2015-07-01
ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...2015 4. TITLE AND SUBTITLE Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of Higher-Order Energy Potentials 5a. CONTRACT
Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian
2015-01-01
Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.
Muelas-Jiménez, M Isabel; Olmedo-Gaya, Maria Victoria; Manzano-Moreno, Francisco J; Reyes-Botella, Candela; Vallecillo-Capilla, Manuel
2017-02-01
To compare survival rates among dental implants restored with immediate, early, and conventional loading protocols, also comparing between maxillary and mandibular implants, and to evaluate the influence of implant length and diameter and the type of prosthesis on treatment outcomes. This retrospective cohort study initially included all 52 patients receiving dental implants between July 2006 and February 2008 at a private oral surgery clinic in Granada (Southern Spain). Clinical and radiographic examinations were performed, including periapical or panoramic radiographs, and incidences during completion of the restoration were recorded at 1 week, 3 months, 6 months, and at 1, 2, 3, 4, and 5 years. After a 5-year follow-up, 1 patient had died, 3 were lost to follow-up, and 6 required grafting before implant placement; therefore, the final study sample comprised 42 patients with 164 implants. Variables associated with the survival/failure of the restoration were: number of implants (higher failure rate with fewer implants), bone type (higher failure rate in type III or IV bone), and type of prosthesis (higher failure rate with single crowns). No significant association was found in univariate or multivariate analyses between survival rate and the loading protocol, implant length or diameter, or maxillary/mandibular location. Immediate occlusal loading, immediate provisionalization without occlusal loading, and early loading are viable treatment options with similar survival rates to those obtained with conventional loading. Bone quality and number of implants per patient were the most influential factors. © 2015 by the American College of Prosthodontists.
Rate dependent strengths of some solder joints
NASA Astrophysics Data System (ADS)
Williamson, D. M.; Field, J. E.; Palmer, S. J. P.; Siviour, C. R.
2007-08-01
The shear strengths of three lead-free solder joints have been measured over the range of loading rates 10-3 to ~105 mm min-1. Binary (SnAg), ternary (SnAgCu) and quaternary (Castin: SnAgCuSb) alloys have been compared to a conventional binary SnPb solder alloy. Results show that at loading rates from 10-3 to 102 mm min-1, all four materials exhibit a linear relationship between the shear strength and the loading rate when the data are plotted on a log-log plot. At the highest loading rate of 105 mm min-1, the strengths of the binary alloys were in agreement with extrapolations made from the lower loading rate data. In contrast, the strengths of the higher order alloys were found to be significantly lower than those predicted by extrapolation. This is explained by a change in failure mechanism on the part of the higher order alloys. Similar behaviour was found in measurements of the tensile strengths of solder joints using a novel high-rate loading tensile test. Optical and electron microscopy were used to examine the microstructures of interest in conjunction with energy dispersive x-ray analysis for elemental identification. The effect of artificial aging and reflow of the solder joints is also reported.
Ghangrekar, M M; Asolekar, S R; Joshi, S G
2005-03-01
Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.
Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng
2013-01-01
Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228
[Study on the stability of tetrandrine microsphere].
Cheng, Guohu; Luo, Jiabo
2005-05-01
To study the stability of Tetrandrine Microsphere. Higher speed test and room temperature test were adopted to investigate the indexes, such as properties of appearance, amount of medicine loaded, seal rate, seepage rate, microbial stability, etc. Through the test of six months, properties of appearance, amount of medicine loaded, seal rate, seepage rate, microbial stability have not obviously change. But after testing for 6 months with higher temperature, the seal rate was reduced, and the seepage rate was increased. Tetrandrine microsphere is steady under the room temperature condition, but is unstable to hot, and ought to keep in conformity with low-temperature.
Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun
2014-06-01
The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.
Gunn, Rachel L; Gerst, Kyle R; Lake, Allison J; Finn, Peter R
2018-02-01
Executive working memory capacity (eWMC) is central to adaptive decision-making. Research has revealed reduced eWMC and higher rates of impulsive decision making in individuals with alcohol use disorders (AUDs: DSM-IV Alcohol Dependence of Alcohol Abuse) and antisocial psychopathology (AP). Recent work has shown that placing a load on working memory (WM) further increases impulsive decision making on the delay discounting (DD) task in those with AUDs and AP. The current study examined the effects of an attention refocusing manipulation to offset the effects of this WM-load on DD rates in control subjects, those with AUDs without AP, and AUDs with AP (AUD-AP). Results revealed that 1) the AUD-AP group had higher DD rates (i.e., more impulsive decision-making) than the AUD group, followed by controls, and 2) attention refocusing after a load is placed on WM was associated with lower DD rates compared to the load without refocusing in both AUD groups, but not controls. Results suggest that refocusing attention after a cognitive load may be an effective cognitive strategy for reducing the impulsivity-enhancing effects of cognitive load on decision making in individuals with AUDs and AP. Copyright © 2017 Elsevier Inc. All rights reserved.
Vardarajan, Badri N; Faber, Kelley M; Bird, Thomas D; Bennett, David A; Rosenberg, Roger; Boeve, Bradley F; Graff-Radford, Neill R; Goate, Alison M; Farlow, Martin; Sweet, Robert A; Lantigua, Rafael; Medrano, Martin Z; Ottman, Ruth; Schaid, Daniel J; Foroud, Tatiana M; Mayeux, Richard
2014-03-01
Late-onset Alzheimer disease (LOAD), defined as onset of symptoms after age 65 years, is the most common form of dementia. Few reports investigate incidence rates in large family-based studies in which the participants were selected for family history of LOAD. To determine the incidence rates of dementia and LOAD in unaffected members in the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) family studies. Families with 2 or more affected siblings who had a clinical or pathological diagnosis of LOAD were recruited as a part of the NIA-LOAD/NCRAD Family Study. A cohort of Caribbean Hispanics with familial LOAD was recruited in a different study at the Taub Institute for Research on Alzheimer's Disease and the Aging Brain in New York and from clinics in the Dominican Republic as part of the EFIGA study. Age-specific incidence rates of LOAD were estimated in the unaffected family members in the NIA-LOAD/NCRAD and EFIGA data sets. We restricted analyses to families with follow-up and complete phenotype information, including 396 NIA-LOAD/NCRAD and 242 EFIGA families. Among the 943 at-risk family members in the NIA-LOAD/NCRAD families, 126 (13.4%) developed dementia, of whom 109 (86.5%) met criteria for LOAD. Among 683 at-risk family members in the EFIGA families, 174 (25.5%) developed dementia during the study period, of whom 145 (83.3%) had LOAD. The annual incidence rates of dementia and LOAD in the NIA-LOAD/NCRAD families per person-year were 0.03 and 0.03, respectively, in participants aged 65 to 74 years; 0.07 and 0.06, respectively, in those aged 75 to 84 years; and 0.08 and 0.07, respectively, in those 85 years or older. Incidence rates in the EFIGA families were slightly higher, at 0.03 and 0.02, 0.06 and 0.05, 0.10 and 0.08, and 0.10 and 0.07, respectively, in the same age groups. Contrasting these results with the population-based estimates, the incidence was increased by 3-fold for NIA-LOAD/NCRAD families (standardized incidence ratio, 3.44) and 2-fold among the EFIGA compared with the NIA-LOAD/NCRAD families (1.71). The incidence rates for familial dementia and LOAD in the NIA-LOAD/NCRAD and EFIGA families are significantly higher than population-based estimates. The incidence rates in all groups increase with age. The higher incidence of LOAD can be explained by segregation of Alzheimer disease-related genes in these families or shared environmental risks.
Biofiltration of paint solvent mixtures in two reactor types: overloading by hydrophobic components.
Paca, Jan; Halecky, Martin; Misiaczek, Ondrej; Jones, Kim; Kozliak, Evguenii; Sobotka, Miroslav
2010-12-01
Steady-state performance characteristics of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing toluene/xylenes inlet concentrations while maintaining a constant loading rate of hydrophilic components (methyl ethyl and methyl isobutyl ketones, acetone, and n-butyl acetate) of 4 g m⁻³ h⁻¹ were evaluated and compared, along with the systems' dynamic responses. At the same combined substrate loading of 55 g m⁻³ h⁻¹ for both reactors, the TBR achieved more than 1.5 times higher overall removal efficiency (RE(W)) than the BF. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also inhibited at higher loads of aromatics, thus revealing a competition in cell catabolism. A step-drop in loading of aromatics resulted in an immediate increase of RE(W) with variations in the TBR, while the new steady-state value in the BF took 6-7 h to achieve. The TBR consistently showed a greater performance than BF in removing toluene and xylenes. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also lower at higher OL(AROM), revealing a competition in the cell catabolism. The results obtained are consistent with the proposed hypothesis of greater toxic effects under low water content, i.e., in the biofilter, caused by aromatic hydrocarbons in the presence of polar ketones and esters, which may improve the hydrocarbon partitioning into the aqueous phase.
Age-Specific Incidence Rates for Dementia and Alzheimer Disease in NIA-LOAD/NCRAD and EFIGA Families
Vardarajan, Badri N.; Faber, Kelley M.; Bird, Thomas D.; Bennett, David A.; Rosenberg, Roger; Boeve, Bradley F.; Graff-Radford, Neill R.; Goate, Alison M.; Farlow, Martin; Sweet, Robert A.; Lantigua, Rafael; Medrano, Martin Z.; Ottman, Ruth; Schaid, Daniel J.; Foroud, Tatiana M.; Mayeux, Richard
2014-01-01
IMPORTANCE Late-onset Alzheimer disease (LOAD), defined as onset of symptoms after age 65 years, is the most common form of dementia. Few reports investigate incidence rates in large family-based studies in which the participants were selected for family history of LOAD. OBJECTIVE To determine the incidence rates of dementia and LOAD in unaffected members in the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) family studies. DESIGN, SETTING, AND PARTICIPANTS Families with 2 or more affected siblings who had a clinical or pathological diagnosis of LOAD were recruited as a part of the NIA-LOAD/NCRAD Family Study. A cohort of Caribbean Hispanics with familial LOAD was recruited in a different study at the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain in New York and from clinics in the Dominican Republic as part of the EFIGA study. MAIN OUTCOMES AND MEASURES Age-specific incidence rates of LOAD were estimated in the unaffected family members in the NIA-LOAD/NCRAD and EFIGA data sets. We restricted analyses to families with follow-up and complete phenotype information, including 396 NIA-LOAD/NCRAD and 242 EFIGA families. Among the 943 at-risk family members in the NIA-LOAD/NCRAD families, 126 (13.4%) developed dementia, of whom 109 (86.5%) met criteria for LOAD. Among 683 at-risk family members in the EFIGA families, 174 (25.5%) developed dementia during the study period, of whom 145 (83.3%) had LOAD. RESULTS The annual incidence rates of dementia and LOAD in the NIA-LOAD/NCRAD families per person-year were 0.03 and 0.03, respectively, in participants aged 65 to 74 years; 0.07 and 0.06, respectively, in those aged 75 to 84 years; and 0.08 and 0.07, respectively, in those 85 years or older. Incidence rates in the EFIGA families were slightly higher, at 0.03 and 0.02, 0.06 and 0.05, 0.10 and 0.08, and 0.10 and 0.07, respectively, in the same age groups. Contrasting these results with the population-based estimates, the incidence was increased by 3-fold for NIA-LOAD/NCRAD families (standardized incidence ratio, 3.44) and 2-fold among the EFIGA compared with the NIA-LOAD/NCRAD families (1.71). CONCLUSIONS AND RELEVANCE The incidence rates for familial dementia and LOAD in the NIA-LOAD/NCRAD and EFIGA families are significantly higher than population-based estimates. The incidence rates in all groups increase with age. The higher incidence of LOAD can be explained by segregation of Alzheimer disease–related genes in these families or shared environmental risks. PMID:24425039
Low-damage direct patterning of silicon oxide mask by mechanical processing
2014-01-01
To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891
Young, Bradley; Banihashemi, Bahman; Forrest, Daina; Kennedy, Kevin; Stintzi, Alain; Delatolla, Robert
2016-03-15
This study investigates the effects of three specific moving bed biofilm reactor (MBBR) carrier types and two surface area loading rates on biofilm thickness, morphology and bacterial community structure of post carbon removal nitrifying MBBR systems along with the effects of carrier type and loading on ammonia removal rates and effluent solids settleability. The meso and micro analyses show that the AOB kinetics vary based on loading condition, but irrespective of carrier type. The meso-scale response to increases in loading was shown to be an increase in biofilm thickness with higher surface area carriers being more inclined to develop and maintain thicker biofilms. The pore spaces of these higher surface area to volume carriers also demonstrated the potential to become clogged at higher loading conditions. Although the biofilm thickness increased during higher loading conditions, the relative percentages of both the embedded viable and non-viable cells at high and conventional loading conditions remained stable; indicating that the reduced ammonia removal kinetics observed during carrier clogging events is likely due to the observed reduction in the surface area of the attached biofilm. Microbial community analyses demonstrated that the dominant ammonia oxidizing bacteria for all carriers is Nitrosomonas while the dominant nitrite oxidizing bacteria is Nitrospira. The research showed that filamentous species were abundant under high loading conditions, which likely resulted in the observed reduction in effluent solids settleability at high loading conditions as opposed to conventional loading conditions. Although the settleability of the effluent solids was correlated to increases in abundances of filamentous organisms in the biofilm, analyzed using next generation sequencing, the ammonia removal rate was not shown to be directly correlated to specific meso or micro-scale characteristics. Instead post carbon removal MBBR ammonia removal kinetics were shown to be related to the viable AOB cell coverage of the carriers; which was calculated by normalizing the surface area removal rate by the biofilm thickness, the bacterial percent abundance of ammonia oxidizing bacteria and the percentage of viable cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sung, Po-Hsien; Wu, Cheng-Da; Fang, Te-Hua
2012-05-01
Single-crystal aluminium nanowires under torsion are studied using molecular dynamics simulations based on the many-body tight-binding potential. The effects of temperature, loading rate and nanowire length are evaluated in terms of atomic trajectories, potential energy, von Mises stress, a centrosymmetry parameter, torque, shear modulus and radial distribution function. Simulation results clearly show that torsional deformation begins at the surface, extends close to the two ends and finally diffuses to the middle part. The critical torsional angle which represents the beginning of plastic deformation varies with different conditions. Before the critical torsional angle is reached, the potential energy and the torque required for the deformation of a nanowire significantly increase with the torsional angle. The critical torsional angle increases with increasing nanowire length and loading rate and decreasing temperature. The torque required for the deformation decreases and the shear modulus increases with increasing nanowire length. For higher temperatures and higher loading rates, torsional buckling more easily occurs at the two ends of a nanowire, whereas it occurs towards the middle part at or below room temperature with lower loading rates. Geometry instability occurs before material instability (buckling) for a long nanowire.
Bastviken, David; Sandén, Per; Svensson, Teresia; Ståhlberg, A Carina; Magounakis, Malin; Oberg, Gunilla
2006-05-01
The common assumption that chloride (Cl-) is conservative in soils and can be used as a groundwater tracer is currently being questioned, and an increasing number of studies indicate that Cl- can be retained in soils. We performed lysimeter experiments with soil from a coniferous forest in southeast Sweden to determine whether pore water residence time and nitrogen and Cl- loads affected Cl- retention. Over the first 42 days there was a net retention of Cl- with retention rates averaging 3.1 mg CI- m(-2) d(-1) (68% of the added Cl- retained over 42 days). Thereafter, a net release of Cl- at similar rates was observed for the remaining experimental period (85 d). Longer soil water residence time and higher Cl- load gave higher initial retention and subsequent release rates than shorter residence time and lower Cl- load did. Nitrogen load did not affect Cl transformation rates. This study indicates that simultaneous retention and release of Cl- can occur in soils, and that rates may be considerable relative to the load. The retention of Cl- observed was probably due to chlorination of soil organic matter or ion exchange. The cause of the shift between net retention and net release is unclear, but we hypothesize that the presence of O2 or the presence of microbially available organic matter regulates Cl- retention and release rates.
Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R
2016-01-01
A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.
NASA Astrophysics Data System (ADS)
Shanmugharaj, A. M.; Bhowmick, Anil K.
2004-01-01
The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.
Biodegradation of a surrogate naphthenic acid under denitrifying conditions.
Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay
2014-03-15
Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values reported for the aerobic biofilm reactor. The highest nitrate removal rate coincided with maximum removal rate of NA and was 3164.7mgL(-1)h(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Pietrosimone, Brian; Blackburn, J Troy; Harkey, Matthew S; Luc, Brittney A; Hackney, Anthony C; Padua, Darin A; Driban, Jeffrey B; Spang, Jeffrey T; Jordan, Joanne M
2016-02-01
Individuals who have sustained an anterior cruciate ligament (ACL) injury and undergo ACL reconstruction (ACLR) are at higher risk of developing knee osteoarthritis. It is hypothesized that altered knee loading may influence the underlying joint metabolism and hasten development of posttraumatic knee osteoarthritis. To explore the associations between serum biomarkers of cartilage metabolism and peak vertical ground-reaction force (vGRF) and vGRF loading rate in the injured and uninjured limbs of individuals with ACLR. Descriptive laboratory study. Patients with a history of a primary unilateral ACLR who had returned to unrestricted physical activity (N = 19) participated in the study. Resting blood was collected from each participant before completing 5 walking gait trials at a self-selected comfortable speed. Peak vGRF was extracted for both limbs during the first 50% of the stance phase of gait, and the linear vGRF loading rate was determined between heel strike and peak vGRF. Sera were assessed for collagen breakdown (collagen type II cleavage product [C2C]) and synthesis (collagen type II C-propeptide [CPII]), as well as aggrecan concentrations, via commercially available specific enzyme-linked immunosorbent assays. Pearson product-moment correlations (r) and Spearman rank-order correlations (ρ) were used to evaluate associations between loading characteristics and biomarkers of cartilage metabolism. Lower C2C:CPII ratios were associated with higher peak vGRF in the injured limb (ρ = -0.59, uncorrected P = .007). There were no significant associations between peak vGRF or linear vGRF loading rate and CPII, C2C, or aggrecan serum concentrations. Lower C2C:CPII ratios were associated with higher peak vGRF in the ACLR limb during gait, suggesting that higher peak loading in the ACLR limb is related to lower type II collagen breakdown relative to type II collagen synthesis. These data suggest that type II collagen synthesis may be higher relative to the amount of type II collagen breakdown in the ACLR limb with higher lower extremity loading. Future study should determine if metabolic compensations to increase collagen synthesis may affect the risk of developing osteoarthritis after ACLR. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Jordan, Yuyan C.; Ghulam, Abduwasit; Hartling, Sean
2014-01-01
In this paper, spatial and temporal trajectories of land cover/land use change (LCLUC) derived from Landsat data record are combined with hydrological modeling to explore the implication of vegetation dynamics on soil erosion and total suspended sediment (TSS) loading to surface rivers. The inter-annual coefficient of variation (CoV) of normalized difference vegetation index (NDVI) is used to screen the LCLUC and climate change. The Soil and Water Assessment Tool (SWAT) is employed to identify the monthly TSS for two times interval (1991 to 2001 and 2001 to 2011) at subbasin levels. SWAT model is calibrated from 1991 to 2001 and validated from 2002 to 2011 at three USGS gauging sites located in the study area. The Spearman's rank correlation of annual mean TSS is used to assess the temporal trends of TSS dynamics in the subbasins in the two study periods. The spatial correlation among NDVI, LCLUC, climate change and TSS loading rate changes is quantified by using linear regression model and negative/positive trend analysis. Our results showed that higher rainfall yields contribute to higher TSS loading into surface waters. A higher inter-annual accumulated vegetation index and lower inter-annual CoV distributed over the uplands resulted in a lower TSS loading rate, while a relatively low vegetation index with larger CoV observed over lowlands resulted in a higher TSS loading rate. The TSS loading rate at the basin outlet increased with the decrease of annual NDVI due to expanding urban areas in the watershed. The results also suggested nonlinearity between the trends of TSS loading with any of a specific land cover change because of the fact that the contribution of a factor can be influenced by the effects of other factors. However, dominant factors that shape the relationship between the trend of TSS loading and specific land cover changes were detected. The change of forest showed a negative relationship while agriculture and pasture demonstrated positive relationships with TSS loading change. Our results do not show any significant causal relationship between urbanization and the TSS loading change suggesting that further investigation needs to be carried out to understand the mechanism of the impact of urban sprawl on surface water quality.
Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana
2016-01-01
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater. PMID:27907122
Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo
2016-01-01
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.
Kinetic changes during a six-week minimal footwear and gait-retraining intervention in runners.
Warne, Joe P; Smyth, Barry P; Fagan, John O'C; Hone, Michelle E; Richter, Chris; Nevill, Alan M; Moran, Kieran A; Warrington, Giles D
2017-08-01
An evaluation of a six-week Combined minimal footwear transition and gait-retraining combination vs. gait retraining only on impact characteristics and leg stiffness. Twenty-four trained male runners were randomly assigned to either (1) Minimalist footwear transition Combined with gait-retraining over a six-week period ("Combined" group; n = 12) examined in both footwear, or (2) a gait-retraining group only with no minimalist footwear exposure ("Control"; n = 12). Participants were assessed for loading rate, impact peak, vertical, knee and ankle stiffness, and foot-strike using 3D and kinetic analysis. Loading rate was significantly higher in the Combined group in minimal shoes in pre-tests compared to a Control (P ≤ 0.001), reduced significantly in the Combined group over time (P ≤ 0.001), and was not different to the Control group in post-tests (P = 0.16). The impact peak (P = 0.056) and ankle stiffness reduced in both groups (P = 0.006). Loading rate and vertical stiffness was higher in minimalist footwear than conventional running shoes both pre (P ≤ 0.001) and post (P = 0.046) the intervention. There has a higher tendency to non-rearfoot strike in both interventions, but more acute changes in the minimalist footwear. A Combined intervention can potentially reduce impact variables. However, higher loading rate initially in minimalist footwear may increase the risk of injury in this condition.
A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.
Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A
2010-03-01
The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. 2009 Elsevier Ltd. All rights reserved.
Working memory load modulates microsaccadic rate.
Dalmaso, Mario; Castelli, Luigi; Scatturin, Pietro; Galfano, Giovanni
2017-03-01
Microsaccades are tiny eye movements that individuals perform unconsciously during fixation. Despite that the nature and the functions of microsaccades are still lively debated, recent evidence has shown an association between these micro eye movements and higher order cognitive processes. Here, in two experiments, we specifically focused on working memory and addressed whether differential memory load could be reflected in a modulation of microsaccade dynamics. In Experiment 1, participants memorized a numerical sequence composed of either two (low-load condition) or five digits (high-load condition), appearing at fixation. The results showed a reduction in the microsaccadic rate in the high-load compared to the low-load condition. In Experiment 2, five red or green digits were always presented at fixation. Participants either memorized the color (low-load condition) or the five digits (high-load condition). Hence, visual stimuli were exactly the same in both conditions. Consistent with Experiment 1, microsaccadic rate was lower in the high-load than in the low-load condition. Overall, these findings reveal that an engagement of working memory can have an impact on microsaccadic rate, consistent with the view that microsaccade generation is pervious to top-down processes.
Regöly-Mérei, J; Sólyom, J
1975-01-01
Steroid production rate of adrenals derived from rats drinking a 0.3 M KC1 + 5% glucose solution for 7 days was compared to that of control rats drinking a 5% glucose solution in order to investigate the effect of potassium loading upon the early and late step of aldosterone biosynthesis. Following potassium loading the quartered adrenals produced more aldosterone but less corticosterone as compared to the control. Potassium loading resulted in an increased aldosterone production rate by capsular adrenals (z. glomerulosa) provided that the corticosterone concentration in the incubation medium was elevated either by incubating it together with the decapsulated adrenal or adding exogenous corticosterone (4--16 mug/ml) to the medium. The corticosterone to aldosterone converting capacity of capsular adrenals is markedly higher in the potassium-loaded rats than in the controls. In the first 15 minutes of incubation the corticosterone production rate of the two groups was equal, aldosterone production rate by capsular adrenals of potassium-loaded rats, being higher than that of control animals. Corticosterone output of capsular adrenals from potassium-loaded rats decreased more rapidly in course of the incubation than it did in control tissue. These results suggest that the increase in aldosterone secretion in vivo following potassium loading is due to the stimulation of conversion of corticosterone to aldosterone in the glomerulosa cells. However, the endogenous corticosterone production during the incubation of glomerulosa cells from pottasium-loaded rats decreases so rapidly that the cells are not capable of producing more aldosterone than the control ones in spite of activated 18-hydroxylase.
Degradation of isobutanal at high loading rates in a compost biofilter.
Sercu, Bram; Demeestere, Kristof; Baillieul, Hans; Van Langenhove, Herman; Verstraete, Willy
2005-08-01
Biofiltration has been increasingly used for cleaning waste gases, mostly containing low concentrations of odorous compounds. To expand the application area of this technology, the biofiltration of higher pollutant loading rates has to be investigated. This article focuses on the biodegradation of isobutanal (IBAL) in a compost biofilter (BF) at mass loading rates between 211 and 4123 g/m3/day (30-590 ppm(v)). At mass loading rates up to 785 g/m3/day, near 100% removal efficiencies could be obtained. However, after increasing the loading rate to 1500-1900 g/m3/ day, the degradation efficiency decreased to 62-98%. In addition, a pH decrease and production of isobutanol (IBOL) and isobutyric acid (IBAC) were observed. This is the first report showing that an aldehyde can act as electron donor as well as acceptor in a BF. To study the effects of pH, compost moisture content, and electron acceptor availability on the biofiltration of IBAL, IBOL, and IBAC, additional batch and continuous experiments were performed. A pH of 5.2 reduced the IBAL degradation rate and inhibited the IBOL degradation, although adaptation of the microorganisms to low pH was observed in the BFs. IBAC was not degraded in the batch experiments. High moisture content (51%) initially had no effect on the IBOL production, although it negatively affected the IBAL elimination increasingly during a 21-day time-course experiment. In batch experiments, the reduction of IBAL to IBOL did not decrease when the amount of available electron acceptors (oxygen or nitrate) was increased. The IBAL removal efficiency at higher loading rates was limited by a combination of nutrient limitation, pH decrease, and dehydration, and the importance of each limiting factor depended on the influent concentration.
Non-Deterministic Dynamic Instability of Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2004-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.
Dynamic Probabilistic Instability of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2009-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.
Serravite, Daniel H; Edwards, David; Edwards, Elizabeth S; Gallo, Sara E; Signorile, Joseph F
2013-01-01
Exercise is commonly used as an intervention to increase caloric output and positively affect body composition. A major challenge is the low compliance often seen when the prescribed exercise is associated with high levels of exertion. Whole-body vibration (WBV) may allow increased caloric output with reduced effort; however, there is limited information concerning the effect of WBV on oxygen consumption (VO2). Therefore, this study assessed the synergistic effects of resistance training and WBV on VO2. We examined VO2 at different loads (0%, 20%, and 40% body weight (BW)) and vibration intensities (No vibration (NV), 35HZ, 2-3mm (35L), 50Hz, 57mm (50H)) in ten men (26.5 ± 5.1 years). Data were collected during different stages (rest, six 30s sets of squatting, and recovery). Repeated measures ANOVA showed a stage x load x vibration interaction. Post hoc analysis revealed no differences during rest; however, a significant vibration x load interaction occurred during exercise. Both 35L and 50H produced greater VO2 than NV at a moderate load of 20%BW. Although 40%BW produced greater VO2 than 20%BW or 0%BW using NV, no significant difference in VO2 was seen among vibratory conditions at 40%BW. Moreover, no significant differences were seen between 50H and 35L at 20%BW and NV at 40%BW. During recovery there was a main effect for load. Post hoc analyses revealed that VO2 at 40%BW was significantly higher than 20%BW or 0%BW, and 20%BW produced higher VO2 than no load. Minute-by-minute analysis revealed a significant impact on VO2 due to load but not to vibratory condition. We conclude that the synergistic effect of WBV and active squatting with a moderate load is as effective at increasing VO2 as doubling the external load during squatting without WBV. Key PointsSynchronous whole body vibration in conjunction with moderate external loading (app 20% BW) can increase oxygen consumption to the same extent as heavier loading (40% BW) during performance of the parallel squat.While the application of synchronous whole body vibration had no effect on recovery oxygen, under bot vibratory and non-vibratory conditions, the heavier the external load the greater the recovery oxygen consumption levels.Regardless of vibratory condition, during the squatting exercise bout 40% BW produced higher heart rates than 20%BW or 0% BW, and 20% BW produced higher heart rates than 0% BW.There were strong trends toward higher heart rates in both vibratory conditions (50 Hz, 5-6mm; 35 Hz, 2-3 mm) than in the non-vibratory condition regardless of external loading.
Combustion characteristics and design of hot water boiler
NASA Astrophysics Data System (ADS)
Liu, Xuemin; Yang, Dinghua; Lu, Junfu; Guan, Jian; Qi, Guoli
2017-03-01
In order to understand the combustion characteristics of biomass, a detailed comparison with coal was made. There are many differences between biomass and coal in combustion characteristics. The burning rate of biomass is much higher than coal. The burning rate of biomass char is also higher than coal char. During biomass combustion, HCl, SO2 and NO x emissions mainly concentrate in volatile combustion stage, while CO2 emission mainly concentrates in char combustion stage. The slagging tendency of biomass ash is severer than coal ash and the adhesive force of biomass ash is higher. However, the wearing tendency of biomass ash is minor. Aiming at the particularity of biomass fuels, this paper briefly introduces the design of biomass hot water boilers. On this basis, a 2.8 MW biomass hot water boiler was developed and tested under the loads of 1.7 MW and 2.8MW. The running results show that the carbon content of bottom slag significantly decreases as the load increases. The boiler efficiency is higher than 85% under both loads.
Organic pollutant loading and biodegradability of firefighting foam
NASA Astrophysics Data System (ADS)
Zhang, Xian-Zhong; Bao, Zhi-ming; Hu, Cheng; Li-Shuai, Jing; Chen, Yang
2017-11-01
Firefighting foam has been widely used as the high-performance extinguishing agent in extinguishing the liquid poor fire. It was concerned for its environmental impacts due to its massive usage. In this study, the organic loading level and the biodegradability of 18 firefighting foams commonly used in China were evaluated and compared. The COD and TOC of firefighting foam concentrates are extremely high. Furthermore, those of foam solutions are also much higher than regular wastewater. The COD/TOC ratio of synthetic foams are higher than protein foams. The 28-day biodegradation rates of 18 firefighting foams are all over 60%, indicating that they are all ready biodegradable. Protein foams (P, FP and FFFP) have the higher organic loading and lower 28-day biodegradation rates compared to the synthetic foams (Class A foam, AFFF and S). The short and long-term impact of protein foams on the environment are larger than synthetic foams.
Intra-storm variability in microbial partitioning and microbial loading rates.
Krometis, Leigh-Anne H; Characklis, Gregory W; Simmons, Otto D; Dilts, Mackenzie J; Likirdopulos, Christina A; Sobsey, Mark D
2007-01-01
Association with particles in the water column can have a significant impact on microbial fate and transport. This study analyzed multiple stormwater samples taken throughout the duration of three separate storms (at two different sites) to evaluate the fraction of microbes partitioning to denser "settleable" particles and to examine how partitioning behavior varied over the course of a storm. Intra-storm sampling also allowed for estimates of microbial loading rates (both total and particle-associated) and cumulative storm-induced microbial load. Five different indicator organisms were examined, with the fraction of microbes associated with settleable particles assessed via a calibrated centrifugation method. Partitioning behavior varied across microorganism type, with an average of 40% of fecal coliforms, Escherichia coli, and enterococci associating with settleable particles, compared to approximately 65% of Clostridium perfringens spores and only 13% of total coliphage. Partitioning remained fairly constant for each type of organism throughout storm events. Nonetheless, higher concentrations of both settleable particles and microbes entering the water column soon after the onset of a storm led to higher loading rates of settleable microbes in the storm's earliest stages, a trend that could have important implications for the design of stormwater management structures (e.g., detention basins). Estimates of cumulative storm-induced microbial loading suggested that one day's worth of storm loading can be the equivalent of months, or even years, of dry-weather loading.
MacDonald, Cristin; Barbee, Kenneth; Polyak, Boris
2012-05-01
To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.
Trimmel, Michael; Wittberger, Susanne
2004-07-01
This double-blind placebo-controlled study was conducted to determine nicotine effects on diverse types of attentional performance, task load, and mood considering sex effects as suggested by animal studies. Twelve smokers, 12 deprived smokers and 12 nonsmokers (6 females, 6 males in each group) were investigated. Participants were treated either by 5 mg/16 h nicotine patches (Nicorette) or placebo. Effects of treatment were examined by a computerized attention-test battery; mood was assessed by the Berliner-Alltagssprachliches-Stimmungs-Inventar and task load by the NASA Task Load Index (NASA-TLX). Results showed that nicotine significantly increased the number of hits and decreased reaction time (RT) in the vigilance task. In the selective attention task combined with irrelevant speech as background noise, nicotine enhanced rate of hits. Although it was indicated that nicotine leads to a generally higher accuracy in attention tasks, response time of visual search was prolonged, contradicting a universal facilitation by nicotine. Participants experienced mental demand and temporal demand lower and rated alertness higher when in the nicotine condition. These effects were independent of smoking status, indicating "true" nicotine effects. Females took significant advantage of nicotine in the vigilance task, reaching the performance level of males, accompanied by a higher rated alertness. Results indicate task- and sex-dependent nicotine effects.
Effect of a water-based drilling waste on receiving soil properties and plants growth.
Saint-Fort, Roger; Ashtani, Sahar
2014-01-01
This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.
Flores, Angel; Nisola, Grace M; Cho, Eulsaeng; Gwon, Eun-Mi; Kim, Hern; Lee, Changhee; Park, Shinjung; Chung, Wook-Jin
2007-05-01
The performance of enriched sludge augmented with the B21 strain of Alcaligenes defragrans was compared with that of enriched sludge, as well as with pure Alcaligenes defragrans B21, in the context of a sulfur-oxidizing denitrification (SOD) process. In synthetic wastewater treatment containing 100-1,000 mg NO3-N/L, the single strain-seeded system exhibited superior performance, featuring higher efficiency and a shorter startup period, provided nitrate loading rate was less than 0.2 kg NO3-N/m(3) per day. At nitrate loading rate of more than 0.5 kg NO3-N/m(3) per day, the bioaugmented sludge system showed higher resistance to shock loading than two other systems. However, no advantage of the bioaugmented system over the enriched sludge system without B21 strain was observed in overall efficiency of denitrification. Both the bioaugmented sludge and enriched sludge systems obtained stable denitrification performance of more than 80% at nitrate loading rate of up to 2 kg NO3-N/m(3) per day.
Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K
2016-05-01
Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.
2013-07-01
The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.
2013-01-16
The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.« less
Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading
NASA Astrophysics Data System (ADS)
Chu, J.-M.; Claus, B.; Chen, W.
2017-12-01
Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.
Bumgarner, Johnathan R; McCray, John E
2007-06-01
During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huie, Matthew M.; Bock, David C.; Zhong, Zhong
Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less
Huie, Matthew M.; Bock, David C.; Zhong, Zhong; ...
2016-09-01
Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less
Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems
NASA Astrophysics Data System (ADS)
Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.
2016-10-01
Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.
Photo-catalysis water splitting by platinum-loaded zeolite A
NASA Astrophysics Data System (ADS)
Cheng, Jing; Gao, Changda; Jing, Ming; Lu, Jian; Lin, Hui; Han, Zhaoxia; Ni, Zhengji; Zhang, Dawei
2018-05-01
Under the λ≥420 nm visible light illumination, the Pt4+ ions exchanged LTA zeolite powders without further heat-treatment presented H2 evolution at a rate of 5 μl/(15 mg·h) via photocatalysis water splitting. It was shown that the efficiency of H2 generation by the Pt4+ exchanged LTA zeolite powders without further heat-treatment was higher than the counterpart of the samples with heat treatment. In addition, the samples with lower Pt loading concentration showed higher H2 evolution rate than those of higher Pt loading did. The higher H2 evolution efficiency can be attributed to the effective isolation of water molecules and Pt at the atomic or the few atom ‘cluster’ scale by LTA zeolite’s periodical porous structure, which ensures a more efficient electron transfer efficiency for H2 evolution. However, after extra heat treatment, the Pt atoms reduced from Pt4+ in LTA zeolite’s cavities may tend to migrate to the surface and then form nano-particles, which led to the lower H2 evolution efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C. Keith; Shen, Bo; Shrestha, Som S.
This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less
Comparison of grey water treatment performance by a cascading sand filter and a constructed wetland.
Kadewa, W W; Le Corre, K; Pidou, M; Jeffrey, P J; Jefferson, B
2010-01-01
A novel unplanted vertical flow subsurface constructed wetland technology comprising three shallow beds (0.6 m length, 0.45 m width and 0.2 m depth) arranged in a cascading series and a standard single-pass Vertical Flow Planted Constructed Wetland (VFPCW, 6 m² and 0.7 m depth) were tested for grey water treatment. Particular focus was on meeting consent for published wastewater reuse parameters and removal of anionic surfactants. Treatment performance at two hydraulic loading rates (HLR) of 0.08, and 0.17 m³ m⁻² d⁻¹ were compared. Both technologies effectively removed more than 90% turbidity and more than 96% for organics with the prototype meeting the most stringent reuse standard of < 2 NTU and <10 mg/L. However, surfactant removal in the VFPCW was higher (76-85%) than in the prototype which only achieved more than 50% removal at higher loading rate. Generally, the prototype performed consistently better than the VFPCW except for surfactant removal. However, at higher loading rates, both systems did not meet the reuse standard of <1 mg L⁻¹ for anionic surfactants. This observation confirms that shallow beds provide a more oxidised environment leading to higher BOD₅ and COD removals. Presence of plants in the VFPCW led to higher anionic surfactant removal, through increased microbial and sorption processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.
2015-08-15
The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less
MacDonald, Cristin; Barbee, Kenneth
2015-01-01
Purpose To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. Methods MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. Results MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Conclusions Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems. PMID:22234617
Ding, Ning; Chen, Qian; Zhu, Zhanling; Peng, Ling; Ge, Shunfeng; Jiang, Yuanmao
2017-10-26
In order to define the effects of fruit crop load on the distribution and utilization of carbon and nitrogen in dwarf apple trees, we conducted three crop load levels (High-crop load, 6 fruits per trunk cross-sectional area (cm 2 , TCA)), Medium-crop load (4 fruits cm -2 TCA), Low-crop load (2 fruits cm -2 TCA)) in 2014 and 2015. The results indicated that the 15 N derived from fertilizer (Ndff) values of fruits decreased with the reduction of crop load, but the Ndff values of annual branches, leaves and roots increased. The plant 15 N-urea utilization rates on Medium and Low-crop load were 1.12-1.35 times higher than the High-crop load. With the reduction of crop load, the distribution rate of 13 C and 15 N in fruits was gradually reduced, but in contrast, the distribution of 13 C and 15 N gradually increased in annual branches, leaves and roots. Compared with High-crop load, the Medium and Low-crop load significantly improved fruit quality p < 0.05. Hence, controlling fruit load effectively regulated the distribution of carbon and nitrogen in plants, improved the nitrogen utilization rate and fruit quality. The appropriate crop load level for mature M.26 interstocks apple orchards was deemed to be 4.0 fruits cm -2 TCA.
Ziels, Ryan M; Karlsson, Anna; Beck, David A C; Ejlertsson, Jörgen; Yekta, Sepehr Shakeri; Bjorn, Annika; Stensel, H David; Svensson, Bo H
2016-10-15
Codigesting fats, oils, and greases with municipal wastewater sludge can greatly improve biomethane recovery at wastewater treatment facilities. Process loading rates of fats, oils, and greases have been previously tested with little knowledge of the digester microbial community structure, and high transient fat loadings have led to long chain fatty acid (LCFA) accumulation and digester upsets. This study utilized recently-developed quantitative PCR assays for syntrophic LCFA-degrading bacteria along with 16S amplicon sequencing to relate changes in microbial community structure to LCFA accumulation during transient loading increases to an anaerobic codigester receiving waste restaurant oil and municipal wastewater sludge. The 16S rRNA gene concentration of the syntrophic β-oxidizing genus Syntrophomonas increased to ∼15% of the Bacteria community in the codigester, but stayed below 3% in the control digester that was fed only wastewater sludge. Methanosaeta and Methanospirillum were the dominant methanogenic genera enriched in the codigester, and together comprised over 80% of the Archaea community by the end of the experimental period. Constrained ordination showed that changes in the codigester Bacteria and Archaea community structures were related to measures of digester performance. Notably, the effluent LCFA concentration in the codigester was positively correlated to the specific loading rate of waste oil normalized to the Syntrophomonas 16S rRNA concentration. Specific loading rates of 0-1.5 × 10(-12) g VS oil/16S gene copies-day resulted in LCFA concentrations below 30 mg/g TS, whereas LCFA accumulated up to 104 mg/g TS at higher transient loading rates. Based on the community-dependent loading limitations found, enhanced biomethane production from high loadings of fats, oils and greases can be achieved by promoting a higher biomass of slow-growing syntrophic consortia, such as with longer digester solids retention times. This work also demonstrates the potential for controlling the loading rate of fats, oils, and greases based on the analysis of the codigester community structure, such as with quantitative PCR measurements of syntrophic LCFA-degrading bacteria abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
NASA Technical Reports Server (NTRS)
Elber, W.
1975-01-01
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.
Naseri, Marziyeh; Akbarzadeh, Abolfazl; Spotin, Adel; Akbari, Nagibeh Asl Rahnemaii; Mahami-Oskouei, Mahmoud; Ahmadpour, Ehsan
2016-12-01
Treatment failures of human cystic echinococcosis (CE) with albendazole (ABZ) have attributed to its low solubility and poor drug absorption rate, resulting in low drug level in plasma. The scolicidal effects of ABZ-loaded liposome nanoparticles have recently evaluated; however, these particles have several challenges due to their low encapsulated load. This investigation was designed to evaluate and compare in vitro apoptotic activities of ABZ sulfoxide (ABZs) and ABZs-loaded poly(lactic-co-glycolic acid) (PLGA)-PEG against protoscoleces (PSCs). ABZs-loaded PLGA-PEG was prepared by a double-emulsion method (W1/O/W2). Various concentrations of ABZs and ABZs-loaded PLGA-PEG (50, 100, 150, and 200 μg/ml) were experimentally tested against PSC of CE at different exposure times (5, 10, 20, 30, and 60 min). ABZs-loaded PLGA-PEG at concentrations of 150 and 200 μg/ml was able to act at a 100 % scolicidal rate in all exposure times (5 to 60 min), while ABZs at a concentration of 200 μg/ml demonstrated 94, 100, and 100 % mortality rates following 20, 30, and 60 min of exposure times, respectively. The messenger RNA (mRNA) expression of caspase-3 was assessed by semi-quantitative RT-PCR after 15 h of exposure. Caspase-3 mRNA expression was higher in both PSC treated with ABZs and PSC treated with ABZs-loaded PLGA-PEG than that in control groups (P < 0.05). No significant difference was observed between the apoptotic intensity of PSC treated with ABZs and that of PSC treated with ABZs-loaded PLGA-PEG (P > 0.05). DNA fragmentation assay and ultrastructural changes revealed that ABZs and ABZs-loaded PLGA-PEG induced the apoptosis of PSC by activation of caspase-3. The higher permeability and scolicidal rate of ABZs-loaded PLGA-PEG can be addressed as an effectual alternative strategy to improve the treatment of human CE.
Collazos, Julio; Asensi, Víctor; Cartón, José Antonio
2009-07-01
The factors associated with discordant viroimmunological responses following antiretroviral therapy are unclear. We studied 1380 patients who initiated a protease inhibitor (PI)-based antiretroviral regimen and who fulfilled the criteria for inclusion. Of them, 255 (18.5%) had CD4 increases > or =100 cells/microl after 1 year of therapy despite detectable viral load (immunological responders); they were compared with 669 patients (48.5%) who had CD4 increases <100 cells/microl regardless of their final viral load (immunological nonresponders). Immunological responders had higher rates of sexual acquisition of HIV (p = 0.03), lower rates of clinical progression (p = 0.02), higher probabilities of being naive to antiretroviral therapy (p = 0.006) or to PI if antiretroviral experienced (p = 0.03), higher rates of receiving only nucleoside reverse transcriptase inhibitors in addition to the PI (p = 0.04), and lower baseline CD4 counts (p = 0.007) and higher viral loads (p = 0.009), as compared with nonresponders. Multivariate analysis revealed that sexual transmission of HIV (homosexual p = 0.004, heterosexual p = 0.03), no prior PI experience (p = 0.005), absence of clinical progression (p = 0.02), and lower baseline CD4 counts (p = 0.03) were independently associated with immunological response. However, these factors differed according to the patients' prior antiretroviral status, as higher baseline viral load was also associated with immunological response in antiretroviral-experienced patients (p = 0.02), whereas baseline CD4 count (p = 0.007) was the only predictive parameter in antiretroviral-naive patients. We conclude that immunological responses despite suboptimal viral suppression are common. Prior PI experience, HIV transmission category, baseline CD4 counts, and clinical progression were independently predictive of this condition, although the associated factors were different depending on the patient's prior antiretroviral history.
Khan, Sher Jamal; Ilyas, Shazia; Zohaib-Ur-Rehman
2013-08-01
In this study, performance of laboratory-scale membrane bioreactor (MBR) was evaluated in treating high strength domestic wastewater under two nitrogen loading rates (NLR) i.e., 0.15 and 0.30 kg/m(3)/d in condition 1 and 2, respectively, while organic loading rate (OLR) was constant at 3 kg/m(3)/d in both conditions. Removal efficiencies of COD were above 95.0% under both NLR conditions. Average removal efficiencies of ammonium nitrogen (NH₄(+)-N), total nitrogen (TN) and total phosphorus (TP) were found to be higher in condition 1 (90.5%, 74.0%, and 38.0%, respectively) as compared to that in Condition 2 (89.3%, 35.0%, and 14.0%, respectively). With increasing NLR, particle size distribution shifted from narrow (67-133 μm) towards broader distribution (3-300 μm) inferring lower cake layer porosity over membrane fibers. Soluble extracellular polymer substance (sEPS) concentration increased at higher NLR due to biopolymers released from broken flocs. Higher cake layer resistance (Rc) contributed towards shorter filtration runs during condition 2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wire ablation dynamics model and its application to imploding wire arrays of different geometries.
Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C
2012-10-01
The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.
Screen test for cadmium and nickel plates as developed and used within the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Phan, A. H.; Zimmerman, A. H.
1994-01-01
A new procedure described here was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.
Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M
2015-09-15
Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.
Opportunities to improve the conversion of food waste to lactate: Fine-tuning secondary factors.
RedCorn, Raymond; Engelberth, Abigail S
2017-11-01
Extensive research has demonstrated the potential for bioconversion of food waste to lactate, with major emphasis on adjusting temperature, pH, and loading rate of the fermentation. Each of these factors has a significant effect on lactate production; however, additional secondary factors have received little attention. Here we investigate three additional factors where opportunities exist for process improvement: freezing of samples during storage, discontinuous pH control, and holdover of fermentation broth between fermentations. Freezing samples prior to fermentation was shown to reduce the production rate of lactate by 8%, indicating freeze-thaw should be avoided in experiments. Prior work indicated a trade-off in pH control strategies, where discontinuous pH control correlated with higher lactate accumulation while continuous pH control correlated with higher production rate. Here we demonstrate that continuous pH control can achieve both higher lactate accumulation and higher production rate. Finally, holding over fermentation broth was shown to be a simple method to improve production rate (by 18%) at high food waste loading rates (>140 g volatile solids L -1 ) but resulted in lower lactate accumulation (by 17%). The results inform continued process improvements within the waste treatment of food waste through fermentation to lactic acid.
Phloem Loading through Plasmodesmata: A Biophysical Analysis1[OPEN
2017-01-01
In many species, Suc en route out of the leaf migrates from photosynthetically active mesophyll cells into the phloem down its concentration gradient via plasmodesmata, i.e. symplastically. In some of these plants, the process is entirely passive, but in others phloem Suc is actively converted into larger sugars, raffinose and stachyose, and segregated (trapped), thus raising total phloem sugar concentration to a level higher than in the mesophyll. Questions remain regarding the mechanisms and selective advantages conferred by both of these symplastic-loading processes. Here, we present an integrated model—including local and global transport and kinetics of polymerization—for passive and active symplastic loading. We also propose a physical model of transport through the plasmodesmata. With these models, we predict that (1) relative to passive loading, polymerization of Suc in the phloem, even in the absence of segregation, lowers the sugar content in the leaf required to achieve a given export rate and accelerates export for a given concentration of Suc in the mesophyll and (2) segregation of oligomers and the inverted gradient of total sugar content can be achieved for physiologically reasonable parameter values, but even higher export rates can be accessed in scenarios in which polymers are allowed to diffuse back into the mesophyll. We discuss these predictions in relation to further studies aimed at the clarification of loading mechanisms, fitness of active and passive symplastic loading, and potential targets for engineering improved rates of export. PMID:28794259
Unknown loads affect force production capacity in early phases of bench press throws.
Hernández Davó, J L; Sabido Solana, R; Sarabia Marínm, J M; Sánchez Martos, Á; Moya Ramón, M
2015-10-01
Explosive strength training aims to improve force generation in early phases of movement due to its importance in sport performance. The present study examined the influence of lack of knowledge about the load lifted in explosive parameters during bench press throws. Thirteen healthy young men (22.8±2.0 years) participated in the study. Participants performed bench press throws with three different loads (30, 50 and 70% of 1 repetition maximum) in two different conditions (known and unknown loads). In unknown condition, loads were changed within sets in each repetition and participants did not know the load, whereas in known condition the load did not change within sets and participants had knowledge about the load lifted. Results of repeated-measures ANOVA revealed that unknown conditions involves higher power in the first 30, 50, 100 and 150 ms with the three loads, higher values of ratio of force development in those first instants, and differences in time to reach maximal rate of force development with 50 and 70% of 1 repetition maximum. This study showed that unknown conditions elicit higher values of explosive parameters in early phases of bench press throws, thereby this kind of methodology could be considered in explosive strength training.
Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D; Lowry, Gregory V
2017-01-15
The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW=12K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7×10 -4 Lhr -1 m -2 ) and hydrogen evolution rate constant (1.4 nanomolLhr -1 m -2 ) were independent of nZVI concentration above 10g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H 2 evolution was explained by differences in pH and E h at each nZVI mass loading; PCE reactivity increased when solution E h decreased, and the H 2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime. Copyright © 2016 Elsevier B.V. All rights reserved.
Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater.
Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet
2006-10-15
Complex oily wastewater from a food industry was treated in three different UASB reactors at different operating conditions. Although all three systems achieved fat, oil, and grease (FOG) and COD removal efficiencies above 80% at an organic loading of 3 kg COD/m3 x d, system performance deteriorated sharply at higher loading rates, and the presence of high FOG caused a severe sludge flotation resulting in failure. Initially, FOG accumulated onto the biomass which led to sludge flotation and washout of biomass. The loss of sludge in the bed increased the FOG loading to the biomass and failure ensued. Contrary to previous findings, accumulation of FOG rather than influent FOG concentrations or volumetric FOG loading rate was the most importantfactor governing the high-rate anaerobic reactor performance. The critical accumulated FOG loading was identified as 1.04 +/- 0.13 g FOG/g VSS for all three reactors. Furthermore, FOG accumulation onto the biomass was identified mainly as palmitic acid (>60%) whereas the feed LCFA contained only 30% of palmitic acid and 50% of oleic acid.
NASA Astrophysics Data System (ADS)
Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu
2014-04-01
In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.
Silva, Danilo de Oliveira; Briani, Ronaldo Valdir; Pazzinatto, Marcella Ferraz; Ferrari, Deisi; Aragão, Fernando Amâncio; Azevedo, Fábio Mícolis de
2015-11-01
Stair ascent is an activity that exacerbates symptoms of individuals with patellofemoral pain. The discomfort associated with this activity usually results in gait modification such as reduced knee flexion in an attempt to reduce pain. Although such compensatory strategy is a logical approach to decrease pain, it also reduces the normal active shock absorption increasing loading rates and may lead to deleterious and degenerative changes of the knee joint. Thus, the aims of this study were (i) to investigate whether there is reduced knee flexion in adults with PFP compared to healthy controls; and (ii) to analyze loading rates in these subjects, during stair climbing. Twenty-nine individuals with patellofemoral pain and twenty-five control individuals (18-30 years) participated in this study. Each subject underwent three-dimensional kinematic and kinetic analyses during stair climbing on two separate days. Between-groups analyses of variance were performed to identify differences in peak knee flexion and loading rates. Intraclass correlation coefficient was performed to verify the reliability of the variables. On both days, the patellofemoral pain group demonstrated significantly reduced peak knee flexion and increased loading rates. In addition, the two variables obtained high to very high reliability. Reduced knee flexion during stair climbing as a strategy to avoid anterior knee pain does not seem to be healthy for lower limb mechanical distributions. Repeated loading at higher loading rates may be damaging to lower limb joints. Copyright © 2015 Elsevier Ltd. All rights reserved.
Relationship between quadriceps strength and rate of loading during gait in women.
Mikesky, A E; Meyer, A; Thompson, K L
2000-03-01
One function of skeletal muscle is to serve as the body's shock absorbers and thus dampen rates of loading during activity. The aim of this cross-sectional study was to determine the significance of muscle strength on rates of loading during gait. Thirty-seven women (mean age: 34.5 +/- 8.2 years) were solicited by advertisement and placed into one of two groups-strength-trained or sedentary-on the basis of training history. They walked (10 trials) over a 10-m walkway at a controlled speed of 1.22-1.35 m/s while the rate of loading was sampled with a 1,000-Hz force platform. Quadriceps and hamstring strength was measured at 90 degrees/s with an isokinetic dynamometer. Statistical analyses (p < 0.05) included descriptive statistics and unpaired t tests for comparison between groups. The women in the sedentary group weighed more and had significantly less concentric and eccentric strength of the quadriceps and hamstrings relative to body weight than did those in the strength-trained group. In addition, they demonstrated significantly higher rates of loading (2.21 +/- 0.15 compared with 1.75 +/- 0.08%wt/ms) than those in the strength-trained group.
Biomechanics of a Bone-Periodontal Ligament-Tooth Fibrous Joint
Lin, Jeremy D.; Özcoban, Hüseyin; Greene, Janelle; Jang, Andrew T.; Djomehri, Sabra; Fahey, Kevin; Hunter, Luke; Schneider, Gerold A; Ho, Sunita P.
2013-01-01
This study investigates bone-tooth association under compression to identify strain amplified sites within the bone-periodontal ligament (PDL)-tooth fibrous joint. Our results indicate that the biomechanical response of the joint is due to a combinatorial response of constitutive properties of organic, inorganic, and fluid components. Second maxillary molars within intact maxillae (N=8) of 5-month-old rats were loaded with a μ-XCT-compatible in situ loading device at various permutations of displacement rates (0.2, 0.5, 1.0, 1.5, 2.0 mm/min) and peak reactionary load responses (5, 10, 15, 20 N). Results indicated a nonlinear biomechanical response of the joint, in which the observed reactionary load rates were directly proportional to displacement rates (velocities). No significant differences in peak reactionary load rates at a displacement rate of 0.2 mm/min were observed. However, for displacement rates greater than 0.2 mm/min, an increasing trend in reactionary rate was observed for every peak reactionary load with significant increases at 2.0 mm/min. Regardless of displacement rates, two distinct behaviors were identified with stiffness (S) and reactionary load rate (LR) values at a peak load of 5 N (S5 N=290–523 N/mm) being significantly lower than those at 10 N (LR5 N=1–10 N/s) and higher (S10N–20 N=380–684 N/mm; LR10N–20 N=1–19 N/s). Digital image correlation revealed the possibility of a screw-like motion of the tooth into the PDL-space, i.e., predominant vertical displacement of 35 μm at 5 N, followed by a slight increase to 40 μm at 10 N and 50 μm at 20 N of the tooth and potential tooth rotation at loads above 10 N. Narrowed and widened PDL spaces as a result of tooth displacement indicated areas of increased apparent strain within the complex. We propose that such highly strained regions are “hot spots” that can potentiate local tissue adaptation under physiological loading and adverse tissue adaptation under pathological loading conditions. PMID:23219279
Ribeiro, Ana Paula; João, Silvia Maria Amado; Dinato, Roberto Casanova; Tessutti, Vitor Daniel; Sacco, Isabel Camargo Neves
2015-01-01
Aim/Hypothesis The etiology of plantar fasciitis (PF) has been related to several risk factors, but the magnitude of the plantar load is the most commonly described factor. Although PF is the third most-common injury in runners, only two studies have investigated this factor in runners, and their results are still inconclusive regarding the injury stage. Objective Analyze and compare the plantar loads and vertical loading rate during running of runners in the acute stage of PF to those in the chronic stage of the injury in relation to healthy runners. Methods Forty-five runners with unilateral PF (30 acute and 15 chronic) and 30 healthy control runners were evaluated while running at 12 km/h for 40 meters wearing standardized running shoes and Pedar-X insoles. The contact area and time, maximum force, and force-time integral over the rearfoot, midfoot, and forefoot were recorded and the loading rate (20–80% of the first vertical peak) was calculated. Groups were compared by ANOVAs (p<0.05). Results Maximum force and force-time integral over the rearfoot and the loading rate was higher in runners with PF (acute and chronic) compared with controls (p<0.01). Runners with PF in the acute stage showed lower loading rate and maximum force over the rearfoot compared to runners in the chronic stage (p<0.01). Conclusion Runners with PF showed different dynamic patterns of plantar loads during running over the rearfoot area depending on the injury stage (acute or chronic). In the acute stage of PF, runners presented lower loading rate and forces over the rearfoot, possibly due to dynamic mechanisms related to pain protection of the calcaneal area. PMID:26375815
Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer
NASA Astrophysics Data System (ADS)
Liu, Ruoxuan; Li, Yunxin; Liu, Zishun
2018-01-01
The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.
Davis, Brett; Birch, Gavin
2010-08-01
Trace metal export by stormwater runoff from a major road and local street in urban Sydney, Australia, is compared using pollutant yield rating curves derived from intensive sampling data. The event loads of copper, lead and zinc are well approximated by logarithmic relationships with respect to total event discharge owing to the reliable appearance of a first flush in pollutant mass loading from urban roads. Comparisons of the yield rating curves for these three metals show that copper and zinc export rates from the local street are comparable with that of the major road, while lead export from the local street is much higher, despite a 45-fold difference in traffic volume. The yield rating curve approach allows problematic environmental data to be presented in a simple yet meaningful manner with less information loss. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Peng; Guo, Zitao
Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.
Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.
2006-01-01
Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.
An, W; Rainbow, M J; Cheung, R T H
2015-01-01
Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; -10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p < 0.001) in declined than in level or inclined treadmill running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011).
An, W.; Rainbow, M. J.; Cheung, R. T. H.
2015-01-01
Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p < 0.001) in declined than in level or inclined treadmill running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011). PMID:26258133
[Anaerobic co-digestion of corn stalk and vermicompost].
Chen, Guang-yin; Zheng, Zheng; Zou, Xing-xing; Fang, Cai-xia; Luo, Yan
2010-02-01
The characteristics of corn stalk digested alone at different total solid (TS) loading rates and co-digestion of various proportions of corn stalk and vermicompost were investigated by batch model at 35 degrees C +/- 1 degrees C. The organic loading rates (OLRs) studied were in the range of 1.2%-6.0% TS and increasing proportions of vermicompost from 20% to 80% TS. A maximum methane yield of corn stalk digested alone was 217.60 mL/g obtained at the TS loading rate of 4.8%. However, when the TS loading rate was 6.0%, the anaerobic system was acidified and the lowest pH value was 5.10 obtained on day 4 and the biogas productivity decreased. Furthermore, co-digestion of vermicompost and corn stalk in varying proportions were investigated at constant of 6.0% TS. Co-digestion with vermicompost improved the biodegradability of corn stalk and the methane yield was improved by 4.42%-58.61%, and led to higher pH values, higher volatile fatty acids (VFAs) concentration and lower alkalinity content compared with corn stalk digested alone. The maximum biogas yield and methane yield of 410.30 mL/g and 259. 35 mL/g were obtained for 40% vermicompost and 60% corn stalk respectively. Compared with corn stalk digested alone, co-digested with vermicompost didn' t affect methane content and the fermentation type, but promoted the destruction of crystalline of cellulose and the highest destruction rate was 29.36% for 40% vermicompost and 60% corn stalk. Therefore, adding vermicompost was beneficial for the decomposition and increasing the biotransformation rate of corn stalk.
[Effect of different backpack loads on physiological parame ters in walking].
Zhao, Meiya; Tian, Shan; Tang, Qiaohong; Ni, Yikun; Wang, Lizhen; Fan, Yubo
2014-10-01
This study investigated the effect of prolonged walking with load carriage on body posture, muscle fatigue, heart rate and blood pressure of the tested subjects. Ten healthy volunteers performed 30 min walking trials on treadmill (speed = 1.1 m/s) with different backpack loads [0% body weight (BW), 10% BW, 15% BW and 20% BW]. The change of body posture, muscle fatigue, heart rate and blood pressure before and after walking and the recovery of muscle fatigue during the rest time (0, 5, 10 and 15 min) were collected using the Bortec AMT-8 and the NDI Optotrak Certus. Results showed that the forward trunk and head angle, muscle fatigue, heart rate and blood pressure increased with the increasing backpack loads and bearing time. With the 20% BW load, the forward angle, muscle fatigue and systolic pressure were significantly higher than with lighter weights. No significantly increased heart rate and diastolic pressure were found. Decreased muscle fatigue was found after removing the backpack in each load trial. But the recovery of the person with 20% BW load was slower than that of 0% BW, 10% BW and 15% BW. These findings indicated that the upper limit of backpack loads for college-aged students should be between 15% BW and 20% BW according to muscle fatigue and forward angle. It is suggested that backpack loads should be restricted to no more than 15% BW for walks of up to 30 min duration to avoid irreversible muscle fatigue.
Root elongation against a constant force: experiment with a computerized feedback-controlled device
NASA Technical Reports Server (NTRS)
Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.
2001-01-01
Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.
Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.
Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei
2014-10-01
With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.
Form and Function of Clostridium thermocellum Biofilms
Dumitrache, Alexandru; Allen, Grant; Liss, Steven N.; Lynd, Lee R.
2013-01-01
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion. PMID:23087042
O'Leary, Thomas J; Saunders, Samantha C; McGuire, Stephen J; Izard, Rachel M
2018-06-01
Women are resistant to neuromuscular fatigue compared to men in response to a range of exercise tasks. The sex differences in the neuromuscular responses to load carriage have yet to be investigated. Prospective cohort study. Twenty-three male and 19 female British Army recruits completed a 9.7km loaded march within 90min, with the weight carried dependent on military trade (16±2kg for men and 15±1kg for women). Isometric maximal voluntary contraction (MVC) force of the knee extensors and vertical jump (VJ) height were examined pre- and post-loaded march to examine neuromuscular fatigue. Heart rate (HR) was recorded throughout and ratings of perceived exertion (RPE) was recorded following the march. HR was higher for women (173±9bmin -1 , 83±6% heart rate reserve) than men (158±8bmin -1 , 72±6% heart rate reserve) (p≤0.001). RPE following the march was also higher for women than men (6±2 vs 4±2, respectively, p<0.001). The loss in MVC force was greater for men than women (-12±9% vs -9±13%, respectively, p=0.031), however VJ height was impaired to a similar extent (-5±11% vs -5±6%, respectively, p=0.582). The greater physiological stress during load carriage for women compared to men did not translate to a greater severity of knee extensor muscle fatigue, with women demonstrating fatigue resistance. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Form and function of Clostridium thermocellum biofilms.
Dumitrache, Alexandru; Wolfaardt, Gideon; Allen, Grant; Liss, Steven N; Lynd, Lee R
2013-01-01
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h(-1)) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.
Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi
2018-05-18
In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1 d -1 in the control compared to 2.36 g L -1 d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang
2008-01-01
Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628
Cheng, Chia Chi; Chang, Luan Yin; Shao, Pei Lan; Lee, Ping Ing; Chen, Jong Min; Lu, Chun Yi; Lee, Chin Yun; Huang, Li Min
2007-06-01
To delineate the clinical manifestations in different age groups and to define the viral load in patients with Epstein-Barr virus-associated infectious mononucleosis (EBV-associated IM). We reviewed data on 69 children with EBV-associated IM from November 2001 to October 2005. Clinical features were evaluated among four age groups: <3 years, 3 to 5 years, 6 to 9 years and 10 to 18 years. EBV viral load was measured by quantitative real-time polymerase chain reaction (PCR) in 13 patients with 15 specimens. Majority of the children were younger than 7 years of age (76.8%) and the male-to-female ratio was 1.6:1. The symptoms and signs included fever (91.3%), tonsillopharyngitis (88.4%), lymphadenopathy (78.3%) and hepatitis (75.4%). The younger age group had higher monocyte count, lower occurrence of hepatitis, and lower glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels than the older age group. The median (range) EBV viral load of peripheral blood mononuclear cells (PBMCs) and plasma in IM patients was 738 (0-7455) copies/mug DNA and 51 (0-957) copies/mL plasma, respectively. The PBMC detection rate was high in the early (within 10 days after onset) and late phase (>10 days after onset) [90-100%]. The plasma detection rate in the early phase (66.7%) was higher than that in the late phase (40%). The younger age group of EBV-associated IM patients had higher monocyte count, lower occurrence of hepatitis, and lower GOT and GPT levels than the older age group. The PBMC detection rate was almost equally high in both the early and late phases, while the plasma detection rate was higher in the early phase. Quantitative real-time PCR of EBV DNA is useful for diagnosing and monitoring EBV-associated IM, especially in younger children.
Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty?
Bohm, Eric; Zhu, Naisu; Gu, Jing; de Guia, Nicole; Linton, Cassandra; Anderson, Tammy; Paton, David; Dunbar, Michael
2014-01-01
There is considerable debate about whether antibiotic-loaded bone cement should be used for fixation of TKAs. While antibiotics offer the theoretical benefit of lowering early revision due to infection, they may weaken the cement and thus increase the likelihood of aseptic loosening, perhaps resulting in a higher revision rate. We (1) compared the frequency of early knee revision arthroplasty in patients treated with antibiotic-loaded or non-antibiotic-loaded cement for initial fixation, (2) determined effects of age, sex, comorbidities, and surgeons' antibiotic-loaded cement usage patterns on revision rate, and (3) compared causes of revision (aseptic or septic) between groups. Our study sample was taken from the Canadian Joint Replacement Registry and Canada's Hospital Morbidity Database and included cemented TKAs performed between April 1, 2003, and March 31, 2008, including 20,016 TKAs inserted with non-antibiotic-loaded cement and 16,665 inserted with antibiotic-loaded cement. Chi-square test was used to compare the frequency of early revisions between groups. Cox regression modeling was used to determine whether revision rate would change by age, sex, comorbidities, or use of antibiotic-loaded cement. Similar Cox regression modeling was used to compare cause of revision between groups. Two-year revision rates were similar between the groups treated with non-antibiotic-loaded cement and antibiotic-loaded cement (1.40% versus 1.51%, p = 0.41). When controlling for age, sex, comorbidities, diabetes, and surgeons' antibiotic-loaded cement usage patterns, the revision risk likewise was similar between groups. Revision rates for infection were similar between groups; however, there were more revisions for aseptic loosening in the group treated with non-antibiotic-loaded cement (p = 0.02). The use of antibiotic-loaded cement in TKAs performed for osteoarthritis has no clinically significant effect on reducing revision within 2 years in patients who received perioperative antibiotics. Longer followup and confirmation of these findings with other national registries are warranted.
Effect of the loading rate on compressive properties of goose eggs.
Nedomová, Š; Kumbár, V; Trnka, J; Buchar, J
2016-03-01
The resistance of goose (Anser anser f. domestica) eggs to damage was determined by measuring the average rupture force, specific deformation and rupture energy during their compression at different compression speeds (0.0167, 0.167, 0.334, 1.67, 6.68 and 13.36 mm/s). Eggs have been loaded between their poles (along X axis) and in the equator plane (Z axis). The greatest amount of force required to break the eggs was required when eggs were loaded along the X axis and the least compression force was required along the Z axis. This effect of the loading orientation can be described in terms of the eggshell contour curvature. The rate sensitivity of the eggshell rupture force is higher than that observed for the Japanese quail's eggs.
