weight significantly. Growth stages were extended under earlier sowing. The leaf area index and net photosynthetic rate from flowering to 30 d after anthesis were significantly higher under direct seeding than under interplanting, but after then, they decreased faster. Direct seeding induced a higher accumulation of dry matter and a faster plant growth rate before and after flowering. Under direct seeding, the maximum grain-filling rate reached earlier, the starting potential was higher, but the grain-filling period, active grain-filling period, and W(max) were lower, compared with those under interplanting. Also under direct seeding, the total accumulative temperature and solar radiation during growth period decreased by 150-350 degrees C x d and 200-400 MJ x m(-2), respectively, but the solar resource utilization efficiency of grain increased by 10.5%-24.7%. All the results suggested that direct seeding was superior to interplanting for the summer maize production under field condition. In order to enhance solar and heat utilization efficiency and excavate yield potential, it would be essential to improve the leaf photosynthesis efficiency and postpone leaf aging.
Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A
2016-08-01
Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Flame interactions and burning characteristics of two live leaf samples
Brent M. Pickett; Carl Isackson; Rebecca Wunder; Thomas H. Fletcher; Bret W. Butler; David R. Weise
2009-01-01
Combustion experiments were performed over a flat-flame burner that provided the heat source for multiple leaf samples. Interactions of the combustion behavior between two leaf samples were studied. Two leaves were placed in the path of the flat-flame burner, with the top leaf 2.5 cm above the bottom leaf. Local gas and particle temperatures, as well as local oxygen...
Simulating sunflower canopy temperatures to infer root-zone soil water potential
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Idso, S. B.
1983-01-01
A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.
NASA Astrophysics Data System (ADS)
Dusenge, M. E.; Stinziano, J. R.; Warren, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.; Way, D.
2017-12-01
Boreal forests are often assumed to be temperature-limited, and warming is therefore expected to stimulate their carbon uptake. However, much of our information on the ability of boreal conifers to acclimate photosynthesis and respiration to rising temperatures comes from seedlings. We measured net CO2 assimilation rates (A) and dark respiration (R) at 25 °C (A25 and R25) and at prevailing growth temperatures (Ag and Rg) in mature Picea mariana (spruce) and Larix laricina (tamarack) exposed to ambient, +2.25, +4.5, +6.75 and +9 °C warming treatments in open top chambers in the field at the SPRUCE experiment (MN, USA). In spruce, A25 and Ag were similar across plots in May and June. In August, spruce in warmer treatments had higher A25, an effect that was offset by warmer leaf temperatures in the Ag data. In tamarack, A25 was stimulated by warming in both June and August, an effect that was mainly offset by higher leaf temperatures when Ag was assessed in June, while in August, Ag was still slightly higher in the warmest treatments (+6.75 and +9) compared to the ambient plots. In spruce, R25 was enhanced in warm-grown trees in May, but was similar across treatments in June and August, indicating little acclimation of R. Rg slightly increased with warming treatments across the season in spruce. In contrast, R in tamarack thermally acclimated, as R25 decreased with warming. But while this acclimation generated homeostatic Rg in June, Rg in August was still highest in the warmest treatments. Our work suggests that the capacity for thermal acclimation in both photosynthesis and respiration varies among boreal tree species, which may lead to shifts in the performance of these species as the climate warms.
NASA Astrophysics Data System (ADS)
Penuelas, J.; Fu, Y.; Estiarte, M.; Gamon, J. A.; Filella, I.; Verger, A.; Jannssens, I.
2017-12-01
Ongoing spring warming allows the growing season to begin earlier in northern ecosystems, thus enhancing their carbon uptake. We will present data on atmospheric CO2 concentration measurements to show that this spring advancement of annual carbon intake in response to warming is decreasing. Reduced chilling during dormancy and the interactions between temperature and photoperiod in driving leaf-out may play a role. We will show that short photoperiod (in warm springs when leaf-out is early) significantly increases the heat requirement for leaf-out whereas long photoperiod (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out. These two contrasting photoperiod effects illustrate a complicated temperature response of leaf-out phenology. We will also discuss how photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. We will then discuss the ecological effects of these phenological changes focusing, as an example, on the impacts of changes on the phenology of leaf senescence on carbon uptake and nutrient cycling. Finally, we will present recent advances on remote sensing monitoring of both the phenological changes and their ecological impacts. We will focus on advances derived from a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity.
USDA-ARS?s Scientific Manuscript database
The physiological functions of epicuticular wax (EW) include reflectance of irradiation and the reduction of water loss. When a plant experiences stressful conditions, most notably, high irradiance and temperature, damage to the photosynthetic apparatus can occur and is signaled by a decrease in the...
NASA Technical Reports Server (NTRS)
Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)
1984-01-01
The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.
Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav
2017-09-01
Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang
2016-01-01
A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.
Bud Composition, Branching Patterns and Leaf Phenology in Cerrado Woody Species
DAMASCOS, M. A.; PRADO, C. H. B. A.; RONQUIM, C. C.
2005-01-01
• Background and Aims Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. • Methods The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). • Key Results Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2–6 months and lamina expansion took place over 1–4 months. The leaf life span was 5–20 months and the main A1 shoot extension happened over 122–177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. • Conclusions It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants. PMID:16157631
Photosynthesis of young apple trees in response to low sink demand under different air temperatures.
Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H
2010-03-01
Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.
[Effects of temperature on leaf lettuce vernalization.
Zhang, Li Li; Hao, Jing Hong; Han, Ying Yan; Liu, Chao Jie; Su, He Nan; Li, Pan Pan; Sun, Yan Chuan; Fan, Shuang Xi
2016-11-18
To investigate the effects of different temperatures on the vernalization of leaf lettuce, and declare their type, two easy bolting leaf lettuce varieties of GB-30 and GB-31 were selected as material, which were treated by 4 ℃, 20 ℃ and 25 ℃ for 20 d respectively and afterwards treated by high temperature stress. The process of flower bud differentiation was observed by using paraffin section technology, and combined the condition of bolting and flowering to estimate whether or not it underwent vernalization, and defined its vernalization type. The results showed that, two varieties of GB-30 and GB-31 appeared bolting to different degrees at the 8 th day under high temperature stress after temperature treatments in the early stage. Different temperatures in the early stage all made flower bud differentiated of two varieties. 4 ℃ treatment did not advance the flower bud differentiation, while the high temperature in later time accelerated this progress. Furthermore, the days required for the two varieties to complete development stages differed under different temperature treatments. The effective accumulated temperature whether from pregermination to flowering or from high temperature stress to flowering of two varieties were also different. The leaf lettuce without low temperature treatment in early stage could enter into the flower bud differentiation, bolting, budding and flowering stages, and it could be considered as non-low temperature vernalization plant. The high temperature treatment in later stage could obviously promote its bolting and flowering. In addition, the effective accumulated temperature had to reach about 2500 ℃·d from germination to blossom.
Leaf wetness distribution within a potato crop
NASA Astrophysics Data System (ADS)
Heusinkveld, B. G.
2010-07-01
The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.
Li, Wei-Di; Zhang, Peng-Jun; Zhang, Jing-Ming; Zhang, Zhi-Jun; Huang, Fang; Bei, Ya-Wei; Lin, Wen-Cai; Lu, Yao-Bin
2015-01-01
To compare the performance of Frankliniella occidentalis (Pergande) and native Frankliniella intonsa (Trybom) on cucumber and tomato leaves in laboratory, life history characters were investigated, and life tables were constructed using the method of age-stage, two-sex table life. Compared with tomato leaf, there were shorter total preoviposition period (TPOP), higher fecundity, longer female longevity, and higher intrinsic rate of increase (r) of both F. occidentalis and F. intonsa on cucumber leaf. Meanwhile, on cucumber leaf, the shorter TPOP, higher fecundity, longer female longevity, and higher value of r were found on population of F. intonsa but on tomato leaf which were found on population of F. occidentalis. From above, cucumber leaf was the preference to population development of both F. occidentalis and F. intonsa compared with tomato leaf. Nevertheless, on cucumber leaf, population of F. intonsa would grow faster than that of F. occidentalis, which was the opposite on tomato leaf. As to the population development in fields, much more factors would be taken into account, such as pollen, insecticide resistance, and effects of natural enemies etc. PMID:25673049
Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532
Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi
2017-03-18
We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.
Harada, Shigeki; Yanagisawa, Mitsunori
2017-04-01
The town of Marumori in southern Miyagi Prefecture borders on Fukushima Prefecture, and following the accident at the Fukushima Daiichi nuclear power plant, there were concerns about cesium deposition in forested areas. One of the authors of this paper has continually surveyed leaf litter from the forested areas. As leaf litter may be a source of cesium contamination from the forest to downstream areas, we considered a simplified version of wet oxidation, a method previously presented by one of the authors of this study, as a technology to reduce leaf litter weight and cesium concentration, separating radioactive nuclides from non-radioactive ones, in leaf litter. We tested our method in three experiments. Experiment 1 used new leaf litter (232 Bq/kg) from the surface of a small stream at the forest edge nearby an area with air dose level higher than the national standard threshold of 0.23 μSv/h for the implementation of governmental decontamination works. Experiment 2 applied wet oxidation to older leaf litter (705 Bq/kg) harvested from a pasture nearby the stream mentioned above. We also used the same leaf litter in experiment 3 for a cesium release tests using pure water. In experiment 1 and 2 we treated leaf litter with a sodium hypochlorite solution, optimizing sodium hypochlorite concentration and reaction temperature. We measured a 50-60% decrease in the leaf litter weight and a 60% decrease in the cesium concentration. Moreover, we also measured the amount of cesium washout. The cesium budget of experiment 1 showed no cesium gasification (wet oxidation avoids airborne cesium as this element is prone to be volatile at 600 °C), and that high sodium hypochlorite concentration and high temperature had a strong positive effect on leaf litter volume reduction and cesium decontamination. Experiment 2 confirmed the reproducibility of these results in leaves with different cesium concentration and harvested in different conditions. We could also explain the mechanism behind leaf litter weight and cesium concentration reduction. Experiment 3 helped us to investigate the effects of the matter present on the surface of the water and the contribution of water soluble cesium. Concurrent experiments on changes in leaf litter chemical composition confirmed that our modified wet oxidation method had an effect on the removal of acid-insoluble lignin. Removal of lignin, a refractory component, might allow for a better utilization of the residue left after implementation of the proposed simplified wet oxidation. Thus, real wastes could be smaller than the residues. Together with the observed smaller cesium concentration in the residue, the proposed method in this study is expected to contribute to mitigate the risk due to the fallen leaves containing cesium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Freshly characterization and storability of mini head lettuces at optimal and abusive temperatures.
Viacava, Gabriela E; Ponce, Alejandra G; Goyeneche, Rosario; Carrozzi, Liliana; Yommi, Alejandra; Roura, Sara I
2016-01-01
Selection of lettuce varieties less sensitive to quality deterioration and more tolerant to abusive temperatures during handling, transportation, and storage is essential to minimize economical and quality losses that affect both producers and consumers. This work was focused on the quality changes of four baby head lettuces (Lactuca sativa L.), two butter (red and green) and two oak-leaf (red and green) types, during storage at 0 ℃ and 10 ℃ for 10 days. Lettuce quality was determined by measuring bioactive content (ascorbic acid, total phenolics), physicochemical (total chlorophyll, browning potential), and microbiological indices. At harvest, red varieties presented lower browning potential and higher bioactive compounds but no differences were observed in microbial populations. During storage, ascorbic acid underwent first order degradation for all varieties, with a degradation rate at 10 ℃ twice faster than at 0 ℃. At 0 ℃, only the red oak-leaf lettuce exhibited chlorophyll degradation, while at 10 ℃ all varieties presented degradation. No changes were observed in total phenolics and browning potential of butter lettuces during storage at both temperatures. Microbial population counts were significant affected by the storage temperature. Red butter baby lettuce presented slightly better bioactive content and microbiological characteristics and then better storability. © The Author(s) 2015.
Cava, R; Nowak, E; Taboada, A; Marin-Iniesta, F
2007-12-01
The antimicrobial activity of essential oils (EOs) of cinnamon bark, cinnamon leaf, and clove against Listeria monocytogenes Scott A were studied in semiskimmed milk incubated at 7 degrees C for 14 days and at 35 degrees C for 24 h. The MIC was 500 ppm for cinnamon bark EO and 3,000 ppm for the cinnamon leaf and clove EOs. These effective concentrations increased to 1,000 ppm for cinnamon bark EO, 3,500 ppm for clove EO, and 4,000 ppm for cinnamon leaf EO when the semiskimmed milk was incubated at 35 degrees C for 24 h. Partial inhibitory concentrations and partial bactericidal concentrations were obtained for all the assayed EOs. The MBC was 3,000 ppm for the cinnamon bark EO, 10,500 ppm for clove EO, and 11,000 ppm for cinnamon leaf EO. The incubation temperature did not affect the MBC of the EOs but slightly increased the MIC at 35 degrees C. The increased activity at the lower temperature could be attributed to the increased membrane fluidity and to the membrane-perturbing action of EOs. The influence of the fat content of milk on the antimicrobial activity of EOs was tested in whole and skimmed milk. In milk samples with higher fat content, the antimicrobial activity of the EOs was reduced. These results indicate the possibility of using these three EOs in milk beverages as natural antimicrobials, especially because milk beverages flavored with cinnamon and clove are consumed worldwide and have been increasing in popularity in recent years.
Polgar, Caroline; Gallinat, Amanda; Primack, Richard B
2014-04-01
To elucidate climate-driven changes in leaf-out phenology and their implications for species invasions, we observed and experimentally manipulated leaf out of invasive and native woody plants in Concord, MA, USA. Using observations collected by Henry David Thoreau (1852-1860) and our own observations (2009-2013), we analyzed changes in leaf-out timing and sensitivity to temperature for 43 woody plant species. We experimentally tested winter chilling requirements of 50 species by exposing cut branches to warm indoor temperatures (22°C) during the winter and spring of 2013. Woody species are now leafing out an average of 18 d earlier than they did in the 1850s, and are advancing at a rate of 5 ± 1 d °C(-1) . Functional groups differ significantly in the duration of chilling they require to leaf out: invasive shrubs generally have weaker chilling requirements than native shrubs and leaf out faster in the laboratory and earlier in the field; native trees have the strongest chilling requirements. Our results suggest that invasive shrub species will continue to have a competitive advantage as the climate warms, because native plants are slower to respond to warming spring temperatures and, in the future, may not meet their chilling requirements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
Pincebourde, Sylvain; Sinoquet, Herve; Combes, Didier; Casas, Jerome
2007-05-01
1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies. This approach was applied to a leaf mining moth feeding on apple leaf tissues. 2. Canopy geometry was explicitly considered by mapping the 3D position and orientation of more than 26 000 leaves in an apple tree. Four published models for canopy radiation interception, energy budget of leaves and mines, body temperature and developmental rate of the leaf miner were integrated. Model predictions were compared with actual microclimate temperatures. The biophysical model accurately predicted temperature within mines at different positions within the tree crown. 3. Field temperature measurements indicated that leaf and mine temperature patterns differ according to the regional climatic conditions (cloudy or sunny) and depending on their location within the canopy. Mines in the sun can be warmer than those in the shade by several degrees and the heterogeneity of mine temperature was incremented by 120%, compared with that of leaf temperature. 4. The integrated model was used to explore the impact of both warm and exceptionally hot climatic conditions recorded during a heat wave on the microclimate heterogeneity at canopy scale. During warm conditions, larvae in sunlight-exposed mines experienced nearly optimal growth conditions compared with those within shaded mines. The developmental rate was increased by almost 50% in the sunny microhabitat compared with the shaded location. Larvae, however, experienced optimal temperatures for their development inside shaded mines during extreme climatic conditions, whereas larvae in exposed mines were overheating, leading to major risks of mortality. 5. Tree canopies act as both magnifiers and reducers of the climatic regime experienced in open air outside canopies. Favourable and risky spots within the canopy do change as a function of the climatic conditions at the regional scale. The shifting nature of the mosaic of suitable and risky habitats may explain the observed uniform distribution of leaf miners within tree canopies.
Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines
Rogiers, Suzy Y.; Clarke, Simon J.
2013-01-01
Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018
Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
Rogiers, Suzy Y; Clarke, Simon J
2013-03-01
Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.
NASA Astrophysics Data System (ADS)
Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.
2014-12-01
Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.
Hultine, Kevin R; Burtch, Kelley G; Ehleringer, James R
2013-11-01
Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patterns, we hypothesized that temperature increases will have a greater negative impact on female plants compared with co-occurring male plants of dioecious species. This hypothesis was tested by examining the whole-plant carbon and water relations of 10-year-old female (n = 18) and male (n = 13) Acer negundo Sarg. trees grown in a common garden in Salt Lake City, UT. The trees were established from cuttings collected where the growing season temperature averaged about 6.5 °C cooler than at the common garden. During May and June, stem sap flux (Js ) was similar between genders, but averaged 25% higher in males during the warmer months of July and August. Daytime canopy stomatal conductance (gs ) per unit leaf area was 12% higher in females in May : June, but was 11% higher in males in July : August. We combined measurements of sap flux-scaled transpiration with measurements of tree allometry and δ(13) C of leaf soluble sugars to estimate whole-tree carbon assimilation (Atree ) and water use efficiency (WUE) (Atree : Etree ). Atree was similar between genders until late August when Atree was 32% higher in male trees. Atree : Etree was on average 7% higher in females than in males during the growing season. Patterns of Js , gs , Atree and Atree : Etree in the present study were in contrast to those previously reported for A. negundo genders under native growing season temperatures. Results suggest that the spatial segregation of the sexes could shift under global warming such that female plants lose their dominance in high-resource habitats, and males increase their dominance in relatively lower-resource habitats. © 2013 John Wiley & Sons Ltd.
Cao, Na; Chen, Xiao Rong; He, Hao Hua; Zhu, Chang Lan; Cai, Shuo; Xu, Tao; Xie, Heng Wang; Liu, Fang Ping
2017-12-01
Taking super hybrid rice variety 'Wufengyou T025' as test material, the effects of different irrigation methods and water layer depth on physiological characteristics and yield in double-season late rice under low temperature conditions during heading and flowering stage were investigated. Three treatments were set, i.e., draining during day and containing 4-5 cm water layer during night (H 1 ), draining during day and containing 8-10 cm water layer during night (H 2 ), and containing 8-10 cm water layer day and night (H 3 ), with the 0-1 cm water layer day and night was as the control (CK). The results showed that rice leaf temperature, soil layer temperature and canopy temperature under the different irrigation treatments were higher than that of CK, and the warming effect of treatment H 2 was the best during the low temperature period. Leaf chlorophyll content, net photosynthetic rate, transpiration rate, leaf stomatal conductance and intercellular CO 2 concentration of rice plants decreased gradually under the low temperature, while the smallest reduction occurred in H 2 . The increase ranges of malondialdehyde and proline content in H 2 were lower, while its soluble protein content was the highest compared with other irrigation treatments. The increase ranges for the activities of superoxide dismutase and peroxidase in H 2 were lower, while its decrease range for the activity of catalase was the lowest. Irrigation for heat preservation could increase the yield, and H 2 performed best. Yield of H 2 at the second sowing date in 2014 and 2015 encountering low temperature increased by 12.9% and 13.5% respectively compared to CK. The yield components including the effective panicle numbers per plant, panicle length, seed setting rate and 1000-grain mass were improved in all irrigation treatments compared to CK. Draining during day and containing 8-10 cm water layer during night (H 2 ) was the most effective agronomic measure to enhance the tolerance to low temperature during heading and flowering stage for double-season hybrid late rice.