Agyeman, Fred O; Tao, Wendong
2014-01-15
This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.
Loading rate and test temperature effects on fracture of In Situ niobium silicide-niobium composites
NASA Astrophysics Data System (ADS)
Rigney, Joseph D.; Lewandowski, John J.
1996-10-01
Arc cast, extruded, and heat-treated in situ composites of niobium suicide (Nb5Si3) intermetallic with niobium phases (primary—Nbp and secondary—Nbs) exhibited high fracture resistance in comparison to monolithic Nb5Si3. In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb5Si3 and plastic deformation of the Nbp and Nbs phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500 μm. The effects of changes in the Nbp yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode ( i.e., dimpled, cleavage) exhibited by the Nbp. Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nbp, while the Nbs, always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nbp phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models.
Increasing Running Step Rate Reduces Patellofemoral Joint Forces
Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.
2013-01-01
Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470
Wood, Molly S.; Fosness, Ryan L.; Etheridge, Alexandra B.
2015-12-14
Acoustic surrogate ratings were developed between backscatter data collected using acoustic Doppler velocity meters (ADVMs) and results of suspended-sediment samples. Ratings were successfully fit to various sediment size classes (total, fines, and sands) using ADVMs of different frequencies (1.5 and 3 megahertz). Surrogate ratings also were developed using variations of streamflow and seasonal explanatory variables. The streamflow surrogate ratings produced average annual sediment load estimates that were 8–32 percent higher, depending on site and sediment type, than estimates produced using the acoustic surrogate ratings. The streamflow surrogate ratings tended to overestimate suspended-sediment concentrations and loads during periods of elevated releases from Libby Dam as well as on the falling limb of the streamflow hydrograph. Estimates from the acoustic surrogate ratings more closely matched suspended-sediment sample results than did estimates from the streamflow surrogate ratings during these periods as well as for rating validation samples collected in water year 2014. Acoustic surrogate technologies are an effective means to obtain continuous, accurate estimates of suspended-sediment concentrations and loads for general monitoring and sediment-transport modeling. In the Kootenai River, continued operation of the acoustic surrogate sites and use of the acoustic surrogate ratings to calculate continuous suspended-sediment concentrations and loads will allow for tracking changes in sediment transport over time.
Scialla, Julia J.; Asplin, John; Dobre, Mirela; Chang, Alex; Lash, James; Hsu, Chi-yuan; Kallem, Radhakrishna R.; Hamm, L. Lee; Feldman, Harold I.; Chen, Jing; Appel, Lawrence; Anderson, Cheryl A. M.; Wolf, Myles
2017-01-01
Higher diet-dependent nonvolatile acid load is associated with faster chronic kidney disease (CKD) progression, but most studies have used estimated acid load or measured only components of the gold-standard, net acid excretion (NAE). Here we measured NAE as the sum of urine ammonium and titratable acidity in 24 hour urines from a random subset of 980 participants in the Chronic Renal Insufficiency Cohort (CRIC) Study. In multivariable models accounting for demographics, comorbidity and kidney function, higher NAE was significantly associated with lower serum bicarbonate (0.17 mEq/L lower serum bicarbonate per 10 mEq/day higher NAE), consistent with a larger acid load. Over a median of 6 years follow-up, higher NAE was independently associated with a significantly lower risk of the composite of end stage renal disease or halving of estimated glomerular filtration rate among diabetics (hazard ratio 0.88 per 10 mEq/day higher NAE), but not those without diabetes (hazard ratio 1.04 per 10 mEq/day higher NAE). For comparison, we estimated nonvolatile acid load as net endogenous acid production using self-reported food frequency questionnaires from 2,848 patients and dietary urine biomarkers from 3,385 patients. Higher net endogenous acid production based on biomarkers (urea nitrogen and potassium) was modestly associated with faster CKD progression consistent with prior reports, but only among those without diabetes. Results from the food frequency questionnaires were not associated with CKD progression in any group. Thus, disparate results obtained from analyses of nonvolatile acid load directly measured as NAE and estimated from diet, suggests a novel hypothesis, that the risk of CKD progression related to low NAE, or acid load, may be due to diet-independent changes in acid production in diabetes. PMID:27914710
Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee
2018-05-01
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.
Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean
2017-01-01
Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e.g., rye and early planting), due to warmer temperatures. According to simulation results, WCCs were effective to mitigate nitrate loads accelerated by FCCs and therefore the role of WCCs in mitigating nitrate loads is even more important in the given FCCs.
Influence of fatigue crack wake length and state of stress on crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.; Fisher, D. M.
1986-01-01
The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.
Influence of fatigue crack wake length and state of stress on crack closure
NASA Technical Reports Server (NTRS)
Telesman, Jack; Fisher, Douglas M.
1988-01-01
The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.
The fate of chlorinated aliphatics in anaerobic treatment under transient loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Y.C.
1993-01-01
A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less
Healy, M G; Rodgers, M; Mulqueen, J
2007-06-01
A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.
Boo, Nem-Yun; Cheah, Irene Guat-Sim
2016-01-01
INTRODUCTION This study aimed to determine whether patient loads, infant status on admission and treatment interventions were significantly associated with inter-institutional variations in sepsis rates in very-low-birth-weight (VLBW) infants in the Malaysian National Neonatal Registry (MNNR). METHODS This was a retrospective study of 3,880 VLBW (≤ 1,500 g) infants admitted to 34 neonatal intensive care units (NICUs) in the MNNR. Sepsis was diagnosed in symptomatic infants with positive blood culture. RESULTS Sepsis developed in 623 (16.1%) infants; 61 (9.8%) had early-onset sepsis (EOS) and 562 (90.2%) had late-onset sepsis (LOS). The median EOS rate of all NICUs was 1.0% (interquartile range [IQR] 0%, 2.0%). Compared with NICUs reporting no EOS (n = 14), NICUs reporting EOS (n = 20) had significantly higher patient loads (total live births, admissions, VLBW infants, outborns); more mothers with a history of abortions, and antenatal steroids and intrapartum antibiotic use; more infants requiring resuscitation procedures at birth; higher rates of surfactant therapy, pneumonia and insertion of central venous catheters. The median LOS rate of all NICUs was 14.5% (IQR 7.8%, 19.2%). Compared with NICUs with LOS rates below the first quartile (n = 8), those above the third quartile (n = 8) used less intrapartum antibiotics, and had significantly bigger and more mature infants, more outborns, as well as a higher number of sick infants requiring ventilator support and total parenteral nutrition. CONCLUSION Patient loads, resuscitation at birth, status of infants on admission and treatment interventions were significantly associated with inter-institutional variations in sepsis. PMID:26996633
Boo, Nem-Yun; Cheah, Irene Guat-Sim
2016-03-01
This study aimed to determine whether patient loads, infant status on admission and treatment interventions were significantly associated with inter-institutional variations in sepsis rates in very-low-birth-weight (VLBW) infants in the Malaysian National Neonatal Registry (MNNR). This was a retrospective study of 3,880 VLBW (≤ 1,500 g) infants admitted to 34 neonatal intensive care units (NICUs) in the MNNR. Sepsis was diagnosed in symptomatic infants with positive blood culture. Sepsis developed in 623 (16.1%) infants; 61 (9.8%) had early-onset sepsis (EOS) and 562 (90.2%) had late-onset sepsis (LOS). The median EOS rate of all NICUs was 1.0% (interquartile range [IQR] 0%, 2.0%). Compared with NICUs reporting no EOS (n = 14), NICUs reporting EOS (n = 20) had significantly higher patient loads (total live births, admissions, VLBW infants, outborns); more mothers with a history of abortions, and antenatal steroids and intrapartum antibiotic use; more infants requiring resuscitation procedures at birth; higher rates of surfactant therapy, pneumonia and insertion of central venous catheters. The median LOS rate of all NICUs was 14.5% (IQR 7.8%, 19.2%). Compared with NICUs with LOS rates below the first quartile (n = 8), those above the third quartile (n = 8) used less intrapartum antibiotics, and had significantly bigger and more mature infants, more outborns, as well as a higher number of sick infants requiring ventilator support and total parenteral nutrition. Patient loads, resuscitation at birth, status of infants on admission and treatment interventions were significantly associated with inter-institutional variations in sepsis. Copyright: © Singapore Medical Association.
Optimization of cryoprotectant loading into murine and human oocytes.
Karlsson, Jens O M; Szurek, Edyta A; Higgins, Adam Z; Lee, Sang R; Eroglu, Ali
2014-02-01
Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethyl sulfoxide (Me(2)SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me(2)SO exposure time, revealing that neither shrinkage nor Me(2)SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me(2)SO addition appears to result from interactions between the effects of Me(2)SO toxicity and osmotic stress. We also investigated Me(2)SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me(2)SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me(2)SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimization of Cryoprotectant Loading into Murine and Human Oocytes
Karlsson, Jens O.M.; Szurek, Edyta A.; Higgins, Adam Z.; Lee, Sang R.; Eroglu, Ali
2014-01-01
Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethylsulfoxide (Me2SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me2SO exposure time, revealing that neither shrinkage nor Me2SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me2SO addition appears to result from interactions between the effects of Me2SO toxicity and osmotic stress. We also investigated Me2SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me2SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me2SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. PMID:24246951
Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites
NASA Astrophysics Data System (ADS)
Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.
2006-12-01
The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.
Crucial parameter of the outcome in Crimean Congo hemorrhagic fever: Viral load.
Hasanoglu, Imran; Guner, Rahmet; Carhan, Ahmet; Kocak Tufan, Zeliha; Yagci-Caglayik, Dilek; Guven, Tumer; Yilmaz, Gul Ruhsar; Tasyaran, Mehmet A
2016-02-01
Crimean Congo hemorrhagic fever (CCHF) is a fatal disease with a mortality rate of 5-30%. CCHF can be asymptomatic or it may progress with bleeding and cause mortality. To evaluate relation of viral load with mortality, clinical and laboratory findings in CCHF. A total of 126 CCHF patients were included. Serum samples obtained from all patients on admission for measurement of viral load. In our study, mortality rate was 11.1%. The most important prognostic factor was viral load. Mean viral load was 8.3×10(7)copy/ml and 4.6×10(9)copy/ml in survived and dead patients, respectively (p<0.005). Probability of survival is found to be significantly reduced where AST >1130U/l, ALT >490U/l, CPK >505U/l, LDH >980U/l, platelet count <23×10(3)/l, creatinine >1.4mg/dl, INR >1.3, d-dimer >7100ng/dl, and viral load >1.03×10(8)copy/ml. Patients with 10(8)copy/ml or higher viral load had diarrhea, headache, unconsciousness, bleeding, and seizure significantly more frequently (p<0.05). WBC, hemoglobin, platelet counts were significantly lower whereas AST, ALT, CPK, LDH, creatinine levels, PT and aPTT time, d-dimer levels, and INR were found to be significantly higher in these group. There are several severity criteria for prognosis of CCHF. In addition to these parameters, we introduce creatinine as a predictive factor for prognosis. Our study, which has the largest number of patients among studies that evaluate viral load on CCHF shows that viral load is the most effective parameter on mortality. Copyright © 2015 Elsevier B.V. All rights reserved.
Scale up of diesel oil biodegradation in a baffled roller bioreactor.
Nikakhtari, Hossein; Song, Wanning; Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A
2010-05-01
Diesel oil is a suitable substance to represent petroleum contamination from accidental spills in operating and transportation facilities. Using a microbial culture enriched from a petroleum contaminated soil, biodegradation of diesel oil was carried out in 2.2, 55, and 220 L roller baffled bioreactors. The effects of bioreactor rotation speed (from 5 to 45 rpm) and liquid loading (from 18% to 73% of total volume) on the biodegradation of diesel oil were studied. In the small scale bioreactor (2.2L), the maximum rotation speed of 45 rpm resulted in the highest biodegradation rate with a first order biodegradation kinetic constant of 0.095 d(-1). In the larger scale bioreactors, rotation speed did not affect the biodegradation rate. Liquid loadings higher than 64% resulted in reduced biodegradation rates in the small scale bioreactor; however, in the larger roller bioreactors liquid loading did not affect the biodegradation rate. Biodegradation of diesel oil at 5 rpm and 73% loading is recommended for operating large scale roller baffled bioreactors. Under these conditions, high diesel oil concentrations up to 50 gL(-1) can be bioremediated at a rate of 1.61 gL(-1)d(-1). Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.
2014-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.
Satellite observation analysis of aerosols loading effect over Monrovia-Liberia
NASA Astrophysics Data System (ADS)
Emetere, M. E.; Esisio, F.; Oladapo, F.
2017-05-01
The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October.
Mechanics of instability-related delimination growth
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1988-01-01
Local buckling of a delaminated group of plies can lead to higher interlaminar stresses and delamination growth. The mechanics of instability-related delamination growth (IRDG) had been described previously for the through-width delamination. This paper describes the mechanics of IRDG for the embedded delamination subjected to either uniaxial or axisymmetric loads. The mechanics of IRDG are used to explain the dramatic differences in strain-energy release rates observed for the through-width, the axisymmetrically loaded embedded delamination, and the uniaxially loaded embedded delamination.
A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.
Beadle, Nicola; Burnett, Timothy L; Hoyland, Judith A; Sherratt, Michael J; Freemont, Anthony J
2015-11-01
Compressive rib fractures are considered to be indicative of non-accidental injury (NAI) in infants, which is a significant and growing issue worldwide. The diagnosis of NAI is often disputed in a legal setting, and as a consequence there is a need to model such injuries ex vivo in order to characterise the forces required to produce non-accidental rib fractures. However, current models are limited by type of sample, loading method and rate of loading. Here, we aimed to: i) develop a loading system for inducing compressive fractures in whole immature ribs that is more representative of the physiological conditions and mechanism of injury employed in NAI and ii) assess the influence of loading rate and rib geometry on the mechanical performance of the tissue. Porcine ribs (5-6 weeks of age) from 12 animals (n=8 ribs/animal) were subjected to axial compressive load directed through the anterior-posterior rib axis at loading rates of 1, 30, 60 or 90 mm/s. Key mechanical parameters (including peak load, load and percentage deformation to failure and effective stiffness) were quantified from the load-displacement curves. Measurements of the rib length, thickness at midpoint, distance between anterior and posterior extremities, rib curvature and fracture location were determined from radiographs. This loading method typically produced incomplete fractures around the midpoint of the ribs, with 87% failing in this manner; higher loads and less deformation were required for ribs to completely fracture through both cortices. Loading rate, within the range of 1-90 mm/s, did not significantly affect any key mechanical parameters of the ribs. Load-displacement curves displaying characteristic and quantifiable features were produced for 90% of the ribs tested, and multiple regression analyses indicate that, in addition to the geometrical variables, there are other factors such as the micro- and nano-structure that influence the measured mechanical data. A reproducible method of inducing fractures in a consistent location in immature porcine ribs has been successfully developed. Fracture appearance may be indicative of the amount of load and deformation that produced the fracture, which is an important finding for NAI, where knowledge of the aetiology of fractures is vital. Characteristic rib behaviour independent of loading rate and, to an extent, rib geometry has been demonstrated, allowing further investigation into how the complex micro- and nano-structure of immature ribs influences the mechanical performance under compressive load. This research will ultimately enable improved characterisation of the loading pattern involved in non-accidental rib fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Yin-ping; Cao, Wei; Hong, Mei; Zhu, Jian-fang; Liu, Zhao; Yang, Dong-liang
2008-10-01
To investigate the relationship between pre-core G1896A point mutation of hepatitis B virus (HBV) and safety of breast feeding. Serum and breast milk samples were collected from 62 pregnant women of HBV DNA positive/HBeAg negative. PCR-solid phase hybridization was used to detect the point mutation in pre-core region G1896A of HBV from pregnant women, and HBV DNA loads in sera and breast milk were determined by fluorescence quantitative PCR (FQ-PCR). The prevalence of point mutation was 61.3% (38/62) in 62 pregnant women with HBsAg positive/HBeAg negative. The positive rate of HBV DNA in breast milk of group with point mutation (28.9%) was similar to that of group without mutation (29.2%, chi2=0.0003, P>0.05). However, The positive rate of HBV DNA in breast milk of group with high HBV loads (56.0%) was significantly higher than that of group with low HBV loads (10.8%, chi2=14.79, P<0.01). The point mutation in pre-core region G1896A of HBV dose not affect the positive rate of HBV DNA in breast milk and higher HBV DNA loads in serum of pregnant women might increase the risk of mother-infant transmission.
NASA Astrophysics Data System (ADS)
Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.
2017-02-01
The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.
Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability
NASA Astrophysics Data System (ADS)
Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert
2017-11-01
Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.
Dynamics of HPV viral loads reflect the treatment effect of photodynamic therapy in genital warts.
Hu, Zhili; Liu, Lishi; Zhang, Wenjing; Liu, Hui; Li, Junpeng; Jiang, Lifen; Zeng, Kang
2018-03-01
Photodynamic therapy (PDT) has demonstrated good clinical cure rates and low recurrence rates in the treatment of genital warts. Human papillomavirus (HPV) genotypes and viral load assays can reflect the status of persistent or latent infection and serve as a predictor of infection clearance. Specimens from 41 patients with HPV infection were obtained, and the HPV genotypes and viral load were analyzed using real-time polymerase chain reaction (PCR) assays. Traditional treatment, such as radiofrequency, microwave, or surgical therapy, was used to remove the visible lesions, and then PDT treatment was performed every week. HPV DNA testing was performed at every patient visit and the frequency of PDT treatment was determined by changes in HPV viral loads. HPV viral loads decreased significantly after PDT treatment. There were significant differences in HPV viral loads between pretherapy and three or six rounds of PDT treatment. Significant differences were also observed between single and multiple type HPV infection after six rounds of PDT treatment. Patients with single type HPV infection had significantly higher rates of negative HPV DNA test results, as compared with patients with multiple infections after six rounds of PDT treatment; however, there was no difference in recurrence rates between the two groups. Dynamic monitoring of HPV genotypes and viral loads can be used to guide PDT treatment and indicate PDT treatment efficacy in eliminating HPV. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation of the fiber/matrix interphase under high loading rates
NASA Astrophysics Data System (ADS)
Tanoglu, Metin
2000-10-01
This research focuses on characterization of the interphases of various sized E-glass-fiber/epoxy-amine systems under high loading rates. The systems include unsized, epoxy-amine compatible, and epoxy-amine incompatible glass fibers. A new experimental technique (dynamic micro-debonding technique) was developed to directly characterize the fiber/matrix interphase properties under various loading rates. Displacement rates of up to 3000 mum/sec that induce high-strain-rate interphase loading were obtained using the rapid expansion capability of the piezoelectric actuators (PZT). A straightforward data reduction scheme, which does not require complex numerical solutions, was also developed by employing thin specimens. This method enables quantification of the strength and specific absorbed energies due to debonding and frictional sliding. Moreover, the technique offers the potential to obtain the shear stress/strain response of the interphases at various rates. A new methodology was also developed to independently investigate the properties of the fiber/matrix interphase. This methodology is based on the assumption that the portion of sizing bound to the glass fiber strongly affects the interphase formation. Conventional burnout and acetone extraction experiments in conjunction with nuclear magnetic spectroscopy were used to determine the composition of the bound sizing. Using the determined composition, model interphase compounds were made to replicate the actual interphase and tested utilizing dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) techniques. The rate-dependent behavior of the model interphase materials and the bulk epoxy matrix were characterized by constructing storage modulus master curves as a function of strain rate using the time-temperature superposition principle. The results of dynamic micro-debonding experiments showed that the values of interphase strength and specific absorbed energies vary dependent on the sizing and exhibited significant sensitivity to loading rates. The unsized fibers exhibit greater energy-absorbing capability that could provide better ballistic resistance while the compatible sized fibers show higher strength values that improve the structural integrity of the polymeric composites. The calculated interphase shear modulus values from micro-debonding experiments increase with the loading rate consistent with DMA results. In addition, significantly higher amounts of energy are absorbed within the frictional sliding regime compared to debonding. Characterization of model interphase compounds revealed that the interphase formed due to the presence of bound sizing has a Tg below room temperature, a modulus more compliant than that of the bulk matrix, and a thickness of about 10 nm. The results showed that the properties of the interphases are significantly affected by the interphase network structure.
Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Der Sluys, W.A.; Emanuelson, R.H.
1986-01-01
During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less
Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading
NASA Technical Reports Server (NTRS)
Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.
2005-01-01
The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.
NASA Astrophysics Data System (ADS)
Majta, J.; Zurek, A. K.; Trujillo, C. P.; Bator, A.
2003-09-01
This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α and γ phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models.
NASA Technical Reports Server (NTRS)
Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.
Influence of filler loading on the two-body wear of a dental composite.
Hu, X; Marquis, P M; Shortall, A C
2003-07-01
The purpose of the study was to explore the fundamental wear behaviour of a dental composite with different filler loadings under two-body wear conditions. The parent resin and filler components were mixed according to different weight ratios to produce experimental composites with filler loadings ranging from 20 to 87.5% by weight. A two-body wear test was conducted on the experimental composites using a wear-testing machine. The machine was designed to simulate the impact of the direct cyclic masticatory loading that occurs in the occlusal contact area in vivo. The results showed that there was little increase in the rate of wear with filler loadings below 60 wt%, but a sharp increase between 80 and 87.5 wt% in filler loading. Wide striations and bulk loss of material were apparent on the wear surfaces at higher filler loadings. Coefficients of friction increased with filler loading and followed the increase in rate of wear loss closely. It was concluded that, under two-body wear conditions, addition of high levels of filler particles into the resin matrix could reduce the wear resistance of dental composites. This finding may help when designing future dental composites for use in particular clinical settings.
Gottlieb-Vedi, M; Essén-Gustavsson, B; Lindholm, A
1996-12-01
Five Standardbred trotters performed treadmill exercise with incrementally increasing trotting velocities for 2 min intervals in three different tests until fatigue. Each test was performed with draught loads of either 10, 20 or 30 kilopond (kp). Each trotting interval was followed by 2 min periods at a walk without draught load. Recordings were made of heart rate (HR), respiratory rate (RR), plasma lactate (PLA) and stride frequency (SF) at the end of each trotting interval. The HR increased to average values of 191 +/- 10,203 +/- 10 and 214 +/- 7 bpm and PLA increased to 3.8 +/- 0.7, 7.3 +/- 3.8 and 10.8 +/- 6.4 mmol/l at 9 m/s in the three tests, respectively. The HR response to exercise was significantly higher with increasing draught loads, and PLA was significantly higher with 30 kp compared to 10 kp draught resistance. The lowest respiratory rate was seen in the test with 30 kp loading. Peak oxygen uptake (VO2peak) was measured in a separate test on a sloped treadmill with increasing velocities without draught load and averaged 70.4 +/- 9.11/min. Muscle biopsies were taken from the gluteus muscle. Individual variations were seen in VO2peak, muscle fibre composition and HR and PLA responses to exercise. In conclusion, at a certain velocity a small increase in draught resistance from 10 to 30 kp significantly increases both the HR and PLA responses. At comparable work intensities the horses differed in circulatory and metabolic responses to exercise.
NASA Astrophysics Data System (ADS)
Evgenidou, A.; Valiela, I.
2002-07-01
Nutrient enrichment is a widespread phenomenon affecting coastal waters, including salt marshes. As land-derived nitrogen loading in estuarine waters increases, chlorophyll concentrations in the water also increase. We hypothesized that such increases might increase growth of the food-limited population of Geukensia demissa, which is a dominant component of salt marshes. To test this, we conducted a regional scale experiment in three estuaries of Waquoit Bay, Massachusetts that receive different nitrogen loading rates. A stable isotope experiment on mussel tissues and on particulate organic matter (POM) showed that mussels within an estuary fed on POM characteristic of that estuary, demonstrating the direct linkage between POM and mussels within an estuary. In addition, we measured age-specific shell growth rates of mussel populations using two different methods: indirectly, shell growth of mussels indicated by internal shell-lines was measured by fitting the data to the von Bertalanffy equation, and directly, mussels were transplanted from one estuary to the other two, and their actual shell growth rates after 80 days were measured. Growth rates of mussels in the Waquoit Bay estuaries varied with age of the mussel, tidal elevation, and with mean concentration of chlorophyll in the water. Mussels grew best in the lower intertidal zone, at the marsh banks. Young mussels grew faster than older mussels. Growth rates increased in response to presumed greater food supply across the estuaries, only for younger mussels. The significant differences we found among the mussels from different estuaries indicate a response to higher concentrations of food particles available in estuaries subject to higher nitrogen loads.
Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study.
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability.
Effect of Healing Time on Bone-Implant Contact of Orthodontic Micro-Implants: A Histologic Study
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability. PMID:25006463
Survival Model for Foot and Leg High Rate Axial Impact Injury Data.
Bailey, Ann M; McMurry, Timothy L; Poplin, Gerald S; Salzar, Robert S; Crandall, Jeff R
2015-01-01
Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates. This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82). Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of loading rate differences within the data set; however, compensation for inertial effects caused by measuring the force-at-fracture in a location closer to expected injury location improved the model's predictive capabilities for the entire data set. This study provides better injury prediction capabilities for both automotive and blast rates because of reduced sensitivity to inertial effects and tibia-fibula load sharing. Further, a framework is provided for future injury criteria generation for high rate loading scenarios. This analysis also suggests key improvements to be made to existing anthropomorphic test device (ATD) lower extremities to provide accurate injury prediction for high rate applications such as UBB.
Missau, Taiane; De Carlo Bello, Mariana; Michelon, Carina; Mastella Lang, Pauline; Kalil Pereira, Gabriel; Baldissara, Paolo; Valandro, Luiz Felipe; Souza Bier, Carlos Alexandre; Pivetta Rippe, Marília
2017-12-01
This study evaluated the effects of endodontic treatment and retreatment on the fatigue failure load, numbers of cycles for failure, and survival rates of canine teeth. Sixty extracted canine teeth, each with a single root canal, were selected and randomly divided into 4 groups (n = 15): untreated, teeth without endodontic intervention; prepared, teeth subjected only to rotary instrumentation; filled, teeth receiving complete endodontic treatment; and retreated, teeth retreated endodontically. After the different endodontic interventions, the specimens were subjected to fatigue testing by the stepwise method: 200 N (× 5000 load pulses), 300 N, 400 N, 500 N, 600 N, 800 N, and 900 N at a maximum of 30,000 load pulses each or the occurrence of fracture. Data from load to failure and numbers of cycles for fracture were recorded and subjected to Kaplan-Meier and Log Rank tests (P < .05), in addition to Weibull analysis. The fractures of the specimens were classified as repairable or catastrophic. The retreated, filled, and untreated groups presented statistically significantly higher fatigue failure loads and numbers of cycles for failure than did the prepared group. Weibull analysis showed no statistically significant difference among the treatments for characteristic load to failure and characteristic number of cycles for failure, although, for number of cycles, a higher Weibull modulus was observed in filled and retreated conditions. The predominant mode of failure was catastrophic. Teeth subjected to complete endodontic treatment and retreatment behaved similarly in terms of fatigue failure load and number of cycles to failure when compared with untreated teeth. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Zhang, Xueyu; Zheng, Shaokui; Zhang, Hangyu; Duan, Shoupeng
2018-04-30
This study clarified the dominant nitrogen (N)-transformation pathway and the key ammonia-oxidizing microbial species at three loading levels during optimization of the anoxic/oxic (A/O) process for sewage treatment. Comprehensive N-transformation activity analysis showed that ammonia oxidization was performed predominantly by aerobic chemolithotrophic and heterotrophic ammonia oxidization, whereas N 2 production was performed primarily by anoxic denitrification in the anoxic unit. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, and anaerobic AOB in activated sludge reflected their activities on the basis of high-throughput sequencing data. AOB amoA gene clone libraries revealed that the predominant AOB species in sludge samples shifted from Nitrosomonas europaea (61% at the normal loading level) to Nitrosomonas oligotropha (58% and 81% at the two higher loading levels). Following isolation and sequencing, the predominant culturable heterotrophic AOB in sludge shifted from Agrobacterium tumefaciens (42% at the normal loading level) to Acinetobacter johnsonii (52% at the highest loading level). Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
DOE Office of Scientific and Technical Information (OSTI.GOV)
E, J. C.; Huang, J. Y.; Bie, B. X.
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
E, J. C.; Huang, J. Y.; Bie, B. X.; ...
2016-08-02
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods.
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation.
Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear
NASA Astrophysics Data System (ADS)
Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.
2017-11-01
The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.
Nitrifying bio-cord reactor: performance optimization and effects of substratum and air scouring.
Tian, Xin; Ahmed, Warsama; Delatolla, Robert
2017-11-20
Ammonia removal kinetics and solids' production performance of the bio-cord technology are studied in this research. Three nitrifying reactors housing different bio-cord substratum were operated at five different ammonia loading rates. All of the bio-cord substrata demonstrated stable and high ammonia-nitrogen removal efficiencies of 96.8 ± 0.9%, 97.0 ± 0.6% and 92.0 ± 0.4% at loading rates of 0.8, 1.6 and 1.8 g [Formula: see text]-N/m 2 d, respectively. At these same loading rates, the bio-cord reactors housing the three substrata also showed low solids' production rates of 0.19 ± 0.03, 0.23 ± 0.02, 0.25 ± 0.03 g total suspended solids/d. A reduction of system stability, identified via fluctuating ammonia removal rates, was however observed for all substrata at loading rates of 2.1 and 2.4 g [Formula: see text]-N/m 2 d. Further, the solids' production rates at these higher loading conditions were also observed to fluctuate for all substrata, likely indicating intermediate sloughing events. The effects of enhancing the air scouring of the bio-cord on the ammonia removal rate was shown to be dependent upon the substratum, while enhanced air scouring of the bio-cord was shown to stabilize the production of solids for all substrata. This study represents the first performance and optimization study of the bio-cord technology for low-carbon nitrification and shows that air scouring of the substratum reduces sloughing events at elevated loading and that the bio-cord technology achieves stable kinetics above conventional rates of 1 g [Formula: see text]-N/m 2 d to values of 1.8 g [Formula: see text]-N/m 2 d.
Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature
2013-01-01
In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53–70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409
Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents
NASA Astrophysics Data System (ADS)
Sarwono, Rakhman; Pusfitasari, Eka Dian
2017-01-01
Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.
Influence of load interactions on crack growth as related to state of stress and crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.
1985-01-01
Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.
Effects of age and loading rate on equine cortical bone failure.
Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S
2011-01-01
Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
Trends in detectable viral load by calendar year in the Australian HIV observational database.
Law, Matthew G; Woolley, Ian; Templeton, David J; Roth, Norm; Chuah, John; Mulhall, Brian; Canavan, Peter; McManus, Hamish; Cooper, David A; Petoumenos, Kathy
2011-02-23
Recent papers have suggested that expanded combination antiretroviral treatment (cART) through lower viral load may be a strategy to reduce HIV transmission at a population level. We assessed calendar trends in detectable viral load in patients recruited to the Australian HIV Observational Database who were receiving cART. Patients were included in analyses if they had started cART (defined as three or more antiretrovirals) and had at least one viral load assessment after 1 January 1997. We analyzed detectable viral load (>400 copies/ml) in the first and second six months of each calendar year while receiving cART. Repeated measures logistic regression methods were used to account for within and between patient variability. Rates of detectable viral load were predicted allowing for patients lost to follow up. Analyses were based on 2439 patients and 31,339 viral load assessments between 1 January 1997 and 31 March 2009. Observed detectable viral load in patients receiving cART declined to 5.3% in the first half of 2009. Predicted detectable viral load based on multivariate models, allowing for patient loss to follow up, also declined over time, but at higher levels, to 13.8% in 2009. Predicted detectable viral load in Australian HIV Observational Database patients receiving cART declined over calendar time, albeit at higher levels than observed. However, over this period, HIV diagnoses and estimated HIV incidence increased in Australia.
Study of Abrasive Wear Volume Map for PTFE and PTFE Composites
NASA Astrophysics Data System (ADS)
Unal, H.; Sen, U.; Mimaroglu, A.
2007-11-01
The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.
Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G
2013-09-01
The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.
Modelling studies for photocatalytic degradation of organic dyes using TiO2 nanofibers.
Singh, Narendra; Rana, Mohit Singh; Gupta, Raju Kumar
2017-09-05
In this work, modelling of the photocatalytic degradation of para-nitrophenol (PNP) using synthesized electrospun TiO 2 nanofibers under UV light illumination is reported. A dynamic model was developed in order to understand the behaviour of operating parameters, i.e. light intensity and catalyst loading on the photocatalytic activity. This model was simulated and analysed for both TiO 2 solid nanofibers and TiO 2 hollow nanofibers, applied as photocatalysts in the Langmuir-Hinshelwood kinetic framework. The entire photocatalytic degradation rate follows pseudo-first-order kinetics. The simulated results obtained from the developed model are in good agreement with the experimental results. At a catalyst loading of 1.0 mg mL -1 , better respective degradation rates were achieved at UV light irradiance of 4 mW cm -2 , for both the TiO 2 solid and hollow nanofibers. However, it was also observed that TiO 2 hollow nanofibers have a higher adsorption rate than that of TiO 2 solid nanofibers resulting in a higher photocatalytic degradation rate of PNP.
NASA Astrophysics Data System (ADS)
Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya
IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.
Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.
Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S
In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.
The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease
NASA Astrophysics Data System (ADS)
Richardson, Kelly C.
Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.
Khan, Usman; Nicell, Jim A.
2014-01-01
This work explores the relationships between a user's choice of a given contraceptive option and the load of steroidal estrogens that can be associated with that choice. Family planning data for the USA served as a basis for the analysis. The results showed that collectively the use of contraception in the USA conservatively averts the release of approximately 4.8 tonnes of estradiol equivalents to the environment. 35% of the estrogenic load released over the course of all experienced pregnancies events and 34% the estrogenic load represented by all resultant legacies are a result of contraception failure and the non-use of contraception. A scenario analysis conducted to explore the impacts of discontinuing the use of ethinylestradiol-based oral contraceptives revealed that this would not only result in a 1.7-fold increase in the estrogenic loading of the users, but the users would also be expected to experience undesired family planning outcomes at a rate that is 3.3 times higher. Additional scenario analyses in which ethinylestradiol-based oral contraceptive users were modeled as having switched entirely to the use of male condoms, diaphragms or copper IUDs suggested that whether a higher or lower estrogenic load can be associated with the switching population depends on the typical failure rates of the options adopted following discontinuation. And, finally, it was estimated that, in the USA, at most 13% of the annual estrogenic load can be averted by fully meeting the contraceptive needs of the population. Therefore, while the issue of estrogen impacts on the environment cannot be addressed solely by meeting the population's contraceptive needs, a significant fraction of the estrogenic mass released to environment can be averted by improving the level with which their contraceptive needs are met. PMID:24670973
Mini-screws success rates sufficient for orthodontic treatment.
Stanford, Nicky
2011-01-01
Medline. Clinical trials of orthodontic mini-screws with a minimum of 30 cases providing data on the patient, mini-screw, surgery and loading available for correlation with the mini-screws' success rates in English or German were included. Data were extracted that correlated with the miniscrews' success rate: patient sex and age, screw length and diameter, method and location of placement, time and amount of loading. The statistical analyses were performed using SPSS software (version 13 for Mac OS X, SPSS, Chicago, Ill). Fourteen clinical trials (452 patients and 1519 screws) were included, with overall success rates ranging from 59.4% to 100%. The mean success rate was 83.6% ± 10.2%. Screw diameters of 1 to 1.1 mm yielded significantly lower success rates than those of 1.5 to 2.3 mm. One study reported significantly lower success rates for 6 mm vs 8 mm long mini-screws (72% vs 90%). Screw placement with or without a surgical flap showed contradictory results between studies. Three studies showed significantly higher success rates for maxillary than for mandibular screws. Loading and healing periods were not significant in the mini-screws' success rates. There was no influence of patient sex and one study found significantly greater success in patients over 30 years of age. All 14 articles described success rates sufficient for orthodontic treatment. Placement protocols varied markedly. Screws under 8 mm in length and 1.2 mm in diameter should be avoided. Immediate or early loading up to 200 cN was adequate and showed no significant influence on screw stability.
Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon
2017-01-01
Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.
Cheung, Jason Tak-Man; Ryu, Jiseon
2017-01-01
Background Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Methods Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Results Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. Conclusions These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton. PMID:28334016
Matrajt, Laura; Gantt, Soren; Mayer, Bryan T; Krantz, Elizabeth M; Orem, Jackson; Wald, Anna; Corey, Lawrence; Schiffer, Joshua T; Casper, Corey
2017-10-12
Human herpesviruses (HHV) establish lifelong latent infection and are transmitted primarily via shedding at mucosal surfaces. Each HHV causes a unique spectrum of disease depending on the infected individual's age and immunity. We collected weekly oral swabs from young children and mothers in 32 Ugandan households for a median of one year. We characterized kinetics of oral shedding during primary and chronic infection for each virus. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), and HHV-6 were shed at high rates following primary infection. The rate of oral herpes simplex virus (HSV) shedding was lower overall, and children and mothers with chronic HSV infection had lower shedding rates than children with primary infection. CMV shedding rate and viral load were higher in children with primary infection compared to children with chronic infection, and even lower in mothers with chronic infection. HHV-6 shedding rate and viral load were similar between children with primary or chronic infection, but lower in mothers. EBV shedding rate and quantity decreased less dramatically in mothers versus children, with HIV-positive mothers shedding at a higher rate than HIV-negative mothers. Each HHV has a distinct pattern of oral shedding which depends partially on the age and immune status of the host.
Solid dispersion of acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing.
Yang, Min; Wang, Peng; Huang, Chien-Yueh; Ku, M Sherry; Liu, Huiju; Gogos, Costas
2010-08-16
In this study, a model drug, acetaminophen (APAP), was melt mixed with poly(ethylene oxide) (PEO) using a Brabender mixer. APAP was found to recrystallize upon cooling to room temperature for all the drug loadings investigated. Higher drug loading leads to faster recrystallization rate. However, the morphology of the recrystallized drug crystals is identical in samples with different drug loadings and does not change with the storage time. To adjust the drug's dissolution rate, nanoclay Cloisite 15A and 30B were added into the binary mixture. The presence of either of the nanoclay dramatically accelerates the drug's recrystallization rate and slows down the drug's releasing rate. The drop of the releasing rate is mainly due to the decrease of wettability, as supported by the contact angle data. Data analysis of the dissolution results suggests that the addition of nanoclays changes the drug's release mechanism from erosion dominant to diffusion dominant. This study suggests that nanoclays may be utilized to tailor the drug's releasing rate and to improve the dosage form's stability by dramatically shortening the lengthy recrystallization process. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Winkler, Jon; Munk, Jeffrey; Woods, Jason
2018-04-01
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
Development of an activated carbon filter to remove NO2 and HONO in indoor air.
Yoo, Jun Young; Park, Chan Jung; Kim, Ki Yeong; Son, Youn-Suk; Kang, Choong-Min; Wolfson, Jack M; Jung, In-Ha; Lee, Sung-Joo; Koutrakis, Petros
2015-05-30
To obtain the optimum removal efficiency of NO2 and HONO by coated activated carbon (ACs), the influencing factors, including the loading rate, metal and non-metal precursors, and mixture ratios, were investigated. The NOx removal efficiency (RE) for K, with the same loading (1.0 wt.%), was generally higher than for those loaded with Cu or Mn. The RE of NO2 was also higher when KOH was used as the K precursor, compared to other K precursors (KI, KNO3, and KMnO4). In addition, the REs by the ACs loaded with K were approximately 38-55% higher than those by uncoated ACs. Overall, the REs (above 95%) of HONO and NOx with 3% KOH were the highest of the coated AC filters that were tested. Additionally, the REs of NOx and HONO using a mixing ratio of 6 (2.5% PABA (p-aminobenzoic acid)+6% H3PO4):4 (3% KOH) were the highest of all the coatings tested (both metal and non-metal). The results of this study show that AC loaded with various coatings has the potential to effectively reduce NO2 and HONO levels in indoor air. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Munk, Jeffrey; Woods, Jason
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions.
LaFountaine, Justin S; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; McGinity, James W; Williams, Robert O
2016-02-01
Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output.
Wear Behavior of an Ultra-High-Strength Eutectoid Steel
NASA Astrophysics Data System (ADS)
Mishra, Alok; Maity, Joydeep
2018-02-01
Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.
An estimation of finger-tapping rates and load capacities and the effects of various factors.
Ekşioğlu, Mahmut; İşeri, Ali
2015-06-01
The aim of this study was to estimate the finger-tapping rates and finger load capacities of eight fingers (excluding thumbs) for a healthy adult population and investigate the effects of various factors on tapping rate. Finger-tapping rate, the total number of finger taps per unit of time, can be used as a design parameter of various products and also as a psychomotor test for evaluating patients with neurologic problems. A 1-min tapping task was performed by 148 participants with maximum volitional tempo for each of eight fingers. For each of the tapping tasks, the participant with the corresponding finger tapped the associated key in the standard position on the home row of a conventional keyboard for touch typing. The index and middle fingers were the fastest fingers for both hands, and little fingers the slowest. All dominant-hand fingers, except little finger, had higher tapping rates than the fastest finger of the nondominant hand. Tapping rate decreased with age and smokers tapped faster than nonsmokers. Tapping duration and exercise had also significant effect on tapping rate. Normative data of tapping rates and load capacities of eight fingers were estimated for the adult population. In designs of psychomotor tests that require the use of tapping rate or finger load capacity data, the effects of finger, age, smoking, and tapping duration need to be taken into account. The findings can be used for ergonomic designs requiring finger-tapping capacity and also as a reference in psychomotor tests. © 2015, Human Factors and Ergonomics Society.
Tiberi, Gianluigi; Fontana, Nunzia; Costagli, Mauro; Stara, Riccardo; Biagi, Laura; Symms, Mark Roger; Monorchio, Agostino; Retico, Alessandra; Cosottini, Mirco; Tosetti, Michela
2015-07-01
Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults. © 2015 Wiley Periodicals, Inc.
Fatigue Rated Fastener Systems
1985-11-01
programme part also .how. that the »tatement "the higher th«. load traust.,, the shorter the tallgu. lite could not b. confirmed for all Joints. It might...realistic fatigue loading: the lite improvement mechanisms are more marked in these Joints than in .-.-* luad transfer/low secondary bending Joints...7050-T76 PRIMER REAM HI-LOK TEST SERIES NOT CLEARANCE 10-30 34432 11832 GH3 JRFS-A") COLD WORK VRFS -B) INTERFERENCE 15-35 >16773 >16044
Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W
2015-03-01
Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation. PMID:28979296
Investigating reduced bag weight as an effective risk mediator for mason tenders.
Davis, Kermit G; Kotowski, Susan E; Albers, James; Marras, William S
2010-10-01
Masonry workers face some of the highest physical demands in the construction industry where large bags of masonry material weighing 42.7 kg are commonly handled by mason tenders who mix the mortar, distribute mortar and bricks/blocks, and erect/dismantle scaffolding throughout the day. The objective of this study was to determine the effectiveness of using half-weight bags (21.4 kg) on reducing the biomechanical loading, physiological response, and perceived exertions. Ten male subjects performed asymmetric lifting tasks simulating unloading bags from a pallet. Muscle activity, trunk kinematics, heart rate, blood pressure and subjective rating data were collected. Spine loads were predicted from a well-validated EMG-assisted model. Bag weight, lift type, bag height at origin, and asymmetry at destination significantly impacted the spine loads. While there was a 50% reduction in bag weight, the peak loads for the half-weight bags were only 25% less than the more available full-weight bags (a reduction of about 320 N of shear and 1000 N of compression). Lifts allowing movement of the feet reduced the loads by about 22% in shear and 27% in compression compared to constrained postures. Interestingly, cumulative spine loads were greater for the lighter bags than the heavy bags ( approximately 40%). The subjective ratings of exertion and risk were significantly lower for the lighter bags. RELEVANCE TO INDUSTRY: The reduction in peak spine loading for the half-weight bags, particularly at the higher heights and when the feet were allowed to move could significantly reduce the injuries of masonry workers. However, there were trade-offs with cumulative loads that may minimize the reduced risk. Overall, given the limited amount of time lifting bags, the reduction of peak loads.
Viriyaroj, Amornrat; Ngawhirunpat, Tanasait; Sukma, Monrudee; Akkaramongkolporn, Prasert; Ruktanonchai, Uracha; Opanasopit, Praneet
2009-01-01
The objective of this study is to prepare the gamma-oryzanol-loaded liposomes and investigate their physicochemical properties and antioxidant activity intended for cosmetic applications. Liposomes, Composing phosphatidylCholine (PC) and Cholesterol (Chol), CHAPS or sodium taurocholate (NaTC) were prepared by sonication method. Gamma-oryzanol-loaded liposomes were prepared by using 3, 5 and 10% gamma-oryzanol as an initial concentration. The formulation factors in a particular type and composition of lipid and initial drug loading on the physicochemical properties (i.e., particle size, zeta potential, entrapment efficiency, drug release) and antioxidant activity were studied. The particle sizes of bare liposomes were in nanometer range. The gamma-oryzanol-loaded liposomes in formulations of PC/CHAPS and PC/NaTC liposomes were smaller than PC/Chol liposomes. The incorporation efficiency of 10% gamma-oryzanol-loaded PC/Chol liposomes was less than gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes allowing higher in vitro release rate due to higher free gamma-oryzanol in buffer solution. The antioxidant activity of gamma-oryzanol-loaded liposomes was not different from pure gamma-oryzanol. Both gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes were showed to enhance the antioxidant activity in NHF cells. gamma-oryzanol-loaded PC/Chol liposomes demonstrated the lowest cytotoxicity in NHF cells. It was conceivably concluded that liposomes prepared in this study are suitable for gamma-oryzanol incorporation without loss of antioxidant activity.
Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H
2015-01-01
In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.
Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.
1984-01-01
A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.
Yang, Yongqiang; Zhan, Xuan; Wu, Shijun; Kang, Mingliang; Guo, Jianan; Chen, Fanrong
2016-04-01
The low hydraulic loading rate (HLR) greatly restricts the wide application of subsurface wastewater infiltration system (SWIS) in densely populated areas. To increase the HLR, an innovative SWIS was developed using cyclic operation mode. In each cycle, a wastewater feeding period is followed by a drying period, in which the aeration is conducted by a medium-pressure fan. Results indicated that the removal rate of TOC and NH4(+)-N were more than 85% at HLR of 0.5m(3)/m(2)d, whereas the TN removal rate was lower than 20%, indicating that the aeration was efficient and denitrification process was largely limited in the SWIS. When HLR decreased from 0.5 to 0.2m(3)/m(2)d, the pollutant removal efficiency enhanced slightly except for TN. Overall, the intermittent operation and micro-power aeration, combined with shunting the pollutant loading were really helpful for SWIS to achieve higher HLR, which offers a reference for the design of innovative SWIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pollutant loading from low-density residential neighborhoods in California.
Bale, Andrew E; Greco, Steven E; Pitton, Bruno J L; Haver, Darren L; Oki, Lorence R
2017-08-01
This paper presents a comparison of pollutant load estimations for runoff from two geographically distinct residential suburban neighborhoods in northern and southern California. The two neighborhoods represent a single urban land use type: low-density residential in small catchments (<0.3 km 2 ) under differing regional climates and irrigation practices. Pollutant loads of pesticides, nutrients, and drinking water constituents of concern are estimated for both storm and non-storm runoff. From continuous flow monitoring, it was found that a daily cycle of persistent runoff that peaks mid-morning occurs at both sites. These load estimations indicate that many residential neighborhoods in California produce significant non-storm pollutant loads year-round. Results suggest that non-storm flow accounted for 47-69% of total annual runoff and significantly contributed to annual loading rates of most nutrients and pesticides at both sites. At the Southern California site, annual non-storm loads are 1.2-10 times higher than storm loads of all conventional constituents and nutrients with one exception (total suspended solids). At the Northern California site, annual storm loads range from 51 to 76% of total loads for all conventional constituents and nutrients with one exception (total dissolved solids). Non-storm yields of pesticides at the Southern California site range from 1.3-65 times higher than those at the Northern California site. The disparity in estimated pollutant loads between the two sites indicates large potential variation from site-to-site within the state and suggests neighborhoods in drier and milder climates may produce significantly larger non-storm loads due to persistent dry season runoff and year-round pest control.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir
2012-03-01
Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.
Effects of graded load of artificial gravity on cardiovascular functions in humans.
Iwase, Satoshi; Fu, Qi; Narita, Kenichi; Morimoto, Eiichi; Takada, Hiroki; Mano, Tadaaki
2002-12-01
An artificial gravity and ergometric exercise loading device for human use was manufactured. It has the capacity of a max 2 G-load at the heart level, and a max 150 W of work-load. Eight subjects (six completed) were subjected to four repeated trials with or without 20 W ergometric exercise. Anti-G score, defined as the G-load x running time to the endpoint, was significantly higher in the exercise trials than standing trials. Heart rate (HR), mean arterial pressure (MAP), thoracic fluid index (TFI) were significantly superior during the exercise trials. Artificial gravity by centrifuge at 1.2 or 1.4 G with 40 or 60 W of ergometric workload may be an excellent countermeasure against cardiovascular deconditioning after long exposure to microgravity.
Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam
2018-03-28
The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.
NASA Astrophysics Data System (ADS)
Owolabi, G. M.; Bolling, D. T.; Odeshi, A. G.; Whitworth, H. A.; Yilmaz, N.; Zeytinci, A.
2017-12-01
The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s-1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s-1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s-1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s-1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress-strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.
Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R.; Cheng, Lingyun
2014-01-01
Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterificaion Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and free drug level at 2-week was 107.23+/−10.54 ng/mL that is well above the therapeutic level but only around 20% level of dexamethasone released from OZURDEX ® (dexamethasone intravitreal implant) in a rabbit eye model. In conclusion, dexamethasone is able to covalently load to the pSiO2 particles and provide sustained drug release for at least 3 months in vitro. Intravitreal injection of these particles were well tolerated in rabbit eyes and free drug level in vitreous at 2-week was well above the therapeutic level. PMID:25446320
Lower limb dynamics vary in shod runners who acutely transition to barefoot running.
Hashish, Rami; Samarawickrame, Sachithra D; Powers, Christopher M; Salem, George J
2016-01-25
Relative to traditional shod rear-foot strike (RFS) running, habituated barefoot running is associated with a forefoot-strike (FFS) and lower loading rates. Accordingly, barefoot running has been purported to reduce lower-extremity injury risk. Investigations, however, indicate that novice barefoot runners may not innately adopt a FFS. Therefore, the purpose of this study was to examine lower-extremity dynamics of habitually shod runners who acutely transition to barefoot running. 22 recreational RFS runners were included in this investigation. This laboratory controlled study consisted of two visits one-week apart, examining habitually shod, then novice barefoot running. Foot-strike patterns and loading rates were determined using motion analysis and force plates, and joint energy absorption was calculated using inverse dynamics. Of the 22 runners, 8 maintained a RFS, 9 adopted a MFS, and 5 adopted a FFS during novice barefoot running. All runners demonstrated a reduction in knee energy absorption when running barefoot; MFS and FFS runners also demonstrated a significant increase in ankle energy absorption. Runners who maintained a RFS presented with loading rates significantly higher than traditional shoe running, whereas FFS runners demonstrated a significant reduction in loading rate. Mid-foot strikers did not demonstrate a significant change in loading rate. These results indicate that habitually shod RFS runners demonstrate a variety of foot-strike and lower-extremity dynamic responses during the acute transition to barefoot running. Accordingly, explicit instruction regarding foot-strike patterns may be necessary if transitioning to barefoot. Long-term prospective studies are required in order to determine the influence of FFS barefoot running on injury rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R
2014-01-15
The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments. © 2013. Published by Elsevier B.V. All rights reserved.
Swift, Sibyl N; Swift, Joshua M; Bloomfield, Susan A
2014-12-01
Estrogen receptor-α (ER-α) is an important mediator of the bone response to mechanical loading. We sought to determine whether restricting dietary energy intake by 40% limits the bone formation rate (BFR) response to mechanical loading (LOAD) by downregulating ER-α-expressing osteocytes, or osteoblasts, or both. Female rats (n = 48, 7 mo old) were randomized to ADLIB-SHAM and ADLIB-LOAD groups fed AIN-93M purified diet ad libitum or to ER40-SHAM and ER40-LOAD groups fed modified AIN-93M with 40% less energy (100% of all other nutrients). After 12 wk, LOAD rats were subjected to a muscle contraction protocol three times every third day. ER40 produced lower proximal tibia bone volume (-22%), trabecular thickness (-14%), and higher trabecular separation (+127%) in SHAM but not LOAD rats. ER40 rats exhibited reductions in mineral apposition rate, but not percent mineralizing surface or BFR. LOAD induced similar relative increases in these kinetic measures of osteoblast activity/recruitment in both diet groups., but absolute values for ER40 LOAD rats were lower vs. ADLIB-LOAD. There were fourfold and eightfold increases in proportion of estrogen receptor-α protein-positive osteoblast and osteocytes, respectively, in LOAD vs. SHAM rats, with no effect of ER40. These data suggest that a brief period of mechanical loading significantly affects estrogen receptor-α in cancellous bone osteoblasts and osteocytes. Chronic energy restriction does result in lower absolute values in indices of osteoblast activity after mechanical loading, but not by a smaller increment relative to unloaded bones; this change is not explained by an associated downregulation of ER-α in osteoblasts or osteocytes.
Increased resistance during jump exercise does not enhance cortical bone formation.
Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A
2014-01-01
This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.
Afanas'eva, R F; Prokopenko, L V; Kiladze, N A; Konstantinov, E I
2009-01-01
The authors demonstrated differences in heat state among workers exposed to heating microclimate during cold and warm seasons. Same external thermal load in cold season induces more humidity loss, lower weighted average skin temperature, higher pulse rate, increased systolic and diastolic blood pressure. With that, heat discomfort was more in cold season, than in warm one, this necessitates decrease of thermal load in cold season vs. the warm one.
1978-08-23
dislodged only a fraction of the SAB. According to FMI, thinner, more open grades of vitreous carbon paper would permit higher loading of SAB...bonded carbon fiber, porous silver and porous nickel cathodes were dis- charged in test cells. All polarized immediately below 2. 7 volts at 52 mA/cm2...Increased electrolyte molarity delivered a modest increase in run time but resulted -_ in somewhat lower load voltage plateaus. - As before, carbon fiber
Energy absorption characterization of human enamel using nanoindentation.
He, Li Hong; Swain, Michael V
2007-05-01
Enamel is a natural composite, which has much higher toughness than its major component, crystalline hydroxyapatite. In this study, the energy absorption behavior of human sound enamel was investigated with nanoindentation techniques. A UMIS nanoindenter system as well as a Berkovich and two spherical indenters with nominal tip radii of 5 and 20 microm were used to indent enamel at different loading forces in the direction parallel to enamel prisms. Inelastic energy dissipation versus depth of indenter penetration (U%-h(p) curve) as well as a function of indentation strain (U%-epsilon curve) of enamel was determined. Enamel showed much higher energy absorption capacity than a ceramic material with equivalent modulus (fused silica). Even at the lowest forces (1 mN) for the 20 microm indenter, inelastic response was found. Additional tests done at different force loading rates illustrated that load rate has little influence on P-h response of enamel. The top surface of enamel has the plastic work of indentation of approximately 5.2 nJ/microm(3). The energy absorbing ability is influenced by the very small protein rich component that exists between the hydroxyapatite nanocrystals as well as within the sheath structure surrounding the enamel rods. Copyright 2006 Wiley Periodicals, Inc.
Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.
Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang
2018-04-18
Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.
Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing
2014-12-01
We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.
In vitro wear rates of materials under different loads and varying pH.
Shabanian, Mitra; Richards, Lindsay C
2002-06-01
Despite the need for information about the wear characteristics of restorative materials, there have been few systemic studies of the factors that influence the rate of material wear. This study compared the wear rates of enamel and 3 tooth-colored restorative materials under different loads (0, 3.2, 6.7, and 9.95 kg) and pH levels (1.2, 3.3, and 7.0). An electromechanical tooth wear machine was used so that standard restorations representing 3 materials could be worn by opposing enamel under controlled conditions. The wear rates of enamel, composite (Z100), a conventional glass ionomer cement (Fuji IX), and a resin-modified glass ionomer cement (Fuji II LC) were compared at a range of loads (0 to 9.95 kg) and pH levels (1.2 to 7.0) and also at different sites across each restoration. Ten specimens were randomly assigned to each experimental group. Wear assessment was performed with a modified light microscope to quantify the height changes at defined points across wear facets. Four-way analysis of variance was used to compare wear rates among materials, pH levels, loads, and sites. Post-hoc t tests identified significant differences between specific pairs of experimental conditions (P<.05). The wear rates of enamel and the other test materials varied significantly with pH (P<.0001), load (P<.0001), and type of material (P<.0001). Enamel wear was influenced most by varied pH, whereas the composite was least affected by acid. The conventional glass ionomer cement was more susceptible than the composite to the effects of varied pH; the acid susceptibility of the resin-modified glass ionomer cement was generally between that of the composite and conventional glass ionomer cement. Enamel and the conventional glass ionomer cement were affected similarly by load. The composite was more resistant than the conventional glass ionomer cement to wear at higher loads; the resin-modified glass ionomer cement exhibited intermediate load resistance. Within the limitations of this study, the 3 test materials were more resistant than enamel to acid, with the composite demonstrating the lowest susceptibility to acid. The acid- and load-resistance of the resin-modified glass ionomer cement was consistently less than that of the composite and greater than that of the conventional glass ionomer cement.
Coupling fine particle and bedload transport in gravel-bedded streams
NASA Astrophysics Data System (ADS)
Park, Jungsu; Hunt, James R.
2017-09-01
Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.
Improving the yield from fermentative hydrogen production.
Kraemer, Jeremy T; Bagley, David M
2007-05-01
Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.
Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menezes-Filho, José Antonio, E-mail: antomen@ufba.br; Souza, Karine O. Fraga de, E-mail: karinefraga11@hotmail.com; Rodrigues, Juliana L. Gomes, E-mail: juuhrodrigues@icloud.com
Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pbmore » levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m{sup 2}/30 days (37–37,967) and 43.2 μg Pb/m{sup 2}/30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely associated with distance from the Mn processing plant. • In schools within 2-km from plant, indoor Mn levels are 190 times higher than the levels observed in daycares in Australia. • Pb levels are not associated with distance from the plant and are lower than the levels observed in daycares in Australia.« less
Han, Qiang; Yu, Xing Xiu; Wang, Wei; Xu, Miao Miao; Ren, Rui; Zhang, Jia Peng
2017-04-18
Taking Hujiashan small watershed as the study area, based on the classified result of Landsat TM/ETM images of 2005, 2010 and 2015, combined with long-term field observation data, and used the export coefficient model, our study explored the effect of small watershed management project on temporal and spatial variation of total nitrogen (TN) load of non-point source pollution under the support of GIS technology. The results indicated that, due to the implementation of slope modification project, the area of cultivated land was significantly increased, while forest and bareland were decreased. The load of non-point source TN increased from 63208 kg in 2005 to 72778 kg in 2010, but reduced to 46876 kg in 2015. The contribution rate from residential areas was higher, the average contribution rate of the three periods was 53.5%, but it showed a decreasing trend year by year. The contribution rate of land use types was 45%, which showed an increasing trend year by year. The contribution rate of livestock was always low. From the spatial distribution, TN loading intensity was changed obviously after the terracing project. High load intensity zone was mainly concentrated on the slope of 5°-15° before terracing project. Nevertheless, high load intensity zone was concentrated on the slope of 15°-35° after terracing project, and 5°-8° had become a low load strength area. The TN load intensity changed little with time on the slope of 0°-8°, and it increased first and then decreased on the slope above 8°. With the treatment of sewage, garbage and livestock manure in rural areas, the output of nitrogen in the living and livestock breeding were significantly reduced. Due to the implementation of the project, the cultivated land area increased by 31%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battye, W.; Brown, P.; Misenheimer, D.
1981-07-01
The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration systems cooling various gasoline/air mixtures to -62 C, -73 C, and -84 C by estimating vapor/liquid equilibrium compositions for VOC/air mixtures. Emission rates were calculated for inlet streams containing vapors from low- and high-volatility gasolines at concentrations of 15, 30, and 50% by volume (22.5, 45, and 75% measured as propane). Predicted VOC emission rates for systems cooling various inlet streamsmore » to -62 C ranged from 48 to 59 mg VOC/liter of gasoline loaded. Predicted VOC were 21 to 28 mg/l loaded for systems operating at -73 C and 8.7 to 12 mg/l loaded for systems operating at -84 C. Compressor electrical requirements and relative capital costs for systems operating at the above temperatures were estimated for model systems using the results of a computer simulation. Compressor electrical requirements ranged from 0.11 to 0.45 Whr/l loaded, depending on the inlet VOC concentration and the outlet temperature. The capital cost to build a system designed to cool vapors to -84 C is estimated to be about 9% higher than for a system designed to operate at -73 C.« less
Niemistö, Juha P; Horppila, Jukka
2007-01-01
The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.
Kaschel, Reiner; Kazén, Miguel; Kuhl, Julius
2017-07-01
A modified event-based paradigm of prospective memory was applied to investigate intention initiation in older and younger participants under high versus low memory load (subsequent episodic word recall vs. recognition). State versus action orientation, a personality dimension related to intention enactment, was also measured. State-oriented persons show a superiority effect for the storage of intentions in an explicit format but have a paradoxical deficit in their actual enactment. We predicted an interaction between aging, personality, and memory load, with longer intention-initiation latencies and higher omission rates for older state-oriented participants under high memory load. Results were consistent with predictions and are interpreted according to current personality and prospective memory models of aging.
NASA Technical Reports Server (NTRS)
Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat
1988-01-01
The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.
Differentiated perceptions of exertion and energy cost of young women while carrying loads.
Robertson, R J; Caspersen, C J; Allison, T G; Skrinar, G S; Abbott, R A; Metz, K F
1982-01-01
Differentiated local ratings of perceived exertion from the legs and central ratings from the chest, and oxygen consumption, were determined during load carriage in seven young women. Subjects walked for 6 min at 3.22, 4.83, 6.44, or 8.05 km X h-1 carrying (1) no load, (2) a load equal to 7.5% of body weight (mean: 4.66 kg) or (3) a load equal to 15% of body weight (mean: 9.32 kg). Thus, each subject underwent 12 separate tests. The external loads were in the form of lead pellets carried in a plastic scuba belt worn around the waist. A differentiation threshold was found at 6.44 km X h-1 for the 0% and 7.5% loads and at 4.83 km X h-1 for the 15% load. At speeds below the threshold, the perception of exertion was similar in the legs, chest and overall. At higher speeds, exertion was perceived to be more intense in the legs than overall and less intense in the chest than overall, suggesting that the local legs signal was the dominant factor in shaping the overall sensation of exertion. The oxygen uptake was greater for the 15% load than for either the 0% or 7.5% loads, but was similar for the 0% and 7.5% loads. Findings suggested a critical weight limit for external loads that could be transported without increasing the metabolic cost beyond that required to move the body weight alone. This limit fell between 7.5% and 15% of the body weight. When oxygen uptake was expressed per kg of total weight transported, there was no loss of metabolic efficiency while carrying loads up to 15% of the body weight.
Singh, Kiran; Giri, B S; Sahi, Amrita; Geed, S R; Kureel, M K; Singh, Sanjay; Dubey, S K; Rai, B N; Kumar, Surendra; Upadhyay, S N; Singh, R S
2017-10-01
The main objective of this study was to evaluate the performance of wood charcoal as biofilter media under transient and high loading condition. Biofiltration of xylene was investigated for 150days in a laboratory scale unit packed with wood charcoal and inoculated with mixed microbial culture at the xylene loading rates ranged from 12 to 553gm -3 h -1 . The kinetic analysis of the xylene revealed absence of substrate inhibition and possibility of achieving higher elimination under optimum condition. The pH, temperature, pressure drop and CO 2 production rate were regularly monitored during the experiments. Throughout experimental period, the removal efficiency (RE) was found to be in the range of 65-98.7% and the maximum elimination capacity (EC) was 405.7gm -3 h -1 . Molecular characterization results show Bacillus sp. as dominating microbial group in the biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.
TiO2 used as photocatalyst for rhodamine B degradation under solar radiation
NASA Astrophysics Data System (ADS)
Ariyanti, Dessy; Maillot, Mathilde; Gao, Wei
2017-07-01
Transition metal oxide photocatalysis is a relatively new method representing advanced oxidation process to be applied in industrial wastewater treatment especially for degradation of organic pollutants. We investigate TiO2 as a photocatalyst for the photocatalytic degradation of Rhodamine B (RhB) under simulated sunlight. Various parameters and their effectiveness have been studied. The effects of processing parameters including catalyst loading and feed concentration were investigated; and the degradation pathway was proposed based on the UHPLC-MS analysis. The result showed that a higher kinetic rate can be obtained by employing low catalyst loading and feed concentration, i.e., 0.5 g/L of TiO2 loading and 5 ppm of RhB concentration, respectively. For this particular system, the optimum degradation rate (k) can achieve 0.297/min. The effectiveness of solar light-TiO2 system for RhB degradation shows this method can be used for wastewater treatment.
Mesostructured silica and aluminosilicate carriers for oxytetracycline delivery systems.
Berger, D; Nastase, S; Mitran, R A; Petrescu, M; Vasile, E; Matei, C; Negreanu-Pirjol, T
2016-08-30
Oxytetracycline delivery systems containing various MCM-type silica and aluminosilicate with different antibiotic content were developed in order to establish the influence of the support structural and textural properties and aluminum content on the drug release profile. The antibiotic molecules were loaded into the support mesochannels by incipient wetness impregnation method using a drug concentrated aqueous solution. The carriers and drug-loaded materials were investigated by small- and wide-angle XRD, FTIR spectroscopy, TEM and N2 adsorption-desorption isotherms. Faster release kinetics of oxytetracycline from uncalcined silica and aluminosilicate supports was observed, whereas higher drug content led to lower delivery rate. The presence of aluminum into the silica network also slowed down the release rate. The antimicrobial assays performed on Staphylococcus aureus clinical isolates showed that the oxytetracycline-loaded materials containing MCM-41-type mesoporous silica or aluminosilicate carriers inhibited the bacterial development. Copyright © 2016 Elsevier B.V. All rights reserved.
Kann, Rebecca K C; Seddon, Jennifer M; Kyaw-Tanner, Myat T; Henning, Joerg; Meers, Joanne
2014-08-01
Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats. Copyright © 2014 Elsevier Ltd. All rights reserved.
Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution
NASA Astrophysics Data System (ADS)
Chen, Shu; Chen, Xiaoping; Jiang, Qizhong; Yuan, Jian; Lin, Caifang; Shangguan, Wenfeng
2014-10-01
Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H2 evolution rate (3004.8 μmol h-1) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H2 production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid.
Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan
2015-01-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson's disease (PD). However, some aspects of executive control are impaired with STN DBS. We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing.
Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan
2015-01-01
Background: Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson’s disease (PD). However, some aspects of executive control are impaired with STN DBS. Objective: We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Methods: Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. Results: The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. Conclusions: We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing. PMID:25720447
Cheboyina, Sreekhar; Wyandt, Christy M
2008-07-09
A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.
NASA Astrophysics Data System (ADS)
Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian
2017-03-01
The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.
Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L
2018-04-01
The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4 N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
van Lier, J B; Lens, P N; Pol, L W
2001-01-01
Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60 degrees C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates "S" as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55 degrees C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l-1.day-1 at COD/SO4(2-) ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h-1 and an EGSB reactor, operated at 6.8 m.h-1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m-2.day-1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.
A two end-member model of wood dynamics in headwater neotropical rivers
Ellen Wohl; Susan Bolton; Daniel Cadol; Francesco Comiti; Jaime R. Goode; Luca Mao
2012-01-01
Geomorphic and ecological effects of instream wood have been documented primarily along rivers in the temperate zones. Instream wood loads in tropical rivers might be expected to differ from those in analogous temperate rivers because of the higher transport capacity and higher rates of wood decay in the tropics. We use data from four field sites in Costa Rica and...
Twinning in magnesium under dynamic loading
NASA Astrophysics Data System (ADS)
Dixit, Neha; Hazeli, Kavan; Ramesh, Kaliat T.