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.
Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H
2017-08-01
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E a , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E a could be calculated. Higher values of E a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E a was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E a values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua
2018-01-01
To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.
In situ field measurement of leaf water potential using thermocouple psychrometers.
Savage, M J; Wiebe, H H; Cass, A
1983-11-01
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential.
Song, Guangyan; Li, Ying; Zhang, Jiahui; Li, Meiling; Hou, Jihua; He, Nianpeng
2016-11-18
Leaf caloric value (LCV) is a useful index to represent the conversion efficiency of leaves for solar energy. We investigated the spatial pattern of LCV and explored the factors (phylogeny, climate, and soil) that influence them at a large scale by determining LCV standardized by leaf area in 920 plant species from nine forest communities along the 3700 km North-South Transect of Eastern China. LCV ranged from 0.024 to 1.056 kJ cm -2 with an average of 0.151 kJ cm -2 . LCV declined linearly with increasing latitude along the transect. Altogether, 57.29% of the total variation in LCV was explained by phylogenetic group (44.03% of variation), climate (1.27%), soil (0.02%) and their interacting effects. Significant phylogenetic signals in LCV were observed not only within forest communities but also across the whole transect. This phylogenetic signal was higher at higher latitudes, reflecting latitudinal change in the species composition of forest communities from complex to simple. We inferred that climate influences the spatial pattern of LCV through directly regulating the species composition of plant communities, since most plant species might tolerate only a limited temperature range. Our findings provide new insights into the adaptive mechanisms in plant traits in future studies.
Zhang, Pan-pan; Zhou, Yu; Song, Hui; Qiao, Zhi-jun; Wang, Hai-gang; Zheng, Dian-feng; Feng, Bai-li
2015-02-01
A field experiment with two broomcorn millet varieties Longmi 8 (strong drought-resistant variety) and Jinmi 4 (drought-sensitive variety) was conducted to compare their differences in growth, field microclimate and photosynthetic capacity from anthesis to maturity under different fertility conditions. The results showed that, fertilization decreased canopy temperature, air temperature, soil temperature, illumination, but improved the relative humidity among broomcorn millet plants compared with the non-fertilization treatment. With an increase of the fertilizer level, the plant height, SPAD, LAI, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration in broomcorn millet showed an increasing trend, which of the high fertilization treatment were 9.2%, 15.1%, 56.6%, 17.8%, 24.6%, 14.2%, 29.7% higher than those of non-fertilization treatment, respectively. Compared with Jinmi 4, Longmi 8 showed a cold wet characteristic, with lower canopy temperature, air temperature, soil temperature; illumination, and higher plant height, LAI, SPAD and relative humidity during grain filling. Moreover, each photosynthetic index of Longmi 8 slowly decreased and extended the period of leaf photosynthetic function so as to accumulate more photosynthetic products.
Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-01-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630
Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi
2014-02-01
To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].
Duan, Honglang; Chaszar, Brian; Lewis, James D; Smith, Renee A; Huxman, Travis E; Tissue, David T
2018-04-26
Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have struggled with assessing the relative importance of hydraulic and carbon metabolic traits in determining mortality, yet an integrated trait, time-dependent framework provides considerable insight into the risk of death from drought for trees.
Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi
2013-08-01
An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2) m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.
Computer analysis of the leaf movements of pinto beans.
Hoshizaki, T; Hamner, K C
1969-07-01
Computer analysis was used for the detection of rhythmic components and the estimation of period length in leaf movement records. The results of this study indicated that spectral analysis can be profitably used to determine rhythmic components in leaf movements.In Pinto bean plants (Phaseolus vulgaris L.) grown for 28 days under continuous light of 750 ft-c and at a constant temperature of 28 degrees , there was only 1 highly significant rhythmic component in the leaf movements. The period of this rhythm was 27.3 hr. In plants grown at 20 degrees , there were 2 highly significant rhythmic components: 1 of 13.8 hr and a much stronger 1 of 27.3 hr. At 15 degrees , the highly significant rhythmic components were also 27.3 and 13.8 hr in length but were of equal intensity. Random movements less than 9 hr in length became very pronounced at this temperature. At 10 degrees , no significant rhythm was found in the leaf movements. At 5 degrees , the leaf movements ceased within 1 day.
Li, Wei-Di; Zhang, Peng-Jun; Zhang, Jing-Ming; Zhang, Zhi-Jun; Huang, Fang; Bei, Ya-Wei; Lin, Wen-Cai; Lu, Yao-Bin
2015-01-01
To compare the performance of Frankliniella occidentalis (Pergande) and native Frankliniella intonsa (Trybom) on cucumber and tomato leaves in laboratory, life history characters were investigated, and life tables were constructed using the method of age-stage, two-sex table life. Compared with tomato leaf, there were shorter total preoviposition period (TPOP), higher fecundity, longer female longevity, and higher intrinsic rate of increase (r) of both F. occidentalis and F. intonsa on cucumber leaf. Meanwhile, on cucumber leaf, the shorter TPOP, higher fecundity, longer female longevity, and higher value of r were found on population of F. intonsa but on tomato leaf which were found on population of F. occidentalis. From above, cucumber leaf was the preference to population development of both F. occidentalis and F. intonsa compared with tomato leaf. Nevertheless, on cucumber leaf, population of F. intonsa would grow faster than that of F. occidentalis, which was the opposite on tomato leaf. As to the population development in fields, much more factors would be taken into account, such as pollen, insecticide resistance, and effects of natural enemies etc. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Simon, J; Miller, R E; Woodrow, I E
2007-01-01
The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.
Du, Baoming; Liu, Chunjiang; Kang, Hongzhang; Zhu, Penghua; Yin, Shan; Shen, Guangrong; Hou, Jingli; Ilvesniemi, Hannu
2014-01-01
Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ13C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ13C decreased as altitude increased from low to high altitude, whereas surface soil δ13C increased. The lower leaf δ13C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ13C is attributed to the low temperature-induced decay. At each altitude, soil δ13C became enriched with soil depth. Soil δ13C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ13C in litter and soil, whereas a positive relationship was observed between aromatic C and δ13C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ13C variation in plants and soils. These results help understand C dynamics in the context of global warming. PMID:24466099
Paul V. Bolstad; Katherine Mitchell; James M. Vose
1999-01-01
We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ an4 on detached branches for Acer pensylvanicum L., A. rubrum L., Betula...
Panchen, Zoe A.; Primack, Richard B.; Gallinat, Amanda S.; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert
2015-01-01
Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. PMID:25808654
Panchen, Zoe A; Primack, Richard B; Gallinat, Amanda S; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert
2015-11-01
Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Greer, Dennis H.
2012-01-01
Background and aims Grapevines growing in Australia are often exposed to very high temperatures and the question of how the gas exchange processes adjust to these conditions is not well understood. The aim was to develop a model of photosynthesis and transpiration in relation to temperature to quantify the impact of the growing conditions on vine performance. Methodology Leaf gas exchange was measured along the grapevine shoots in accordance with their growth and development over several growing seasons. Using a general linear statistical modelling approach, photosynthesis and transpiration were modelled against leaf temperature separated into bands and the model parameters and coefficients applied to independent datasets to validate the model. Principal results Photosynthesis, transpiration and stomatal conductance varied along the shoot, with early emerging leaves having the highest rates, but these declined as later emerging leaves increased their gas exchange capacities in accordance with development. The general linear modelling approach applied to these data revealed that photosynthesis at each temperature was additively dependent on stomatal conductance, internal CO2 concentration and photon flux density. The temperature-dependent coefficients for these parameters applied to other datasets gave a predicted rate of photosynthesis that was linearly related to the measured rates, with a 1 : 1 slope. Temperature-dependent transpiration was multiplicatively related to stomatal conductance and the leaf to air vapour pressure deficit and applying the coefficients also showed a highly linear relationship, with a 1 : 1 slope between measured and modelled rates, when applied to independent datasets. Conclusions The models developed for the grapevines were relatively simple but accounted for much of the seasonal variation in photosynthesis and transpiration. The goodness of fit in each case demonstrated that explicitly selecting leaf temperature as a model parameter, rather than including temperature intrinsically as is usually done in more complex models, was warranted. PMID:22567220
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
In Situ Field Measurement of Leaf Water Potential Using Thermocouple Psychrometers 1
Savage, Michael J.; Wiebe, Herman H.; Cass, Alfred
1983-01-01
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential. PMID:16663267
Wang, Xianzhong; Lewis, James D.; Tissue, David T.; Seemann, Jeffrey R.; Griffin, Kevin L.
2001-01-01
Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants. PMID:11226264
Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L
2001-02-27
Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.
Pintó-Marijuan, M; Joffre, R; Casals, I; De Agazio, M; Zacchini, M; García-Plazaola, J-I; Esteban, R; Aranda, X; Guàrdia, M; Fleck, I
2013-01-01
Photosynthetic, photoprotective and antioxidant responses during high temperature stress were determined in leaves of evergreen holm oak (Quercus ilex L.), the main species in Mediterranean forests, during resprouting under elevated CO(2) (750 μl·l(-1) ). Leaf chemicals, chloroplast pigments and non-enzymatic antioxidants were quantified in a single measurement using NIRS (near-infrared spectroscopy), a rapid and suitable method for ecophysiological purposes. Resprouts from plants grown under elevated CO(2) (RE) showed photosynthetic down-regulation, higher starch content and lower stomatal conductance, but similar stomatal density, than plants grown under current CO(2) concentrations (350 μl·l(-1) ) (RA). The photosynthetic sink reduction and need for more antioxidants and photoprotection in RE were reflected in an increased concentration of ascorbate (Asc) and phenolic compounds and in the contribution of the xanthophyll (Z/VAZ) and lutein epoxide cycles to excess energy dissipation as heat, and also reflected in chlorophyll fluorescence measurements. CO(2) assimilation parameters were stable from 25 to 35 °C in RE and RA, declining thereafter in RA in spite of a 2.3 °C lower leaf temperature. RE showed a more marked decline in photorespiration above 35 °C and less sensitive stomatal responses to high temperature stress than RA. During heat stress, RE had higher Asc, Z/VAZ and phenolics content, together with delayed enhancement of chloroplast lipophilic antioxidant compounds (carotenes and tocopherols). The high contribution of photoprotective systems and high temperature tolerance in resprouts developed under elevated CO(2) would mitigate the effect of photosynthesis acclimation during the regeneration of Q. ilex plants under climate change. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Eley, Y.; Pedentchouk, N.; Dawson, L.
2014-12-01
Recent research has identified that interspecies variation in leaf wax n-alkane 2H/1H from plants growing at the same geographical location can exceed 100‰. These differences cannot easily be explained by mechanisms that influence the isotopic composition of leaf water. Biochemical processes are therefore likely to drive some of this variability. Currently, however, little is known about the relative importance of different biochemical processes in shaping n-alkane hydrogen isotope composition. To explore this issue, we combined n-alkane δ2H analysis with measurements of: (i) the percentage content of leaf C and N; and (ii) foliar δ15N, from seven plants growing at Stiffkey salt marsh, Norfolk, UK. These species differ biochemically in respect of the protective compounds they produce under salt or water stressed conditions, with monocots generally producing more carbohydrates, and dicots producing more nitrogenous compounds. We found that monocots had higher %C, while dicots had higher %N and 15N-enriched leaf tissue. We identified a systematic relationship between the nature of the dominant protective compound produced (carbohydrate vs. nitrogenous) and n-alkane 2H/1H: species with a greater proportion of carbohydrates have more negative δ2H values. These findings might imply that shifts in the relative contribution of H to pyruvate from NADPH (2H-depleted) and recycled carbohydrates (2H-enriched) can influence n-alkane δ2H. The 2H-depletion of monocot n-alkanes relative to dicots may therefore be due to a greater proportion of NADPH-derived H incorporated into pyruvate because of their enhanced demand for carbohydrates. The production of protective compounds in plant species is a common response to a range of abiotic stresses (e.g. high UV irradiation, drought, salinity, high/low temperature). Species-specific biochemical responses to stress could therefore influence n-alkane 2H/1H across a range of habitats. This study highlights the importance of detailed investigation of interrelated metabolic networks in a range of plants, to further constrain the isotope effects associated with the cycling of H in plant secondary compounds. Such research will be critical to further develop quantitative interpretations of leaf wax biomarker δ2H records in both modern and ancient contexts.
Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel
2013-05-01
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.
Effect of harvest timing and leaf hairiness on fiber quality
USDA-ARS?s Scientific Manuscript database
Recent concerns over leaf grades have generated questions of how both time of day cotton is harvested, as well as leaf hairiness levels of certain varieties, influence fiber quality. To address this, two smooth leaf varieties and two varieties with higher levels of leaf pubescence were harvested at...
Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album
Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.
2006-01-01
The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199
NASA Astrophysics Data System (ADS)
Larionova, A. A.; Maltseva, A. N.; Lopes de Gerenyu, V. O.; Kvitkina, A. K.; Bykhovets, S. S.; Zolotareva, B. N.; Kudeyarov, V. N.
2017-04-01
The mineralization and humification of leaf litter collected in a mixed forest of the Prioksko-Terrasny Reserve depending on temperature (2, 12, and 22°C) and moisture (15, 30, 70, 100, and 150% of water holding capacity ( WHC)) has been studied in long-term incubation experiments. Mineralization is the most sensitive to temperature changes at the early stage of decomposition; the Q 10 value at the beginning of the experiment (1.5-2.7) is higher than at the later decomposition stages (0.3-1.3). Carbon losses usually exceed nitrogen losses during decomposition. Intensive nitrogen losses are observed only at the high temperature and moisture of litter (22°C and 100% WHC). Humification determined from the accumulation of humic substances in the end of incubation decreases from 34 to 9% with increasing moisture and temperature. The degree of humification CHA/CFA is maximum (1.14) at 12°C and 15% WHC; therefore, these temperature and moisture conditions are considered optimal for humification. Humification calculated from the limit value of litter mineralization is almost independent of temperature, but it significantly decreases from 70 to 3% with increasing moisture. A possible reason for the difference between the humification values measured by two methods is the conservation of a significant part of hemicelluloses, cellulose, and lignin during the transformation of litter and the formation of a complex of humic substances with plant residues, where HSs fulfill a protectoral role and decrease the decomposition rate of plant biopolymers.
USDA-ARS?s Scientific Manuscript database
Biological characteristics of corn leaf aphid, Rhopalosiphum maidis (Fitch), on barley, Hordeum vulgare L., were examined for two generations under four different elevated temperature and CO2 combinations. The developmental duration for each life stage was significantly reduced under the elevated te...
Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton
2014-01-01
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
Jennifer J. Follstad Shah; John S. Kominoski; Marcelo Ardón; Walter K. Dodds; Mark O. Gessner; Natalie A. Griffiths; Charles P. Hawkins; Sherri L. Johnson; Antoine Lecerf; Carri J. LeRoy; David W. P. Manning; Amy D. Rosemond; Robert L. Sinsabaugh; Christopher M. Swan; Jackson R. Webster; Lydia H. Zeglin
2017-01-01
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community...
S. Panda; D.M. Amatya; G. Hoogenboom
2014-01-01
Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...
Machine vision guided sensor positioning system for leaf temperature assessment
NASA Technical Reports Server (NTRS)
Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)
2001-01-01
A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.
Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.
Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia
2018-02-01
Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.
Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua
2017-01-01
Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741
Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.
Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun
2017-02-01
Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. © 2017 American Society of Plant Biologists. All Rights Reserved.
Marchin, Renée M; Dunn, Robert R; Hoffmann, William A
2014-12-01
In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.
Leaf morphology shift linked to climate change.
Guerin, Greg R; Wen, Haixia; Lowe, Andrew J
2012-10-23
Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.
Coordination of physiological and structural traits in Amazon forest trees
NASA Astrophysics Data System (ADS)
Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.
2012-02-01
Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics such as maximum height, others such as the classical "leaf economic spectrum" covary with structural traits such as leaf size and ΦLS. Coordinated structural and physiological adaptions are also associated with light acquisition/shade tolerance strategies with several traits such as MA and [C] being significant components of more than one ecological strategy dimension. This is argued to be a consequence of a range of different potential underlying causes for any observed variation in such "ambiguous" traits. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.
NASA Astrophysics Data System (ADS)
Chambers, J. Q.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Cobello, L. O.; Fontes, C.; Dawson, T. E.; Higuchi, N.
2017-12-01
In order to improve our ability to predict terrestrial water fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, especially in tropical forests which recycle large fluxes of water to the atmosphere. This need has become more relevant due to observed records in global temperature. In this study we show a strong temporal correlation between sap velocity and leaf-to-air vapor pressure deficit (VPD) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As VPDs in the upper canopy (20-30 m) varied throughout the day and night, basal sap velocity (1.5 m) responded rapidly without an observable delay (< 15 min). Sap velocity showed a sigmoidal dependence on VPDs including an exponential increase, an inflection point, and a plateau, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity, stomatal conductance, and leaf water potential was evident with morning periods showing higher sensitivities to VPD than afternoon and night periods. Diurnal leaf gas exchange observations revealed a morning to midday peak in stomatal conductance, but midday to afternoon peak in transpiration and VPD. Thus, our study confirms that the temporal lag between the Gs peak and VPD peak are the major regulators of the hysteresis phenomenon as previously described by other studies. Moreover, out study provide direct evidence for the role of decreased stomatal conductance in the warm afternoon periods to reduce transpiration and allow for the partial recovery of leaf water potential to less negative values. Our results suggests the possibility of predicting evapotranspiration fluxes from ecosystem to regional scales using remote sensing of vegetation temperature from, for example, thermal images of satellites and drones.
NASA Astrophysics Data System (ADS)
Holm, J. A.; Jardine, K.; Guenther, A. B.; Chambers, J. Q.; Tribuzy, E.