2015-09-01
Twinning is an important mode of deformation in magnesium (Mg) and its alloys at high strain rates. Twinning in this material leads to important effects such as mechanical anisotropy, texture evolution, tension-compression asymmetry, and sometimes non-Schmid effects. Extension twins in Mg can accommodate significant plastic deformation as they grow, and thus twinning affects the overall rate of plastic deformation. We use an experimental approach to study the deformation twinning mechanism under dynamic loading. We perform normal plate impact recovery experiments (with microsecond pulse durations) on pure polycrystalline Mg specimens. Estimates of average TB velocity under the known impact stress are obtained by characterization of twin sizes and aspect ratios developed within the target during the loading pulse. The measured average TB velocities in our experiments are of the order of several m s-1. These velocities are several orders of magnitude higher than those so far measured in Mg under quasi-static loading conditions. Electron back-scattered diffraction (EBSD) is then used to characterize the nature of the twins and the microstructural evolution. Detailed crystallographic analysis of the twins enables us to understand twin nucleation and growth of twin variants under dynamic loading.
Creep of trabecular bone from the human proximal tibia
Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna
2014-01-01
Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486
NASA Astrophysics Data System (ADS)
Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut
2018-05-01
The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.
Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C
2001-10-01
The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p < or = 0.01), which represented the primary orientation of the collagen fibers. Strain rate dependency was evident for loading along the anteroposterior axis but not along the mediolateral axis. No significant differences in any property were noted between pristine and impulsively loaded disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.
Du, Ping; Du, Ju; Smyth, Hugh D C
2017-01-01
Previously, granulated lactose carriers were shown to improve uniformity and aerosolization of a low-dose model drug. In the present study, the blending uniformity and aerosol dispersion performance were assessed for 2 model drugs salbutamol sulfate (SS) and rifampicin (RIF), blended at high loadings (10% or 30% drug) with granulated lactose carriers. The model drug powders differed in particle size distribution, morphology, density, and surface energies. Content uniformity of RIF blends was better than that of SS. Aerosolization studies showed that all blend formulations had acceptable emitted fractions (>70%). The SS blends showed low induction-port deposition (6%-10%) compared to RIF (5%-30%). This difference was greater at high flow rates. At 90 L/min, the low induction port deposition of SS blends allowed high fine particle fraction (FPF) of 73%-81%, whereas the FPF of the RIF blends was around 43%-45% with higher induction port deposition. However, SS blends exhibited strong flow rate-dependent performance. Increasing the flow rate from 30 L/min to 90 L/min increased SS FPF from approximately 20% to 80%. Conversely, RIF blends were flow rate and drug loading independent. It was concluded that the aerosolization of high drug-loaded dry powder inhaler formulations using granulated lactose, particularly flow rate dependency, varies with active pharmaceutical ingredient properties. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Porous magnesium loaded with gentamicin sulphate and in vitro release behavior.
Li, Qiuyan; Jiang, Guofeng; Wang, Dong; Wang, Huang; Ding, Liang; He, Guo
2016-12-01
Our aim was to develop a biocompatible bone repair material that has the advantage of preventing postoperative infections. Finally, the porous magnesium (p-Mg) loaded with gentamicin sulphate (GS-loaded Mg-G) was fabricated. The GS release behavior of the GS-loaded Mg-G in phosphate buffer saline (PBS) was investigated. The effective release time of GS reached to 14days. In addition, the effects of porosity and pore diameter of p-Mg on the GS release behavior of the GS-loaded Mg-G were studied. In the initial burst release stage, the GS release rate of the GS-loaded Mg-G increased with the increasing porosity or the increasing pore diameter of p-Mg. The GS-loaded Mg-G with larger original pore diameter has higher burst release of GS. Moreover, the in vitro antibacterial test of the GS-loaded Mg-G indicated that this biomaterial has obvious antibacterial effect. This study can provide information for p-Mg loaded with drug(s) as functional bone repair materials with drug-delivery capabilities. Copyright © 2016 Elsevier B.V. All rights reserved.
Szeto, Grace P Y; Straker, Leon M; O'Sullivan, Peter B
2009-01-01
Do symptomatic female office workers perform computing tasks with higher cervical postural muscle loads (in terms of higher amplitudes and less muscular rest) and more discomfort compared with asymptomatic individuals? Are these differences in postural muscle loads consistent across bilateral (typing) and unilateral (mousing) conditions? an experimental case-control study. 18 symptomatic female office workers and 21 asymptomatic female office workers. Three conditions (typing, mousing, and type-and-mouse) were performed in random order. Muscle load was measured as median amplitude and gap frequency using surface EMG of bilateral cervical erector spinae and upper trapezius. Discomfort was measured using a numerical rating scale. The case group demonstrated 4.3% (95% CI 0.1 to 8.4) higher amplitude during typing and 3.5% (95% CI 0.1 to 6.9) higher amplitude during type-and-mouse in the right cervical erector spinae compared with the control group. There was a similar difference between groups in the left cervical erector spinae which also demonstrated a 1.2 gaps/min (95% CI -2.3 to 0.0) lower frequency during typing. The case group had significantly higher discomfort during all conditions compared with the control group. The case group demonstrated higher median amplitudes and lower gap frequencies than the control group during bilateral conditions (typing and type-and-mouse) compared with unilateral conditions (mousing) for both muscle groups. There was increased amplitude and decreased muscular rest in the cervical erector spinae of office workers performing typing and mousing tasks. These findings may represent a mechanism underlying computer-related musculoskeletal disorders.
Slimani, Maamer; Davis, Philip; Franchini, Emerson; Moalla, Wassim
2017-10-01
The aim of this short review was to summarize data pertaining to the rating of perceived exertion (RPE) methods (RPE value and session-RPE) during combat sport-specific activities (i.e., competition and training) based on many factors, including contest type (i.e., official vs. simulated vs. training), combat rounds, age of participants and muscle groups, and their correlation with physiological variables (i.e., blood lactate concentration [La] and heart rate [HR]). The current review shows higher RPE in a match of mixed martial arts (MMAs) than Brazilian jiu-jitsu and kickboxing matches and during the competitive period compared with the precompetitive period. This could be explained by the longer duration of bouts, the higher percentage contribution of aerobic metabolism in MMA than other combat sports and contest type differences (simulated vs. official matches). Thus, this review found significant correlations between RPE or session-RPE, [La] and HR. Particularly, there was a stronger correlation between RPE and [La] during official striking (r = 0.81) than grappling combat sports matches (r = 0.53). In addition, a variation of correlation (moderate to large) between session-RPE and HR-based methods has been reported (i.e., Edwards' training load [r ranged between 0.58 and 0.95] and Banister training impulse [r ranged between 0.52 and 0.86]). Specifically, stronger correlation was apparent in combat sport competition that required a much higher percentage contribution of aerobic metabolism (e.g., karate) and in adult athletes than anaerobic-based combat sports (e.g., taekwondo) and young athletes, respectively. Indeed, the current review highlights that the correlations between session-RPE and HR-based methods were higher during official competition than training sessions. Session-RPE was affected by participants' competitive level, the intensity of session (high vs. low), the training modalities (tactical-technical vs. technical-development vs. simulated competition), and the training volume in combat sports athletes. Rating of perceived exertion is a valid tool for quantifying internal training and combat loads during short- and long-term training and simulated and official competitions in novice and elite combat sport athletes. Furthermore, both RPE methods may be a more reliable measure of intensity or effort when both anaerobic and aerobic systems are appreciably activated. Coaches, sports scientists, and athletes can use session-RPE method to quantify short-term training and combat loads in adult athletes during precompetitive period much more than long-term training and in young athletes during the competitive period. They can also use RPE to monitor combat and short- and long-term training loads to better plan and assist training programs and competitions.
Analysis of general aviation accidents during operations under instrument flight rules
NASA Technical Reports Server (NTRS)
Bennett, C. T.; Schwirzke, Martin; Harm, C.
1990-01-01
A report is presented to describe some of the errors that pilots make during flight under IFR. The data indicate that there is less risk during the approach and landing phase of IFR flights, as compared to VFR operations. Single-pilot IFR accident rates continue to be higher than two-pilot IFR incident rates, reflecting the high work load of IFR operations.
Oscillating load-induced acoustic emission in laboratory experiment
Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir
2010-01-01
Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2014-01-01
A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999
Horizontal Transfer Can Drive a Greater Transposable Element Load in Large Populations.
Groth, Sam B; Blumenstiel, Justin P
2017-01-01
Genomes are comprised of contrasting domains of euchromatin and heterochromatin, and transposable elements (TEs) play an important role in defining these genomic regions. Therefore, understanding the forces that control TE abundance can help us understand the chromatin landscape of the genome. What determines the burden of TEs in populations? Some have proposed that drift plays a determining role. In small populations, mildly deleterious TE insertion alleles are allowed to fix, leading to increased copy number. However, it is not clear how the rate of exposure to new TE families, via horizontal transfer (HT), can contribute to broader patterns of genomic TE abundance. Here, using simulation and analytical approaches, we show that when the effects of drift are weak, exposure rate to new TE families via HT can be an important determinant of genomic copy number. If population exposure rate is proportional to population size, larger populations are expected to have a higher rate of exposure to rare HT events. This leads to the counterintuitive prediction that larger populations may carry a higher TE load. We also find that increased rates of recombination can lead to greater probabilities of TE establishment. This work has implications for our understanding of the evolution of chromatin landscapes, genome defense by RNA silencing, and recombination rates. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fernández-Rodríguez, Conrado M; Morillas, Rosa María; Masnou, Helena; Navarro, José María; Bárcena, Rafael; González, José Manuel; Martín-Martín, Leticia; Poyato, Antonio; Miquel-Planas, Mireia; Jorquera, Francisco; Casanovas, Teresa; Salmerón, Javier; Calleja, José Luis; Solà, Ricard; Alonso, Sonia; Planas, Ramón; Romero-Gomez, Manuel
2014-01-01
Less than half of patients with chronic hepatitis C genotype 3 (G3) and high viral load (HVL) without a rapid virological response (RVR) achieve a sustained virological response (SVR) when treated with peginterferon plus ribavirin (RBV). To assess the impact of high doses of RBV on SVR in patients with G3 and HVL. Ninety-seven patients were randomized to receive peginterferon α-2a+RBV 800 mg/day (A; n=42) or peginterferon α-2a+RBV 1600 mg/day+epoetin β 400 IU/kg/week SC (B; n=55). Patients allocated to group B who achieved RVR continued on RBV (800mg/day) for a further 20 weeks (B1; n=42) while non-RVR patients received a higher dose of RBV (1600 mg/day)+epoetin β (B2; n=13). RVR was observed in 64.3% of patients in A and in 76.4% in B (p=0.259). Intention-to-treat (ITT) analysis showed SVR rates of 64.3% (A) and 61.8% (B), with a reduction of -2.5% (-21.8% to 16.9%) (p=0.835). The SVR rate was 61.9% in arm B1 and 61.5% in arm B2. No serious adverse events were reported, and the rate of moderate adverse events was < 5%. G3 patients with high viral load without RVR did not obtain a benefit from a higher dose of RBV. Higher doses of RBV plus epoetin β were safe and well tolerated (Clin Trials Gov NCT00830609). Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.
Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.
1984-01-01
A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.
NASA Astrophysics Data System (ADS)
Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio
2016-11-01
The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.
Feucht, Matthias J; Grande, Eduardo; Brunhuber, Johannes; Burgkart, Rainer; Imhoff, Andreas B; Braun, Sepp
2013-12-01
A tear of the posterior medial meniscus root (PMMR) is increasingly recognized as a serious knee joint injury. Several suture techniques for arthroscopic transtibial pull-out repair have been described; however, only limited data about the biomechanical properties of these techniques are currently available. There are significant differences between the tested suture techniques, with more complex suture configurations providing superior biomechanical properties. Controlled laboratory study. A total of 40 porcine medial menisci were randomly assigned to 1 of 4 groups (10 specimens each) according to suture technique: two simple stitches (TSS), horizontal mattress suture (HMS), modified Mason-Allen suture (MMA), and two modified loop stitches (TLS). Meniscus-suture constructs were subjected to cyclic loading followed by load-to-failure testing in a servohydraulic material testing machine. During cyclic loading, the HMS and TLS groups showed a significantly higher displacement after 100, 500, and 1000 cycles compared with the TSS and MMA groups. After 1000 cycles, the highest displacement was found for the TLS group, with significant differences compared with all other groups. During load-to-failure testing, the highest maximum load and yield load were observed for the MMA group, with statistically significant differences compared with the TSS and TLS groups. With regard to stiffness, the TSS and MMA groups showed significantly higher values compared with the HMS and TLS groups. The MMA technique provided the best biomechanical properties with regard to cyclic loading and load-to-failure testing. The TSS technique seems to be a valuable alternative. Both the HMS and TLS techniques have the disadvantage of lower stiffness and higher displacement during cyclic loading. Using a MMA technique may improve healing rates and avoid progressive extrusion of the medial meniscus after transtibial pull-out repair of PMMR tears. The TSS technique may be used as an alternative that is easier to perform, but a more careful rehabilitation program is possibly necessary to avoid early failure.
Avila, Cristina; Nivala, Jaime; Olsson, Linda; Kassa, Kinfe; Headley, Tom; Mueller, Roland A; Bayona, Josep Maria; García, Joan
2014-10-01
Four side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A). Three of the systems were free-draining, with one containing a gravel substrate (VGp), while the other two contained sand substrate (VS1p and VS2p). The fourth system had a saturated gravel substrate and active aeration supplied across the bottom of the bed (VAp). All beds were pulse-loaded on an hourly basis, except VS2p, which was pulse-loaded every 2h. Each system had a surface area of 6.2m(2), received a hydraulic loading rate of 95 mm/day and was planted with Phragmites australis. The beds received an organic loading rate of 7-16 gTOC/m(2)d. The sand-based VF (VS1p) performed significantly better (p<0.05) than the gravel-based wetland (VGp) both in the removal of conventional water quality parameters (TSS, TOC, NH4-N) and studied emerging organic contaminants except for diclofenac (85 ± 17% vs. 74 ± 15% average emerging organic contaminant removal for VS1p and VGp, respectively). Although loading frequency (hourly vs. bi-hourly) was not observed to affect the removal efficiency of the cited conventional water quality parameters, significantly lower removal efficiencies were found for tonalide and bisphenol A for the VF wetland that received bi-hourly dosing (VS2p) (higher volume per pulse), probably due to the more reducing conditions observed in that system. However, diclofenac was the only contaminant showing an opposite trend to the rest of the compounds, achieving higher elimination rates in the wetlands that exhibited less-oxidizing conditions (VS2p and VGp). The use of active aeration in the saturated gravel bed (VAp) generally improved the treatment performance compared to the free-draining gravel bed (VGp) and achieved a similar performance to the free-draining sand-based VF wetlands (VS1p). Copyright © 2014 Elsevier B.V. All rights reserved.
Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.
Nuchdang, Sasikarn; Phalakornkule, Chantaraporn
2012-06-30
The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.
Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao
2018-01-02
To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.
Halecky, Martin; Paca, Jan; Kozliak, Evguenii; Jones, Kim
2016-07-02
A 2:1 (w/w) mixture of styrene (STY) and acetone (AC) was subjected to lab-scale biofiltration under varied loading in both a trickle bed reactor (TBR) and biofilter (BF) to investigate substrate interactions and determine the limits of biofiltration efficiency of typical binary air pollutant mixtures containing both hydrophobic and polar components. A comparison of the STY/AC mixture degradation in the TBR and BF revealed higher pollutant removal efficiencies and degradation rates in the TBR, with the pollutant concentrations increasing up to the overloading limit. The maximum styrene degradation rates were 12 and 8 gc m(-3) h(-1) for the TBR and BF, respectively. However, the order of performance switched in favor of the BF when the loading was conducted by increasing air flow rate while keeping the inlet styrene concentration (Cin) constant in contrast to loading by increasing Cin. This switch may be due to a drastic difference in the effective surface area between these two reactors, so the biofilter becomes the reactor of choice when the rate-limiting step switches from biochemical processes to mass transfer by changing the loading mode. The presence of acetone in the mixture decreased the efficiency of styrene degradation and its degradation rate at high loadings. When the overloading was lifted by lowering the pollutant inlet concentrations, short-term back-stripping of both substrates in both reactors into the outlet air was observed, with a subsequent gradual recovery taking several hours and days in the BF and TBR, respectively. Removal of excess biomass from the TBR significantly improved the reactor performance. Identification of the cultivable strains, which was performed on Day 763 of continuous operation, showed the presence of 7 G(-) bacteria, 2 G(+) bacteria and 4 fungi. Flies and larvae of Lycoriella nigripes survived half a year of the biofilter operation by feeding on the biofilm resulting in the maintenance of a nearly constant pressure drop.
How does aging affect the types of error made in a visual short-term memory ‘object-recall’ task?
Sapkota, Raju P.; van der Linde, Ian; Pardhan, Shahina
2015-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits. PMID:25653615
How does aging affect the types of error made in a visual short-term memory 'object-recall' task?
Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina
2014-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.
Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan
2016-01-01
In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m−3·day−1 to 110 g·m−3·day−1. BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up. PMID:27999421
Liu, Xianshu; Ding, Jie; Ren, Nanqi; Tong, Qingyue; Zhang, Luyan
2016-12-20
In this study, the high-production-volume chemical benzothiazole (BTH) from synthetic water was fully degraded into less toxic intermediates of simple organic acids using an up-flow internal circulation microbial electrolysis reactor (UICMER) under the hydraulic retention time (HRT) of 24 h. The bioelectrochemical system was operated at 25 ± 2 °C and continuous-flow mode. The BTH loading rate varied during experiments from 20 g·m -3 ·day -1 to 110 g·m -3 ·day -1 . BTH and soluble COD (Chemical Oxygen Demand) removal efficiency reached 80% to 90% under all BTH loading rates. Bioluminescence based Shewanella oneidensis strain MR-1 ecotoxicity testing demonstrated that toxicity was largely decreased compared to the BTH wastewater influent and effluent of two control experiments. The results indicated that MEC (Microbial Electrolysis Cell) was useful and reliable for improving BTH wastewater treatment efficiency, enabling the microbiological reactor to more easily respond to the requirements of higher loading rate, which is meaningful for economic and efficient operation in future scale-up.
Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like
2014-06-01
Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.
An investigation on dry sliding wear behaviour of AA6061-AlNp composite
NASA Astrophysics Data System (ADS)
Mahesh Naidu, K.; Mohan Reddy, Chandra
2018-03-01
This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.
NASA Astrophysics Data System (ADS)
Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; Giangrande, Scott; Silva Dias, Maria A. F.; Cecchini, Micael A.; Albrecht, Rachel; Andreae, Meinrat O.; Araujo, Wagner F.; Artaxo, Paulo; Borrmann, Stephan; Braga, Ramon; Burleyson, Casey; Eichholz, Cristiano W.; Fan, Jiwen; Feng, Zhe; Fisch, Gilberto F.; Jensen, Michael P.; Martin, Scot T.; Pöschl, Ulrich; Pöhlker, Christopher; Pöhlker, Mira L.; Ribaud, Jean-François; Rosenfeld, Daniel; Saraiva, Jaci M. B.; Schumacher, Courtney; Thalman, Ryan; Walter, David; Wendisch, Manfred
2018-05-01
This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. This study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weighted mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.
Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.
Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin
2015-01-01
A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.
Evaluation of two polyimides and of an improved liner retention design for self-lubricating bushings
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1984-01-01
Two different polyimide polymers were studied and the effectiveness of a design feature to improve retention of the self lubricating composite liners under high load was evaluated. The basic bearing design consisted of a molded layer of chopped graphite-fiber-reinforced-polyimide (GFRP) composite bonded to the bore of a steel bushing. The friction, wear, and load carrying ability of the bushings were determined in oscillating tests at 25, 260 and 315 C at radial unit loads up to 260 MPa. Friction coefficients were typically 0.15 to 0.25. Bushings with liners containing a new partially fluorinated polymer were functional, but had a lower load capacity and higher wear rate than those containing a more conventional, high temperature polyimide. The liner retention design feature reduced the tendency of the liners to crack and work out of the contact zone under high oscillating loads.
Rotator Cuff Repair with a Tendon-Fibrocartilage-Bone Composite Bridging Patch
Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R.; Qu, Jin; An, Kai-Nan; Amadio, Peter C.; Steinmann, Scott P.; Zhao, Chunfeng
2015-01-01
Background To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Methods Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/sec. Findings The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). Interpretation The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch–greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. PMID:26190097
Rotator cuff repair with a tendon-fibrocartilage-bone composite bridging patch.
Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R; Qu, Jin; An, Kai-Nan; Amadio, Peter C; Steinmann, Scott P; Zhao, Chunfeng
2015-11-01
To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/s. The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch-greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cognitive Load Differentially Impacts Response Control in Girls and Boys with ADHD
Mostofsky, Stewart H.; Rosch, Keri S.
2015-01-01
Children with attention-deficit hyperactivity disorder (ADHD) consistently show impaired response control, including deficits in response inhibition and increased intrasubject variability (ISV) compared to typically-developing (TD) children. However, significantly less research has examined factors that may influence response control in individuals with ADHD, such as task or participant characteristics. The current study extends the literature by examining the impact of increasing cognitive demands on response control in a large sample of 81children with ADHD (40 girls) and 100 TD children (47 girls), ages 8–12 years. Participants completed a simple Go/No-Go (GNG) task with minimal cognitive demands, and a complex GNG task with increased cognitive load. Results showed that increasing cognitive load differentially impacted response control (commission error rate and tau, an ex-Gaussian measure of ISV) for girls, but not boys, with ADHD compared to same-sex TD children. Specifically, a sexually dimorphic pattern emerged such that boys with ADHD demonstrated higher commission error rate and tau on both the simple and complex GNG tasks as compared to TD boys, whereas girls with ADHD did not differ from TD girls on the simple GNG task, but showed higher commission error rate and tau on the complex GNG task. These findings suggest that task complexity influences response control in children with ADHD in a sexually dimorphic manner. The findings have substantive implications for the pathophysiology of ADHD in boys versus girls with ADHD. PMID:25624066
NASA Astrophysics Data System (ADS)
Azoumah, Y.; Yamegueu, D.; Py, X.
2012-02-01
Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.
Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating
NASA Astrophysics Data System (ADS)
Bagde, Pranay; Sapate, S. G.; Khatirkar, R. K.; Vashishtha, Nitesh; Tailor, Satish
2018-02-01
Cr2O3-25TiO2 coating was deposited by atmospheric plasma spray (APS) coating technique. Effect of load (5-30 N) and sliding velocity (0.25, 0.75 m s-1) on friction coefficient and abrasive wear behaviour of the Cr2O3-25TiO2 coating was studied. Mechanical and microstructural characterization of the Cr2O3-25TiO2 coating was carried out. With an increase in sliding velocity, abrasive wear rate and friction coefficient (COF) decreased while wear rate and friction coefficient showed an increasing trend with the load. The worn out surfaces were analyzed by SEM, EDS and XRD. At lower sliding velocity, XRD analysis revealed peaks of Ti2O3, Ti3O5, CrO2 and CrO3. In addition, peak of Ti4O7 was also detected at higher sliding velocity and at 30 N load. At higher sliding velocity medium to severe tribo oxidation was observed. XPS analysis of worn surfaces at both the sliding velocities, showed surface film of oxides of titanium and chromium along with Cr(OH)3. Magneli phase titanium oxides with sub stoichiometric composition, along with surface films of chromium oxides and hydroxides altered the friction and wear behaviour of the coating. The decrease in friction coefficient with an increase in sliding velocity was attributed to tribo oxides and tribochemical reaction films having lower shear strength with good lubricating properties. The mechanism of material removal involved plastic deformation at lower load whereas inter-granular and trans-granular fracture, delamination cracking and splat fracture was observed with an increase load from 10 N to 30 N.
Coelho, N M; Rodrigues, A A; Arroja, L M; Capela, I F
2007-02-01
Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)). (c) 2006 Wiley Periodicals, Inc.
Navaratna, Dimuth; Shu, Li; Baskaran, Kanagaratnam; Jegatheesan, Veeriah
2012-06-01
A lab-scale membrane bioreactor (MBR) was used to remove Ametryn from synthetic wastewater. It was found that concentrations of MLSS and extra-cellular polymeric substances (EPS) in MBR mixed liquor fluctuated (production and decay) differently for about 40 days (transition period) after the introduction of Ametryn. During the subsequent operations with higher organic loading rates, it was also found that a low net biomass yield (higher death rate) and a higher rate of fouling of membrane (a very high rate during the first 48 h) due to increased levels of bound EPS (eEPS) in MBR mixed liquor. A mathematical model was developed to estimate the kinetic parameters before and after the introduction of Ametryn. This model will be useful in simulating the performance of a MBR treating Ametryn in terms of flux, rate of fouling (in terms of transmembrane pressure and membrane resistance) as well as treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Premixed Flame Propagation in an Optically Thick Gas
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; Ronney, Paul D.
1993-01-01
Flame propagation in both the optically thin and the optically thick regime of radiative transport was studied experimentally using particle-laden gas mixtures. Data on flame shapes, propagation rates, peak pressure, maximum rate of pressure rise, and thermal decay in the burned gases are consistent with the hypothesis that, at low particle loadings, the particles act to increase the radiative loss from the gases, whereas at higher loadings, reabsorption of emitted radiation becomes significant. The reabsorption acts to decrease the net radiative loss and augment conductive heat transport. It is speculated that, in sufficiently large systems, in which the absorption length is much smaller than the system size, flammability limits might not exist at microgravity conditions because emitted radiation would not constitute a loss mechanism.
Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude
2015-06-01
It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Tavakoli, J; Costi, J J
2018-04-15
While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM), its clinical relevance is not fully understood. Moreover, no studies have measured the direct tensile and shear failure and viscoelastic properties of the ILM. Therefore, the aim of this study was, for the first time, to measure the viscoelastic and failure properties of the ILM in both the tension and shear directions of loading. Using an ovine model, isolated ILM samples were stretched to 40% of their initial length at three strain rates of 0.1%s -1 (slow), 1%s -1 (medium) and 10%s -1 (fast) and a ramp test to failure was performed at a strain rate of 10%s -1 . The findings from this study identified that the stiffness of the ILM was significantly larger at faster strain rates, and energy absorption significantly smaller, compared to slower strain rates, and the viscoelastic and failure properties were not significantly different under tension and shear loading. We found a strain rate dependent response of the ILM during dynamic loading, particularly at the fastest rate. The ILM demonstrated a significantly higher capability for energy absorption at slow strain rates compared to medium and fast strain rates. A significant increase in modulus was found in both loading directions and all strain rates, having a trend of larger modulus in tension and at faster strain rates. The finding of no significant difference in failure properties in both loading directions, was consistent with our previous ultra-structural studies that revealed a well-organized (±45°) elastic fibre orientation in the ILM. The results from this study can be used to develop and validate finite element models of the AF at the tissue scale, as well as providing new strategies for fabricating tissue engineered scaffolds. While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM) of the annulus in the disc no studies have measured the direct mechanical failure and viscoelastic properties of the ILM. The findings from this study identified that the stiffness of the ILM was significantly larger at faster strain rates, and energy absorption significantly smaller, compared to slower strain rates. The failure properties of the ILM were not significantly different under tension and shear. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W
2017-02-01
Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loadings
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam; Turner, Travis L.
2011-01-01
This paper is a follow-on to recent work by the authors in which the response and high-cycle fatigue of a nonlinear structure subject to non-Gaussian loadings was found to vary markedly depending on the nature of the loading. There it was found that a non-Gaussian loading having a steady rate of short-duration, high-excursion peaks produced essentially the same response as would have been incurred by a Gaussian loading. In contrast, a non-Gaussian loading having the same kurtosis, but with bursts of high-excursion peaks was found to elicit a much greater response. This work is meant to answer the question of when consideration of a loading probability distribution other than Gaussian is important. The approach entailed nonlinear numerical simulation of a beam structure under Gaussian and non-Gaussian random excitations. Whether the structure responded in a Gaussian or non-Gaussian manner was determined by adherence to, or violations of, the Central Limit Theorem. Over a practical range of damping, it was found that the linear response to a non-Gaussian loading was Gaussian when the period of the system impulse response is much greater than the rate of peaks in the loading. Lower damping reduced the kurtosis, but only when the linear response was non-Gaussian. In the nonlinear regime, the response was found to be non-Gaussian for all loadings. The effect of a spring-hardening type of nonlinearity was found to limit extreme values and thereby lower the kurtosis relative to the linear response regime. In this case, lower damping gave rise to greater nonlinearity, resulting in lower kurtosis than a higher level of damping.
Ghorbani, Farnaz; Nojehdehian, Hanieh; Zamanian, Ali
2016-12-01
Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Financial dimensions of veterinary medical education: an economist's perspective.
Lloyd, James W
2013-01-01
Much discussion has transpired in recent years related to the rising cost of veterinary medical education and the increasing debt loads of graduating veterinarians. Underlying these trends are fundamental changes in the funding structure of higher education in general and of academic veterinary medicine specifically. As a result of the ongoing disinvestment by state governments in higher education, both tuition rates and academic programs have experienced a substantial impact across US colleges and schools of veterinary medicine. Programmatically, the effects have spanned the entire range of teaching, research, and service activities. For graduates, both across higher education and in veterinary medicine specifically, the impact has been steadily increasing levels of student debt. Although the situation is clearly worrisome, viable repayment options exist for these escalating debt loads. In combination with recent income and employment trends for veterinarians, these options provide a basis for cautious optimism for the future.
Cheng, Cheanyeh; Chang, Kuo-Chung
2013-12-10
Cellulase immobilized on silica through the assistance of l-cysteine functionalized gold nano-particle was applied for the continuous hydrolysis of waste bamboo chopsticks powder to produce glucose. The optimal conditions for the continuous hydrolysis were pH 8.0, 50°C. A 4-day reaction with an initial 0.3 gL⁻¹ waste bamboo chopsticks powder, a feed containing 0.2 gL⁻¹ waste bamboo chopsticks powder at a continuous feed and draw rate of 0.5 mLmin⁻¹, and an enzyme loading of 40 mgcellulase(gsilica)⁻¹, has 72.0-76.6% conversion rates of repeated hydrolyses that correspond to a total production of 630.5-671.2mg glucose and are much better than batch hydrolyses. At higher enzyme loading (117 mgcellulase(gsilica)⁻¹), higher initial concentration (0.5 gL⁻¹), and higher feed concentration (0.42 gL⁻¹) the conversion rate increases to 82.9% and a total amount of 1418 mgglucose. The immobilized cellulase can be recovered easily by filtration and used repeatedly at least 6 times over a period more than 90 days with a recovered activity approximately the same as or better than previous reactions. Thus the process is promising for scaling up. Copyright © 2013 Elsevier Inc. All rights reserved.
Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient.
Johansson, Otilia; Nordin, Annika; Olofsson, Johan; Palmqvist, Kristin
2010-12-01
Here, we examined the responses of the epiphytic lichens Alectoria sarmentosa and Platismatia glauca to increased atmospheric nitrogen (N) deposition in an old-growth boreal spruce forest, to assess the sensitivity of these species to N and define their critical N load. Nitrogen deposition was simulated by irrigating 15 trees over a 3 yr period with water and isotopically labeled NH(4)NO(3), providing N loads ranging from ambient to 50 kg N ha(-1) yr(-1) . Thallus N concentration increased in both species with increasing N load, and uptake rates of both NH(4)(+) and NO(3)(-) were similar. Photobiont concentration increased linearly with increased N in both species, saturating in A. sarmentosa in the third year at the highest N loads (25 and 50 kg ha(-1) yr(-1)). The simulated N deposition decreased the phosphorus (P) concentration in A. sarmentosa, and increased the N:P ratio in both species. Significant responses in lichen chemistry were detected to inputs of 12.5 kg N ha(-1) yr(-1) or higher, suggesting that resources other than N limit lichens at higher N loads. However, the data also suggest that N saturation may be cumulative over time, even at low N. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Lensch, D; Schaum, C; Cornel, P
2016-01-01
Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load.
Rural population survey of behavioral and demographic risk factors for loaded firearms
Nordstrom, D; Zwerling, C; Stromquist, A; Burmeister, L; Merchant, J
2001-01-01
Objectives—In the United States, firearm deaths are almost as frequent as motor vehicle deaths. Firearm unintentional and suicide death rates are raised in rural areas. This study examines firearm prevalence and storage practices in three different types of rural households. Methods—Adults from a stratified random sample of 983 households in a rural Iowa county were interviewed. The χ2 test of independence was used to assess association between loaded, unlocked firearms and seven behavioral and demographic risk factors. Results—Nearly 67% of respondents reported firearms in their households. Nearly 7% of households had a loaded, unlocked gun. Prevalence of firearms at home was higher while prevalence of loaded, unlocked guns was lower than reported in other surveys. Prevalence of loaded, unlocked guns in farm households, 10.5%, was about twice the level in town households, 5.5% (χ2 test, p=0.033). Having taken a gun safety course was associated with more than double the prevalence of a loaded, unlocked gun, 13.5% v 5.1% (χ2 test, p=0.001). The prevalence of loaded, unlocked guns in households with a handgun, 19.3%, was four and one half times higher than in households with a long gun only, 4.2% (χ2 test, p=0.001). Households with someone with a lifetime prevalence of alcohol abuse or dependence were about twice as likely as other households, 13.0% v 6.6% (χ2 test, p=0.004), to report having loaded, unlocked firearms. Conclusions—Anyone interested in promoting safe storage of firearms in rural homes should consider these observations. PMID:11428557
Analysis tool and methodology design for electronic vibration stress understanding and prediction
NASA Astrophysics Data System (ADS)
Hsieh, Sheng-Jen; Crane, Robert L.; Sathish, Shamachary
2005-03-01
The objectives of this research were to (1) understand the impact of vibration on electronic components under ultrasound excitation; (2) model the thermal profile presented under vibration stress; and (3) predict stress level given a thermal profile of an electronic component. Research tasks included: (1) retrofit of current ultrasonic/infrared nondestructive testing system with sensory devices for temperature readings; (2) design of software tool to process images acquired from the ultrasonic/infrared system; (3) developing hypotheses and conducting experiments; and (4) modeling and evaluation of electronic vibration stress levels using a neural network model. Results suggest that (1) an ultrasonic/infrared system can be used to mimic short burst high vibration loads for electronics components; (2) temperature readings for electronic components under vibration stress are consistent and repeatable; (3) as stress load and excitation time increase, temperature differences also increase; (4) components that are subjected to a relatively high pre-stress load, followed by a normal operating load, have a higher heating rate and lower cooling rate. These findings are based on grayscale changes in images captured during experimentation. Discriminating variables and a neural network model were designed to predict stress levels given temperature and/or grayscale readings. Preliminary results suggest a 15.3% error when using grayscale change rate and 12.8% error when using average heating rate within the neural network model. Data were obtained from a high stress point (the corner) of the chip.