2014-09-01
Tropical trees are known to be large emitters of biogenic volatile organic compounds (BVOC), accounting for up to 75% of the global isoprene budget. Once in the atmosphere, these compounds influence multiple processes associated with air quality and climate. However, uncertainty in biogenic emissions is two-fold, (1) the environmental controls over isoprene emissions from tropical forests remain highly uncertain; and (2) our ability to accurately represent these environmental controls within models is lacking. This study evaluated the biophysical parameters that drive the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) embedded in a biogeochemistry land surface model, the Community Land Model (CLM), with a focus on isoprene emissions from an Amazonian forest. Upon evaluating the sensitivity of 19 parameters in CLM that currently influence isoprene emissions by using a Monte Carlo analysis, up to 61% of the uncertainty in mean isoprene emissions was caused by the uncertainty in the parameters related to leaf temperature. The eight parameters associated with photosynthetic active radiation (PAR) contributed in total to only 15% of the uncertainty in mean isoprene emissions. Leaf temperature was strongly correlated with isoprene emission activity (R2 = 0.89). However, when compared to field measurements in the Central Amazon, CLM failed to capture the upper 10-14 °C of leaf temperatures throughout the year (i.e., failed to represent ~32 to 46 °C), and the spread observed in field measurements was not representative in CLM. This is an important parameter to accurately simulate due to the non-linear response of emissions to temperature. MEGAN-CLM 4.0 overestimated isoprene emissions by 60% for a Central Amazon forest (5.7 mg m-2 h-1 vs. 3.6 mg m-2 h-1), but due to reductions in leaf area index (LAI) by 28% in MEGAN-CLM 4.5 isoprene emissions were within 7% of observed data (3.8 mg m-2 h-1). When a slight adjustment to leaf temperature was made to match observations, isoprene emissions increased 24%, up to 4.8 mg m-2 h-1. Air temperatures are very likely to increase in tropical regions as a result of human induced climate change. Reducing the uncertainty of leaf temperature in BVOC algorithms, as well as improving the accuracy of replicating leaf temperature output in land surface models is warranted in order to improve estimations of tropical BVOC emissions.
Insect eggs protected from high temperatures by limited homeothermy of plant leaves.
Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur
2009-11-01
Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonardos, E.D.; Tsujita, M.J.; Grodzinski, B.
1994-11-01
The influence of irradiance, CO[sub 2] concentration, and air temperature on leaf and whole-plant net C exchange rate (NCER) of Alstroemeria Jacqueline' was studied. At ambient CO[sub 2], leaf net photosynthesis was maximum at irradiances above 600 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] photosynthetically active radiation (PAR), while whole-plant NCER required 1,200 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] PAR to be saturated. Leaf and whole-plant NCERs were doubled under CO[sub 2] enrichment of 1,500 to 2,000 [mu]l CO[sub 2]/liter. Leaf and whole-plant NCERs declined as temperature increased from 20 to 35 C. Whereas the optimum temperature range for leaf net photosynthesis wasmore » 17 to 23 C, whole-plant NCER, even at high light and high CO[sub 2], declined above 12 C. Dark respiration of leaves and whole plants increased with a Q[sub 10] of [approx] 2 at 15 to 35 C. In an analysis of day effects, irradiance, CO[sub 2] concentration, and temperature contributed 58%, 23%, and 14%, respectively, to the total variation in NCER explained by a second-order polynomial model (R[sup 2] = 0.85). Interactions among the factors accounted for 4% of the variation in day C assimilation. The potential whole-plant growth rates during varying greenhouse day and night temperature regimes were predicted for short- and long-day scenarios. The data are discussed with the view of designing experiments to test the importance of C gain in supporting flowering and high yield during routine harvest of Alstroemeria plants under commercial greenhouse conditions.« less
Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.
2013-01-01
Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041
Carlson, Jane E; Adams, Christopher A; Holsinger, Kent E
2016-01-01
Trait-environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait-trait and trait-environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Across 19 populations in a common garden, stomatal density increased with the source population's mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. The parallel patterns of broad-scale variation, differences in selection and differences in trait-ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by increasing transpiration and cooling, but predominately in drier, hotter climates. This study uniquely shows context-dependent benefits of stomatal density--a trait rarely linked to local adaptation in plants. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.
2016-05-13
To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C 4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species ( Zea mays) to assess correlations in leaf temperature (T leaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly changemore » in abundance levels with T leaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing T leaf in S. nutans. Furthermore, the differential transcriptomic responses of the co-dominant C 4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.« less
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia
Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew; ...
2018-03-06
Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less
Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew
Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, G.K.; Mann, S.K.
Four populations of Cannabis sativa L. (marihuana) growing in their native habitat and exposed to different levels of environmental pollution were studied for several leaf morphology and leaf trichome features. Leaf length, petiole length, length and width of central leaflet, and the number of teeth on leaf margin decreased with increase in pollution. Trichome length and trichome density values were found to be higher in populations exposed to higher levels of environmental pollution.
Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P
2015-05-01
A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita
2013-09-01
The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.
Morales, Gerard; Moragrega, Concepció; Montesinos, Emilio; Llorente, Isidre
2018-01-01
Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits and almond. The bacterium is distributed throughout the major stone-fruit-producing areas of the World and is considered a quarantine organism in the European Union according to the Council Directive 2000/29/EC, and by the European and Mediterranean Plant Protection Organization. The effect of leaf wetness duration and temperature on infection of Prunus by X. arboricola pv. pruni was determined in controlled environment experiments. Potted plants of the peach-almond hybrid GF-677 were inoculated with bacterial suspensions and exposed to combinations of six leaf wetness durations (from 0 to 24 h) and seven fixed temperatures (from 5 to 35°C) during the infection period. Then, plants were transferred to a biosafety greenhouse, removed from bags, and incubated at optimal conditions for disease development. Although leaf wetness was required for infection of Prunus by X. arboricola pv. pruni, temperature had a greater effect than leaf wetness duration on disease severity. The combined effect of wetness duration and temperature on disease severity was quantified using a modification of the Weibull equation proposed by Duthie. The reduced-form of Duthie's model obtained by nonlinear regression analysis fitted well to data (R = 0.87 and R2adj = 0.85), and all parameters were significantly different from 0. The estimated optimal temperature for infection by X. arboricola pv. pruni was 28.9°C. Wetness periods longer than 10 h at temperatures close to 20°C, or 5 h at temperatures between 25 and 35°C were necessary to cause high disease severity. The predictive capacity of the model was evaluated using an additional set of data obtained from new wetness duration-temperature combinations. In 92% of the events the observed severity agreed with the predicted level of infection risk. The risk chart derived from the reduced form of Duthie's model can be used to estimate the potential risk for infection of Prunus by X. arboricola pv. pruni based on observed or forecasted temperature and wetness duration.
Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations.
Schymanski, Stanislaus J; Or, Dani; Zwieniecki, Maciej
2013-01-01
Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection for very short sunflecks (tens of seconds).
Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S
2016-01-01
Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (V cmax ), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in land surface models. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Smith, Nicholas G.; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S.
2016-01-01
Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (Vcmax), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in land surface models. PMID:27658816
Tague, Christina L.; Moritz, Max A.
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592
Bart, Ryan R; Tague, Christina L; Moritz, Max A
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.
Filiault, Daniele L.; Kumar, Ravi; Jiménez-Gómez, José M.; Schrager, Amanda V.; Park, Daniel S.; Peng, Jie; Sinha, Neelima R.; Maloof, Julin N.
2012-01-01
The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits. PMID:22253737
Changing environmental conditions and applying organic fertilizers in Origanum vulgare L.
Murillo-Amador, Bernardo; Morales-Prado, Luis E.; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel V.; Hernández-Montiel, Luis G.; Rueda-Puente, Edgar O.; Nieto-Garibay, Alejandra
2015-01-01
Any improvement in agricultural systems that results in higher production should also reduce negative environmental impacts and enhance sustainability. The aim of this research was to investigate the effect of two different production systems, one open-field and the other shade-enclosure with four bocashi doses, in order to find the best environmental option in terms of yield, physiological and morphometric characteristics in one oregano (Origanum vulgare L.) cultivar. In this study a completely randomized block design was used with four replications and evaluated for photosynthetic and transpiration rate, stomatal conductance, chlorophyll, leaf area and temperature, aerial and roots fresh and dry biomass, fresh and dry yield. The results showed that oregano adapted best to the shade-enclosure with increase yield of fresh and dry leaf weight of 165% and 118%, respectively, when compared to open-field. Also, higher doses of bocashi improved yield in both environments but more so in shade-enclosure. Soil moisture retention was higher in shade-enclosure which was reflected in physiological variables for soil matric potential, transpiration, stomatal conductivity, photosynthesis being significantly higher in shade-enclosure compared to open-field, thus improving yield. It seems that oregano plants can be grown and perform better under shade-enclosure than open-field and bocashi is a suitable organic fertilizer. PMID:26257756
Santos, Claudiana M Dos; Endres, Laurício; Ferreira, Vilma M; Silva, José V; Rolim, Eduardo V; Wanderley, Humberto C L
2017-01-01
Castor bean is one of the crops with potential to provide raw material for production of oils for biodiesel. This species possess adaptive mechanisms for maintaining the water status when subjected to drought stress. A better understanding these mechanisms under field conditions can unravel the survival strategies used by this species. This study aimed to compare the physiological adaptations of Ricinus communis (L.) in two regions with different climates, the semi-arid and semi-humid subject to water stress. The plants showed greater vapor pressure deficit during the driest hours of the day, which contributed to higher values of the leaf temperature and leaf transpiration, however, the VPD(leaf-air) had the greatest effect on plants in the semi-arid region. In both regions, between 12:00 p.m. and 2:00 p.m., the plants presented reduction in the rates of photosynthesis and intracellular CO2 concentration in response to stomatal closure. During the dry season in the semi-arid region, photoinhibition occurred in the leaves of castor bean between 12:00 p.m. and 2:00 p.m. These results suggest that castor bean plants possess compensatory mechanisms for drought tolerance, such as: higher stomatal control and maintenance of photosynthetic capacity, allowing the plant to survive well in soil with low water availability.
Earth System Modeling Tested for CLM4.5 in a Costa Rican Tropical Montane Rainforest
NASA Astrophysics Data System (ADS)
Song, J.; Miller, G. R.; Cahill, A. T.; Aparecido, L. M. T.; Moore, G. W.
2017-12-01
Terrestrial ecosystems in the tropics are important for global carbon and water cycling, which makes modeling of their land-surface processes essential for accurate understanding of land-atmosphere interactions. However, modeling of tropical regions, especially mountainous ones, is known to be subject to significant errors in the prediction of evapotranspiration. Our previous work has highlighted the effects of the prolonged wetness experienced by such sites, focusing on carbon and water exchange at the leaf/stand level. Here, we explore the implications these findings have for modeling at the stand/canopy scale. This study examined the performance of the Community Land Model (CLM4.5) against measurements from a tropical montane rainforest in Costa Rica. The study site receives over 4,000 mm of mean annual precipitation. Measurements include leaf temperatures, transpiration (sap flows), fluxes via eddy-covariance, and vertical profiles of H2O and CO2 concentrations, micrometeorological variables, and leaf wetness. In this work, results from point-scale CLM4.5 were compared to canopy data. The model fails to capture the effects of frequent rainfall events and mountainous topography on the variables of interest (temperatures, leaf wetness, and fluxes). We found that soil and leaf temperatures were overestimated (≈ +2°C) at noon and underestimated (≈ -1°C) during the night; daily transpiration was approximately double than that observed. Simulated leaf wetness deviated significantly from the measurements, both in timing and extent, which affected temperatures and evapotranspiration partitioning. Slope effects appeared in the average diurnal variations of surface albedo and carbon flux from actual data but were not captured in CLM. Our investigation indicated that interception and aerodynamic resistance models contribute to model errors, suggesting potential improvements for modeling in very wet and/or mountainous regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, L; Baldocchi, DD
2003-09-01
OAK-B135 Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO{sub 2} and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (V{sub cmax}) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine V{sub cmax}. There was a pronounced seasonal pattern in V{sub cmax}. The maximum value of V{sub cmax}, 127 {micro}molm{sup -2} s{sup -1},was reached shortlymore » after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, V{sub cmax} declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 C. The decline in V{sub cmax} was gradual in midsummer, however, despite extremely low predawn leaf water potentials ({Psi}{sub pd}, {approx} -4.0 MPa). Overall, temporal changes in V{sub cmax} were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (R{sub d}, 5-6 {micro}mol m{sup -2} s{sup -1}) were observed. Once a leaf reached maturity, R{sub d} remained low, around 0.5 {micro}mol m{sup -2} s{sup -1}. In contrast to the strong seasonality of V{sub cmax}, m and marginal water cost per unit carbon gain ({partial_derivative}E/{partial_derivative}A) were relatively constant over the season, even when leaf {Psi}{sub pd} dropped to -6.8 MPa. The constancy of {partial_derivative}E/{partial_derivative}A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.« less
NASA Astrophysics Data System (ADS)
Groff, D. V.; Williams, D. G.; Gill, J. L.
2017-12-01
Monospecific stands of Tussac grasses (Poa flabellata) are a peat forming community found along coastal fringes of the Falkland Islands, and other sub-Antarctic islands in the South Atlantic region. Vegetation in peatlands record variation in regional precipitation and temperature in the cellulose of root and leaf plant tissues. A modern proof-of-concept study has determined how modern living P. flabellata records temperature, relative humidity, and precipitation using carbon (δ13C) and oxygen (δ18O) stable isotopes of leaf and root cellulose. At four locations in the Falkland Islands, P. flabellata plants were collected monthly and temperature (°C) and relative humidity (%) were measured continuously between September 1, 2015 to September 1, 2016. Monthly composite precipitation at each location was used to construct a local meteoric water line using δ2H and δ18O. Measurements of δ13C in leaf cellulose positively correlated with monthly average temperature (Pearson's r=0.82) and negatively correlated with relative humidity (Pearson's r = -0.76) across all sites, but not δ13C of root cellulose. Across all sites, the mean summer δ13C of leaf cellulose (-24.28‰) was significantly greater than winter (-26.80‰; t=8.91, df=73, p<0.001), and mean seasonal temperatures range from 9.32°C to 3.68°C for summer and winter, respectively. Measurements of δ18O in precipitation and leaf cellulose indicate a weak negative correlation (Pearson's r = -0.20), as well as δ18O in root cellulose (Pearson's r= -0.30). The δ13C isotope composition in leaf cellulose, along with the abundance of macrofossil P. flabellata leaves in peat deposits spanning the Holocene, supports the use of coastal grasslands formed by P. flabellata in the Falkland Islands as a paleoclimate proxy in the South Atlantic region.
Haque, Mohammad S.; de Sousa, Alexandra; Soares, Cristiano; Kjaer, Katrine H.; Fidalgo, Fernanda; Rosenqvist, Eva; Ottosen, Carl-Otto
2017-01-01
The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms. PMID:28979273
Frost sensitivity of various deciduous plant species during leaf development in spring
NASA Astrophysics Data System (ADS)
Estrella, Nicole; Heinzmann, Verena; Menzel, Annette
2017-04-01
Frost damage in deciduous woody plants is a major climate component affecting fitness and distribution of species. It is a trade-off between early bud burst enlarging the potential growing season and frost risk for deciduous plants in many regions. In a warming world observed earlier budburst may lead to an increased risk of spring frost damage caused by higher variability in temperatures (IPCC 2007). Lenz et al. (2013) showed that leaves are in general more sensitive to frost in later leaf development stages. But still there is little knowledge on stages of leaf development and their susceptibility to frost damage in many deciduous species. Additionally there might be variation with plant traits or different strategies within specific groups of species. Frost risk minimization can also be achieved by variability in bud burst within a specimen. Therefore, in this study we observed more than 174 individual plant specimen of 96 deciduous woody plant species growing in a comparable microclimate outside on the campus of the Technical University of Munich in Freising, southern Germany. Their phenology was intensively studied from 12th of March to 4th of May, including variation within a specimen. Several times twigs for the frost experiment were cut in different stages of leaf development and exposed to freezing temperatures of -4 and -6°C in two lab freezers. Since the leaf development in spring 2015 started comparably late, too many species emerged simultaneously leading to some capacity problems in the freezers. Nevertheless, our results still reveal novel aspects concerning leaf development and frost sensitivity. The phenological development proceeded in general from outside to inside of the crown (59%), in 33% of the cases all over the plant simultaneously. Sporadic, inside to outside or vertical development characteristics occurred in rare cases (8%). Mixed model analysis indicated impacts on phenology by plant family, natural origin, pollination mode, and development characteristic (in decreasing order of significance). The frost experiment clearly showed that damage at -6°C was larger than at -4°C and that twigs frosted at later dates, thus in higher phenological development stages, were more prone to frost damage than twigs frosted at earlier dates / in lower development stages. Additionally, there was a phylogenetic effect since frost damage significantly varied with plant family whereas plant origin had no relevance. References Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytologist 200: 1166-1175. Stocker T, Qin D, Platner G (2013) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers (IPCC, 2013).
Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.
Li, Le; McCormack, M Luke; Ma, Chengen; Kong, Deliang; Zhang, Qian; Chen, Xiaoyong; Zeng, Hui; Niinemets, Ülo; Guo, Dali
2015-09-01
Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence. © 2015 John Wiley & Sons Ltd/CNRS.
Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering
Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining
2017-01-01
Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300
Brandão, Solange E; Bulbovas, Patricia; Lima, Marcos E L; Domingos, Marisa
2017-01-01
The tolerance potential against the oxidative injury in native plants from forest ecosystems affected by environmental stressors depends on how efficiently they keep their pro-oxidant/antioxidant balance. Great variations in plant tolerance are expected, highlighting the higher relevance of measuring biochemical leaf trait indicators of oxidative injury in species with similar functions in the forest than in single species. The use of this functional approach seems very useful in the Brazilian Atlantic Forest because it still holds high plant diversity and was the focus of this study. We aimed at determining the tolerance potential of tree species from the Atlantic Forest remnants in SE Brazil against multiple oxidative environmental stressors. We assumed that pioneer tree species are more tolerant against oxidative stress than non-pioneer tree species and that their tolerance potential vary spatially in response to distinct combined effects of oxidative environmental stressors. The study was carried out in three Atlantic Forest remnants, which differ in physiognomy, species composition, climatic characteristics and air pollution exposure. Leaves of three pioneer and three non-pioneer species were collected from each forest remnant during wet (January 2015) and dry periods (June 2015), for analyses of non-enzymatic and enzymatic antioxidants and oxidative injury indicators. Both hypotheses were confirmed. The pioneer tree species displayed biochemical leaf traits (e.g. high levels of ascorbic acid, glutathione and carotenoids and lower lipid peroxidation) that indicate their higher potential tolerance against oxidative environmental stressors than non-pioneer species. The biochemical leaf traits of both successional groups of species varied between the forest remnants, in response to a linear combination of oxidative environmental stressors, from natural (relative humidity and temperature) and anthropogenic sources (ozone and nitrogen dioxide). Copyright © 2016 Elsevier B.V. All rights reserved.
Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo
2018-01-01
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, the declining characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis, and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area was primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. PMID:25158785
NASA Astrophysics Data System (ADS)
Susanti, R. F.; Natalia, Desy
2016-11-01
In traditional medicine, Physalis angulata which is well known as ceplukan in Indonesia, has been utilized to cure several diseases by conventional extraction in hot water. The investigation of the Swietenia mahagoni extract activity in modern medicine typically utilized organic solvents such as ethanol, methanol, chloroform and hexane in extraction. In this research, subcritical water was used as a solvent instead of organic solvent to extract the Pysalis angulata leaf part. The focus of this research was the investigation of extract drying condition in the presence of filler to preserve the quality of antioxidant in Swietenia mahagoni extract. Filler, which is inert, was added to the extract during drying to help absorb the water while protect the extract from exposure in heat during drying. The effects of filler types, concentrations and oven drying temperatures were investigated to the antioxidant quality covering total phenol and antioxidant activity. Aerosil and microcrystalline cellulose (MCC) were utilized as fillers with concentration was varied from 0-30 wt% for MCC and 0-15 wt% for aerosil. The oven drying temperature was varied from 40-60 oC. The results showed that compare to extract dried without filler, total phenol and antioxidant activity were improved upon addition of filler. The higher the concentration of filler, the better the antioxidant; however it was limited by the homogeneity of filler in the extract. Both of the variables (oven temperature and concentration) played an important role in the improvement of extract quality of Swietenia mahagoni leaf. It was related to the drying time which can be minimized to protect the deterioration of extract from heat. In addition, filler help to provide the powder form of extract instead of the typical extract form which is sticky and oily.