Anaerobic biodegradation of aircraft deicing fluid in UASB reactors.
Tham, P T Pham thi; Kennedy, K J Kevin J
2004-05-01
A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions (0.8% 1.6% ADF (6000-12,000mg/L COD), 12-56h HRT, and 18-36gVSS/L) were conducted in continuous mode. The development of four empirical models describing process responses (i.e. COD removal efficiency, biomass-specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time, and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass-specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass-specific acetoclastic activity was improved two-fold from 0.23gCOD/gVSS/d for inoculum to a maximum of 0.55gCOD/gVSS/d during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. The predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate is increased. ADF toxicity effects were evident for 1.6% ADF at medium organic loadings (SOLR above 0.5gCOD/gVSS/d). In contrast, good reactor stability and excellent COD removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73gCOD/gVSS/d).
Force Generation in Single Conventional Actomyosin Complexes under High Dynamic Load
Takagi, Yasuharu; Homsher, Earl E.; Goldman, Yale E.; Shuman, Henry
2006-01-01
The mechanical load borne by a molecular motor affects its force, sliding distance, and its rate of energy transduction. The control of ATPase activity by the mechanical load on a muscle tunes its efficiency to the immediate task, increasing ATP hydrolysis as the power output increases at forces less than isometric (the Fenn effect) and suppressing ATP hydrolysis when the force is greater than isometric. In this work, we used a novel ‘isometric’ optical clamp to study the mechanics of myosin II molecules to detect the reaction steps that depend on the dynamic properties of the load. An actin filament suspended between two beads and held in separate optical traps is brought close to a surface that is sparsely coated with motor proteins on pedestals of silica beads. A feedback system increases the effective stiffness of the actin by clamping the force on one of the beads and moving the other bead electrooptically. Forces measured during actomyosin interactions are increased at higher effective stiffness. The results indicate that single myosin molecules transduce energy nearly as efficiently as whole muscle and that the mechanical control of the ATP hydrolysis rate is in part exerted by reversal of the force-generating actomyosin transition under high load without net utilization of ATP. PMID:16326899
Daily accumulation rates of marine debris on sub-Antarctic island beaches.
Eriksson, Cecilia; Burton, Harry; Fitch, Stuart; Schulz, Martin; van den Hoff, John
2013-01-15
The worlds' oceans contain a large but unknown amount of plastic debris. We made daily collections of marine debris stranded at two sub-Antarctic islands to establish (a) physical causes of strandings, and (b) a sampling protocol to better estimate the oceans' plastic loading. Accumulation rates at some beaches were dependent on tide and onshore winds. Most of the 6389 items collected were plastic (Macquarie 95%, Heard 94%) and discarded or lost fishing gear comprised 22% of those plastic items. Stalked barnacles (Lepas spp.) were a regular attachment on Macquarie debris but not at Heard Island. The daily accumulation rate of plastic debris on Macquarie Island was an order of magnitude higher than that estimated from monthly surveys during the same 4 months in the previous 5 years. This finding suggests that estimates of the oceans' plastic loading are an order of magnitude too low. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongdong, E-mail: lidongchem@sina.cn; Zhu, Yuntao; Liang, Zhiqiang
Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/releasemore » properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.« less
High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading
NASA Astrophysics Data System (ADS)
Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.
2012-05-01
This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.
Increased Resistance during Jump Exercise Does Not Enhance Cortical Bone Formation
Boudreaux, Ramon D.; Swift, Joshua M.; Gasier, Heath G.; Wiggs, Michael P.; Hogan, Harry A.; Fluckey, James D.; Bloomfield, Susan A.
2014-01-01
PURPOSE This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. METHODS Sprague-Dawley rats (male, 6-mos-old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15) or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 weeks. Load in the HRE group was progressively increased from 80g added to a weighted vest (50 repetitions) to 410g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions) with only a 30g vest applied. RESULTS Low- and high-load jump RE resulted in 6–11% higher cortical bone mineral content (BMC) and cortical bone area compared to controls as determined by in vivo pQCT measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (vBMD; +11%) and cross-sectional moment of inertia (CSMI; +20%) versus CC group. Three-point bending to failure revealed a marked increase in tibial max force (25–29%), stiffness (19–22%), and energy to max force (35–55%), and a reduction in elastic modulus (−11–14%) in both LRE and HRE compared to controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20–30% higher periosteal mineralizing surface versus CC group. Mineral apposition rate (MAR) and bone formation rate (BFR) were significantly greater in LRE animals (27%, 39%) than in the HRE group. CONCLUSION These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared to overload training in skeletally mature rats. PMID:24743108
Stolworthy, Dean K; Zirbel, Shannon A; Howell, Larry L; Samuels, Marina; Bowden, Anton E
2014-05-01
The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified temperature, and a scaling parameter. A Bland-Altman analysis showed high coefficients of determination for the predictive model. The present work demonstrates significant changes in spine segment flexibility as a result of loading rate and testing temperature. Loading rate effects can be accounted for using the predictive model, which accurately estimated ROM, neutral zone, stiffness, and hysteresis within the range of voluntary motion. Copyright © 2014 Elsevier Inc. All rights reserved.
Allostatic load and socioeconomic status in Polish adult men.
Lipowicz, Anna; Szklarska, Alicja; Malina, Robert M
2014-03-01
This study considers the relationship between a cumulative index of biological dysregulation (allostatic load) and several dimensions of socioeconomic status (SES) and lifestyle in adult Polish males. The extent to which lifestyle variables can explain SES variation in allostatic load was also evaluated. Participants were 3887 occupationally active men aged 25-60 years living in cities and villages in the Silesia region of Poland. The allostatic load indicator included eleven markers: % fat (adverse nutritional intake), systolic and diastolic blood pressures (cardiovascular activity), FEV1 (lung function), erythrocyte sedimentation rate (inflammatory processes), glucose and total cholesterol (cardiovascular disease risk), total plasma protein (stress-haemoconcentration), bilirubin, creatinine clearance and alkaline phosphatase activity (hepatic and renal functions). A higher level of completed education, being married and residing in an urban area were associated with lower physiological dysregulation. The association between indicators of SES and allostatic load was not eliminated or attenuated when unhealthy lifestyle variables were included in the model. Smoking status and alcohol consumption played minimal roles in explaining the association between SES and allostatic load; physical activity, however, had a generally protective effect on allostatic load.
Injuries And Footwear (Part 2): Minimalist Running Shoes.
Knapik, Joseph J; Orr, Robin; Pope, Rodney; Grier, Tyson
2016-01-01
This article defines minimalist running shoes and examines physiological, biomechanical, and injury rate differences when running in conventional versus minimalist running shoes. A minimalist shoe is one that provides "minimal interference with the natural movement of the foot, because of its high flexibility, low heel to toe drop, weight and stack height, and the absence of motion control and stability devices." Most studies indicate that running in minimalist shoes results in a lower physiological energy cost than running in conventional shoes, likely because of the lower weight of the minimalist shoe. Most individuals running in conventional shoes impact the ground heel first (rearfoot strike pattern), whereas most people running in minimalist shoes tend to strike with the front of the foot (forefoot strike pattern). The rate at which force is developed on ground impact (i.e., the loading rate) is generally higher when running in conventional versus minimalist shoes. Findings from studies that have looked at associations between injuries and foot strike patterns or injuries and loading rates are conflicting, so it is not clear if these factors influence injury rates; more research is needed. Better-designed prospective studies indicate that bone stress injuries and the overall injury incidence are higher in minimalist shoes during the early weeks (10-12 weeks) of transition to this type of footwear. Longer-term studies are needed to define injury rates once runners are fully transitioned to minimalist shoes. At least one longer-term minimalist-shoe investigation is ongoing and, hopefully, will be published soon. 2016.
Vanagas, Giedrius; Bihari-Axelsson, Susanna
2004-12-07
It is widely recognized and accepted that job strain adversely impacts the workforce. Individual responses to stressful situations can vary greatly and it has been shown that certain people are more likely to experience high levels of stress in their job than others. Studies highlighted that there can be age differences in job strain perception. Cross-sectional postal survey of 300 Lithuanian general practitioners. Psychosocial stress was investigated with a questionnaire based on the Reeder scale. Job demands were investigated with the Karasek scale. The analysis included descriptive statistics; logistic regression beta coefficients to find out predictors and interactions between characteristics and predictors. Response rate was 66% (N = 197). Logistic regression as significant predictors for job strain assigned - duration of work in primary care; for job demands- age and duration of working in primary care; for decision latitude- age and patient load.The interactions with regard to job strain showed that GP's age and job strain are negatively associated to a low patient load. Lower decision latitude for older GP age is strongly related to higher patient load. Job demands and GP age are slightly positively related at low patient load. Lithuanian GP's have high patient load and are at risk of stress, they have high job demands and low decision latitude. Older GP's perceive less strain, lower job demands and higher decision latitude in case of low patient load. Young GP's decision latitude has week association to patient load. Regarding to the changes in patient load younger GP's perceive it more sensitively as changes in job demands.
NASA Astrophysics Data System (ADS)
Chaouadi, R.
2008-01-01
This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.
Effect of Food Waste Co-Digestion on Digestion, Dewatering, and Cake Quality.
Higgins, Matthew; Rajagopalan, Ganesh; Miller, Andre; Brown, Jeffrey; Beightol, Steven
2017-01-01
The objective of this study was to evaluate the effect of food waste addition on anaerobic digestion performance as well as downstream parameters including dewatering, cake quality, and filtrate quality. Laboratory-scale digesters were fed processed food waste at rates of 25%, 45%, and 65% increased chemical oxygen demand (COD) loading rates compared to a control fed only primary and secondary solids. The specific methane yield increased from 370 L CH4/kg VSadded for the control to 410, 440, and 470 L CH4/kg VSadded for the 25, 45, and 65% food waste addition, respectively. The cake solids after dewatering were all higher for the food waste digesters compared to the control, with the highest cake solids being measured for the 45% food-waste loading. Compared to the control digester, the biosolids odorant concentration increased for the lowest dose of food waste. Odorant concentrations were below detection for the highest food waste loading.
Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M
2006-02-01
Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p < 0.05). The ultimate tensile load was significantly higher for double-row fixation (287 +/- 24 N) than for all of the single-row fixations (p < 0.05). Additionally, the massive cuff stitch (250 +/- 21 N) was found to have a significantly higher ultimate tensile load than the two-simple (191 +/- 18 N) and arthroscopic Mason-Allen (212 +/- 21 N) stitches (p < 0.05). No significant differences in stiffness were found among the stitches. Failure mechanisms were similar for all stitches. Rotator cuff repairs in the anterior half of the greater tuberosity had a significantly lower peak-to-peak elongation and higher ultimate tensile strength than did repairs on the posterior half. In this in vitro cadaver study, double-row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.
2012-01-01
Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. Two expanded granular sludge bed (EGSB) reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE) results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars uptake, hydrogen production and yield were higher than at pH 5.5, with both arabinose and glucose as substrates. PMID:22330180
Mondragão, Miguel A; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W; Rose, Christine R
2016-10-01
Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons
Mondragão, Miguel A.; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W.
2016-01-01
Key points Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity.Recovery from global sodium loads critically relies on Na+/K+‐ATPase and an intact energy metabolism in both somata and dendrites.For recovery from local sodium loads in dendrites, Na+/K+‐ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10‐fold higher than for global sodium signals.Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non‐stimulated regions strongly reduces local energy requirements. Abstract Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage‐ and ligand‐activated channels. Recovery from resulting sodium transients has mainly been attributed to Na+/K+‐ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole‐cell patch‐clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min−1 (∼0.03 mm min−1 μm−2). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10‐fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion‐based fast dissemination to non‐stimulated regions might reduce local energy requirements. PMID:27080107
Early hepatitis B viral DNA clearance predicts treatment response at week 96
Fu, Xiao-Yu; Tan, De-Ming; Liu, Cui-Mei; Gu, Bin; Hu, Li-Hua; Peng, Zhong-Tian; Chen, Bin; Xie, Yuan-Lin; Gong, Huan-Yu; Hu, Xiao-Xuan; Yao, Lian-Hui; Xu, Xiao-Ping; Fu, Zheng-Yuan; He, Lang-Qiu; Li, Si-Hai; Long, Yun-Zhu; Li, De-Hui; Gu, Ji-Long; Peng, Shi-Fang
2017-01-01
AIM To investigate whether hepatitis viral DNA load at 24 wk of treatment predicts response at 96 wk in patients with chronic hepatitis B. METHODS A total of 172 hepatitis B envelope antigen (HBeAg)-positive chronic hepatitis B patients who received initial treatment at 16 tertiary hospitals in Hunan Province, China were enrolled in this study. All patients received conventional doses of lamivudine and adefovir dipivoxil, telbivudine, entecavir dispersible tablets, or entecavir tablets for 96 wk. Patients who used other antiviral drugs or antitumor and immune regulation therapy were excluded. Patients were stratified into three groups according to their viral DNA load at 24 wk: < 10 IU/mL (group 1), 10-103 IU/mL (group 2), and > 103 IU/mL (group 3). Correlations of 24-wk DNA load with HBeAg negative status and HBeAg seroconversion at 96 wk were analyzed. Receiver operating characteristic curve analysis was used to test the predictive value of the HBV DNA load at 24 wk for long-term response. RESULTS The rates of conversion to HBeAg negative status and HBeAg seroconversion rates were 53.7% and 51.9%, respectively, in group 1; 35.21% and 32.39% in group 2; and 6.38% and 6.38% in group 3. The receiver operating characteristic curves for the three subgroups revealed that the lowest DNA load (< 10 IU/mL) was better correlated with response at 96 wk than a higher DNA load (10-103 IU/mL). Nested PCR was used for amplifying and sequencing viral DNA in patients with a viral DNA load > 200 IU/mL at 96 wk; resistance mutations involving different loci were present in 26 patients, and three of these patients had a viral DNA load 10-103 IU/mL at 96 wk. CONCLUSION Hepatitis B viral DNA load at 24 wk of antiviral treatment in patients with chronic hepatitis B is a predictor of the viral load and response rate at 96 wk. PMID:28522916
Il'chemko, I N; Tubol, I B; Shal'nova, S A; Zinenko, G M; Likov, A F
1983-01-01
In a cross-sectional epidemiologic study of schoolchildren aged 11-17 years, the cardiac work index at exercise was found to be higher in schoolchildren with arterial hypertension (AH) and excess body weight than in the control group. The duration of an exercise test was similar in the two groups. The higher cardiac work index at exercise may be explained by considerably higher systolic blood pressure in schoolchildren with AH and by higher heart rates in those with excess body weight.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations.
Germain, E; Bancroft, L; Dawson, A; Hinrichs, C; Fricker, L; Pearce, P
2007-01-01
An integrated fixed-film activated sludge (IFAS) pilot plant and a moving bed biofilm reactor coupled with an activated sludge process (MBBR/AS) were operated under different temperatures, carbon loadings and solids retention times (SRTs). These two types of hybrid systems were compared, focusing on the nitrification capacity and the nitrifiers population of the media and suspended biomass alongside other process performances such as carbonaceous and total nitrogen (TN) removal rates. At high temperatures and loadings rates, both processes were fully nitrifying and achieved similarly high carbonaceous removal rates. However, under these conditions, the IFAS configuration performed better in terms of TN removal. Lower temperatures and carbon loadings led to lower carbonaceous removal rates for the MBBR/AS configuration, whereas the IFAS configuration was not affected. However, the nitrification capacity of the IFAS process decreased significantly under these conditions and the MBBR/AS process was more robust in terms of nitrification. Ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) population counts accurately reflected the changes in nitrification capacity. However, significantly less NOBs than AOBs were observed, without noticeable nitrite accumulation, suggesting that the characterisation method used was not as sensitive for NOBs and/or that the NOBs had a higher activity than the AOBs.
NASA Astrophysics Data System (ADS)
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-11-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-01-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885
Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A
2014-11-04
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
Sokić, D; Janković, S M
1994-01-01
Over a period of nine months twenty-five epileptic patients were treated with the oral loading dose of phenytoin. The dose ranged from 12 to 23 mg/kg body weight during 1 to 12 hours. In 20 patients with serial seizures or intolerance to other antiepileptic drugs this treatment was effective. Seizures also stopped in 2 of 4 patients with serial partial motor seizures. These 2 patients required both higher loading dose and faster rate of administration than the other patients. A patient with epilepsia partialis continua failed to respond to the treatment. Patients that received phenytoin through the naso-gastric tube, in respect to oral administration, required higher doses to obtain therapeutic plasma levels of phenytoin. One patient had mild nausea, 3 mild dizziness, and 1 tinitus on the first day of the treatment. There was no correlation between a given dose and the achieved phenytoin plasma levels. In our opinion the therapy with oral loading dose of phenytoin is highly effective in the treatment of serial generalized seizures and rapid antiepileptic drug substitution, and partially effective in the prevention of partial motor seizures. It produces only mild and transient side-effects.
NASA Astrophysics Data System (ADS)
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
NASA Astrophysics Data System (ADS)
Qazi, N. U. Q.; Bruijnzeel, S., Sr.; Rai, S. P., Sr.
2015-12-01
Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bedload) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and streamflow and showed a 10-63 fold range between wet and dry years. Of the annual load, some 93% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 1.9-fold (suspended sediment) to 5.9-fold (bedload) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.6 times and 4.6 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.69 and 1.04 mm per 1000 years, respectively.
Impact of HLA Selection Pressure on HIV Fitness at a Population Level in Mexico and Barbados
Payne, Rebecca; Soto-Nava, Maribel; Avila-Rios, Santiago; Valenzuela-Ponce, Humberto; Adland, Emily; Leitman, Ellen; Brener, Jacqui; Muenchhoff, Maximilian; Branch, Songee; Landis, Clive; Reyes-Teran, Gustavo; Goulder, Philip
2014-01-01
ABSTRACT Previous studies have demonstrated that effective cytotoxic T lymphocyte (CTL) responses drive the selection of escape mutations that reduce viral replication capacity (VRC). Escape mutations, including those with reduced VRC, can be transmitted and accumulate in a population. Here we compared two antiretroviral therapy (ART)-naive HIV clade B-infected cohorts, in Mexico and Barbados, in which the most protective HLA alleles (HLA-B*27/57/58:01/81:01) are differentially expressed, at 8% and 34%, respectively. Viral loads were significantly higher in Mexico than in Barbados (median, 40,774 versus 14,200; P < 0.0001), and absolute CD4+ T-cell counts were somewhat lower (median, 380/mm3 versus 403/mm3; P = 0.007). We tested the hypothesis that the disparate frequencies of these protective HLA alleles would be associated with a higher VRC at the population level in Mexico. Analysis of VRC in subjects in each cohort, matched for CD4+ T-cell count, revealed that the VRC was indeed higher in the Mexican cohort (mean, 1.13 versus 1.03; P = 0.0025). Although CD4 counts were matched, viral loads remained significantly higher in the Mexican subjects (P = 0.04). This VRC difference was reflected by a significantly higher frequency in the Barbados cohort of HLA-B*27/57/58:01/81:01-associated Gag escape mutations previously shown to incur a fitness cost on the virus (P = 0.004), a difference between the two cohorts that remained statistically significant even in subjects not expressing these protective alleles (P = 0.01). These data suggest that viral set points and disease progression rates at the population level may be significantly influenced by the prevalence of protective HLA alleles such as HLA-B*27/57/58:01/81:01 and that CD4 count-based guidelines to initiate antiretroviral therapy may need to be modified accordingly, to optimize the effectiveness of treatment-for-prevention strategies and reduce HIV transmission rates to the absolute minimum. IMPORTANCE Immune control of HIV at an individual level is strongly influenced by the HLA class I genotype. HLA class I molecules mediating effective immune control, such as HLA-B*27 and HLA-B*57, are associated with the selection of escape mutants that reduce viral replicative capacity. The escape mutants selected in infected patients can be transmitted and affect the viral load and CD4 count in the recipient. These findings prompt the hypothesis that the frequency of protective alleles in a population may affect viral set points and rates of disease progression in that population. These studies in Mexico and Barbados, where the prevalence rates of protective HLA alleles are 8% and 34%, respectively, support this hypothesis. These data suggest that antiretroviral therapy (ART) treatment-for-prevention strategies will be less successful in populations such as those in Mexico, where viral loads are higher for a given CD4 count. Consideration may therefore usefully be given to ART initiation at higher absolute CD4 counts in such populations to optimize the impact of ART for prevention. PMID:25008926
Impact of HLA selection pressure on HIV fitness at a population level in Mexico and Barbados.
Juarez-Molina, Claudia I; Payne, Rebecca; Soto-Nava, Maribel; Avila-Rios, Santiago; Valenzuela-Ponce, Humberto; Adland, Emily; Leitman, Ellen; Brener, Jacqui; Muenchhoff, Maximilian; Branch, Songee; Landis, Clive; Reyes-Teran, Gustavo; Goulder, Philip
2014-09-01
Previous studies have demonstrated that effective cytotoxic T lymphocyte (CTL) responses drive the selection of escape mutations that reduce viral replication capacity (VRC). Escape mutations, including those with reduced VRC, can be transmitted and accumulate in a population. Here we compared two antiretroviral therapy (ART)-naive HIV clade B-infected cohorts, in Mexico and Barbados, in which the most protective HLA alleles (HLA-B*27/57/58:01/81:01) are differentially expressed, at 8% and 34%, respectively. Viral loads were significantly higher in Mexico than in Barbados (median, 40,774 versus 14,200; P < 0.0001), and absolute CD4(+) T-cell counts were somewhat lower (median, 380/mm(3) versus 403/mm(3); P = 0.007). We tested the hypothesis that the disparate frequencies of these protective HLA alleles would be associated with a higher VRC at the population level in Mexico. Analysis of VRC in subjects in each cohort, matched for CD4(+) T-cell count, revealed that the VRC was indeed higher in the Mexican cohort (mean, 1.13 versus 1.03; P = 0.0025). Although CD4 counts were matched, viral loads remained significantly higher in the Mexican subjects (P = 0.04). This VRC difference was reflected by a significantly higher frequency in the Barbados cohort of HLA-B*27/57/58:01/81:01-associated Gag escape mutations previously shown to incur a fitness cost on the virus (P = 0.004), a difference between the two cohorts that remained statistically significant even in subjects not expressing these protective alleles (P = 0.01). These data suggest that viral set points and disease progression rates at the population level may be significantly influenced by the prevalence of protective HLA alleles such as HLA-B*27/57/58:01/81:01 and that CD4 count-based guidelines to initiate antiretroviral therapy may need to be modified accordingly, to optimize the effectiveness of treatment-for-prevention strategies and reduce HIV transmission rates to the absolute minimum. Immune control of HIV at an individual level is strongly influenced by the HLA class I genotype. HLA class I molecules mediating effective immune control, such as HLA-B*27 and HLA-B*57, are associated with the selection of escape mutants that reduce viral replicative capacity. The escape mutants selected in infected patients can be transmitted and affect the viral load and CD4 count in the recipient. These findings prompt the hypothesis that the frequency of protective alleles in a population may affect viral set points and rates of disease progression in that population. These studies in Mexico and Barbados, where the prevalence rates of protective HLA alleles are 8% and 34%, respectively, support this hypothesis. These data suggest that antiretroviral therapy (ART) treatment-for-prevention strategies will be less successful in populations such as those in Mexico, where viral loads are higher for a given CD4 count. Consideration may therefore usefully be given to ART initiation at higher absolute CD4 counts in such populations to optimize the impact of ART for prevention. Copyright © 2014 Juarez-Molina et al.
Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games.
Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier
2018-06-01
The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles.
Barratt, Paul A; Selfe, James
2018-06-01
To improve outcomes of physiotherapy treatment for patients with Lateral Epicondylalgia. A systematic audit and quality improvement project over three phases, each of one year duration. Salford Royal NHS Foundation Trust Teaching Hospital Musculoskeletal Physiotherapy out-patients department. n=182. Phase one - individual discretion; Phase two - strengthening as a core treatment however individual discretion regarding prescription and implementation; Phase three - standardised protocol using high load isometric exercise, progressing on to slow combined concentric & eccentric strengthening. Global Rating of Change Scale, Pain-free grip strength, Patient Rated Tennis Elbow Evaluation, Tampa Scale of Kinesophobia-11. Phase three demonstrated a reduction in the average number of treatments by 42% whilst improving the number of responders to treatment by 8% compared to phase one. Complete cessation of non-evidence based treatments was also observed by phase three. Strengthening should be a core treatment for LE. Load setting needs to be sufficient. In phase three of the audit a standardised tendon loading programme using patient specific high load isometric exercises into discomfort/pain demonstrated a higher percentage of responders compared to previous phases. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Monitoring external and internal loads of brazilian soccer referees during official matches.
Costa, Eduardo C; Vieira, Caio M A; Moreira, Alexandre; Ugrinowitsch, Carlos; Castagna, Carlo; Aoki, Marcelo S
2013-01-01
This study aimed to assess the external and internal loads of Brazilian soccer referees during official matches. A total of 11 field referees (aged 36.2 ± 7.5 years) were monitored during 35 matches. The external (distance covered, mean and maximal speed) and internal load parameters (session ratings of perceived exertion [RPE] training load [TL], Edwards' TL, and time spent in different heart rate [HR] zones) were assessed in 3-4 matches per referee. External load parameters were measured using a wrist Global Positioning System (GPS) receiver. No differences in distance covered (5.219 ± 205 vs. 5.230 ± 237 m) and maximal speed (19.3 ± 1.0 vs. 19.4 ± 1.4 km·h(-1)) were observed between the halves of the matches (p > 0.05). However, the mean speed was higher in the first half of the matches (6.6 ± 0.4 vs. 6.4 ± 0.3 km·h(-1)) (p < 0.05) than in the second half. The mean HR during the matches was ~89% of HRmax. In ~95% of the matches, the referees demonstrated a HR ≥ 80% of HRmax. Nonetheless, the time spent at 90-100% of HRmax was higher in the first half (59.9 vs. 52.3%) (p < 0.05). Significant correlations between session RPE TL and distance covered at 90-100% of HRmax (r = 0.62) and session RPE TL and maximal speed (r = 0.54) (p < 0.05) were noted. Furthermore, there was a positive correlation between session RPE TL and Edwards' TL (r = 0.61) (p < 0.05). Brazilian soccer referees demonstrated high external and internal load demands during official matches. The portable GPS/HR monitors and session RPE method can provide relevant information regarding the magnitude of the physiological strain during official matches. Key PointsHigh external and internal loads were imposed on Brazilian soccer referees during official matches.There was a high positive correlation between a subjective marker of internal load (session RPE) and parameters of external load (distance covered between 90-100% of HRmax and maximal speed).There was a high positive correlation between session RPE method and Edwards' method.Session RPE seems to be a reliable marker of internal load.The portable GPS/HR monitors and the session RPE method can provide relevant information regarding the magnitude of external and internal loads of soccer referees during official matches.
NASA Technical Reports Server (NTRS)
French, K. W., Jr.
1986-01-01
This work traces the response of a granular material via the Ten Coefficient Truesdell rate-type constituitive model into the simplest meaningful loading: the triaxial test configuration. A functional relation has been posed for computing the rather peculiar relation between average applied stress and average porosity. Using that relation an attack has been mounted on the dilemma that exists between dynamic and constitutive use of the pressure variable; that is relating dynamic pressure, thermodynamic pressure, stress deviator and higher stress invariants. The resolution was as a linear superposition with a one-way feedback, in that while the dynamic component could not effect the constituitive component, the converse was not true since density appears in the momentum transport relation.
The simultaneous saccharification and fermentation of pretreated woody crops to ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, D.D.; Wyman, C.E.; Grohmann, K.
1991-12-31
Four promising woody crops (Populus maximowiczii x nigra (NE388), P. trichocarpa x deltoides (N11), P. tremuloides, and Sweetgum Liquidambar styraciflua) were pretreated by dilute sulfuric acid and evaluated in the simultaneous saccharification and fermentation (SSF) process for ethanol production. The yeast Saccharomyces cerevisiae was used in the fermentations alone, and in mixed cultures with {beta}-glucosidase producing Brettanomyces clausenii. Commercial Genencor 150L cellulose enyme was either employed alone or supplemented with {beta}-glucosidase. All SSFs were run at 37{degrees}C for 8 d and compared to saccharifications at 45{degrees}C under the same enzyme loadings. S. cerevisiae alone achieved the highest ethanol yields andmore » rates of hydrolysis at the higher enzyme loadings, whereas the mixed culture performed better at the lower enzyme loadings without {beta}-glucosidase supplementation. The best overall rates of fermentation (3 d) and final theoretical ethanol yields (86-90%) were achieved with P. maximowiczii x nigra (NE388) and Sweetgum Liquidambar styraciflua, followed by P. tremuloides and P. trichocarpa x deltoides (N11) with slightly slower rates and lower yields. Although there were some differences in SSF performance, all these pretreated woody crops show promise as substrates for ethanol production.« less
Kettler, Annette; Bushelow, Michael; Wilke, Hans-Joachim
2012-06-01
Pre-clinical wear testing of intervertebral disc prostheses is commonly carried out according to ISO 18192-1. Ten million multiaxial loading cycles are applied at a frequency of 1 Hz. At this frequency, testing takes about 4 months. Testing at higher frequencies would therefore be desirable. ISO 18192-1 also offers testing at 2 Hz; however, it says the impact on the implant material behaviour as well as on the accuracy of the test machine shall be investigated by the user. Since such data are not available so far, the aim of this study was to carry out comparative wear tests at 1 and 2 Hz. Seven Prodisc-L lumbar disc prostheses were tested. After a pre-soak period, the implants were placed in specimen cups filled with calf serum, mounted to a Spine Wear Simulator and loaded according to ISO 18192-1. Testing was carried out at a temperature of 37 ± 2 °C. Four million loading cycles were applied at 1 Hz and eight million at 2 Hz in an alternating sequence. Each time after 12 days of testing the implants were removed to measure the weight and the height of the polyethylene cores. Then, the test serum was exchanged and the implants were remounted to the testing machine. The mean wear rate was 5.6 ± 2.3 mg per million cycles at 1 Hz and 7.7 ± 1.6 mg per million cycles at 2 Hz during the first six million loading cycles (p < 0.05) and 2.0 ± 0.6 and 4.1 ± 0.7 mg per million cycles during the second six million cycles (p < 0.05). Similarly, the mean heightloss was also smaller at 1 Hz than at 2 Hz (p < 0.05) with -0.02 ± 0.02 mm versus -0.04 ± 0.02 mm per million cycles during the first half of testing and -0.01 ± 0.01 versus -0.02 ± 0.01 mm per million cycles during the second half. The accuracy of the test machine was within the limits described by ISO 18192-1 at both frequencies. The results showed that the wear rate was higher at the beginning than at the end of testing. Also, the results indicated that testing at 2 Hz increases the wear rate compared with 1 Hz in case of a polyethylene-on-metal implant design. In the absence of retrieval studies it is difficult to decide which rate results in a more physiological wear pattern. However, a loading frequency of 1 Hz is probably closer to physiology than 2 Hz since the loading amplitudes prescribed by ISO 18192-1 are high. They rather represent movements like tying shoes or standing up from a chair than walking or sitting. The authors therefore suggest testing at 1 Hz.
NASA Astrophysics Data System (ADS)
Jelani, Mohsan; Li, Zewen; Shen, Zhonghua; Sardar, Maryam; Tabassum, Aasma
2017-05-01
The present work reports the investigation of the thermal and mechanical behaviour of aluminium alloys under the combined action of tensile loading and laser irradiations. The two types of aluminium alloys (Al-1060 and Al-6061) are used for the experiments. The continuous wave Ytterbium fibre laser (wavelength 1080 nm) was employed as irradiation source, while tensile loading was provided by tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution and on deformation behaviour of aluminium alloys are analysed. The experimental results represents the significant reduction in failure time and temperature for higher laser powers and for high load values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behaviour of under tested materials is also investigated. This work suggests that, studies considering only combined loading are not enough to fully understand the mechanical behaviour of under tested materials. For complete characterization, one must consider the effect of heating as well as loading rate.
Effect of high strain rates on peak stress in a Zr-based bulk metallic glass
NASA Astrophysics Data System (ADS)
Sunny, George; Yuan, Fuping; Prakash, Vikas; Lewandowski, John
2008-11-01
The mechanical behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 102-105/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 105/s.
Impacts of fertilization on water quality of a drained pine plantation: a worst case scenario.
Beltran, Bray J; Amatya, Devendra M; Youssef, Mohamed; Jones, Martin; Callahan, Timothy J; Skaggs, R Wayne; Nettles, Jami E
2010-01-01
Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North Carolina using a paired watershed approach. The plantation consists of three watersheds, two mature (31-yr) and one young (8-yr) (age at treatment). One of the mature watersheds was commercially thinned in 2002. The mature unthinned watershed was designated as the control. The young and mature-thinned watersheds were fertilized at different rates with Arborite (Encee Chemical Sales, Inc., Bridgeton, NC), and boron. The outflow rates and nutrient concentrations in water drained from each of the watersheds were measured. Nutrient concentrations and loadings were analyzed using general linear models (GLM). Three large storm events occurred within 47 d of fertilization, which provided a worst case scenario for nutrient export from these watersheds to the receiving surface waters. Results showed that average nutrient concentrations soon after fertilization were significantly (alpha = 0.05) higher on both treatment watersheds than during any other period during the study. This increase in nutrient export was short lived and nutrient concentrations and loadings were back to prefertilization levels as soon as 3 mo after fertilization. Additionally, the mature-thinned watershed presented higher average nutrient concentrations and loadings when compared to the young watershed, which received a reduced fertilizer rate than the mature-thinned watershed.
Sex-based differences in knee ligament biomechanics during robotically simulated athletic tasks.
Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E
2016-06-14
ACL injury rates are greater in female athletes than their male counterparts. As female athletes are at increased risk, it is important to understand the underlying mechanics that contribute to this sex bias. The purpose of this investigation was to employ a robotic manipulator to simulate male and female kinematics from athletic tasks on cadaveric specimens and identify sex-based mechanical differences relative to the ACL loading. It was hypothesized that simulations of female motion would generate the higher loads and ligament strains associated with in vivo ACL injury risk than simulations of male motion. A 6-degree-of-freedom robotic manipulator articulated cadaveric lower extremity specimens from 12 donors through simulations of in vivo kinematics recorded from male and female athletic tasks. Simulation of female kinematics exhibited lower peak lateral joint force during the drop vertical jump and lower peak anterior and lateral joint force and external joint torque during the sidestep cut (P<0.05). Peak ACL strain during a drop vertical jump was 6.27% and 6.61% for the female and male kinematic simulations, respectively (P=0.86). Peak ACL strain during a sidestep cut was 4.33% and 7.57% for female and male kinematic simulations respectively (P=0.21). For the tasks simulated, the sex-based loading and strain differences identified were unlikely to have a significant bearing on the increased rate of ACL injures observed in female athletes. Additional perturbation may be necessary to invoke the mechanisms that lead to higher rates of ACL injury in female populations. Copyright © 2016. Published by Elsevier Ltd.
The Medial Stitch in Transosseous-Equivalent Rotator Cuff Repair: Vertical or Horizontal Mattress?
Montanez, Anthony; Makarewich, Christopher A; Burks, Robert T; Henninger, Heath B
2016-09-01
Despite advances in surgical technique, rotator cuff repair retears continue to occur at rates of 10%, 22%, and 57% for small, medium, and large tears, respectively. A common mode of failure in transosseous-equivalent rotator cuff repairs is tissue pullout of the medial mattress stitch. While the medial mattress stitch has been studied extensively, no studies have evaluated a vertical mattress pattern placed near the musculotendinous junction in comparison with a horizontal mattress pattern. Vertical mattress stitches will have higher load to failure and lower gapping compared with horizontal mattress stitches in a transosseous-equivalent rotator cuff repair. Controlled laboratory study. Double-row transosseous-equivalent rotator cuff repairs were performed in 9 pairs of human male cadaveric shoulders (mean age ± SD, 58 ± 10 years). One shoulder in each pair received a medial-row suture pattern using a vertical mattress stitch, and the contralateral shoulder received a horizontal mattress. Specimens were mounted in a materials testing machine and tested in uniaxial tensile deformation for cyclic loading (500 cycles at 1 Hz to 1.0 MPa of effective stress), followed by failure testing carried out at a rate of 1 mm/s. Construct gapping and applied loads were monitored continuously throughout the testing. Vertical mattress sutures were placed in 5 right and 4 left shoulders. Peak cyclic gapping did not differ between vertical (mean ± SD, 2.8 ± 1.1 mm) and horizontal mattress specimens (3.0 ± 1.2 mm) (P = .684). Vertical mattress sutures failed at higher loads compared with horizontal mattress sutures (568.9 ± 140.3 vs 451.1 ± 174.3 N; P = .025); however, there was no significant difference in failure displacement (8.0 ± 1.6 vs 6.0 ± 2.1 mm; P = .092). Failure stiffness did not differ between the suture patterns (P = .204). In transosseous-equivalent rotator cuff repairs near the musculotendinous junction, a vertical mattress suture used as the medial stitch has a higher load to failure but no difference in gapping compared with a horizontal mattress pattern. A vertical mattress suture may offer enhanced strength of repair for transosseous-equivalent repairs. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soerensen, B.F.; Holmes, J.W.
The stress-strain behavior of a continuous-fiber-reinforced ceramic matrix composite has been measured over a wide range of loading rates (0.01 to 500 MPa/s). It was found that the loading rate has a strong effect on almost every feature of the stress-strain curve: the proportionality stress, the composite strength and failure strain increase with increasing loading rate. The microstructural damage varies also with the loading rate; with increasing loading rate, the average matrix crack spacing increases and the average fiber pullout length decreases. Using simple models, it is suggested that these phenomena are caused partly by time-dependent matrix cracking (due tomore » stress corrosion) and partly by an increasing interfacial shear stress with loading rate.« less
Ratings of perceived exertion by women with internal or external locus of control.
Hassmén, P; Koivula, N
1996-10-01
Ratings of perceived exertion are frequently used to estimate the strain and effort experienced subjectively by individuals during various forms of physical activity. A number of factors, both physiological and psychological in origin, have been suggested to work as modifiers of the exertion perceived by the individual. It has been reported in nonsport-related research that individuals with an internal locus of control seem to pay more attention to relevant information and use the available information more adequately than individuals with an external locus of control. The reputed inferior information-processing abilities of externals compared with internals could possibly also influence the ratings of perceived exertion, with externals being less accurate in their ratings. Whether locus of control might be such a factor was investigated. Fifty women worked on an ergometer cycle at four different work loads. The results showed statistically significant differences in subjective ratings of perceived exertion between externals and internals, especially at heavier work loads. Such differences might be because of unequal information-processing abilities, as the observed discrepancies occurred at higher work intensities, when more cues are available for processing.
Safety System for a Towed Array
2017-09-25
to a loss of life. [0006] The present way to prevent this failure involves the use of a handling system with a rated load that is higher than the...IN REPLY REFER TO Attorney Docket No . 300196 20...Technology Transfer at (401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited Attorney Docket No
Khatti, Zahra; Hashemianzadeh, Seyed Majid
2016-06-10
Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. Copyright © 2016 Elsevier B.V. All rights reserved.
Satyawali, Yamini; Balakrishnan, Malini
2009-10-15
This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.
Aeroheating Environments for a Mars Smart Lander
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Liechty, Derek S.; Hollis, Brian R.; Alter, Stephen J.; Loomis, Mark P.
2002-01-01
A proposed Mars Smart Lander is designed to reach the surface via lifting-body atmospheric entry (alpha = 16 deg) to within 10 km of the target site. CFD (computational fluid dynamics) predictions of the forebody aeroheating environments are given for a direct entry from a 2005 launch. The solutions were obtained using an 8-species gas in thermal and chemical nonequilibrium with a radiative-equilibrium wall temperature boundary condition. Select wind tunnel data are presented from tests at NASA Langley Research Center. Turbulence effects are included to account for both smooth body transition and turbulence due to heatshield penetrations. Natural transition is based on a momentum-thickness Reynolds number value of 200. The effects of heatshield penetrations on turbulence are estimated from wind tunnel tests of various cavity sizes and locations. Both natural transition and heatshield penetrations are predicted to cause turbulence prior to the nominal trajectory peak heating time. Laminar and turbulent CFD predictions along the trajectory are used to estimate heat rates and loads. The predicted peak turbulent heat rate of 63 W/sq cm on the heatshield leeward flank is 70% higher than the laminar peak. The maximum integrated heat load for a fully turbulent heat pulse is 38% higher than the laminar load on the heatshield nose. The predicted aeroheating environments with uncertainty factors will be used to design a thermal protection system.
Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; Park, Hee-Deung; Kim, Taek-Seung; Baquero-Rodriguez, G Andres; Olson, Betty H; Rosso, Diego
2018-10-15
Biofilm formation influences the most energy-demanding process in the waste water treatment cycle. Biofilm growth on the surface of wastewater aeration diffusers in water resource recovery facilities (WRRFs) can increase the energy requirements up to 50% in less than 2 years. The impact of biofilms in aeration diffusers was quantified and assessed for first time using molecular tools (i.e., Energy-dispersive X-ray, Ra and RMS and Pyrosequencing) and state-of-the-art techniques (i.e., EPS quantification, Hydrophobicity and DNA quantification). To provide a better understanding and quantitative connections between biological activity and aeration energy efficiency, two replicates of the most common diffusers were installed and tested in two different operational conditions (higher and lower organic loading rate processes) during 15 months. Different scenarios and conditions provided for first time comprehensive understanding of the major factors contributing to diffuser fouling. The array of analysis suggested that higher loading conditions can promote specialized microbial populations to halve aeration efficiency parameters (i.e., αF) in comparison to lower loading conditions. Biofilms adapted to certain operational conditions can trigger changes in diffuser membrane properties (i.e., biological enhanced roughness and hydrophobicity) and enhance EPS growth rates. Improved understanding of the effects of scaling, biofouling, aging and microbial population shifts on the decrease in aeration efficiency is provided. Copyright © 2018 Elsevier B.V. All rights reserved.
Tocci, Stephen L; Tashjian, Robert Z; Leventhal, Evan; Spenciner, David B; Green, Andrew; Fleming, Braden C
2008-01-01
This study determined the effect of tear size on gap formation of single-row simple-suture arthroscopic rotator cuff repair (ARCR) vs transosseous Mason-Allen suture open RCR (ORCR) in 13 pairs of human cadaveric shoulders. A massive tear was created in 6 pairs and a large tear in 7. Repairs were cyclically tested in low-load and high-load conditions, with no significant difference in gap formation. Under low-load, gapping was greater in massive tears. Under high-load, there was a trend toward increased gap with ARCR for large tears. All repairs of massive tears failed in high-load. Gapping was greater posteriorly in massive tears for both techniques. Gap formation of a modeled RCR depends upon the tear size. ARCR of larger tears may have higher failure rates than ORCR, and the posterior aspect appears to be the site of maximum gapping. Specific attention should be directed toward maximizing initial fixation of larger rotator cuff tears, especially at the posterior aspect.
Absolute and Relative Training Load and Its Relation to Fatigue in Football
Zurutuza, Unai; Castellano, Julen; Echeazarra, Ibon; Casamichana, David
2017-01-01
The aim of the study was to assess the relationship of external and internal training load (TL) indicators with the objective and subjective fatigue experienced by 15 semi-professional football players, over eight complete weeks of the competition period in the 2015–2016 season, which covered microcycles from 34th to 41st. The maximum heart rate (HRmax) and maximum speed (Vmax) of all the players were previously measured in specific tests. The TL was monitored via questionnaires on rating of perceived exertion (RPE), pulsometers and GPS devices, registering the variables: total distance (TD), player load 2D (PL2D), TD at >80% of the Vmax (TD80), TD in deceleration at < -2 m⋅sec-2 (TDD <-2), TD in acceleration >2 m⋅sec-2 (TDA >2), Edwards (ED), time spent at between 50 and 80% (50–80% HRmax), 80–90% (80–90% HRmax), and >90% of the HRmax (>90% HRmax), and RPE both respiratory/thoracic (RPEres) and leg/muscular (RPEmus). All the variables were analyzed taking into account both the absolute values accumulated over the week and the normalized values in relation to individual mean competition values. Neuromuscular fatigue was measured objectively using the countermovement jump test and subjectively via the Total Quality Recovery (TQR) scale questionnaire. Analytical correlation techniques were later applied within the general linear model. There is a correlation between the fatigue experienced by the player, assessed objectively and subjectively, and the load accumulated over the week, this being assessed in absolute and relative terms. Specifically, the load relative to competition correlated with the physical variables TD (-0.279), PL2D (-0.272), TDD < -2 (-0.294), TDA >2 (-0.309), and sRPEmus (-0.287). The variables related to heart rate produced a higher correlation with TQR. There is a correlation between objectively and subjectively assessed fatigue and the accumulated TL of a player over the week, with a higher sensitivity being shown when compared to the values related to the demands of competition. Monitoring load and assessing fatigue, we are closer to knowing what the prescription of an adequate dose of training should be in order for a player to be as fresh as possible and in top condition for a match. Normalizing training demands with respect to competition could be an appropriate strategy for individualizing player TL. PMID:28634456
Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; ...
2018-05-07
This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago
This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less
Particle loading rates for HVAC filters, heat exchangers, and ducts.
Waring, M S; Siegel, J A
2008-06-01
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.
Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Feng; Liu Huimin; Yang Bin
2005-05-15
TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At amore » higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites.« less
Manipulation of Foot Strike and Footwear Increases Achilles Tendon Loading During Running.
Rice, Hannah; Patel, Mubarak
2017-08-01
The Achilles tendon is the most common site of tendon overuse injury in humans. Running with a forefoot strike pattern and in minimal shoes is a topic of recent interest, yet evidence is currently limited regarding the combined influence of foot strike and footwear on Achilles tendon loading. To investigate the influence of both foot strike and footwear on Achilles tendon loading in habitual rearfoot strike runners. Controlled laboratory study. Synchronized kinematic and force data were collected from 22 habitual rearfoot strikers (11 male), who habitually ran in nonminimal running shoes, during overground running at 3.6 m·s -1 . Participants ran in 3 different footwear conditions (standard running shoe, minimal running shoe, and barefoot) with both a rearfoot strike (RFS) and an imposed forefoot strike (FFS) in each footwear condition. Achilles tendon loading was estimated by use of inverse dynamics, where the Achilles tendon moment arm was determined with a regression equation. A 2-way, repeated-measures analysis of variance was used to compare conditions. Achilles tendon impulse was greater when subjects ran with an FFS rather than an RFS in minimal shoes. Achilles tendon loading rates were higher when subjects ran either in minimal shoes or barefoot than in standard shoes, regardless of foot strike. In runners who habitually rearfoot strike in standard running shoes, running in minimal shoes or barefoot increased the rate of tendon loading, and running with a forefoot strike in minimal shoes increased the magnitude of tendon loading. Transitioning to these running conditions may increase the risk of tendinopathy.
Field assessment of alternative bed-load transport estimators
Gaeuman, G.; Jacobson, R.B.
2007-01-01
Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.
NASA Astrophysics Data System (ADS)
Ghamari, Mohsen
In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate. In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated. Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also tested at different particle loadings. It was found that dispersing nanoparticles results in higher burning rate by means of enhanced radiative heat absorption and thermal conductivity. An optimum particle loading was found for each particle type at which the maximum burning rate was achieved. It was observed that the burning rate again starts to reduce after this optimum point most likely due to the formation of large aggregates that reduce thermal conductivity and suppress the diffusion of species.
Load rating of complex bridges.
DOT National Transportation Integrated Search
2010-07-01
The National Bridge Inspection Standards require highway departments to inspect, evaluate, and determine load ratings for : structures defined as bridges located on all public roads. Load rating of bridges is performed to determine the live load that...
Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Lin; Sun Jihong, E-mail: jhsun@bjut.edu.cn; Li Yuzhen
The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing andmore » therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.« less
NASA Astrophysics Data System (ADS)
Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir
2014-05-01
The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen subject to loading until failure.
NASA Astrophysics Data System (ADS)
Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.
2017-12-01
Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the contribution of small strain-free recrystallized grains is larger in CTR than in CT samples. Our results suggest that loading conditions substantially affect material heterogeneity-induced localization in its nucleation and transient stages.
NASA Astrophysics Data System (ADS)
Parsard, Gregory G.
Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.
Sornalingam, Kireesan; McDonagh, Andrew; Zhou, John L
2016-04-15
This article reviews different photodegradation technologies used for the removal of four endocrine disrupting chemicals (EDCs): estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2). The degradation efficiency is greater under UV than visible light; and increases with light intensity up to when mass transfer becomes the rate limiting step. Substantial rates are observed in the environmentally relevant range of pH7-8, though higher rates are obtained for pH above the pKa (~10.4) of the EDCs. The effects of dissolved organic matter (DOM) on EDC photodegradation are complex with both positive and negative impacts being reported. TiO2 remains the best catalyst due to its superior activity, chemical and photo stability, cheap commercial availability, capacity to function at ambient conditions and low toxicity. The optimum TiO2 loading is 0.05-1gl(-1), while higher loadings have negative impact on EDC removal. The suspended catalysts prove to be more efficient in photocatalysis compared to the immobilised catalysts, while the latter are considered more suitable for commercial scale applications. Photodegradation mostly follows 1st or pseudo 1st order kinetics. Photodegradation typically eradicates or moderates estrogenic activity, though some intermediates are found to exhibit higher estrogenicity than the parent EDCs; the persistence of estrogenic activity is mainly attributed to the presence of the phenolic moiety in intermediates. Copyright © 2016 Elsevier B.V. All rights reserved.
Antualpa, Kizzy; Aoki, Marcelo Saldanha; Moreira, Alexandre
2018-05-01
This study examined the effect of a 4-week intensified training (IT) period, followed by a 2-week tapering period (TP), on salivary immunoglobulin A (SIgA), salivary cortisol, and the severity of upper respiratory tract infection symptoms in 23 rhythmic gymnasts [12.1 (2.6) y; 143.9 (13.7) cm; 37.2 (9.4) kg]. Saliva sampling was conducted at pre- and post-IT, and post-TP (analyzed using enzyme-linked immunosorbent assay). The Wisconsin Upper Respiratory Symptom Survey (WURSS-21) questionnaire was completed daily to analyze the severity of upper respiratory tract infection symptoms. The session rating of the perceived exertion was used to determine the internal training load and the acute:chronic workload ratio. A higher SIgA concentration [SIgA abs (μg/mL); F = 7.6; P = .001] for post-IT [234 (104)] versus pre-IT [173 (91)], and post-TP [182 (70)], and a higher SIgA secretion rate [SIgA rate (μg/min); F = 3.4; P = .04] for post-IT [69 (28)] versus pre-IT [55 (27)], and post-TP [58 (22)] were observed. No significant change was observed for cortisol (F = 0.81; P = .45) or for the severity of upper respiratory tract infection symptoms (χ 2 = 2.81; P = .24). Internal training load was higher during IT (vs TP; effect size = 2.37). The acute:chronic workload for the IT weeks varied from 1.2 (0.3) to 1.4 (0.3). These results suggest that a 4-week IT may temporarily augment the oral mucosal immunity, and an acute:chronic workload of 1.2-1.4 seems to be a safe approach to periodized training loads in youth rhythmic gymnasts.
[Degradation of styrene by coupling ultraviolet and biofiltration].
Sha, Hao-Lei; Yang, Guo-Jing; Xia, Jing-Fen
2013-12-01
Purification of styrene by ultraviolet (UV)-biofiltration was studied in this paper. The light source and the biofilm carrier were ozone producing lamp at 185 nm and the peat, palm fiber, porous acticarbon, respectively. Styrene inlet concentration was controlled between 320-583 mg x m(-3), and the removal efficiency remained above 95% after stabilization. The UV converted styrene into more soluble and biodegradable intermediates, such as alcohol, aldehyde and acid, thus the performance of biofilter can be improved. In the stable operation stage, the variation of inlet concentration did not affect the removal efficiency when the total residence time (TRT) was long, however, the inlet concentration obviously affected the removal efficiency when the TRT decreased. The removal load of coupling system increased linearly with increasing inlet load, and the removal efficiency was higher than 95% under a TRT of 102 s. When TRT was 68 s and the inlet load was low, the variation of removal load complied with the law described above, but it gradually deviated from the straight line and tended to stabilized at a certain value when the inlet load became higher than 30 g x (m3 x h)(-). If considering the fluctuation of styrene concentration only, the contribution rate of ultraviolet photolysis to styrene removal was greater than that of the biofilter, and the removal effect could be restored on the fourth day, after closing the system for ten days and restarting.
Cardinali-Rezende, Juliana; Araújo, Juliana C; Almeida, Paulo G S; Chernicharo, Carlos A L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A
2013-12-01
We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.
Kao, Huei Chu; Lin, Chiuhsiang Joe; Lee, Yung Hui; Chen, Su Huang
2015-01-01
The purpose of this study was to explore the effects of direction of exertion (DOE) (pushing, pulling), path (walking in a straight line, turning left, walking uphill), and load placement (LP) (the 18 blocks were indicated by X, Y and Z axis; there were 3 levels on the X axis, 2 levels on the Y axis, and 3 levels on the Z axis) on muscle activity and ratings of perceived exertion in nursing cart pushing and pulling tasks. Ten participants who were female students and not experienced nurses were recruited to participate in the experiment. Each participant performed 108 experimental trials in the study, consisting of 2 directions of exertion (push and pull), 3 paths, and 18 load placements (indicated by X, Y and Z axes). A 23kg load was placed into one load placement. The dependent variables were electromyographic (EMG) data of four muscles collected bilaterally as follows: Left (L) and right (R) trapezius (TR), flexor digitorum superficialis (FDS), extensor digitorum (ED), and erector spinae (ES) and subjective ratings of perceived exertion (RPE). Split-split-plot ANOVA was conducted to analyze significant differences between DOE, path, and LP in the EMG and RPE data. Pulling cart tasks produced a significantly higher activation of the muscles (RTR:54.4%, LTR:50.3%, LFDS:57.0%, LED:63.4%, RES:40.7%, LES:36.7%) than pushing cart tasks (RTR:42.4%, LTR:35.1%, LFDS:32.3%, LED:55.1%, RES:33.3%, LES:32.1%). A significantly greater perceived exertion was found in pulling cart tasks than pushing cart tasks. Significantly higher activation of all muscles and perceived exertion were observed for walking uphill than walking in a straight line and turning left. Significantly lower muscle activity of all muscles and subject ratings were observed for the central position on the X axis, the bottom position on the Y axis, and the posterior position on the Z axis. These findings suggest that nursing staff should adopt forward pushing when moving a nursing cart, instead of backward pulling, and that uphill paths should be avoided in the design of work environments. In terms of distribution of the load in a nursing cart, heavier materials should be positioned at bottom of the cabinet, centered on the horizontal plane and close to the handle, to reduce the physical load of the nursing staff.
Kao, Huei Chu; Lin, Chiuhsiang Joe; Lee, Yung Hui; Chen, Su Huang
2015-01-01
The purpose of this study was to explore the effects of direction of exertion (DOE) (pushing, pulling), path (walking in a straight line, turning left, walking uphill), and load placement (LP) (the 18 blocks were indicated by X, Y and Z axis; there were 3 levels on the X axis, 2 levels on the Y axis, and 3 levels on the Z axis) on muscle activity and ratings of perceived exertion in nursing cart pushing and pulling tasks. Ten participants who were female students and not experienced nurses were recruited to participate in the experiment. Each participant performed 108 experimental trials in the study, consisting of 2 directions of exertion (push and pull), 3 paths, and 18 load placements (indicated by X, Y and Z axes). A 23kg load was placed into one load placement. The dependent variables were electromyographic (EMG) data of four muscles collected bilaterally as follows: Left (L) and right (R) trapezius (TR), flexor digitorum superficialis (FDS), extensor digitorum (ED), and erector spinae (ES) and subjective ratings of perceived exertion (RPE). Split-split-plot ANOVA was conducted to analyze significant differences between DOE, path, and LP in the EMG and RPE data. Pulling cart tasks produced a significantly higher activation of the muscles (RTR:54.4%, LTR:50.3%, LFDS:57.0%, LED:63.4%, RES:40.7%, LES:36.7%) than pushing cart tasks (RTR:42.4%, LTR:35.1%, LFDS:32.3%, LED:55.1%, RES:33.3%, LES:32.1%). A significantly greater perceived exertion was found in pulling cart tasks than pushing cart tasks. Significantly higher activation of all muscles and perceived exertion were observed for walking uphill than walking in a straight line and turning left. Significantly lower muscle activity of all muscles and subject ratings were observed for the central position on the X axis, the bottom position on the Y axis, and the posterior position on the Z axis. These findings suggest that nursing staff should adopt forward pushing when moving a nursing cart, instead of backward pulling, and that uphill paths should be avoided in the design of work environments. In terms of distribution of the load in a nursing cart, heavier materials should be positioned at bottom of the cabinet, centered on the horizontal plane and close to the handle, to reduce the physical load of the nursing staff. PMID:26485039
Murozaki, Yuichi; Sakuma, Shinya; Arai, Fumihito
2017-05-08
Monitoring multiple biosignals, such as heart rate, respiration cycle, and weight transitions, contributes to the health management of individuals. Specifically, it is possible to measure multiple biosignals using load information obtained through contact with the environment, such as a chair and bed, in daily use. A wide-range load sensor is essential since load information contains multiple biosignals with various load ranges. In this study, a load sensor is presented by using a quartz crystal resonator (QCR) with a wide measurement range of 1.5 × 10⁶ (0.4 mN to 600 N), and its temperature characteristic of load is improved to -7 Hz/°C (-18 mN/°C). In order to improve the measurement range of the load, a design method of this sensor is proposed by restraining the buckling of QCR and by using a thinner QCR. The proposed sensor allows a higher allowable load with high sensitivity. The load sensor mainly consists of three layers, namely a QCR layer and two holding layers. As opposed to the conventional holding layer composed of silicon, quartz crystal is utilized for the holding layers to improve the temperature characteristic of the load sensor. In the study, multiple biosignals, such as weight and pulse, are detected by using a fabricated sensor.
Li, Bin; Zhang, Xiao-Xue; Huang, Hao-Yan; Chen, Li-Qing; Cui, Jing-Hao; Liu, Yanli; Jin, Hehua; Lee, Beom-Jin; Cao, Qing-Ri
2018-05-30
This study aims to construct and evaluate RGD-decorated chitosan (CS)-functionalized pH-responsive single-walled carbon nanotube (SWCNT) carriers using docetaxel (DTX) as a model anticancer drug. DTX was loaded onto SWCNT via π-π stacking interaction (SWCNT-DTX), followed by the non-covalent conjugation of RGD-decorated CS to SWCNT-DTX to prepare RGD-CS-SWCNT-DTX. The RGD-CS-SWCNT-DTX showed significantly higher drug release than the pure drug, giving higher release rate at pH 5.0 (68%) than pH 7.4 (49%). The RGD-CS-SWCNT-DTX could significantly inhibit the growth of A549 tumor cells in vitro, and the uptake amount of A549 cells was obviously higher than that of MCF-7 cells. Meanwhile, the cellular uptake of RGD-CS-SWCNT-DTX was higher than that of CS-SWCNT-DTX in A549 cells, mainly through clathrin and caveolae-mediated endocytosis. The RGD-CS-SWCNT-DTX significantly inhibited tumor growth of A549 cell-bearing nude mice through active tumor-targeting ability. Furthermore, no pathological changes were found in tissues and organs. The result demonstrated that RGD-CS-SWCNT-DTX displayed high drug loading, pH-responsive drug release, remarkable antitumor effect in vitro and in vivo, and also good safety to animal body. Copyright © 2018 Elsevier B.V. All rights reserved.
Lima, P S; Dezotti, M; Bassin, J P
2016-06-01
A pre-anoxic MBBR system was subjected to increasing organic loading rates up to 18 gCOD/(m(2) day). At 3 gCOD/(m(2) day), most of the incoming organic matter was removed via denitrification. However, at higher loads, anoxic COD removal became limited by the nitrite/nitrate supply from the aerobic reactor, which assumed an important role in this conversion. Despite the application of low dissolved oxygen (DO) levels (<2 mg/L) in this tank, nitrification was observed to be nearly complete until 8 gCOD/(m(2) day). As the organic input was increased, the maximum specific nitrifying activity gradually declined. Activity tests suggested that an oxygen-limited environment was established in the biofilm. At lower loads [3-8 gCOD/(m(2) day)], the nitrification product obtained was affected by the DO concentration, whereas from 16 to 21 gCOD/(m(2) day), nitrite/nitrate profiles were likely associated with microbial stratification in the biofilm. The results also indicated that the role of the suspended biomass in the overall nitrification and denitrification can be very significant in high loaded MBBRs and should not be neglected, even at low HRTs.
Nanosurveyor: a framework for real-time data processing
Daurer, Benedikt J.; Krishnan, Hari; Perciano, Talita; ...
2017-01-31
Background: The ever improving brightness of accelerator based sources is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality. Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis. Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the microscope operators.
Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia
2014-01-01
Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.
Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading
NASA Astrophysics Data System (ADS)
Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant
2016-11-01
The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.
Research notes : customized live-load factors for bridge load rating.
DOT National Transportation Integrated Search
2007-03-01
The state-of-the-art approach to load rating bridges is the Load and Resistance Factor Rating (LRFR) method, supported by the Federal Highway Administration and the American Association of State Highway and Transportation Officials. This approach ens...
High-Energy-Density Electrolytic Capacitors
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S.; Lewis, Carol R.
1993-01-01
Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.
Suhartini, Sri; Heaven, Sonia; Banks, Charles J
2014-01-01
Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. Copyright © 2013 Elsevier Ltd. All rights reserved.
Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim
2017-10-06
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
NASA Technical Reports Server (NTRS)
Rozanova, V. D.; Savkiv, T. G.; Khodorova, N. A.
1980-01-01
In male 1-7 month old rats, the growth and the protein content of skeletal muscles were higher than in female rats while the O2 consumption and the heart rate were lower. This is combined with reduction of the thyroid gland weight and of catecholamine content in adrenals at the age of 7 months. The development of male and female rats (1-7 month) under conditions of systematic muscular loads increases the growth tempo and protein of skeletal muscles and intensifies the degree of reduction of energy expenditure and the heart rate. This is accomplished by the greater reduction of relative weight of the thyroid gland and, at the age of 7 months, by reduction of the noradrenaline content in the brainstem. Hypodynamic conditions have the exact opposite effect.
Infrared emission spectra from operating elastohydrodynamic sliding contacts
NASA Technical Reports Server (NTRS)
Lauer, J. L.
1976-01-01
Infrared emission spectra from an operating EHD sliding contact were obtained through a diamond window for an aromatic polymer solute present in equal concentration in four different fluids. Three different temperature ranges, three different loads, and three different speeds for every load were examined. Very sensitive Fourier spectrophotometric (Interferometric) techniques were employed. Band Intensities and band intensity ratios found to depend both on the operating parameters and on the fluid. Fluid film and metal surface temperatures were calculated from the spectra and their dependence on the mechanical parameters plotted. The difference between these temperatures could be plotted against shear rate on one curve for all fluids. However, at the same shear rate the difference between bulk fluid temperature and diamond window temperature was much higher for one of the fluids, a traction fluid, than for the others.
Anaerobic sludge digestion in the presence of lactobacillus additive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.; Klass, D.L.
1980-01-01
A laboratory evaluation of a lactobacillus fermentation product was performed to study its effects as an additive on the anaerobic digestion of sewage sludge under conventional and overloaded high-rate conditions. The overloaded conditions were those experienced in commercial municipal digesters. It was concluded from this work that the use of the additive at low concentrations permits digester operation at least up to double the loading of untreated digesters and at higher methane yields and volatile solids reductions without affecting effluent quality. The additive also imparts iproved digester stability and rapid response to loading rate and detention time excursions and upsets.more » The beneficial effets of the additive observed in the laboratory remain to be established with other feeds such as biomass, and in large-scale commercial digestion tests that are now in progress.« less
Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.
Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad
2012-01-01
The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.
Effect of Loading Rate Upon Conventional Ceramic Microindentation Hardness
Quinn, George D.; Patel, Parimal J.; Lloyd, Isabel
2002-01-01
The world standards for conventional ceramic hardness have varying requirements for control of loading rate during the indentation cycle. A literature review suggests that loading rate may affect measured hardness in some instances. In view of the uncertainty over this issue, new experiments over a range of indentation loading rates were performed on a steel, sintered silicon carbide, and an aluminum oxynitride. There was negligible effect upon Vickers hardness when loading rate was varied by almost four orders of magnitude from approximately 0.03 N/s to 10 N/s. PMID:27446732
Filipsson, Karl; Brijs, Jeroen; Näslund, Joacim; Wengström, Niklas; Adamsson, Marie; Závorka, Libor; Österling, E Martin; Höjesjö, Johan
2017-04-01
Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.
Köklü, Yusuf; Alemdaroğlu, Utku; Cihan, Hamit; Wong, Del P
2017-11-01
To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La - ) were determined at the end of each SSG. The SBD format elicited significantly lower %HR max responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La - and RPE responses than SBD and CON in all formats (P < .05). These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.
Klepsch, Melina; Schmitz, Florian; Seufert, Tina
2017-01-01
Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 ( N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study ( N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.
Impact of measurement uncertainty from experimental load distribution factors on bridge load rating
NASA Astrophysics Data System (ADS)
Gangone, Michael V.; Whelan, Matthew J.
2018-03-01
Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.
Advanced Technology Blade testing on the XV-15 Tilt Rotor Research Aircraft
NASA Technical Reports Server (NTRS)
Wellman, Brent
1992-01-01
The XV-15 Tilt Rotor Research Aircraft has just completed the first series of flight tests with the Advanced Technology Blade (ATB) rotor system. The ATB are designed specifically for flight research and provide the ability to alter blade sweep and tip shape. A number of problems were encountered from first installation through envelope expansion to airplane mode flight that required innovative solutions to establish a suitable flight envelope. Prior to operation, the blade retention hardware had to be requalified to a higher rated centrifugal load, because the blade weight was higher than expected. Early flights in the helicopter mode revealed unacceptably high vibratory control system loads which required a temporary modification of the rotor controls to achieve higher speed flight and conversion to airplane mode. The airspeed in airplane mode was limited, however, because of large static control loads. Furthermore, analyses based on refined ATB blade mass and inertia properties indicated a previously unknown high-speed blade mode instability, also requiring airplane-mode maximum airspeed to be restricted. Most recently, a structural failure of an ATB cuff (root fairing) assembly retention structure required a redesign of the assembly. All problems have been addressed and satisfactory solutions have been found to allow continued productive flight research of the emerging tilt rotor concept.
Investigation of precipitate refinement in Mg alloys by an analytical composite failure model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabei, Ali; Li, Dongsheng; Lavender, Curt A.