Spring Constants for Stacks of Curved Leaves of Pyrolytic Boron Nitride
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.
1999-01-01
Stacks of curved leaves of pyrolytic boron nitride (PBN) were deflected and the force versus deflection data was recorded. From this data, the spring constant for a given spring geometry (radius of curvature of a leaf, width of a leaf, thickness of a leaf, and number of leaves in the stack) was determined. These experiments were performed at room temperature, 500 C and 1000 C. However, temperature was not found to affect the spring constant. The measured values were generally within one order of magnitude of predictions made using a previously derived equation for a simply supported cylindrical section with a line force at the center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappes, E.M.
1986-01-01
Carbohydrate production, export and use were studied for different organs of sour cherry (Prunus cerasus L. Montmorency). Gross carbohydrate (/sup 14/CO/sub 2/) export started between 27.2 and 77.6% of full leaf expansion. The 10th leaf developing started export later than the 7th leaf, suggesting that higher carbohydrate availability during leaf expansion delays export initiation. In support of this, gross export started earlier (44.4-52.4% full expansion) after source leaf removal, than in the control (77.6%). Translocation was primarily vertical (following orthostichies). Most leaves of fruiting shoots exported bidirectionally to the apex and fruits, only leaves closest to fruits exported exclusively tomore » fruits during rapid cell division (Stage I) and rapid cell expansion (Stage III). Net export, determined from carbohydrate balance models started at 17 and 51% expansion for the 7th and terminal leaf, and at 26.5% of shoot elongation. Cumulative carbohydrate production of the 7th and terminal leaves during the first 9 and 11 days after emergence, exceeded carbohydrate accumulated at final size, 464.2 and 148.9 mg. A fruit carbohydrate balance was developed to determine contributions by fruit photosynthesis and fruit respiration, and to identify periods of greatest carbohydrate import. Fruit photosynthesis during development was characterized under different environmental conditions. Gross photosynthesis and chlorophyll content per fruit increased to a maximum during stage II and decreased thereafter. Gross photosynthesis approached a maximum at 40/sub 0/C. Since dark respiration increased exponentially over the same temperature range, net photosynthesis reached a maximum at 18/sup 0/C. Photorespiration was not detected.« less
NASA Astrophysics Data System (ADS)
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.
2013-01-01
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169
[Cold resistance of four evergreen broad-leaved tree species].
Wang, Na; Wang, Kui Ling; Liu, Qing Hua; Liu, Qing Chao
2016-10-01
The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.
Response of Korean pine’s functional traits to geography and climate
Dong, Yichen
2017-01-01
This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°–48°N) and the linear relationships among Korean pine functional traits, to explore this species’ adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors—latitude, longitude, and altitude; temperature factors—mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors—annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation. PMID:28886053
Qian, Y; Miao, S L; Gu, B; Li, Y C
2009-01-01
Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.
Hirotsu, Naoki; Makino, Amane; Ushio, Ayuko; Mae, Tadahiko
2004-05-01
Effects of low temperature on chlorophyll (Chl) fluorescence, gas exchange rate, the amounts of xanthophyll cycle pigments (Xp) and the activities of several antioxidant enzymes were examined in the 8th leaf of two rice (Oryza sativa L.) cultivars (japonica and indica types) and rbcS antisense rice. All plants were grown hydroponically at 25/20 degrees C (day/night), and then exposed to 20/17 degrees C (day/night) after full expansion of the 8th leaf, or exposed to either 20/17 degrees C or 15/13 degrees C (day/night) during the expansion of the 8th leaf. All plants exposed to low temperatures showed a decrease in CO(2) assimilation rate without photoinhibition, and increases in the fraction of thermal dissipation in PSII, and in the electron flux through the water-water cycle (WWC) were observed. Although the increase of thermal dissipation was associated with increases in the ratio of carotenoids to Chl, the ratio of Xp to carotenoids and the de-epoxidation state of Xp, the increase of the electron flux of WWC was not accompanied by an increase in the activities of antioxidant enzymes. Such photoprotective responses did not differ between during and after full expansion of the leaf, and did not differ among the three genotypes. Quantitative analyses on the dissipation of excess light energy showed that thermal dissipation makes a larger contribution than WWC. Thus, although low temperature led to a decrease in CO(2) assimilation, rice potentially coped with the excess light energy by increasing the thermal dissipation and the electron flux of WWC under low temperature irrespective of leaf development and genotypes.
Response of Korean pine's functional traits to geography and climate.
Dong, Yichen; Liu, Yanhong
2017-01-01
This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°-48°N) and the linear relationships among Korean pine functional traits, to explore this species' adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors-latitude, longitude, and altitude; temperature factors-mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors-annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation.
Blazer, V.S.; Waldrop, T.B.; Schill, W.B.; Densmore, Christine L.; Smith, D.
2003-01-01
Eastern Tubifex tubifex worms were exposed to Myxobolus cerebralis spores at 9, 13, 17, and 20 C in 1-L jars that contained sand, mud, or leaf litter as substrata. Beginning 60 days after exposure, water from each jar was filtered daily and examined for the presence of waterborne triactinomyxon spores (TAMs). On discovering a single TAM from an experimental jar, 48 T. tubifex worms from that jar were placed individually into 24-well plates. Spores released from individual infected T. tubifex worms were quantified to determine the first day of TAM release from infected worms, the infection rate, the total number of TAMs released per worm, and the duration of release. No TAMs were found in any of the jars incubated at 20 C or in uninfected, control worms at any temperature. The total number of TAMs released by infected worms in mud and sand was highest at 13 C compared with other temperatures. Infection rates among individual worms increased with temperature between 9 and 17 C. Higher temperatures (up to 17 C) induced earlier TAM releases among infected worms, and substratum did not influence this production parameter. The average duration of TAM release decreased as the temperature increased from 9 to 17 C, and there was a significant effect of substratum in the groups maintained at 13 and 17 C. In all temperature treatments between 9 and 17 C, the duration of release was least in the worms maintained in leaf litter, as was the total number of TAMs released during the experimental period and the median number of TAMs per production day.
NASA Astrophysics Data System (ADS)
Noda, H. M.; Nasahara, K. N.; Muraoka, H.
2016-12-01
Growing requirements to observe the spatial and temporal changes of forest canopy structure and functions under climate change expect advancement of ecophysiological interpretation of satellite remote sensing data. To achieve this we need mechanistic and quantitative understanding on the consequence between leaf-level traits and canopy-level spectral reflectance by coupling in-situ observation and analytical modeling. Deciduous forest is characterized by remarkable changes in canopy morphological and physiological structure through leaf expansion in spring to leaf fall in autumn. In addition, optical properties (spectral reflectance, absorption and transmittance of radiation) of leaves also change because they reflect leaf biochemical components such as pigments and water, and anatomical and surface structures. In this study we studied such consequence in a cool-temperate deciduous broadleaf forest, namely "Takayama site", on the northwestern slope of Mt. Norikura in central Japan. The forest canopy is dominated by Quercus crispula Blume and Betula ermanii Cham. In this forest, we measured the leaf optical properties of Q. crispula and B. ermanii during the growing season, from budburst in mid-May to senescence at beginning of November in 2004, 2005, 2006 and 2010. The measurement was conducted for both adaxial and abaxial side of the leaves.In the near infrared band, the leaf reflectance increased and the transmittance decreased during development period. Those changed very little in senescence period. The leaf reflectance in visible region changes small during the development period, the transmittance dropped remarkably. The abaxial side reflectance was about twice higher than adaxial side in the visible region. Those changes in the growing period fitted well to the development model base on air temperature. To validate the model, we simulate the canopy reflectance by using radiative transfer model SAIL. As our leaf spectral data and canopy spectral model have high flexibility to estimate the reflectance of target spectra according to the specificity of optical sensors on satellite, thus constructed mechanistic model would be applied to interpret many kinds of optical data observed by satellites.
Sukumaran, NatarajaPillai
2014-01-01
The main objective of the present study is to improve the immune power of Cyprinus carpio by using Euphorbia hirta plant leaf extract as immunostimulants. The haematological, immunological and enzymatic studies were conducted on the medicated fish infected with Aeromonas hydrophila pathogen. The results obtained from the haematological studies show that the RBC count, WBC count and haemoglobin content were increased in the infected fish at higher concentration of leaf extract. The feeds with leaf extract of Euphorbia hirta were able to stimulate the specific immune response by increasing the titre value of antibody. It was able to stimulate the antibody production only up to the 5th day, when fed with higher concentrations of (25 g and 50 g) plant leaf extract. The plant extract showed non-specific immune responses such as lysozyme activity, phagocytic ratio, NBT assay, etc. at higher concentration (50 g) and in the same concentration (50 g), the leaf extract of Euphorbia hirta significantly eliminated the pathogen in blood and kidney. It was observed that fish have survival percentage significantly at higher concentration (50 g) of Euphorbia hirta, when compared with the control. The obtained results are statistically significant at P < 0.05 and P < 0.01 levels. This research work suggests that the plant Euphorbia hirta has immunostimulant activity by stimulating both specific and non-specific immunity at higher concentrations. PMID:25405077
Richard V. Pouyat; Margaret M. Carreiro
2003-01-01
Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...
Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH
Steven W. Solada; Sue A. Perry; William B. Perry
1996-01-01
The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...
Roger W. Perry
2013-01-01
In temperate portions of North America, some bats that remain active during winter undergo short periods of hibernation below leaf litter on the forest floor during episodes of below-freezing weather. These winter roosts may provide above-freezing conditions, but the thermal conditions under leaf litter are unclear. Further, little is known of the relationship between...
Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang
2012-01-01
Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930
Dai, Ziyu; Edwards, Gerald E.; Ku, Maurice S. B.
1992-01-01
Castor bean (Ricinus communis L.) has a high photosynthetic capacity under high humidity and a pronounced sensitivity of photosynthesis to high water vapor pressure deficit (VPD). The sensitivity of photosynthesis to varying VPD was analyzed by measuring CO2 assimilation, stomatal conductance (gs), quantum yield of photosystem II (φII), and nonphotochemical quenching of chlorophyll fluorescence (qN) under different VPD. Under both medium (1000) and high (1800 micromoles quanta per square meter per second) light intensities, CO2 assimilation decreased as the VPD between the leaf and the air around the leaf increased. The gs initially dropped rapidly with increasing VPD and then showed a slower decrease above a VPD of 10 to 20 millibars. Over a temperature range from 20 to 40°C, CO2 assimilation and gs were inhibited by high VPD (20 millibars). However, the rate of transpiration increased with increasing temperature at either low or high VPD due to an increase in gs. The relative inhibition of photosynthesis under photorespiring (atmospheric levels of CO2 and O2) versus nonphotorespiring (700 microbars CO2 and 2% O2) conditions was greater under high VPD (30 millibars) than under low VPD (3 millibars). Also, with increasing light intensity the relative inhibition of photosynthesis by O2 increased under high VPD, but decreased under low VPD. The effect of high VPD on photosynthesis under various conditions could not be totally accounted for by the decrease in the intercellular CO2 in the leaf (Ci) where Ci was estimated from gas exchange measurements. However, estimates of Ci from measurements of φII and qN suggest that the decrease in photosynthesis and increase in photorespiration under high VPD can be totally accounted for by stomatal closure and a decrease in Ci. The results also suggest that nonuniform closure of stomata may occur in well-watered plants under high VPD, causing overestimates in the calculation of Ci from gas exchange measurements. Under low VPD, 30°C, high light, and saturating CO2, castor bean (C3 tropical shrub) has a rate of photosynthesis (61 micromoles CO2 per square meter per second) that is about 50% higher than that of tobacco (C3) or maize (C4) under the same conditions. The chlorophyll content, total soluble protein, and ribulose-1,5-bisphosphate carboxylase/oxygenase level on a leaf area basis were much higher in castor bean than in maize or tobacco, which accounts for its high rates of photosynthesis under low VPD. PMID:16669054
Effects of increased temperatures on Gammarus fossarum under the influence of copper sulphate.
Schmidlin, Lara; von Fumetti, Stefanie; Nagel, Peter
2015-03-01
The specialised fauna of freshwater springs will have to cope with a possible temperature rise owing to Global Change. It is affected additionally by contamination of the water with xenobiotics from human activities in the surrounding landscape. We assessed the combined effects of temperature increase and exposure to toxins in laboratory experiments by using copper sulphate as a model substance and Gammarus fossarum Koch, 1835, as the model organism. This amphipod is a common representative of the European spring fauna and copper ions are widespread contaminants, mainly from agricultural practice. The experiments were conducted in boxes placed in flow channels and the water temperatures were varied. The gammarids were fed with conditioned beech leaf discs. The feeding activity of the amphipods was quantified on the level of the organism; and the respiratory electron transport system (ETS) assay was conducted in order to determine changes on the cellular level in the test organisms. The results show that the feeding activity increased slightly with higher water temperature. The sub-lethal copper dose had no significant effect other than a trend towards lower feeding activity. The ETS activity was significantly higher at the higher water temperatures, and the copper ions significantly lowered the ETS activity of the organisms. The combination of the two methods was useful when testing for combined effects of environmental changes and pollutants on a species. From the results one can reasonably infer a higher risk of adverse effects with increase in water temperature and exposure to a particular heavy metal.
Structural adjustments in resprouting trees drive differences in post-fire transpiration.
Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J
2014-02-01
Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.
Estiarte, Marc; Peñuelas, Josep
2015-03-01
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. © 2014 John Wiley & Sons Ltd.
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange. © 2017 by the Ecological Society of America.
Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke
2015-04-01
Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D
2017-12-01
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of V c,max and J max were 17% lower than commonly used values. When scaled to 25°C, V c,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25, respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We then measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower thanmore » commonly used values. When scaled to 25°C, Vc,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. Our study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.« less
Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.; ...
2017-09-06
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25, respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We then measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower thanmore » commonly used values. When scaled to 25°C, Vc,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. Our study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.« less
Ou, Zong-Quan; Schmierer, David M; Strachan, Clare J; Rades, Thomas; McDowell, Arlene
2014-07-01
To investigate effects of different postharvest drying processes and storage conditions on key antioxidants in Sonchus oleraceus L. leaves. Fresh leaves were oven-dried (60°C), freeze-dried or air-dried (∼25°C) for 6 h, 24 h and 3 days, respectively. Design of experiments (DOE) was applied to study the stability of antioxidants (caftaric, chlorogenic and chicoric acids) in S. oleraceus leaves and leaf extracts stored at different temperatures (4, 25 and 50°C) and relative humidities (15%, 43% and 75%) for 180 days. The concentration of antioxidants was quantified by a HPLC-2,2'-diphenylpicrylhydrazyl post-column derivatisation method. Antioxidant activity was assessed by a cellular antioxidant activity assay. The three antioxidants degraded to unquantifiable levels after oven-drying. More than 90% of the antioxidants were retained by freeze-drying and air-drying. Both leaf and extract samples retained >90% of antioxidants, except those stored at 75% relative humidity. Leaf material had higher antioxidant concentrations and greater cellular antioxidant activity than corresponding extract samples. Freeze-drying and air-drying preserved more antioxidants in S. oleraceus than oven-drying. From DOE analysis, humidity plays an important role in degradation of antioxidants during storage. To preserve antioxidant activity, it is preferable to store S. oleraceus as dried leaf material. © 2014 Royal Pharmaceutical Society.
Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic
NASA Astrophysics Data System (ADS)
Shanahan, Timothy M.; Hughen, Konrad A.; Ampel, Linda; Sauer, Peter E.; Fornace, Kyrstin
2013-10-01
The hydrogen isotope composition of plant waxes preserved in lacustrine sediments is a potentially valuable tool for reconstructing paleoenvironmental changes in the Arctic. However, in contrast to the mid- and low-latitudes, significantly less effort has been directed towards understanding the factors controlling D/H fractionation in high latitude plant waxes and the impact of these processes on the interpretation of sedimentary leaf wax δD records. To better understand these processes, we examined the D/H ratios of long chain fatty acids in lake surface sediments spanning a temperature and precipitation gradient on Baffin Island in the eastern Canadian Arctic. D/H ratios of plant waxes increase with increasing temperature and aridity, with values ranging from -240‰ to -160‰ over the study area. Apparent fractionation factors between n-alkanoic acids in Arctic lake sediments and precipitation(εFA-ppt) are less negative than those of mid-latitude lakes and modern plants by 25‰ to 65‰, consistent with n-alkane data from modern Arctic plants (Yang et al., 2011). Furthermore, εFA-ppt values from Arctic lakes become systematically more positive with increasing evaporation, in contrast to mid-latitude sites, which show little to no change in fractionation with aridity. These data are consistent with enhanced water loss and isotope fractionation at higher latitude in the Arctic summer, when continuous sunlight supports increased daily photosynthesis. The dominant control on δDFA variations on Baffin Island is temperature. However, changing εFA-ppt result in steeper δDFA-temperature relationships than observed for modern precipitation. The application of this δDFA-based paleotemperature calibration to existing δDFA records from Baffin Island produces much more realistic changes in late Holocene temperature and highlights the importance of these effects in influencing the interpretation of Arctic δDFA records. A better understanding of the controls on hydrogen isotope fractionation in high latitude leaf waxes will be essential to the proper interpretation of isotope records from sedimentary plant waxes in the Arctic.
Photosynthetic Rates of Citronella and Lemongrass 1
Herath, H. M. Walter; Ormrod, Douglas P.
1979-01-01
Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737
NASA Astrophysics Data System (ADS)
Cook, A. A.; Trowbridge, A.; Jacobs, L. M.; Stoy, P. C.; Stevens, P. S.; Phillips, R.
2016-12-01
The sources of and controls over biogenic volatile organic compound (bVOC) fluxes between terrestrial ecosystems and the atmosphere remains poorly understood. Ecosystem bVOC flux models rarely include contributions from leaf litter and soils despite recent findings demonstrating that they can be nontrivial components of total ecosystem bVOC flux. Other recent studies have demonstrated the central role of arbuscular (AM) versus ectomycorrhizal (ECM) fungi in determining litter quality and soil biogeochemistry. Here, we quantify the role of mycorrhizal associations in controlling soil and leaf litter bVOC flux during the growing to non-growing season transition at the Morgan Monroe State Forest Ameriflux Core research site in Indiana, USA. We hypothesize that (1) total bVOC emissions will be greater from ECM plots due to larger belowground microbial biomass, and (2) fast-decomposing litter within the AM-dominated plots will result in an ephemeral pulse in bVOC emissions later in the season. AM and ECM-dominated forest soils were a net bVOC sink early in the growing season following leaf-out, but were net sources during the leaf-fall period in October. In the absence of leaf litter, soils dominated by ECM were a large sink of bVOCs, but leaf litter inputs resulted in a net source, suggesting that leaf litter and not merely soil microbial biomass is critical for understanding hypothesis (1). Temperature explains 57% (21%) of the variability of methanol flux - the bVOC of greatest quantity - in ECM (AM)-dominated plots. Non-methanol bVOC flux is only related to soil temperature in the Fall in ECM-dominated plots, where it explains 71% of the variability. Results are consistent with large methanol efflux with fresh litter after leaf-fall, especially in ECM plots (contrary to hypothesis 2), but net uptake with strong temperature-dependence during the growing season. Seasonality, phenology (including leaf litter dynamics) and mycorrhizal associations should be taken into account to accurately determine the relative contribution of forest soils to ecosystem bVOC fluxes in temperate forests and their sensitivity to environmental drivers.
Chi, Yonggang; Xu, Ming; Shen, Ruichang; Yang, Qingpeng; Huang, Bingru; Wan, Shiqiang
2013-01-01
Background Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. Methodology/Principal Findings A field manipulative experiment was conducted to elevate foliar temperature (T leaf) by 2.07°C in a temperate steppe in northern China. R d/T leaf curves (responses of dark respiration to T leaf), A n/T leaf curves (responses of light-saturated net CO2 assimilation rates to T leaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (A g) to T leaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of R d to 6-year experimental warming was found. However, A n had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of R d was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. Conclusions/Significance Warming decreased the temperature sensitivity (Q 10) of the response of R d/A g ratio to T leaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions. PMID:23457574
Ma, Siyan; Osuna, Jessica L; Verfaillie, Joseph; Baldocchi, Dennis D
2017-06-01
Ecosystem CO 2 fluxes measured with eddy-covariance techniques provide a new opportunity to retest functional responses of photosynthesis to abiotic factors at the ecosystem level, but examining the effects of one factor (e.g., temperature) on photosynthesis remains a challenge as other factors may confound under circumstances of natural experiments. In this study, we developed a data mining framework to analyze a set of ecosystem CO 2 fluxes measured from three eddy-covariance towers, plus a suite of abiotic variables (e.g., temperature, solar radiation, air, and soil moisture) measured simultaneously, in a Californian oak-grass savanna from 2000 to 2015. Natural covariations of temperature and other factors caused remarkable confounding effects in two particular conditions: lower light intensity at lower temperatures and drier air and soil at higher temperatures. But such confounding effects may cancel out. At the ecosystem level, photosynthetic responses to temperature did follow a quadratic function on average. The optimum value of photosynthesis occurred within a narrow temperature range (i.e., optimum temperature, T opt ): 20.6 ± 0.6, 18.5 ± 0.7, 19.2 ± 0.5, and 19.0 ± 0.6 °C for the oak canopy, understory grassland, entire savanna, and open grassland, respectively. This paradigm confirms that photosynthesis response to ambient temperature changes is a functional relationship consistent across leaf-canopy-ecosystem scales. Nevertheless, T opt can shift with variations in light intensity, air dryness, or soil moisture. These findings will pave the way to a direct determination of thermal optima and limits of ecosystem photosynthesis, which can in turn provide a rich resource for baseline thresholds and dynamic response functions required for predicting global carbon balance and geographic shifts of vegetative communities in response to climate change.
Zheng, Xuewei; Fan, Shuli; Wei, Hengling; Tao, Chengcheng; Ma, Qiang; Ma, Qifeng; Zhang, Siping; Li, Hongbin; Pang, Chaoyou; Yu, Shuxun
2017-09-16
Premature leaf senescence occurs in the ultimate phase of the plant, and it occurs through a complex series of actions regulated by stress, hormones and genes. In this study, a proteomic analysis was performed to analyze the factors that could induce premature leaf senescence in two cotton cultivars. We successfully identified 443 differential abundant proteins (DAPs) from 7388 high-confidence proteins at four stages between non-premature senescence (NS) and premature senescence (PS), among which 158 proteins were over-accumulated, 238 proteins were down-accumulated at four stages, and 47 proteins displayed overlapped accumulation. All the DAPs were mapped onto 21 different categories on the basis of a Clusters of Orthologous Groups (COG) analysis, and 9 clusters were based on accumulation. Gene Ontology (GO) enrichment results show that processes related to stress responses, including responses to cold temperatures and responses to hormones, are significantly differentially accumulated. More importantly, the enriched proteins were mapped in The Arabidopsis Information Resource (TAIR), showing that 58 proteins play an active role in abiotic stress, hormone signaling and leaf senescence. Among these proteins, 26 cold-responsive proteins (CRPs) are significantly differentially accumulated. The meteorological data showed that the median temperatures declined at approximately 15 days before the onset of aging, suggesting that a decrease in temperature is tightly linked to an onset of cotton leaf senescence. Because accumulations of H₂O₂ and increased jasmonic acid (JA) were detected during PS, we speculate that two pathways associated with JA and H₂O₂ are closely related to premature leaf senescence in cotton.
Hu, Tao; Liu, Shu-Qian; Amombo, Erick; Fu, Jin-Min
2015-01-01
When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as “stress memory”. However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP) genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4) relative to the first stress (S1), and basal transcript levels during the recovery states (R1, R2, and R3). Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC) for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid), sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose), amino acids (serine, proline, pyroglutamic acid, glycine, alanine), and one fatty acid (butanoic acid) in pre-acclimated plants. These observations involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process. PMID:26136755
Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density
Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki
2015-01-01
Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476
Application of edible coating from cassava peel – bay leaf on avocado
NASA Astrophysics Data System (ADS)
Handayani, M. N.; Karlina, S.; Sugiarti, Y.; Cakrawati, D.
2018-05-01
Avocados have a fairly short shelf life and are included in climacteric fruits. Edible coating application is one alternative to maintain the shelf life of avocado. Cassava peel starch is potential to be used as raw material for edible coating making. Addition of bay leaf extract containing antioxidants can increase the functional value of edible coating. The purpose of this study is to know the shrinkage of weight, acid number, color change and respiration rate of avocado coated with edible coating from cassava peel starch with an addition of bay leaf extract. The study consisted of making cassava peel starch, bay leaf extraction, edible coating making, edible coating application on avocado, and analysis of avocado characteristics during storage at room temperature. The results showed that addition of bay leaf extract on cassava peel starch edible coating applied to avocado, an effect on characteristics of avocado. Avocado applied edible coating and stored at room temperatures had lower weight loss than avocado without edible coating, lower acid number, tend to be more able to maintain color rather than avocado without edible coating.
Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas.
Lahr, Eleanor C; Schade, Gunnar W; Crossett, Caitlin C; Watson, Matthew R
2015-11-01
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. © 2015 John Wiley & Sons Ltd.
Lee, Myoung-Eun; Park, Jin Hee; Chung, Jae Woo
2017-12-07
Ginkgo trees are common street trees in Korea, and the large amounts of leaves that fall onto the streets annually need to be cleaned and treated. Therefore, fallen gingko leaves have been used as a raw material to produce biochar for the removal of heavy metals from solutions. Gingko-leaf-derived biochar was produced under various carbonization temperatures and times. This study evaluated the physicochemical properties and adsorption characteristics of gingko-leaf-derived biochar samples produced under different carbonization conditions regarding Pb(II) and Cu(II). The biochar samples that were produced at 800 °C for 90 and 120 min contained the highest oxygen- and nitrogen-substituted carbons, which might contribute to a high metal-adsorption rate. The intensity of the phosphate bond was increased with the increasing of the carbonization temperature up to 800 °C and after 90 min of carbonization. The Pb(II) and Cu(II) adsorption capacities were the highest when the gingko-leaf-derived biochar was produced at 800 °C, and the removal rates were 99.2% and 34.2%, respectively. The highest removal rate was achieved when the intensity of the phosphate functional group in the biochar was the highest. Therefore, the gingko-leaf-derived biochar produced at 800 °C for 90 min can be used as an effective bio-adsorbent in the removal of metals from solutions.
Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo
2015-04-01
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. © 2014 John Wiley & Sons Ltd.
Relative growth rate in phylogenetically related deciduous and evergreen woody species.
Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael
2001-07-01
Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.
Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco
2007-05-01
Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.
Oliveira, Marciel Teixeira; Medeiros, Camila Dias; Frosi, Gabriella; Santos, Mauro Guida
2014-09-01
The effects of drought stress and leaf phosphorus (Pi) supply on photosynthetic metabolism in woody tropical species are not known, and given the recent global environmental change models that forecast lower precipitation rates and periods of prolonged drought in tropical areas, this type of study is increasingly important. The effects of controlled drought stress and Pi supply on potted young plants of two woody species, Anadenanthera colubrina (native) and Prosopis juliflora (invasive), were determined by analyzing leaf photosynthetic metabolism, biochemical properties and water potential. In the maximum stress, both species showed higher leaf water potential (Ψl) in the treatment drought +Pi when compared with the respective control -Pi. The native species showed higher gas exchange under drought +Pi than under drought -Pi conditions, while the invasive species showed the same values between drought +Pi and -Pi. Drought affected the photochemical part of photosynthetic machinery more in the invasive species than in the native species. The invasive species showed higher leaf amino acid content and a lower leaf total protein content in both Pi treatments with drought. The two species showed different responses to the leaf Pi supply under water stress for several variables measured. In addition, the strong resilience of leaf gas exchange in the invasive species compared to the native species during the recovery period may be the result of higher efficiency of Pi use. The implications of this behavior for the success of this invasive species in semiarid environments are discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ott, David; Rall, Björn C; Brose, Ulrich
2012-11-05
Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.
Wei, Xiaorong; Sendall, Kerrie M; Stefanski, Artur; Zhao, Changming; Hou, Jihua; Rich, Roy L; Montgomery, Rebecca A; Reich, Peter B
2017-03-01
Most vascular plants acclimate respiration to changes in ambient temperature, but explicit tests of these responses in field settings are rare, and how acclimation responses vary in space and time is relatively unstudied, hindering our ability to predict respiratory release of carbon under future climatic conditions. We measured temperature response curves of leaf respiration for three deciduous tree species from 2009 to 2012 in a field warming experiment (+3.4 °C above ambient) in both open and understory conditions at two sites in the southern boreal forest in Minnesota, USA. We analyzed the effects of warming on leaf respiration, and how the effects varied among species, times of season (early, middle and late parts of the growing season), sites, habitats (understory, open) and years. We hypothesized that the respiration exponent (Q10) of the short-term temperature response curve and the degree of acclimation would be smaller under conditions where plants were more likely to be substrate limited, such as in the understory or the margins of the growing season. However, in contrast to these predictions, stable Q10 and strong respiratory acclimation were consistently observed. For each species, the Q10 did not vary with experimental warming, nor was its response to warming influenced by time of season, year, site or habitat. Strong leaf respiratory acclimation to warming occurred in each species and was consistent across most sources of variation. Most of the leaf traits studied were not affected by warming, while the Q10-leaf nitrogen and R25-soluble carbohydrate relationships were observed, and shifted with warming, implying that acclimation may be associated with the adjustment in respiratory capacity and its relation to leaf nitrogen and soluble carbohydrate content. Consistent Q10 and acclimation across habitats, sites, times of season and years suggest that modeling of temperature acclimation may be possible with relatively simple functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Global convergence in leaf respiration from estimates of thermal acclimation across time and space.
Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru
2015-09-01
Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.
Luthra, Pratibha Mehta; Singh, Satendra
2010-05-01
Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.
Coordination and plasticity in leaf anatomical traits of invasive and native vine species.
Osunkoya, Olusegun O; Boyne, Richard; Scharaschkin, Tanya
2014-09-01
• Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum. © 2014 Botanical Society of America, Inc.
Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M
2013-05-01
Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Moreira, X; Pearse, I S
2017-05-01
Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
B. J. Joyce; K. C. Steiner; J. M. Skelly
1996-01-01
Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.
NASA Astrophysics Data System (ADS)
Hagel Svendsen, Sarah; Schostag, Morten; Voriskova, Jana; Kramshøj, Magnus; Priemé, Anders; Suhr Jacobsen, Carsten; Rinnan, Riikka
2017-04-01
Emissions of biogenic volatile organic compounds (BVOCs) from natural ecosystems have significant impact on atmospheric chemistry and belowground chemical processes. Most attention has been given to emissions from plants. However, several studies have found that soil, and especially the decomposing leaf and needle litter, emits substantial amounts of BVOCs. The contribution of litter to ecosystem BVOC emissions may be increasingly significant in the Arctic, where the living plant biomass is low, and the amount of litter increasing due to the expansion of deciduous vegetation in response to climate change. It is known that the types and amounts of BVOCs emitted from the soil are highly dependent on the microbial community composition and the type of substrate. In this study we measured emissions of BVOCs from the leaf litter of common arctic plant species at different temperatures. The BVOC measurements were coupled with an analysis of the relative abundance of dominating bacterial species (determined as operational taxonomic units, OTUs). Leaf litter from evergreen Cassiope tetragona and two species of deciduous Salix were collected from two arctic locations; one in the High Arctic and one in the Low Arctic. The litter was incubated in dark at 5 ?C. Over an eight week period the temperature was increased 7 ?C every two weeks, giving temperature incubations at 5 ?C, 12 ?C, 19 ?C and 26 ?C. Emissions of BVOCs from the litter were sampled in adsorbent cartridges weekly and analyzed using gas chromatography-mass spectrometry. The relative abundance of bacteria was determined at the end of the incubation at each temperature using DNA sequencing. Results showed that emissions of BVOCs belonging to different chemical functional groups responded differently to increasing temperatures and were highly dependent on the type of substrate. For instance, terpenoid emissions from the Cassiope litter increased with increasing temperature, whereas the emissions from the Salix litter decreased. Likewise, the relative abundance of bacteria depended on temperature and the type of substrate. Especially the actinobacteria showed strong increasing trends with increasing temperature in the Salix litter. Acidobacteria had much higher relative abundance in the Cassiope litter than in the Salix litter. Multivariate analyses were used to assess potential links between the BVOC and bacterial abundance datasets. Similar patterns in the BVOC emissions and bacterial community composition at different temperatures and for different substrates suggest that the differences in BVOC emissions, at least to some extent, are driven by changes in the microbial community composition.
Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G
2015-01-01
As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bonan, G. B.
2016-12-01
Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.
NASA Astrophysics Data System (ADS)
Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.
2012-04-01
Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked to explain the reason for this decoupling. Our current work that also includes leaf water isotopic measurements will provide further details regarding the role of transpiration in controlling the deltaD values of leaf lipids.
Coordination of physiological and structural traits in Amazon forest trees
NASA Astrophysics Data System (ADS)
Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.
2011-05-01
Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants modulate their structural investments to best maintain and utilise their physiological capabilities, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1040 tree species located in 53 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five genetically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions also influenced structural traits with ρx decreasing with increased soil fertility and decreasing with increased temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics, others tend to covary with leaf size, ΦLS, S tolerance strategies. Several traits such as MA and [C] are important components of more than one dimension with their ambiguous nature reflecting different underlying causes of variation. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.
NASA Astrophysics Data System (ADS)
Klamerus-Iwan, Anna; Błońska, Ewa
2018-04-01
The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.
NASA Astrophysics Data System (ADS)
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin
2017-03-01
To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (g s ) and effective quantum efficiency of PSII (Φ PSII ) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (E x ) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Differential survival of chaparral seedlings during the first summer drought after wildfire.
Frazer, J M; Davis, S D
1988-07-01
Big Pod Ceanothus (Ceanothus megacarpus) is an obligate seeder after fire; Laurel Sumac (Rhus laurina) is primarily a resprouter after fire. Both species commonly occur together in mixed stands and are dominant members of the coastal chaparral of southern California. We compared the mean survival of post-fire seedlings of each species during the first summer drought after fire and found C. megacarpus to have a mean survival of 54% while R. laurina had a mean survival of only 0.1%. Rooting dephs were similar between species but predawn water potentials and leaf temperatures were higher for R. laurina seedlings. Leaf temperatures for R. laurina reached a mean value of 46.8° C on hot, summer days, about 5° C higher than seedlings of C. megacarpus. By the end of the first growing season, 92% of all C. megacarpus seedlings had suffered herbivory compared to only 17% of all R. laurina seedlings. Herbivory did not appear to be the immediate cause of seedling mortality. Transect data indicated that full recovery of prefire species composition and density at our study site was likely but the mode of recovery was different for the species examined. R. laurina recovered primarily by sprouting, C. megacarpus totally by seedling establishment and a third species, Adenostoma fasciculatum (chamise), by a combination of sprouting and seedling establishment. We attribute the higher mortality of R. laurina seedlings to the greater sensitivity of its tissue to water stress. It may be that differential survival of shrub seedlings and differential modes of reestablishment after fire play an important role in maintaining species diversity in the chaparral communities of coastal, southern California.
Yang, Xian Ji; Du, Jian Hui; Qin, Jing; Chen, Zhi Hua; Yang, Lin; Song, Shuang
2017-10-01
Diurnal variation and its influencing factors of leaf water potential (ψ l ) of Spinifex littoreus on the nebkhas in two succession periods were measured on the coast of Pingtan Island, Fujian Province. The results showed that the diurnal variation of ψ l of S. littoreus mainly demonstrated a 'W' curve pattern, with a temporary rise at midday. The mean ψ l of S. littoreus on the nebkhas at developing stage was higher than that at stabilizing stage, and recovered better during the night. ψ l of S. littoreus was positively related to the atmospheric water potential (ψ a ) and relative humidity, negatively related to air temperature, but had no significant correlation with the soil water potential at different depthes. ψ l of S. littoreus on the interdune depression at developing stage was higher than that on the windward slope and on the leeward slope from 10:00 to 16:00, and that on the windward slope was lower than that on the leeward slope all day long except at 10:00 and at 12:00. The variation of ψ l of S. littoreus on the leeward slope was higher than that on the windward slope, and the minimal variation was found on the interdune depression, without statistical significance. ψ l of S. littoreus on the windward slope was positively correlated with ψ a and relative humidity, while negatively correlated with air temperature. ψ l of S. littoreus on the leeward slope and the interdune depression were correlated with meteorological factors, but they had no significant relationship.
Ramírez-Valiente, Jose A; Koehler, Kari; Cavender-Bares, Jeannine
2015-05-01
Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. In this study, our goal was to determine how photoprotective mechanisms, morphological traits and their plasticity have evolved in live oaks (Quercus series Virentes) in response to different climatic conditions. For this purpose, seedlings originating from 11 populations from four live oak species (Quercus virginiana, Q. geminata, Q. fusiformis and Q. oleoides) were grown under contrasting common environmental conditions of temperature (tropical vs temperate) and water availability (droughted vs well-watered). Xanthophyll cycle pigments, anthocyanin accumulation, chlorophyll fluorescence parameters and leaf anatomical traits were measured. Seedlings originating from more mesic source populations of Q. oleoides and Q. fusiformis increased the xanthophyll de-epoxidation state under water-limiting conditions and showed higher phenotypic plasticity for this trait, suggesting adaptation to local climate. Likewise, seedlings originating from warmer climates had higher anthocyanin concentration in leaves under cold winter conditions but not higher de-epoxidation state. Overall, our findings suggest that (i) climate has been a key factor in shaping species and population differences in stress tolerance for live oaks, (ii) anthocyanins are used under cold stress in species with limited freezing tolerance and (iii) xanthophyll cycle pigments are used when photoprotection under drought conditions is needed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dantec, Cécile F; Vitasse, Yann; Bonhomme, Marc; Louvet, Jean-Marc; Kremer, Antoine; Delzon, Sylvain
2014-11-01
With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.
NASA Astrophysics Data System (ADS)
Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso
2012-09-01
The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.
NASA Astrophysics Data System (ADS)
Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.
2017-12-01
Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.
Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana
2013-02-01
Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.
Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu
2018-01-24
Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.
Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi
2009-04-01
The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host.
Tian, Yue Yue; Zhang, Li Xia; Zhang, Zheng Qun; Qiao, Ming Ming; Fan, Yan Gen
2017-03-18
In order to ensure the suitable shade model for 'Huangjinya' tea plant in Shandong Province, black or blue shading net at 55%, 70% or 85% shading rates was selected to recover tea garden in summer and autumn, then micro-climate of tea garden, leaf color, chlorophyll fluorescence parameters, growth status and biochemical composition of tea shoots were investigated.The results showed that compared with the control, light intensity and air temperature in tea garden, leaf temperature of tea plants in different shading treatments significantly decreased, while air humidity in tea garden increased. The contents of chlorophyll in the tea leaves were obviously increased with increasing the shading rate, which resulted in the leaf color becoming green. The yellowing characteristics and biochemical quality of 'Huangjinya' tea plants could be well kept in 55% shading treatments. In 70% shading treatments, 'Huangjinya' tea plants had better growth situation and higher yield with no photo-inhibition. Compared with the blue shading treatments, black shading treatments could obviously promote the growth of 'Huangjinya' tea plants, keep yellowing characteristics, and improve the quality. Therefore, the 70% black shading treatment (daily PAR values of 1.2-3.5 ten thousand lx) was appropriate for promoting the growth of 'Huangjinya' tea plants at the seedling stage. For mature tea plants, the 55% black shading treatment (daily PAR values of 1.8-5.5 ten thousand lx) could be used to keep the yellowing characteristics and to improve biochemical quality effectively, so as to give full play to its variety characteristics, to achieve goal of high quality and high yield.
Strategies of leaf expansion in Ficus carica under semiarid conditions.
González-Rodríguez, A M; Peters, J
2010-05-01
Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.
Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar
2009-10-01
To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.
Geron, Chris; Gu, Lianhong; Daly, Ryan; ...
2015-12-17
Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for themore » species in the red oak subgenus (Erythrobalanus).« less
NASA Astrophysics Data System (ADS)
Cluett, A.; Thomas, E. K.
2017-12-01
Anthropogenic warming is projected to drive profound change to the Arctic hydrological cycle within the century, most notably in the intensification of rainfall, with potential feedbacks to the climate system and cryosphere. However, the relationship between hydroclimate and cryosphere variability is poorly constrained in the long-term due to a scarcity of high-resolution hydroclimate records from the Arctic. We analyze the stable hydrogen isotopes (dD) of leaf wax biomarkers from lacustrine sediments spanning the Holocene to 9000 cal. year B.P. from Lake Gus (67.032ºN, 52.427ºW, 300 m a.s.l.; informal name), a small lake approximately 90 km from the modern western margin of the Greenland Ice Sheet. We interpret the signal of aquatic leaf wax isotopes in the context of a survey of 100 modern lake water samples from western Greenland across an aridity gradient to better understand the combined climatological and hydrological controls on lake water dD in the study area. We compare variability of aquatic and terrestrial leaf wax isotopes to infer changes in relative moisture throughout the Holocene, and complement our leaf wax record with analysis of glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones, to produce records of summer temperature. Pairing temperature and leaf wax isotope records provides a means to constrain the changing dD-temperature relationship throughout the Holocene and infer moisture source variability. In combination, these proxies produce a comprehensive hydroclimate record at approximately centennial scale to evaluate shifts in relative moisture, temperature, and moisture source, and to investigate the interaction between hydroclimate and Greenland Ice Sheet margin fluctuations through the Holocene.
Slot, Martijn; Rey-Sánchez, Camilo; Gerber, Stefan; Lichstein, Jeremy W; Winter, Klaus; Kitajima, Kaoru
2014-09-01
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25 ) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5-3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S-24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no-acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle. © 2014 John Wiley & Sons Ltd.
Terry, A C; Quick, W P; Beerling, D J
2000-09-01
The importance of subzero temperature interactions with elevated CO(2) on plant carbon metabolism has received rather little attention, despite their likely role in influencing future vegetation productivity and dynamics. Here we focused on the critical issues of CO(2)-enrichment effects on leaf-freezing temperatures, subsequent membrane damage, and recovery of the photosynthetic system. We show that growth in elevated CO(2) (70 Pa) results in a substantial and significant (P<0.01) increase (up to 4 degrees C) in the ice nucleation temperature of leaves of Maidenhair tree (Ginkgo biloba), which was observed consistently throughout the 1999 growing season relative to their ambient CO(2) (35 Pa) counterparts. We suggest that increased sensitivity of leaves to ice damage after growth in elevated CO(2) provides an explanation for increased photoinhibition observed in the field early and late in the growing season when low nighttime temperatures are experienced. This new mechanism is proposed in addition to the earlier postulated explanation for this phenomenon involving a reduction in the rate of triose-P utilization owing to a decrease in the rate of carbohydrate export from the leaf.
Terry, Andrew C.; Quick, W. Paul; Beerling, David J.
2000-01-01
The importance of subzero temperature interactions with elevated CO2 on plant carbon metabolism has received rather little attention, despite their likely role in influencing future vegetation productivity and dynamics. Here we focused on the critical issues of CO2-enrichment effects on leaf-freezing temperatures, subsequent membrane damage, and recovery of the photosynthetic system. We show that growth in elevated CO2 (70 Pa) results in a substantial and significant (P < 0.01) increase (up to 4°C) in the ice nucleation temperature of leaves of Maidenhair tree (Ginkgo biloba), which was observed consistently throughout the 1999 growing season relative to their ambient CO2 (35 Pa) counterparts. We suggest that increased sensitivity of leaves to ice damage after growth in elevated CO2 provides an explanation for increased photoinhibition observed in the field early and late in the growing season when low nighttime temperatures are experienced. This new mechanism is proposed in addition to the earlier postulated explanation for this phenomenon involving a reduction in the rate of triose-P utilization owing to a decrease in the rate of carbohydrate export from the leaf. PMID:10982433
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Williams, M.
2014-04-01
Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and have spatially and temporally variable leaf C : N helps address challenges for ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
Determining the Leaf Emissivity of Three Crops by Infrared Thermometry
Chen, Chiachung
2015-01-01
Plant temperature can provide important physiological information for crop management. Non-contact measurement with an infrared thermometer is useful for detecting leaf temperatures. In this study, a novel technique was developed to measure leaf emissivity using an infrared thermometer with an infrared sensor and a thermocouple wire. The measured values were transformed into true temperatures by calibration equations to improve the measurement accuracy. The relationship between two kinds of measurement temperatures and setting emissivities was derived as a model for calculating of true emissivity. The emissivities of leaves of three crops were calculated by the mathematical equation developed in this study. The mean emissivities were 0.9809, 0.9783, 0.981 and 0.9848 for Phalaenopsis mature and new leaves and Paphiopedilum and Malabar chestnut leaves, respectively. Emissivity differed significantly between leaves of Malabar chestnut and the two orchids. The range of emissivities determined in this study was similar to that in the literature. The precision of the measurement is acceptable. The method developed in this study is a real-time, in situ technique and could be used for agricultural and forestry plants. PMID:25988870
Mercury in leaf litter in typical suburban and urban broadleaf forests in China.
Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia
2011-01-01
To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.
HyspIRI Measurements of Agricultural Systems in California: 2013-2015
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Kruger, E. L.; Singh, A.; Jablonski, A. D.; Kochaver, S.; Serbin, S.
2015-12-01
During 2013-2015, NASA collected high-altitude AVIRIS hyperspectral and MASTER thermal infrared imagery across large swaths of California in support of the HyspIRI planning and prototyping activities. During these campaigns, we made extensive measurements of photosynthetic capacity—Vcmax and Jmax—and their temperature sensitivities across a range of sites, crop types and environmental conditions. Our objectives were to characterize the physiological diversity of agricultural vegetation in California and develop generalizable algorithms to map these physiological parameters across several image acquisitions, regardless of crop type and canopy temperatures. We employed AVIRIS imagery to scale and estimate the vegetation parameters and MASTER surface temperature to provide context, since physiology responds exponentially to leaf temperature. We demonstrate a segmentation approach to disentangling leaf and background soil temperature, and then illustrate our retrievals of Vcmax and Jmax during overflight conditions across a large number of the 2013-2015 HyspIRI acquisitions. Our results show >80% repeatability (R2) across split sample jack-knifing, with RMSEs within 15% of the range of our data. The approach was robust across crop types (e.g., grape, almond, pistachio, avocado, pomegranate, oats, peppers, citrus, date palm, alfalfa, melons, beets) and leaf temperatures. A global imaging spectroscopy system such as HyspIRI will offer unprecedented ability to monitor agricultural crop performance under widely varying surface conditions.
Leaf breakdown in streams differing in catchment land use
Paul, M.J.; Meyer, J.L.; Couch, C.A.
2006-01-01
1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.
Gold leaf counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Shimada, Kazuhiro; Toyoda, Takeshi
2018-03-01
In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).
Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping
2013-01-01
In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.
Abiotic and biotic determinants of leaf carbon exchange capacity from tropical to high boreal biomes
NASA Astrophysics Data System (ADS)
Smith, N. G.; Dukes, J. S.
2016-12-01
Photosynthesis and respiration on land represent the two largest fluxes of carbon dioxide between the atmosphere and the Earth's surface. As such, the Earth System Models that are used to project climate change are high sensitive to these processes. Studies have found that much of this uncertainty is due to the formulation and parameterization of plant photosynthetic and respiratory capacity. Here, we quantified the abiotic and biotic factors that determine photosynthetic and respiratory capacity at large spatial scales. Specifically, we measured the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of Ribulose-1,5-bisphosphate regeneration (Jmax), and leaf dark respiration (Rd) in >600 individuals of 98 plant species from the tropical to high boreal biomes of Northern and Central America. We also measured a bevy of covariates including plant functional type, leaf nitrogen content, short- and long-term climate, leaf water potential, plant size, and leaf mass per area. We found that plant functional type and leaf nitrogen content were the primary determinants of Vcmax, Jmax, and Rd. Mean annual temperature and mean annual precipitation were not significant predictors of these rates. However, short-term climatic variables, specifically soil moisture and air temperature over the previous 25 days, were significant predictors and indicated that heat and soil moisture deficits combine to reduce photosynthetic capacity and increase respiratory capacity. Finally, these data were used as a model benchmarking tool for the Community Land Model version 4.5 (CLM 4.5). The benchmarking analyses determined errors in the leaf nitrogen allocation scheme of CLM 4.5. Under high leaf nitrogen levels within a plant type the model overestimated Vcmax and Jmax. This result suggested that plants were altering their nitrogen allocation patterns when leaf nitrogen levels were high, an effect that was not being captured by the model. These data, taken with models in mind, provide paths forward for improving model structure and parameterization of leaf carbon exchange at large spatial scales.
Maes, W H; Steppe, K
2012-08-01
As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.
Fujioka, Kouki; Iwamoto, Takeo; Shima, Hidekazu; Tomaru, Keiko; Saito, Hideki; Ohtsuka, Masaki; Yoshidome, Akihiro; Kawamura, Yuri; Manome, Yoshinobu
2016-04-11
For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style) in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG) by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass Spectrometry (LC-MS/MS) analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS) production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.
NASA Astrophysics Data System (ADS)
Daniels, W.; Russell, J. M.; Huang, Y.; Giblin, A.
2013-12-01
We present a 4500 year lacustrine record of compound-specific hydrogen isotopes (C28 alkanoic acid; δDwax) from the northern foothills of the Brooks Range, AK. This compound is characteristic of terrestrial plant leaf waxes and has been demonstrated to record variation in source water δD. The δDwax in our core varies between -265 and -254‰. We interpret more enriched values to reflect higher summer air temperatures. Using the relationship between δD-precipitation and temperature at the Barrow GNIP station, we calculate that temperature varied by 4.4 °C over this time span. Prior to 3.8 ka, summer temperatures were comparable to present day. There was a cooling trend from 3.8 to 1.5 ka followed by increasing temperatures until approximately 90 years ago. Slight cooling is seen in the surface-most sediments. This record is remarkably similar to a δ18O-cellulose record, interpreted to reflect changes in effective moisture, from nearby Meli Lake (Anderson et al. Quaternary Research 2001). Cool/wet and warm/dry are predominant weather conditions on an interannual basis in modern Alaska, and this appears to be the case over longer time scales through the late Holocene. We also examined the effect of temperature fluctuations on lake ecosystem structure by comparing sedimentary diatom assemblages to δDwax. The δDwax is positively correlated with the planktonic:benthic diatom ratio (r2=0.70). Experimental nutrient additions to Arctic lakes have resulted in increased planktonic production at the expense of benthic production, and so our result supports the hypothesis that lake nutrient budgets are linked to summer temperature in the region. The relative abundance of stratification-loving Cyclotella (Kutzing) Brebisson is positively correlated with δDwax (r2=0.40), while tachyplanktonic Aulacoseira Thwaites is negatively correlated with δDwax, (r2=0.55) supporting our interpretation of δDwax as a temperature signal.
Kim, Jae Joon; Lee, Jeong Hwan; Kim, Wanhui; Jung, Hye Seung; Huijser, Peter; Ahn, Ji Hoon
2012-01-01
The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature. PMID:22427344
Multi-modal sensor system for plant water stress assessment
USDA-ARS?s Scientific Manuscript database
Plant stress critically affects plant growth and causes significant loss of productivity and quality. When the plant is under water stress, it impedes photosynthesis and transpiration, resulting in changes in leaf color and temperature. Leaf discoloration in photosynthesis can be assessed by measu...
NASA Astrophysics Data System (ADS)
Manjari Mishra, Pravat; Bihari Pani, Khirod
2017-11-01
This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3 + 10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.
Chen, Juan; Shen, Zhi-Jun; Lu, Wei-Zhi; Liu, Xiang; Wu, Fei-Hua; Gao, Gui-Feng; Liu, Yi-Ling; Wu, Chun-Sheng; Yan, Chong-Ling; Fan, Hang-Qing; Zhang, Yi-Hui; Zheng, Hai-Lei; Tsai, Chung-Jui
2017-01-31
Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.
Stimulation of lettuce productivity by manipulation of diurnal temperature and light
NASA Technical Reports Server (NTRS)
Knight, Sharon L.; Mitchell, Cary A.
1983-01-01
Salad Bowl and Waldmann's Green leaf lettuce (Lactuca sativa L.) were exposed to photosynthetic photon flux densities (PPFDs) of 444 or 889 micromol/s per sq m for 20 hrs/day under a diurnal temperature regime of 25-C days/15-C nights or 20-C days/15-C nights. Leaf dry weight of both cultivars was highest under the high PPFD/warm temperature regime and lowest under the low PPFD/cool temperature regime. Waldmann's Green yielded more than did Salad Bowl at 889 micromol/s per sq m and 25-C days/20-C nights. Under high PPFD, both cultivars yielded better with 25-C days/25-C nights than with 25-C days/20-C nights, although relative growth rates were the same under both temperature regimes.
Salazar-Tortosa, D; Castro, J; Villar-Salvador, P; Viñegla, B; Matías, L; Michelsen, A; Rubio de Casas, R; Querejeta, J I
2018-05-16
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO 2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an "isohydric trap", a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically-contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ 13 C, δ 18 O), and nutrient concentrations (C, N, P, K, Zn, Cu). After two years, the Mediterranean species Pinus halepensis showed lower δ 18 O and higher δ 13 C values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ 18 O and lower δ 13 C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu
2015-07-01
Using litter bag method, we studied the responses of soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5 cm, 5-10 cm and 10-20 cm soil layers to home-field advantage of Betula platyphlla and Quercus mongolica leaf litter decomposition in Liaoheyuan Nature Reserve, northern Hebei Province. The results showed that the contents of MBC in Betula platyphila and Quercus mongolica leaf litter treatments in home environment (Bh and Qh treatments) were significant higher than that in B. platyphlla and Q. mongolica leaf litter treatments in non-home environment (Ba and Qa treatments). There was no significant difference in MR between home and non-home environments. Response degree of MBC and MR to home-field advantage of different litter decomposition was inconsistent. The MBC of the different soil layers in Qa treatment fell by 39.6%, 34.9% and 33.5% compared to Qh treatment, respectively, and that in B. platyphlla treatment was decreased by 31.6%, 27.1% and 17.0%, respectively. MR of the different soil layers in Qa treatment accounted for 96.3%, 92.4% and 83.7% of Qh treatment, respectively, while MR in B. platyphila treatment was 99. 4%, 97. 3% and 101.3%, respectively. In contrast to MBC, qCO2 in soil showed a reverse pattern. Our study suggested that rich nutrients in soil enhanced microbial activity and weakened the conflict of nutrient uptake between plants and microorganisms, which led to the result that MBC and qCO2 had an obvious response to home-field advantage of litter decomposition, when litter decomposed in its home environment. There was a weak response between MR and home-field advantage of litter decomposition, because of influence of soil temperature, water content and their interaction. Furthermore, MBC, MR and qCO2 had a higher response degree to home-field advantage of Q. mongolica litter than B. platyphila litter, since lower quality litter exhibited higher home-field advantage of litter decomposition.
Genetic regulation of cold-induced albinism in the maize inbred line A661
Rodríguez, Víctor M.; Velasco, Pablo; Garrido, José L.; Revilla, Pedro; Ordás, Amando; Butrón, Ana
2013-01-01
In spite of multiple studies elucidating the regulatory pathways controlling chlorophyll biosynthesis and photosynthetic activity, little is known about the molecular mechanism regulating cold-induced chlorosis in higher plants. Herein the characterization of the maize inbred line A661 which shows a cold-induced albino phenotype is reported. The data show that exposure of seedlings to low temperatures during early leaf biogenesis led to chlorophyll losses in this inbred. A661 shows a high plasticity, recovering resting levels of photosynthesis activity when exposed to optimal temperatures. Biochemical and transcriptome data indicate that at suboptimal temperatures chlorophyll could not be fully accommodated in the photosynthetic antenna in A661, remaining free in the chloroplast. The accumulation of free chlorophyll activates the expression of an early light inducible protein (elip) gene which binds chlorophyll to avoid cross-reactions that could lead to the generation of harmful reactive oxygen species. Higher levels of the elip transcript were observed in plants showing a cold-induced albino phenotype. Forward genetic analysis reveals that a gene located on the short arm of chromosome 2 regulates this protective mechanism. PMID:23881393
Niglas, Aigar; Kupper, Priit; Tullus, Arvo; Sellin, Arne
2014-01-01
An increase in average air temperature and frequency of rain events is predicted for higher latitudes by the end of the 21st century, accompanied by a probable rise in air humidity. We currently lack knowledge on how forest trees acclimate to rising air humidity in temperate climates. We analysed the leaf gas exchange, sap flow and growth characteristics of hybrid aspen (Populus tremula × P. tremuloides) trees growing at ambient and artificially elevated air humidity in an experimental forest plantation situated in the hemiboreal vegetation zone. Humidification manipulation did not affect the photosynthetic capacity of plants, but did affect stomatal responses: trees growing at elevated air humidity had higher stomatal conductance at saturating photosynthetically active radiation (gs sat) and lower intrinsic water-use efficiency (IWUE). Reduced stomatal limitation of photosynthesis in trees grown at elevated air humidity allowed slightly higher net photosynthesis and relative current-year height increments than in trees at ambient air humidity. Tree responses suggest a mitigating effect of higher air humidity on trees under mild water stress. At the same time, trees at higher air humidity demonstrated a reduced sensitivity of IWUE to factors inducing stomatal closure and a steeper decline in canopy conductance in response to water deficit, implying higher dehydration risk. Despite the mitigating impact of increased air humidity under moderate drought, a future rise in atmospheric humidity at high latitudes may be disadvantageous for trees during weather extremes and represents a potential threat in hemiboreal forest ecosystems. PMID:24887000
NASA Astrophysics Data System (ADS)
Halimshah, Syamimi; Ismail B., S.; Ahmad, Wan Juliana Wan
2015-09-01
A study was conducted to determine the allelopathic potential of leaf and seed of Mucuna bracteata on the growth of E. indica through aqueous extract and debris (incorporated into the soil) experiment. Three concentrations of leaf and seed aqueous extract (16.7, 33.3 and 66.7 g/L) and debris (2.5, 5.0 and 10.0 g/500 g soil) of M. bracteata were used in the experiment. Complete randomized design (CRD) with three replications was applied in this experiment which was conducted twice. Results demonstrated that the leaf and seed extracts of M. bracteata exhibited higher suppression effect on the growth and germination of E. indica as the concentration increased. The leaf and seed extracts significantly reduced all measured parameters at all concentrations except for the shoot length and germination of E. indica by seed extract at 16.7 g/L which recorded insignificant reduction by 40.5% and 4% respectively. The leaf and seed debris significantly reduced the root length of E. indica at all treatments. Seed debris also showed significant reduction on the germination at all treatments and other seedling growth parameters (shoot length, fresh weight and dry weight) at 2.5 and 10.0 g/500 g soil. Meanwhile, the leaf debris demonstrated stimulation effect on the seedling growth parameters. As a whole, the leaf showed higher suppression effect in aqueous extract experiment while the seed recorded higher suppression effect in the debris experiment. Further studies need to be conducted to investigate the type of inhibition mechanism involved in both experiments.
Wang, Xing; Veneklaas, Erik J; Pearse, Stuart J; Lambers, Hans
2015-09-01
Cluster-root (CR) formation is a desirable trait to improve phosphorus (P) acquisition as global P resources are dwindling. CRs in some lupine species are suppressed at higher P status. Whether increased growth rate enhances CR formation due to a "dilution" of leaf P concentration is unknown. We investigated interactive effects of leaf P status and relative growth rate (RGR) on CR formation in two Lupinus species, which differ in their CR biomass investment. Variation in RGR was imposed by varying day length. Lupinus albus and L. pilosus were grown hydroponically with KH2PO4 at a day length of 6, 10, or 14 h. We used a slightly higher P supply at longer day lengths to avoid a decline in leaf P concentration, which would induce CRs. Cluster-root percentage, leaf P concentrations, and RGR were determined at 22, 38, and 52 d after sowing. Lupinus species grown at similar root P availability, but with a faster growth rate, as dependent on day length, showed a greater CR percentage. Because our aim to achieve exactly the same leaf P concentrations at different day lengths was only partially achieved, we carried out a multiple regression analysis. This analysis showed the CR percentage was strongly and negatively correlated with plant P status and only marginally and positively correlated with RGR. The two Lupinus species invariably formed fewer cluster roots at higher leaf P status, irrespective of RGR. Differences in RGR or leaf P concentration cannot explain the species-specific variation in cluster-root investment. © 2015 Botanical Society of America.
Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A
2012-06-01
We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.
Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming
2017-02-24
Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.
Epidemiology of Basil Downy Mildew.
Cohen, Yigal; Ben Naim, Yariv; Falach, Lidan; Rubin, Avia E
2017-10-01
Basil downy mildew (BDM) caused by the oomycete Peronospora belbahrii is a destructive disease of sweet basil (Ocimum basilicum) worldwide. It originated in Uganda in the 1930s and recently spread to Europe, the Middle East, Americas, and the Far East. Seed transmission may be responsible for its quick global spread. The pathogen attacks leaf blades, producing chlorotic lesions with ample dark asexual spores on the lower leaf surface. Oospores may form in the mesophyll of infected leaves. The asexual spores germinate on a wet leaf surface within 2 h and penetrate into the epidermis within 4 h. Spore germination and infection occur at a wide range of temperatures from 5 to 28.5°C. Infection intensity depends on the length of dew period, leaf temperature, and inoculum dose. The duration of latent period (from infection to sporulation) extends from 5 to 10 days, depending on temperature and light regime. The shortest is 5 days at 25°C under continuous light. Sporulation requires high humidity but not free leaf wetness. Sporulation occurs at 10 to 26°C. At the optimum temperature of 18°C, the process of sporulation requires 7.5 h at relative humidity ≥ 85%, with 3 h for sporophores emergence from stomata and 4.5 h for spore formation. Sporophores can emerge under light or darkness, but spore formation occurs in the dark only. Limited data are available on spore dispersal. Spores dispersed from sporulating plants contaminate healthy plants within 2 h of exposure. Settled spores may survive on leaf surface of healthy plants for prolonged periods, depending on temperature. Seed transmission of the disease occurs in Europe, but not in Israel or the United States. P. belbahrii in Israel also attacks species belonging to Rosemarinus, Nepeta, Agastache, Micromeria, and Salvia but not Plectranthus (coleus). A Peronospora species that infects coleus does not infect sweet basil. Control of BDM includes chemical, physical, and genetic means. The fungicide mefenoxam was highly effective in controlling the disease but resistant populations were quickly selected for in Israel and Europe rendering it ineffective. A new compound oxathiapiprolin (OSBP inhibitor) is highly effective. Nocturnal illumination of basil crops controls the disease by preventing sporulation. Daytime solar heating suppressed the disease effectively by reducing spore and mycelium viability. The most effective physical means is fanning. Nocturnal fanning prevents or limits dew deposition on leaf surfaces, and as a result, infection and sporulation diminish and epidemics are prevented. Genetic resistance occurs in wild basil and its transfer to sweet basil is under way.
A perspective on underwater photosynthesis in submerged terrestrial wetland plants
Colmer, Timothy D.; Winkel, Anders; Pedersen, Ole
2011-01-01
Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO2 acquisition. Scope Floodwaters are variable in dissolved O2, CO2, light and temperature, and these parameters influence underwater PN and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO2 uptake and thus aid PN under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO2 at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces PN. Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO2 entry. Conclusions Submergence inhibits PN by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater PN is enhanced. Underwater PN provides sugars and O2 to submerged plants. Floodwaters often contain dissolved CO2 above levels in equilibrium with air, enabling at least some PN by terrestrial species when submerged, although rates remain well below those in air. PMID:22476500
Kozlov, Mikhail V; Zvereva, Elena L
2015-07-01
The decrease in litter decomposition rate in polluted habitats is well documented, but the factors that explain the observed variation in the magnitude of this pollution effect on litter decomposition remain poorly understood. We explored effects of environmental conditions and leaf quality on decomposition rate of mountain birch (Betula pubescens ssp. czerepanovii) leaves in a heavily polluted industrial barren near the nickel-copper smelter at Monchegorsk. Litter bags filled with leaves collected from two heavily polluted barren sites and from two control forest sites were buried at 2.5-cm depth and exposed for 2 and 4 years at each of these four sites. The relative mass loss of native leaves in the industrial barren during 2 years of exposure was reduced to 49% of the loss observed in the unpolluted forest. We found a similar reduction in mass loss when leaves from control sites were exposed to polluted sites and when leaves from polluted sites were exposed to control sites. We conclude that the reduction in leaf litter decomposition in an industrial barren is caused by pollution-induced changes in both environmental conditions and leaf quality. This reduction is much smaller than expected, given the four-fold decrease in soil microbial activity and nearly complete extinction of saprophagous invertebrates in the polluted soil. We suggest that a longer snowless period and higher spring and summer temperatures at the barren sites have partially counterbalanced the adverse effects caused by the toxicity of metal pollutants.
Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi
2013-02-01
We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.
Seasonal growth dynamics of the seagrass Zostera caulescens on the eastern coast of Korea
NASA Astrophysics Data System (ADS)
Kim, Jong-Hyeob; Park, Sang Hoon; Kim, Young Kyun; Kim, Seung Hyeon; Park, Jung-Im; Lee, Kun-Seop
2014-12-01
Zostera caulescens is an endemic seagrass species in Northeastern Asia. Estimated distributional area of this species is approximately 1-5 km2 on the coasts of Korea. Because Z. caulescens has a very limited distribution, the growth dynamics of Z. caulescens is little known in the coastal waters of Korea. In the present study, we investigated the growth dynamics of Z. caulescens in relation to coincident measurements of environmental factors, such as underwater irradiance, water temperature, and nutrient availability. The study was conducted on a monotypic meadow of Z. caulescens in Uljin on the eastern coast of Korea from September 2011 to September 2012. Shoot density and biomass of Z. caulescens showed distinct seasonal variations, and exhibited strong correlations with water temperature suggesting that the seasonal growth of this species was regulated by water temperature. Shoot density and biomass rapidly decreased during the high water temperature period in summer, and thus Z. caulescens is considered a cold water adapted species like other temperate seagrass species on coasts of Korea. Biomass of photosynthetic leaf tissues on reproductive shoots was approximately 4 times higher than that on vegetative shoots. The height of reproductive shoots ranged from 1.2 m in February 2012 to 3.2 m in August 2012, whereas the height of vegetative shoots was usually less than 1.0 m. Leaf tissues on reproductive shoots probably received much more light for photosynthesis than those on vegetative shoots. Thus, reproductive shoots may play an important role in total production of Z. caulescens.
Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007
Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Invasive C4 Perennial Grass Alters Net Ecosystem Exchange in Mixed C3/C4 Savanna Grassland
NASA Astrophysics Data System (ADS)
Basham, T. S.; Litvak, M.
2006-12-01
The invasion of ecosystems by non-native plants that differ from native plants in physiological characteristics and phenology has the potential to alter ecosystem function. In Texas and other regions of the southern central plains of the United States, the introduced C4 perennial grass, Bothriochloa ischaemum, invades C3/C4 mixed grasslands and savannas, resulting in decreased plant community diversity (Gabbard 2003; Harmoney et al 2004). The objective of this study was to quantify how the conversion of these mixed grass communities to C4 dominated, B. ischaemum monocultures impacts carbon cycling and sequestration. Seasonal measurements of Net Ecosystem Exchange (NEE) of CO2, leaf level gas exchange and soil respiration were compared between savanna grassland plots composed of either naturally occurring B. ischaemum monocultures or native mixed grasses (n=16). NEE was measured using a closed system chamber that attached to permanently installed stainless steel bases. Temperature, soil moisture, aerial percent species cover and leaf area index were also monitored in plots to explain variability in measured responses. Results showed that NEE differed seasonally between invaded and native plots due to 1) greater leaf surface area per unit ground area in invaded plots, 2) differences in phenological patterns of plant activity and 3) differences in responses to water limitation between invaded and native plots. Cold season and summer drought NEE were driven primarily by belowground respiration in both plot types, however spring uptake activity commenced two months later in invaded plots. This later start in invaded plots was compensated for by greater uptake throughout the growing season and in particular during the drier summer months. Differences in NEE between plot types were not due to differences in soil respiration nor were they due to greater leaf level photosynthetic capabilities of B. ischaemum relative to the dominant native grasses. NEE, soil respiration and biomass accumulation were limited by temperature and soil moisture in both native and invaded plots; however, invaded areas were less sensitive to both higher temperatures and lower soil moisture. Preliminary modeling results suggest that from January-August 2006, invaded grasslands stored approximately one third more carbon than native grasslands, making them 20% less of a carbon source than native plots during this year of record high temperatures and drought. Gabbard, BL. 2003. The Population Dynamics and Distribution of the Exotic Grass,Bothriochloa ischaemum, PhD Dissertation, University of Texas, Austin, TX Harmoney et al. 2004. Herbicide Effects on Established Yellow Old World Bluestem (Bothriochloa ischaemum). Weed Technology 18:545 550
Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C
2013-10-01
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.
Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S
2016-07-01
Many tropical montane cloud forest (TMCF) trees are capable of foliar water uptake (FWU) during leaf-wetting events. In this study, we tested the hypothesis that maintenance of leaf turgor during periods of fog exposure and soil drought is related to species' FWU capacity. We conducted several experiments using apoplastic tracers, deuterium labeling and leaf immersion in water to evaluate differences in FWU among three common TMCF tree species. We also measured the effect of regular fog exposure on the leaf water potential of plants subjected to soil drought and used these data to model species' response to long-term drought. All species were able to absorb water through their leaf cuticles and/or trichomes, although the capacity to do so differed between species. During the drought experiment, the species with higher FWU capacity maintained leaf turgor for a longer period when exposed to fog, whereas the species with lower FWU exerted tighter stomatal regulation to maintain leaf turgor. Model results suggest that without fog, species with high FWU are more likely to lose turgor during seasonal droughts. We show that leaf-wetting events are essential for trees with high FWU, which tend to be more anisohydric, maintaining leaf turgor during seasonal droughts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Tohda, Motofumi
1997-01-01
As the environmental changes occur throughout the world in rapid rate, we need to have further understandings for our planet. Since the ecosystems are so complex, it is almost impossible for us to integrate every factor. However, mathematical models are powerful tools which can be used to simulate those ecosystems with limited data. In this project, I collected light intensity, canopy leaf temperature and Air Handler (AHU) temperature, and nitrogen concentration in the leaves for different profiles in the rainforest mesocosm. These data will later be put into mathematical models such as "big-leaf" and "sun/shade" models to determine how these factors will affect CO2 exchange in the rainforest. As rainforests are diminishing from our planet and their existence is very important for all living things on earth, it is necessary for us to learn more about the unique system of rainforests and how we can co-exist rather than destroy.
Lebon, Eric; Pellegrino, Anne; Tardieu, Francois; Lecoeur, Jeremie
2004-03-01
Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.
Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara
2017-01-01
Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID:28243061
Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara
2017-01-01
Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.
Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker
2015-11-01
Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. © 2015 Scandinavian Plant Physiology Society.
Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing.
Hartzell, Samantha; Bartlett, Mark S; Virgin, Lawrence; Porporato, Amilcare
2015-03-07
Crassulacean acid metabolism (CAM) photosynthesis functions as an endogenous circadian rhythm coupled to external environmental forcings of energy and water availability. This paper explores the nonlinear dynamics of a new CAM photosynthesis model (Bartlett et al., 2014) and investigates the responses of CAM plant carbon assimilation to different combinations of environmental conditions. The CAM model (Bartlett et al., 2014) consists of a Calvin cycle typical of C3 plants coupled to an oscillator of the type employed in the Van der Pol and FitzHugh-Nagumo systems. This coupled system is a function of environmental variables including leaf temperature, leaf moisture potential, and irradiance. Here, we explore the qualitative response of the system and the expected carbon assimilation under constant and periodically forced environmental conditions. The model results show how the diurnal evolution of these variables entrains the CAM cycle with prevailing environmental conditions. While constant environmental conditions generate either steady-state or periodically oscillating responses in malic acid uptake and release, forcing the CAM system with periodic daily fluctuations in light exposure and leaf temperature results in quasi-periodicity and possible chaos for certain ranges of these variables. This analysis is a first step in quantifying changes in CAM plant productivity with variables such as the mean temperature, daily temperature range, irradiance, and leaf moisture potential. Results may also be used to inform model parametrization based on the observed fluctuating regime. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hansen, Anja H; Jonasson, Sven; Michelsen, Anders; Julkunen-Tiitto, Riitta
2006-02-01
Environmental changes are likely to alter the chemical composition of plant tissues, including content and concentrations of secondary compounds, and thereby affect the food sources of herbivores. After 10 years of experimental increase of temperature, nutrient levels and light attenuation in a sub-arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea x polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were to compare the seasonal course and treatment effects on CBSC among the species, life forms and leaf cohorts and to examine whether the responses in different CBSC were consistent across compounds. The changes in leaf chemistry both during the season and in response to the treatments were higher in S. herbacea x polaris than in the corresponding current year's leaf cohort of the evergreen C. tetragona. The changes were also much higher than in the 1-year-old leaves of the two evergreens probably due to differences in dilution and turnover of CBSC in growing and mature leaves paired with different rates of allocation. Most low molecular weight phenolics in the current year's leaves decreased in all treatments. Condensed tannins and the tannin-to-N ratio, however, either increased or decreased, and the strength and even direction of the responses varied among the species and leaf cohorts, supporting views of influential factors additional to resource-based or developmental controls, as e.g. species specific or genetic controls of CBSC. The results indicate that there is no common response to environmental changes across species and substances. However, the pronounced treatment responses imply that the quality of the herbivore forage is likely to be strongly affected in a changing arctic environment, although both the direction and strength of the responses will be different among plant species, tissue types and substances.
NASA Astrophysics Data System (ADS)
Brédoire, Félix; Zeller, Bernd; Nikitich, Polina; Barsukov, Pavel A.; Rusalimova, Olga; Bakker, Mark R.; Legout, Arnaud; Bashuk, Alexander; Kayler, Zachary E.; Derrien, Delphine
2017-04-01
The suitability of Siberia for agriculture is expected to increase in the next decades due to strong and rapid climatic changes, but little is known on the environmental drivers of soil fertility there, especially nitrogen (N). Plant-available N is mainly derived from litter decomposition. South-western (SW) Siberia is located on the transition between several bioclimatic zones that are predicted to shift and extend along with climate change (steppe, forest-steppe, sub-taiga). The soils of this region are formed on a common loess deposit but they are submitted to different climatic conditions and vegetation cover. In the south of the region, typically in steppe/forest-steppe, soil freezes over winter because of a relatively shallow snow-pack, and water shortages are frequent in summer. In the north, typically in sub-taiga, the soil is barely frozen in winter due to a thick snow-pack and sufficient soil moisture in summer. In this study, we characterized the dynamics of leaf litter decomposition and the transfer of N from leaf litter to the soil and back to plants. Four sites were chosen along a climate gradient (temperature, precipitation and snow depth). At each site, we applied 15N-labelled leaf litter on the soil surface in experimental plots in an aspen (Populus tremula L.) forest and in a grassland. Twice a year during three years, we tracked the 15N derived from the decomposing labelled-litter in the organic layers, in the first 15 cm of the soil, and in above-ground vegetation. Soil temperature and moisture were monitored at a daily timestep over three years and soil water budgets were simulated (BILJOU model, Granier et al. 1999). We observed contrasting patterns in the fate of litter-derived 15N between bioclimatic zones. Over three years, along with faster decay rates, the release of leaf litter-N was faster in sub-taiga than in forest-steppe. As such, higher quantities of 15N were transferred into the soil in sub-taiga. The transfer was also deeper there, which might be related to a more intense drainage because of higher snow levels, as inferred from soil water budget modelling. Interestingly, this higher drainage seems to induce only a small loss of N from the system. Such retention could result from soil physico-chemical properties (higher fine silt and oxides contents) enhancing soil organic matter stabilization, and/or by the immobilization of N in microbial metabolites. We observed differing N dynamics between forest and grassland that can be related to the different chemical composition of initial litter (tree leaves vs. grasses) and plant-soil interactions. In general, N was retained in the first centimeters of the mineral soil in grassland while the transfer was deeper in the forest soils. As fine root exploration is denser in grassland topsoil than in forest topsoil, we infer that an efficient uptake of N by grasses in the first soil layers limits N migration down the profile. It is also possible that grasses are active earlier in the season than trees and understorey species, i.e. at snow-melt when drainage is the most intense.
Seedling growth strategies in Bauhinia species: comparing lianas and trees.
Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans
2007-10-01
Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.
Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees
Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans
2007-01-01
Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978
Leaf-out phenology of temperate woody plants: from trees to ecosystems.
Polgar, Caroline A; Primack, Richard B
2011-09-01
Leafing-out of woody plants begins the growing season in temperate forests and is one of the most important drivers of ecosystem processes. There is substantial variation in the timing of leaf-out, both within and among species, but the leaf development of almost all temperate tree and shrub species is highly sensitive to temperature. As a result, leaf-out times of temperate forests are valuable for observing the effects of climate change. Analysis of phenology data from around the world indicates that leaf-out is generally earlier in warmer years than in cooler years and that the onset of leaf-out has advanced in many locations. Changes in the timing of leaf-out will affect carbon sequestration, plant-animal interactions, and other essential ecosystem processes. The development of remote sensing methods has expanded the scope of leaf-out monitoring from the level of an individual plant or forest to an entire region. Meanwhile, historical data have informed modeling and experimental studies addressing questions about leaf-out timing. For most species, onset of leaf-out will continue to advance, although advancement may be slowed for some species because of unmet chilling requirements. More information is needed to reduce the uncertainty in predicting the timing of future spring onset. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Guo, Ruqing; Sun, Shucun; Liu, Biao
2016-09-15
This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.
Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José
2016-10-01
In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation input control leaf- and ecosystem scale carbon fluxes within a pair of semiarid shrublands that had undergone woo...
USDA-ARS?s Scientific Manuscript database
The effects of environmental factors on the development of black leaf streak (BLS) were studied in Puerto Rico under field conditions. Environmental factors evaluated included temperature, relative humidity, rainfall and solar radiation. Their effect on BLS was determined by recording the youngest...
Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R
2006-03-01
Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.
Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo
2008-03-01
Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmar, A.; Gunderson, C.
2006-01-01
Global air temperatures are predicted to rise 1° to 4.5° Celsius by the year 2100. This climatic change is expected to have a great effect on the succession and migration of temperate deciduous forest species. Most physiologically based models of forest response to climatic change focus on the ecosystems as a whole instead of on individual tree species, assuming that the effects of warming on respiration are generally the same for each species, and that processes can not adjust to a changing climate. Experimental data suggest that physiological adjustments are possible, but there is a lack of data in deciduousmore » species. In order to correctly model the effects of climate change on temperate species, species-specific respiration acclimation (adjustment) to rising temperatures is being determined in this experiment. Two temperate deciduous tree species Betula alleghaniensis (BA) and Quercus rubra (QR) were grown over a span of four years in open-top chambers and subjected to two different temperature treatments; ambient and ambient plus 4° Celsius (E4). Between 0530 hours and 1100 hours, respiration was measured over a range of leaf temperatures on several comparable, fully expanded leaves in each treatment. Circular punches were taken from the leaves and dried at 60°C to determine leaf mass per area (LMA). Respiration rates at a common temperature decreased by 15-18% in both species, and the entire resperation versus temperature curve shifted by at least 4°C, indicating a large degree of physiological acclimation. Foliar mass per area decreased with increasing growth temperature for both species. It can be concluded that there is a relationship between leaf respiration and foliar mass as it relates to respiratory acclimation, and that these two species had similar patterns of adjustment to warming.« less
Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana
2013-01-01
Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236
Wang, Xiao; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Wollenweber, Bernd; Jiang, Dong
2014-01-01
Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However, plants experienced priming (PH) up-regulated the Rubisco activase B encoding gene RcaB, which was in accordance with the higher photosynthesis rate in relation to the non-primed plants (NH) under the later high temperature stress. In relation to NH, the major chlorophyll a/b-binding protein gene Cab was down-regulated in PH plants, implying a reduction of the light absorption to protect the photosystem II from excitation energy under high temperature stress. At the same time, under the later high temperature stress PH plants showed significantly higher actual photochemical efficiency, indicating an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD) in mitochondria, which contributed to the lower superoxide radical production rate and malondialdehyde concentration in both chloroplasts and mitochondria. The improved antioxidant capacity in chloroplasts and mitochondria was related to the up-regulated expressions of Cu/Zn-SOD, Mn-SOD and GR in PH. Collectively, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Computational approach to seasonal changes of living leaves.
Tang, Ying; Wu, Dong-Yan; Fan, Jing
2013-01-01
This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves.
Environmental controls on leaf wax δD ratios in surface peats across the monsoonal region of China
NASA Astrophysics Data System (ADS)
Huang, X.; Xue, J.; Wang, X.; Meyers, P. A.
2015-09-01
Leaf wax molecular and isotopic ratios are generally considered robust isotopic paleohydrologic proxies. Here we evaluate the proxy value of the molecular distributions and hydrogen isotopic compositions of long chain n-alkanes (δDalk) in surface peats collected from peatlands across a range of annual air temperatures from 1 to 15 °C and a range of annual mean precipitation from 720 to 2070 mm in the monsoonal region of China. The alkane ratios (ACL and CPI) and δDalk values show relatively large variations in multiple samples from a single site, highlighting the complexity of these ratios at a small spatial scale. In the montane Zoigê peatland, the apparent fractionation between precipitation and δDalk is more positive than in the other six sites, which is possibly an effect of the higher conductivity of the water in this high elevation site (3500 m a.s.l.). At a larger spatial scale, the site-averaged CPI ratios and the δDalk values of n-C29 and n-C31 alkanes show significant correlation with the air temperature and precipitation. These results support the application of the CPI ratio and the δDalk ratios of n-C29 and n-C31 alkanes as sensitive paleohydrologic proxies on millennial and larger timescales.
Global warming leads to more uniform spring phenology across elevations.
Vitasse, Yann; Signarbieux, Constant; Fu, Yongshuo H
2018-01-30
One hundred years ago, Andrew D. Hopkins estimated the progressive delay in tree leaf-out with increasing latitude, longitude, and elevation, referred to as "Hopkins' bioclimatic law." What if global warming is altering this well-known law? Here, based on ∼20,000 observations of the leaf-out date of four common temperate tree species located in 128 sites at various elevations in the European Alps, we found that the elevation-induced phenological shift (EPS) has significantly declined from 34 d⋅1,000 m -1 conforming to Hopkins' bioclimatic law in 1960, to 22 d⋅1,000 m -1 in 2016, i.e., -35%. The stronger phenological advance at higher elevations, responsible for the reduction in EPS, is most likely to be connected to stronger warming during late spring as well as to warmer winter temperatures. Indeed, under similar spring temperatures, we found that the EPS was substantially reduced in years when the previous winter was warmer. Our results provide empirical evidence for a declining EPS over the last six decades. Future climate warming may further reduce the EPS with consequences for the structure and function of mountain forest ecosystems, in particular through changes in plant-animal interactions, but the actual impact of such ongoing change is today largely unknown.
Wingler, Astrid; Juvany, Marta; Cuthbert, Caroline; Munné-Bosch, Sergi
2015-01-01
In annual plants with determinate growth, sugar accumulation signals high carbon availability once growth has ceased, resulting in senescence-dependent nutrient recycling to the seeds. However, this senescence-inducing effect of sugars is abolished at cold temperature, where sugar accumulation is important for protection. Here, natural variation was exploited to analyse the effect of chilling on interactions between leaf senescence, sugars, and phytohormones in Arabis alpina, a perennial plant with indeterminate growth. Eight accessions of A. alpina originating from between 2090 and 3090 m above sea level in the French Alps were used to identify heritable adaptations in senescence, stress response, sugars, and phytohormones to altitude. Accessions from high altitudes showed an enhanced capacity for sucrose accumulation and a diminished loss of chlorophyll in response to chilling. At warm temperature, sucrose content was negatively correlated with chlorophyll content, and sucrose treatment induced leaf senescence. Chilling resulted in lower indole-3-acetic acid, but higher zeatin and jasmonic acid contents. Interactions between sugar and phytohormones included a positive correlation between sucrose and jasmonic acid contents that may be involved in promoting the stress-dependent decline in chlorophyll. These findings reveal regulatory interactions that underlie adaptation in the senescence and stress response to chilling. PMID:25371506
Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii.
Funk, Jennifer L; Throop, Heather L
2010-04-01
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.
Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D
2011-08-01
Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.
Feng, Yu-Long; Fu, Gai-Lan; Zheng, Yu-Long
2008-08-01
Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.
Zhou, Jinyan; Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Saydin, Asanjan; Shen, Qirong; Guo, Shiwei
2017-03-11
Cucumber Fusarium wilt, induced by Fusarium oxysporum f. sp. cucumerinum (FOC), causes severe losses in cucumber yield and quality. Nitrogen (N), as the most important mineral nutrient for plants, plays a critical role in plant-pathogen interactions. Hydroponic assays were conducted to investigate the effects of different N forms (NH₄⁺ vs. NO₃ ‒ ) and supply levels (low, 1 mM; high, 5 mM) on cucumber Fusarium wilt. The NO₃ ‒ -fed cucumber plants were more tolerant to Fusarium wilt compared with NH₄⁺-fed plants, and accompanied by lower leaf temperature after FOC infection. The disease index decreased as the NO₃ ‒ supply increased but increased with the NH₄⁺ level supplied. Although the FOC grew better under high NO₃ - in vitro, FOC colonization and fusaric acid (FA) production decreased in cucumber plants under high NO₃ - supply, associated with lower leaf membrane injury. There was a positive correlation between the FA content and the FOC number or relative membrane injury. After the exogenous application of FA, less FA accumulated in the leaves under NO₃ - feeding, accompanied with a lower leaf membrane injury. In conclusion, higher NO₃ - supply protected cucumber plants against Fusarium wilt by suppressing FOC colonization and FA production in plants, and increasing the plant tolerance to FA.
In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants.
Sáez, Patricia L; Cavieres, Lohengrin A; Galmés, Jeroni; Gil-Pelegrín, Eustaquio; Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Vivas, Mercedes; Sanhueza, Carolina; Ramírez, Constanza F; Rivera, Betsy K; Corcuera, Luis J; Bravo, León A
2018-06-01
The Antarctic Peninsula has experienced a rapid warming in the last decades. Although recent climatic evidence supports a new tendency towards stabilization of temperatures, the impacts on the biosphere, and specifically on Antarctic plant species, remain unclear. We evaluated the in situ warming effects on photosynthesis, including the underlying diffusive, biochemical and anatomical determinants, and the relative growth of two Antarctic vascular species, Colobanthus quitensis and Deschampsia antarctica, using open top chambers (OTCs) and gas exchange measurements in the field. In C. quitensis, the photosynthetic response to warming relied on specific adjustments in the anatomical determinants of the leaf CO 2 transfer, which enhanced mesophyll conductance and photosynthetic assimilation, thereby promoting higher leaf carbon gain and plant growth. These changes were accompanied by alterations in the leaf chemical composition. By contrast, D. antarctica showed no response to warming, with a lack of significant differences between plants grown inside OTCs and plants grown in the open field. Overall, the present results are the first reporting a contrasting effect of in situ warming on photosynthesis and its underlying determinants, of the two unique Antarctic vascular plant species, which could have direct consequences on their ecological success under future climate conditions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Genetic and environmental influences on cold hardiness of native and introduced riparian trees
Friedman, Jonathan M.; Roelle, James E.; Cade, Brian S.
2012-01-01
To explore latitudinal genetic variation in cold hardiness and leaf phenology, we planted a common garden of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis, and hybrids) collected from 15 sites from 29.2 to 47.6°N in the central United States. In the common garden, both species showed latitudinal variation in fall, but not spring, leaf phenology. This suggests that latitudinal gradient field observations in fall phenology are a result, at least in part, of the inherited variation in the critical photoperiod. Conversely, the latitudinal gradient field observations in spring phenology are largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization, and natural selection in the 150 years since introduction.
Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C
2013-10-01
Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo
2013-12-01
Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.
Spatio-temporal water dynamics in mature Banksia menziesii trees during drought.
Bader, Martin K-F; Ehrenberger, Wilhelm; Bitter, Rebecca; Stevens, Jason; Miller, Ben P; Chopard, Jerome; Rüger, Simon; Hardy, Giles E S J; Poot, Pieter; Dixon, Kingsley W; Zimmermann, Ulrich; Veneklaas, Erik J
2014-10-01
Southwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br. trees using magnetic leaf patch clamp pressure (ZIM-) probes that allow continuous, real-time monitoring of leaf water status. Multiple ZIM-probes across the crown were complemented by traditional ecophysiological measurements. During summer, early stomatal downregulation of transpiration prevented midday balancing pressures from exceeding 2.5 MPa. Diurnal patterns of ZIM-probe and pressure chamber readings agreed reasonably well, however, ZIM-probes recorded short-term dynamics, which are impossible to capture using a pressure chamber. Simultaneous recordings of three ZIM-probes evenly spaced along leaf laminas revealed intrafoliar turgor gradients, which, however, did not develop in a strictly basi- or acropetal fashion and varied with cardinal direction. Drought stress manifested as increasing daily signal amplitude (low leaf water status) and occasionally as rising baseline at night (delayed rehydration). These symptoms occurred more often locally than across the entire crown. Microclimate effects on leaf water status were strongest in crown regions experiencing peak morning radiation (East and North). Extreme spring temperatures preceded the sudden death of B. menziesii trees, suggesting a temperature- or humidity-related tipping point causing rapid hydraulic failure as evidenced by collapsing ZIM-probe readings from an affected tree. In a warmer and drier future, increased frequency of B. menziesii mortality will result in significantly altered community structure and ecosystem function. © 2014 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team
2003-04-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.
Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A
2018-02-14
Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Phenology of temperate trees in tropical climates
NASA Astrophysics Data System (ADS)
Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe
2005-09-01
Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.
Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H
2008-01-01
Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.
1996-05-15
Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less
NASA Astrophysics Data System (ADS)
Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang
2017-12-01
The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.
Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao
2017-06-01
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.
Industrious leaf cutter ants and their carbon footprints
NASA Astrophysics Data System (ADS)
Swanson, A. C.; Dierick, D.; Trahan, N. A.; Allen, M. F.; Schwendenmann, L.; Harmon, T. C.; Oberbauer, S. F.; Fernandez Bou, A. S.; Zelikova, T. J.
2017-12-01
Leaf cutter ants (LCA) are considered ecosystem engineers in Neotropical forest ecosystems because they alter physical and environmental conditions for other organisms. LCA excavate large underground nests, maintaining intricate tunnels and fungal and waste chambers, and they continuously bring in vast amounts of fresh leaf material. In order to understand their ecosystem-wide impacts, we set out to determine whether their engineering activities fundamentally alter soil structure, soil nutrient pools, and gas fluxes in a wet tropical rainforest in Costa Rica. To directly compare LCA nest to non-nest sites, we utilized embedded sensor arrays with series of soil moisture, CO2, O2, and temperature sensors placed at four soil depths and automated minirhizotrons (AMR) to measure root and hyphal production and turnover. We also collected soils for biogeochemical analyses and measured soil CO2 fluxes and carbon isotope ratios of below-ground CO2 for two years. Our measurements confirmed that LCA alter their soil environment to regulate internal soil CO2 concentrations, moisture, and temperature, increasing O2 concentrations in the process. There were marked differences in soil structure inside nests relative to non-nests and these were associated with increased root and hyphal production and turnover in nests. Soil C, N, P, and their respective degrading enzymes were highly variable among sites and between nests and controls but N and P increased with soil depth and were generally higher in nests than controls. Contrary to our expectations, C mineralization rates were lower in nests but CO2 fluxes were high from nest vents and similar to non-nests elsewhere. At the system scale, LCA appear to fundamentally change the soil environment inside their nests and create spatial heterogeneity in biogeochemical processes and root and hyphal growth, influencing the overall C balance of Neotropical forests.
NASA Technical Reports Server (NTRS)
Tomaszewski, Z. Jr; Kuklin, A. I.; Sams, C. E.; Conger, B. V.
1994-01-01
The objectives of this study were to determine the effects of low temperature (4 degrees C) preincubation on somatic embryogenesis from orchardgrass (Dactylis glomerata L.) leaf cultures and to relate these effects to ethylene emanation during the preincubation and incubation periods. Experiments were also conducted with an ethylene biosynthesis inhibitor aminooxyacetic acid (AOA). Segments from the innermost two leaves were cultured on SH medium with 30 micromoles dicamba at 4 degrees C for 1 to 7 d before transfer to 21 degrees C. Results from a paired design showed that the embryogenic response of leaf segments preincubated at 4 degrees C was equal or superior to nonpreincubated leaves at all time periods. Ethylene emanation was decreased during the low temperature incubation. Transfer of leaf segments from 4 degrees C to 21 degrees C was accompanied by a burst of ethylene which rose to control levels within 30 min. AOA at 20 and 40 micromoles decreased ethylene emanation but did not stimulate the embryogenic response. We conclude that the stimulation of somatic embryogenesis by low temperature is probably due to factors other than suppression of ethylene biosynthesis.
Global variability in leaf respiration in relation to climate and leaf traits
NASA Astrophysics Data System (ADS)
Atkin, Owen K.
2015-04-01
Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.
Relating Stomatal Conductance to Leaf Functional Traits.
Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge
2015-10-12
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.
Modification of land-atmosphere interactions by CO2 effects
NASA Astrophysics Data System (ADS)
Lemordant, Leo; Gentine, Pierre
2017-04-01
Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.
Can we detect a nonlinear response to temperature in European plant phenology?
NASA Astrophysics Data System (ADS)
Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette
2016-10-01
Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.
Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren
2013-01-01
Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483
Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.
Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J
2014-07-22
The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren
2015-11-01
We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com
Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less
Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall
Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong
2016-01-01
The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400–5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world’s highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants. PMID:26856260