2015-10-01
An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature.more » In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.« less
Delforge, Marie-Luce; Costa, Elena; Brancart, Françoise; Goldman, Deborah; Montesinos, Isabel; Zaytouni, Siham; Marchant, Arnaud; Donner, Catherine
2017-05-01
Cytomegalovirus (CMV) congenital infection can result from primary infection, reinfection or reactivation among pregnant women. The risk of vertical transmission is much higher in case of primary infection, and the transmission rate increases with gestational age. However there are still many questions about maternal markers that can predict whether the virus will be transmitted to the fetus. To investigate the relationship between the presence and the quantity of CMV in urine and blood of women presenting a primary CMV infection during pregnancy and the presence of congenital infection in their offspring. Detection and quantification of CMV DNA was performed on 150 urine samples and 114 blood samples from 150 pregnant women with proven CMV primary infection. Transmission rate was 36.7% (55/150). A statistically significant association was found between the presence of CMV in maternal urine and newborn infection (OR 2.03 95%CI 1.03-3.99). A clearly significant association was found between the presence of CMV in maternal blood and newborn infection (OR 3.14 95% CI 1.38-7.16). Taking into consideration those samples that are positive for CMV in maternal urine, the median value of viral load was significantly higher in those patients who transmitted to offspring (P=0.015). No significant association between viral load in maternal blood and newborn infection was observed. The presence of CMV in maternal urine and maternal blood correlated to the transmission of CMV to offspring in our cohort. The median viral load in urine is higher in women who transmitted. These markers may help to identify pregnant women at risk to transmit to the fetus. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, W; Collins, C M; Smith, M B
2005-03-01
A numerical model of a female body is developed to study the effects of different body types with different coil drive methods on radio-frequency magnetic ( B 1 ) field distribution, specific energy absorption rate (SAR), and intrinsic signal-to-noise ratio (ISNR) for a body-size birdcage coil at 64 and 128 MHz. The coil is loaded with either a larger, more muscular male body model (subject 1) or a newly developed female body model (subject 2), and driven with two-port (quadrature), four-port, or many (ideal) sources. Loading the coil with subject 1 results in significantly less homogeneous B 1 field, higher SAR, and lower ISNR than those for subject 2 at both frequencies. This dependence of MR performance and safety measures on body type indicates a need for a variety of numerical models representative of a diverse population for future calculations. The different drive methods result in similar B 1 field patterns, SAR, and ISNR in all cases.
Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent.
Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Wade, Brett L; Rymph, Stuart J; Prine, Gordon M; Van Horn, Harold H
2002-01-01
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.
Rees, Aldous B; Gallagher, Anthony; Comber, Sean; Wright, Laurence A
2017-09-01
Sacrificial anodes are intrinsic to the protection of boats and marine structures by preventing the corrosion of metals higher up the galvanic scale through their preferential breakdown. The dissolution of anodes directly inputs component metals into local receiving waters, with variable rates of dissolution evident in coastal and estuarine environments. With recent changes to the Environmental Quality Standard (EQS), the load for zinc in estuaries such as the Hamble, UK, which has a large amount of recreational craft, now exceeds the zinc standard of 7.9 μg/l. A survey of boat owners determined corrosion rates and estimated zinc loading at between 6.95 and 7.11 t/year. The research confirms the variable anode corrosion within the Hamble and highlighted a lack of awareness of anode technology among boat owners. Monitoring and investigation discounted metal structures and subterranean power cables as being responsible for these variations but instead linked accelerated dissolution to marina power supplies and estuarine salinity variations.
Janke, Leandro; Leite, Athaydes F; Batista, Karla; Silva, Witan; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter
2016-10-01
In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Review of load rating and posting procedures and requirements.
DOT National Transportation Integrated Search
2014-12-01
All states are required to load rate and post bridges in order to comply with federal standards. Load ratings are performed in order to : determine the safe live load capacity of a bridge, considering the existing conditions of the bridge. Based on t...
DOT National Transportation Integrated Search
2013-08-01
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of perf...
DOT National Transportation Integrated Search
2013-08-01
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of perf...
DOT National Transportation Integrated Search
2013-08-01
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of perf...
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
Electrochemical sulfide removal and caustic recovery from spent caustic streams.
Vaiopoulou, Eleni; Provijn, Thomas; Prévoteau, Antonin; Pikaar, Ilje; Rabaey, Korneel
2016-04-01
Spent caustic streams (SCS) are produced during alkaline scrubbing of sulfide containing sour gases. Conventional methods mainly involve considerable chemical dosing or energy expenditures entailing high cost but limited benefits. Here we propose an electrochemical treatment approach involving anodic sulfide oxidation preferentially to sulfur coupled to cathodic caustic recovery using a two-compartment electrochemical system. Batch experiments showed sulfide removal efficiencies of 84 ± 4% with concomitant 57 ± 4% efficient caustic production in the catholyte at a final concentration of 6.4 ± 0.1 wt% NaOH (1.6 M) at an applied current density of 100 A m(-2). Subsequent long-term continuous experiments showed that stable cell voltages (i.e. 2.7 ± 0.1 V) as well as constant sulfide removal efficiencies of 67 ± 5% at a loading rate of 47 g(S) L(-1) h(-1) were achieved over a period of 77 days. Caustic was produced at industrially relevant strengths for scrubbing (i.e. 5.1 ± 0.9 wt% NaOH) at current efficiencies of 96 ± 2%. Current density between 0 and 200 A m(-2) and sulfide loading rates of 50-200 g(S) L(-1) d(-1) were tested. The higher the current density the more oxidized the sulfur species produced and the higher the sulfide oxidation. On the contrary, high loading rate resulted in a reduction of sulfide oxidation efficiency. The results obtained in this study together with engineering calculations show that the proposed process could represent a cost-effective approach for sodium and sulfur recovery from SCS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on fluorouracil-chitosan nanoparticle preparation and its antitumor effect.
Chen, Gaimin; Gong, Rudong
2016-05-01
To successfully prepare fluorouracil-chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil-chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU-CS-mPEG prodrugs, and infrared, (1)H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad prospects for development.
Griep, Yannick; Kinnunen, Ulla; Nätti, Jouko; De Cuyper, Nele; Mauno, Saija; Mäkikangas, Anne; De Witte, Hans
2016-01-01
Research has provided convincing evidence for the adverse effects of both short- and long-term unemployment, and perceived job insecurity on individuals' health and well-being. This study aims to go one critical step further by comparing the association between short- and long-term unemployment, and perceived job insecurity with a diverse set of health and well-being indicators. We compare four groups: (1) secure permanent employees (N = 2257), (2) insecure permanent employees (N = 713), (3) short-term unemployed (N = 662), and (4) long-term unemployed (N = 345) using cross-sectional data from the nationally representative Living Conditions Survey in Finland. Covariance analyses adjusted for background variables support findings from earlier studies that long-term unemployment and perceived job insecurity are detrimental: short-term unemployed and secure permanent employees experienced fewer psychological complaints and lower subjective complaints load, reported a higher self-rated health, and were more satisfied with their life compared to long-term unemployed and insecure permanent employees. Second, whereas unemployment was found to be more detrimental than insecure employment in terms of life satisfaction, insecure employment was found to be more detrimental than unemployment in terms of psychological complaints. No differences were found regarding subjective complaints load and self-rated health. Our findings suggest that (1) insecure employment relates to more psychological complaints than short-term unemployment and secure permanent employment, (2) insecure employment and long-term unemployment relate to more subjective complaints load and poorer health when compared to secure permanent employment, and (3) insecure employment relates to higher life satisfaction than both short- and long-term unemployment.
Cortical oscillations and entrainment in speech processing during working memory load.
Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten
2018-02-02
Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lin, Congcong; Chen, Fen; Ye, Tiantian; Zhang, Lina; Zhang, Wenji; Liu, Dandan; Xiong, Wei; Yang, Xinggang; Pan, Weisan
2014-04-25
The purpose of this study was to develop a new delivery system based on drug cyclodextrin (CD) complexation and loading into nanostructured lipid carriers (NLC) to improve the oral bioavailability of vinpocetine (VP). Three different CDs and three different methods to obtain solid vinpocetine-cyclodextrin-tartaric acid complexes (VP-CD-TA) were contrasted. The co-evaporation vinpocetine-β-cyclodextrin-tartaric acid loaded NLC (VP-β-CD-TA COE-loaded NLC) was obtained by emulsification ultrasonic dispersion method. VP-β-CD-TA COE-loaded NLC was suitably characterized for particle size, polydispersity index, zeta potential, entrapment efficiency and the morphology. The crystallization of drug in VP-CD-TA and NLC was investigated by differential scanning calorimetry (DSC). The in vitro release study was carried out at pH 1.2, pH 6.8 and pH 7.4 medium. New Zealand rabbits were applied to investigate the pharmacokinetic behavior in vivo. The VP-β-CD-TA COE-loaded NLC presented a superior physicochemical property and selected to further study. In the in vitro release study, VP-β-CD-TA COE-loaded NLC exhibited a higher dissolution rate in the pH 6.8 and pH 7.4 medium than VP suspension and VP-NLC. The relative bioavailability of VP-β-CD-TA COE-loaded NLC was 592% compared with VP suspension and 92% higher than VP-NLC. In conclusion, the new formulation significantly improved bioavailability of VP for oral delivery, demonstrated a perspective way for oral delivery of poorly water-soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Morgenroth, David C; Medverd, Jonathan R; Seyedali, Mahyo; Czerniecki, Joseph M
2014-06-01
While animal study and cadaveric study have demonstrated an association between knee joint loading rate and joint degeneration, the relationship between knee joint loading rate during walking and osteoarthritis has not yet been sufficiently studied in humans. Twenty-eight participants (14 transfemoral amputees and 14 age and body mass matched controls) underwent knee MRI with subsequent assessment using the semiquantitative Whole-Organ Magnetic Resonance Image Score. Each subject also underwent gait analysis in order to determine knee adduction moment loading rate, peak, and impulse and an exploratory measure, knee adduction moment rate∗magnitude. Significant correlations were found between medial tibiofemoral joint degeneration and knee adduction moment peak (slope=0.42 [SE 0.20]; P=.037), loading rate (slope=12.3 [SE 3.2]; P=.0004), and rate∗magnitude (slope=437 [SE 100]; P<.0001). These relationships continued to be significant after adjusting for body mass or subject type. The relationship between medial knee semiquantitative MRI score and knee adduction moment loading rate and rate∗magnitude continued to be significant even after adjusting for peak moment (P<.0001), however, the relationship between medial knee semiquantitative MRI score and peak moment was no longer significant after adjusting for either loading rate or rate∗magnitude (P>.2 in both cases). This study suggests an independent relationship between knee adduction moment loading rate and medial tibiofemoral joint degeneration. Our results support the hypothesis that rate of loading, represented by the knee adduction moment loading rate, is strongly associated with medial tibiofemoral joint degeneration independent of knee adduction moment peak and impulse. Published by Elsevier Ltd.
Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey
2018-01-11
Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise and accurate estimates of annual river loads for TP and TSS, in the study river and other similar conditions.
Transient triggering of near and distant earthquakes
Gomberg, J.; Blanpied, M.L.; Beeler, N.M.
1997-01-01
We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i.e., accumulated strain energy would have been relieved via other mechanisms). We test this using two "new-seismicity" models that (1) are inherently unstable but slide at steady-state conditions under the background load and (2) are conditionally stable such that instability occurs only for sufficiently large perturbations. For the new-seismicity models, very small-amplitude transients trigger instability relative to the clock-advance models. The unstable steady-state models predict that the triggering delay depends inversely and nonlinearly on the transient amplitude (as in the clock-advance models). We were unable to generate delayed triggering with conditionally stable models. For both new-seismicity models, the potential for triggering is independent of when the transient load is applied or, equivalently, of the prestress (unlike in the clock-advance models). In these models, a critical triggering threshold appears to be inversely proportional to frequency. Further advancement of our understanding will require more sophisticated, quantitative models and observations that distinguish between our qualitative, yet distinctly different, model predictions.
Mosbah, Alaa; Barakat, Rafik; Nabiel, Yasmin; Barakat, Ghada
2018-03-01
This study aimed to detect the correlation between human papillomavirus (HPV) and spontaneous preterm labor in Egyptian women and its association to the human papilloma viral load and MPP2 gene expression. We performed an observational comparative case-control study in Department of Obstetric and Gynecology, Mansoura University Hospitals over women presented with spontaneous preterm labor, besides females admitted for giving birth at full term to detect conserved sequence in HPV-L1 gene (GP5/GP6) followed by genotype detection of high- and low-risk HPVs with quantification of the viral load and the MMP2 gene expression using real-time polymerase chain reaction (PCR). The prevalence of HPV was 18.1% in preterm females, but only 4% in full-term women (p value = 0.019*). Twenty percent were PCR positive for HPV 16 and 40% for HPV 18 whereas none of the control was positive for any of the studied high-risk genotypes. Thirty percent were PCR positive for HPV 6 and 10% were positive for HPV 11. MMP2 gene expression was significantly higher in preterm than full term. Human papilloma viral load was found to be positively correlated to the rate of MMP2 expression and the gestational age was significantly related to the viral load and the rate of expression of MMP2 gene. Human pabilloma virus especially high-risk genotypes was correlated to spontaneous preterm labor in Egyptian females through increasing early expression of MMP2 gene. The time of occurrence of preterm labor was affected by the viral load and so the rate of expression of MMP2 gene.
Wimmer, Timea; Huffmann, Anne Mildred Sophie; Eichberger, Marlis; Schmidlin, Patrick R; Stawarczyk, Bogna
2016-06-01
To test and compare the two-body wear rate of three CAD/CAM polymer materials and the influence of specimen geometry, antagonist material and test set-up configuration. Three CAD/CAM polymeric materials were assessed: a thermoplastic polyetheretherketone (PEEK), an experimental nanohybrid composite (COMP) and a PMMA-based material (PMMA). Crown-shaped and flat specimens were prepared from each material. The specimens underwent thermo-mechanical loading (50N, 5/55°C; 600,000 chewing cycles) opposed to human enamel and stainless steel antagonists. Half of the specimens of each group were loaded with a sliding movement of 0.7mm, the remaining half without. Thereby, 24 different test set-ups were investigated (n=12). Wear of the materials and antagonists was evaluated with a match-3D procedure. The topography of all surfaces was examined with scanning electron microscopy (SEM). Data were statistically evaluated with four-/one-way ANOVA followed by Scheffé post hoc test and unpaired t-test (p<0.05). All PEEK specimens showed significantly less material loss than COMP and PMMA specimens when loaded laterally. Within the axial loaded groups this was only true for the flat specimens tested with enamel antagonists. Crown specimens of these groups exhibited lower loss values than flat ones. Lateral force application led mostly to significantly higher material loss than the axial load application. On the antagonist side, no impact of CAD/CAM polymer material, antagonist material, force application and specimen geometry was found. Wear of PEEK was lower than that of the resin-based materials when lateral forces were applied, but showed comparable antagonist wear rates at the same time. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.
2000-01-01
Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.
NASA Astrophysics Data System (ADS)
Kang, Wonmo; Chen, YungChia; Bagchi, Amit; O'Shaughnessy, Thomas J.
2017-12-01
The material response of biologically relevant soft materials, e.g., extracellular matrix or cell cytoplasm, at high rate loading conditions is becoming increasingly important for emerging medical implications including the potential of cavitation-induced brain injury or cavitation created by medical devices, whether intentional or not. However, accurately probing soft samples remains challenging due to their delicate nature, which often excludes the use of conventional techniques requiring direct contact with a sample-loading frame. We present a drop-tower-based method, integrated with a unique sample holder and a series of effective springs and dampers, for testing soft samples with an emphasis on high-rate loading conditions. Our theoretical studies on the transient dynamics of the system show that well-controlled impacts between a movable mass and sample holder can be used as a means to rapidly load soft samples. For demonstrating the integrated system, we experimentally quantify the critical acceleration that corresponds to the onset of cavitation nucleation for pure water and 7.5% gelatin samples. This study reveals that 7.5% gelatin has a significantly higher, approximately double, critical acceleration as compared to pure water. Finally, we have also demonstrated a non-optical method of detecting cavitation in soft materials by correlating cavitation collapse with structural resonance of the sample container.
Williams, Susan H; Stover, Kristin K; Davis, Jillian S; Montuelle, Stephane J
2011-10-01
To compare the mechanical loading environment of the jaw in goats during ingestive and rumination chewing. Rosette strain gauges were attached to the external surface of the mandibular corpus in five goats to record bone strains during the mastication of hay and rumination. Strain magnitudes and maximum physiological strain rates during the mastication of hay are significantly higher than during rumination chewing on the working and balancing sides. Principal strain ratios and orientations are similar between the two chewing behaviours. Loading and chewing cycle duration are all longer during rumination chewing, whereas chew duty factor and variances in load and chewing cycle durations are higher during ingestive chewing. For most of the variables, differences in strain magnitudes or durations are similar at all three gauge sites, suggesting that rumination and ingestive chewing do not differentially influence bone at the three gauge sites. Despite lower strain magnitudes, the repetitive nature of rumination chewing makes it an important component of the mechanical loading environment of the selenodont artiodactyl jaw. However, similarities in principal strain orientations and ratios indicate that rumination chewing need not be considered as a unique loading behaviour influencing the biomechanics of the selenodont artiodactyl jaw. Differences in loading and chewing cycle durations during rumination and ingestion demonstrate flexibility in adult chewing frequencies. Finally, although the low within-sequence variability in chewing cycle durations supports the hypothesis that mammalian mastication is energetically efficient, chewing during rumination may not be more efficient than during ingestion. Copyright © 2011 Elsevier Ltd. All rights reserved.
Xiang, Guang-Hua; Hong, Guo-Bin; Wang, Yong; Cheng, Du; Zhou, Jing-Xing; Shuai, Xin-Tao
2013-01-01
To evaluate the cytotoxicity of poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-PDLLA) nanovesicles loaded with doxorubicin (DOX) and the photosensitizer hematoporphyrin monomethyl ether (HMME) on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms. PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME), and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX), HMME (PEG-PDLLA-HMME), or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined. Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA) were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with PEG-PDLLA-DOX-HMME, PEG-PDLLA-HMME, PEG-PDLLA-DOX, and PEG-PDLLA, respectively. The apoptotic rate was significantly higher in PEG-PDLLA-DOX-HMME-treated cells compared with PEG-PDLLA-DOX- and PEG-PDLLA-HMME-treated cells. The PEG-PDLLA nanovesicle, a drug delivery carrier, can be simultaneously loaded with two anticancer drugs (hydrophilic DOX and hydrophobic HMME). PEG-PDLLA-DOX-HMME cytotoxicity to HepG2 cells is significantly higher than the PEG-PDLLA nanovesicle loaded with DOX or HMME alone, and DOX and HMME have a synergistic effect against human hepatocellular carcinoma HepG2 cells.
Assessment of FIV-C infection of cats as a function of treatment with the protease inhibitor, TL-3
de Rozières, Sohela; Swan, Christina H; Sheeter, Dennis A; Clingerman, Karen J; Lin, Ying-Chuan; Huitron-Resendiz, Salvador; Henriksen, Steven; Torbett, Bruce E; Elder, John H
2004-01-01
Background The protease inhibitor, TL-3, demonstrated broad efficacy in vitro against FIV, HIV and SIV (simian immunodeficiency virus), and exhibited very strong protective effects on early neurologic alterations in the CNS of FIV-PPR infected cats. In this study, we analyzed TL-3 efficacy using a highly pathogenic FIV-C isolate, which causes a severe acute phase immunodeficiency syndrome, with high early mortality rates. Results Twenty cats were infected with uncloned FIV-C and half were treated with TL-3 while the other half were left untreated. Two uninfected cats were used as controls. The general health and the immunological and virological status of the animals was monitored for eight weeks following infection. All infected animals became viremic independent of TL-3 treatment and seven of 20 FIV-C infected animals developed severe immunodepletive disease in conjunction with significantly (p ≤ 0.05) higher viral RNA loads as compared to asymptomatic animals. A marked and progressive increase in CD8+ T lymphocytes in animals surviving acute phase infection was noted, which was not evident in symptomatic animals (p ≤ 0.05). Average viral loads were lower in TL-3 treated animals and of the 6 animals requiring euthanasia, four were from the untreated cohort. At eight weeks post infection, half of the TL-3 treated animals and only one of six untreated animals had viral loads below detection limits. Analysis of protease genes in TL-3 treated animals with higher than average viral loads revealed sequence variations relative to wild type protease. In particular, one mutant, D105G, imparted 5-fold resistance against TL-3 relative to wild type protease. Conclusions The findings indicate that the protease inhibitor, TL-3, when administered orally as a monotherapy, did not prevent viremia in cats infected with high dose FIV-C. However, the modest lowering of viral loads with TL-3 treatment, the greater survival rate in symptomatic animals of the treated cohort, and the lower average viral load in TL-3 treated animals at eight weeks post infection is indicative of a therapeutic effect of the compound on virus infection. PMID:15555065
Assessment of FIV-C infection of cats as a function of treatment with the protease inhibitor, TL-3.
de Rozières, Sohela; Swan, Christina H; Sheeter, Dennis A; Clingerman, Karen J; Lin, Ying-Chuan; Huitron-Resendiz, Salvador; Henriksen, Steven; Torbett, Bruce E; Elder, John H
2004-11-19
The protease inhibitor, TL-3, demonstrated broad efficacy in vitro against FIV, HIV and SIV (simian immunodeficiency virus), and exhibited very strong protective effects on early neurologic alterations in the CNS of FIV-PPR infected cats. In this study, we analyzed TL-3 efficacy using a highly pathogenic FIV-C isolate, which causes a severe acute phase immunodeficiency syndrome, with high early mortality rates. Twenty cats were infected with uncloned FIV-C and half were treated with TL-3 while the other half were left untreated. Two uninfected cats were used as controls. The general health and the immunological and virological status of the animals was monitored for eight weeks following infection. All infected animals became viremic independent of TL-3 treatment and seven of 20 FIV-C infected animals developed severe immunodepletive disease in conjunction with significantly (p < or = 0.05) higher viral RNA loads as compared to asymptomatic animals. A marked and progressive increase in CD8+ T lymphocytes in animals surviving acute phase infection was noted, which was not evident in symptomatic animals (p < or = 0.05). Average viral loads were lower in TL-3 treated animals and of the 6 animals requiring euthanasia, four were from the untreated cohort. At eight weeks post infection, half of the TL-3 treated animals and only one of six untreated animals had viral loads below detection limits. Analysis of protease genes in TL-3 treated animals with higher than average viral loads revealed sequence variations relative to wild type protease. In particular, one mutant, D105G, imparted 5-fold resistance against TL-3 relative to wild type protease. The findings indicate that the protease inhibitor, TL-3, when administered orally as a monotherapy, did not prevent viremia in cats infected with high dose FIV-C. However, the modest lowering of viral loads with TL-3 treatment, the greater survival rate in symptomatic animals of the treated cohort, and the lower average viral load in TL-3 treated animals at eight weeks post infection is indicative of a therapeutic effect of the compound on virus infection.
Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.
Abzug, Mark J; Qin, Min; Levin, Myron J; Fenton, Terence; Beeler, Judy A; Bellini, William J; Audet, Susette; Sowers, Sun Bae; Borkowsky, William; Nachman, Sharon A; Pelton, Stephen I; Rosenblatt, Howard M
2012-08-15
Response rates and immunologic memory following measles vaccination are reduced in human immunodeficiency virus (HIV)-infected children in the absence of highly active antiretroviral therapy (HAART). HIV-infected children 2 to <19 years old receiving HAART and with HIV loads <30,000 copies/mL, CD4% ≥15, and ≥1 prior measles-mumps-rubella vaccination (MMR) were given another MMR. Measles antibody concentrations before and 8, 32, and 80 weeks postvaccination were determined by plaque reduction neutralization (PRN). A subset was given another MMR 4-5 years later, and PRN antibody was measured before and 7 and 28 days later. At entry, 52% of 193 subjects were seroprotected (PRN ≥120 mIU/mL). Seroprotection increased to 89% 8 weeks postvaccination, and remained at 80% 80 weeks postvaccination. Of 65 subjects revaccinated 4-5 years later, 85% demonstrated memory based on seroprotection before or 7 days after vaccination. HIV load ≤400 copies/mL at initial study vaccination was associated with higher seroprotection rates, greater antibody concentrations, and memory. Grade 3 fever or fatigue occurred in 2% of subjects. Measles revaccination induced high rates of seroprotection and memory in children receiving HAART. Both endpoints were associated with HIV viral load suppression. NCT00013871 (www.clinicaltrials.gov).
Downwind pre-aligned rotors for extreme-scale wind turbines
Loth, Eric; Steele, Adam; Qin, Chao; ...
2017-03-08
Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less
Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity
NASA Astrophysics Data System (ADS)
Lirer, Lucio; Petrosino, Paola; Alberico, Ines; Postiglione, Immacolata
2001-02-01
Distributions of pyroclastic deposits from the main explosive events at Somma-Vesuvio during the 8,000-year B.P.-A.D. 1906 time-span have been analysed to provide maps of volcanic hazard for long-term eruption forecasting. In order to define hazard ratings, the spatial distributions and loads (kg/m2) exerted by the fall deposits on the roofs of buildings have been considered. A load higher than 300 kg/m2 is defined as destructive. The relationship load/frequency (the latter defined as the number of times that an area has been impacted by the deposition of fall deposits) is considered to be a suitable parameter for differentiating among areas according to hazard rating. Using past fall deposit distributions as the basis for future eruptive scenarios, the total area that could be affected by the products of a future Vesuvio explosive eruption is 1,500 km2. The perivolcanic area (274 km2) has the greatest hazard rating because it could be buried by pyroclastic flow deposits thicker than 0.5 m and up to several tens of metres in thickness. Currently, the perivolcanic area also has the highest risk because of the high exposed value, mainly arising from the high population density.
Downwind pre-aligned rotors for extreme-scale wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loth, Eric; Steele, Adam; Qin, Chao
Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less
Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification.
Reyes-Avila, Jesús; Razo-Flores, Elías; Gomez, Jorge
2004-01-01
Refinery wastewaters may contain aromatic compounds and high concentrations of sulfide and ammonium which must be removed before discharging into water bodies. In this work, biological denitrification was used to eliminate carbon, nitrogen and sulfur in an anaerobic continuous stirred tank reactor of 1.3 L and a hydraulic retention time of 2 d. Acetate and nitrate at a C/N ratio of 1.45 were fed at loading rates of 0.29 kg C/m3 d and 0.2 kg N/m3 d, respectively. Under steady-state denitrifying conditions, the carbon and nitrogen removal efficiencies were higher than 90%. Also, under these conditions, sulfide (S(2-)) was fed to the reactor at several sulfide loading rates (0.042-0.294 kg S(2-)/m3 d). The high nitrate removal efficiency of the denitrification process was maintained along the whole process, whereas the carbon removal was 65% even at sulfide loading rates of 0.294 kg S(2-)/m3 d. The sulfide removal increased up to approximately 99% via partial oxidation to insoluble elemental sulfur (S0) that accumulated inside the reactor. These results indicated that denitrification is a feasible process for the simultaneous removal of nitrogen, carbon and sulfur from effluents of the petroleum industry.
Silfver, Tarja; Paaso, Ulla; Rasehorn, Mira; Rousi, Matti; Mikola, Juha
2015-01-01
Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible. PMID:25622034
Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.
Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S
2013-05-01
Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.
Checa, Sara; Hesse, Bernhard; Roschger, Paul; Aido, Marta; Duda, Georg N; Raum, Kay; Willie, Bettina M
2015-07-01
Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity
NASA Astrophysics Data System (ADS)
Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.
2017-12-01
Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; McCray, J. E.; Siegrist, R.; Lowe, K.; VanCuyk, S.
2001-05-01
Sixteen, one-dimensional column lysimeters have been developed to evaluate the influence of loading regime and infiltrative surface character on hydraulic performance in wastewater soil absorption systems. A duplicate design was utilized to evaluate two infiltrative surface conditions (gravel-free vs. gravel-laden) under four hydraulic loading regimes representative of possible field conditions. By loading the columns at rates of 25 to 200 cm/day, the 17 weeks of column operation actually reflect up to approximately 13 yrs of field operation (at 5 cm/day). Therefore, the cumulative mass throughput and infiltrative rate loss for each loading regime can be examined to determine the viability of accelerated loading as a means to compress the time scale of observation, while still producing meaningfully results for the field scale. During operation, the columns were loaded with septic tank effluent at a prescribed rate and routinely monitoring for applied effluent composition, infiltration rate, time-dependant soil water content, water volume throughput, and percolate composition. Bromide tracer tests were completed prior to system startup and at weeks 2, 6, and 17 of system operation. Hydraulic characterization of the columns is based on measurements of the hydraulic loading rate, volumetric throughput, soil water content, and bromide breakthrough curves. Incipient ponding of wastewater developed during the 1st week of operation for columns loaded at the highest hydraulic rate (loading regimes 1 and 2), and during the 3rd and 6th week of operation for loading regimes 3 and 4, respectfully. The bromide breakthrough curves exhibit later breakthrough and tailing as system life increases, indicating the development of spatially variability in hydraulic conductivity within the column and the development of a clogging zone at the infiltrative surface. Throughput is assessed for each loading regime to determine the infiltration rate loss versus days of operation. Loading regimes 1 and 2 approach a comparable long-term throughput rate less than 20 cm/day, while loading regimes 3 and 4 reach a long-term throughput rate of less than 10 cm/day. These one-dimensional columns allow for the analysis of infiltrative rate loss and hydraulic behavior as a result of infiltrative surface character and loading regime.
Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games
Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier
2018-01-01
The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles. Key points The number of decelerations and the total distance can be considered risk factors for injuries in professional basketball players. Unloaded players have greater risk of injury compared to players with higher accumulated external workload. Workload management should be considered a major factor in injury prevention programs. PMID:29769830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias
Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less
Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H
2015-05-01
The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Load rating and retrofit testing of bridge timber piles subjected to eccentric loading.
DOT National Transportation Integrated Search
2012-11-01
This report first evaluated the load rating procedure currently in use by the Illinois Department of Transportation (IDOT) for rating timber : piles supporting multiple-span, simply supported bridges. For simplicity, these piles are often rated under...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerday, Brian P.; Barney, Monica
We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m 1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lowermore » frequencies relevant to PSA vessel operation.« less
Somerday, Brian P.; Barney, Monica
2014-12-04
We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m 1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lowermore » frequencies relevant to PSA vessel operation.« less
Li, Qiaoya; Li, Hongyang; He, Chengjun; Jing, Zhouhong; Liu, Changan; Xie, Juan; Ma, Wenwen; Deng, Huisheng
2017-11-21
This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.
High organic loading influences the physical characteristics of aerobic sludge granules.
Moy, B Y-P; Tay, J-H; Toh, S-K; Liu, Y; Tay, S T-L
2002-01-01
The effect of high organic loading rate (OLR) on the physical characteristics of aerobic granules was studied. Two column-type sequential aerobic sludge blanket reactors were fed with either glucose or acetate as the main carbon source, and the OLR was gradually raised from 6 to 9, 12 and 15 kg chemical oxygen demand (COD) m(-3) d(-1). Glucose-fed granules could sustain the maximum OLR tested. At a low OLR, these granules exhibited a loose fluffy morphology dominated by filamentous bacteria. At higher OLRs, these granules became irregularly shaped, with folds, crevices and depressions. In contrast, acetate-fed granules had a compact spherical morphology at OLRs of 6 and 9 kg COD m(-3) d(-1), with better settling and strength characteristics than glucose-fed granules at similar OLRs. However, acetate-fed granules could not sustain high OLRs and disintegrated when the OLR reached 9 kg COD m(-3) d(-1). The compact regular microstructure of the acetate-fed granules appeared to limit mass transfer of nutrients at an OLR of 9 kg COD m(-3) d(-1). The looser filamentous microstructure of the glucose-fed granules and the subsequent irregular morphology delayed the onset of diffusion limitation and allowed significantly higher OLRs to be attained. SIGNIFICNACE AND IMPACT OF THE STUDY: High organic loading rates are possible with aerobic granules. This research would be helpful in the development of aerobic granule-based systems for high-strength wastewaters.
An effective purification method using large bottles for human pancreatic islet isolation
Shimoda, Masayuki; Itoh, Takeshi; Iwahashi, Shuichi; Takita, Morihito; Sugimoto, Koji; Kanak, Mazhar A.; Chujo, Daisuke; Naziruddin, Bashoo; Levy, Marlon F.; Grayburn, Paul A.; Matsumoto, Shinichi
2012-01-01
The purification process is one of the most difficult procedures in pancreatic islet isolation. It was demonstrated that the standard purification method using a COBE 2991 cell processor with Ficoll density gradient solution harmed islets mechanically by high shear force. We reported that purification using large bottles with a lower viscosity gradient solution could improve the efficacy of porcine islet purification. In this study, we examined whether the new bottle purification method could improve the purification of human islets. Nine human pancreata from brain-dead donors were used. After pancreas digestion, the digested tissue was divided into three groups. Each group was purified by continuous density gradient using ET-Kyoto and iodixanol gradient solution with either the standard COBE method (COBE group) or the top loading (top group) or bottom loading (bottom group) bottle purification methods. Islet yield, purity, recovery rate after purification, and in vitro and in vivo viability were compared. Islet yield per pancreas weight (IE/g) and the recovery rate in the top group were significantly higher than in the COBE and bottom groups. Furthermore, the average size of purified islets in the top group was significantly larger than in the COBE group, which indicated that the bottle method could reduce the shear force to the islets. In vivo viability was also significantly higher in the top group compared with the COBE group. In conclusion, the top-loading bottle method could improve the quality and quantity of human islets after purification. PMID:23221740
Milic, Bojan; Andreasson, Johan O. L.; Hogan, Daniel W.; Block, Steven M.
2017-01-01
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by (i) the absolute numbers of each motor type on a given train, (ii) how prone KIF3AB is to dissociation from MTs relative to KIF17, and (iii) how prone both motors are to dissociation relative to binding MTs. PMID:28761002
Milic, Bojan; Andreasson, Johan O L; Hogan, Daniel W; Block, Steven M
2017-08-15
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by ( i ) the absolute numbers of each motor type on a given train, ( ii ) how prone KIF3AB is to dissociation from MTs relative to KIF17, and ( iii ) how prone both motors are to dissociation relative to binding MTs.
Spectrophotometry of seventeen comets. II - The continuum
NASA Technical Reports Server (NTRS)
Newburn, R. L., Jr.; Spinrad, H.
1985-01-01
One-hundred-twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km/s) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.
Discontinuities of Plastic Deformation in Metallic Glasses with Different Glass Forming Ability
NASA Astrophysics Data System (ADS)
Hurakova, Maria; Csach, Kornel; Miskuf, Jozef; Jurikova, Alena; Demcak, Stefan; Ocelik, Vaclav; Hosson, Jeff Th. M. De
The metallic ribbons Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 with different microhardness and glass forming ability were studied at different loading rates from 0.05 to 100 mN/s. We describe in details the differences in elemental discontinuities on the loading curves for the studied alloys. It was found that the discontinuities began at a certain local deformation independently on the macroscopic mechanical properties of a ribbon. More developed discontinuities at higher deformations are created for the materials with lower microhardness and so lower strength.
Spectrophotometry of seventeen comets. II - The continuum
NASA Astrophysics Data System (ADS)
Newburn, R. L.; Spinrad, H.
1985-12-01
One hundred twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km s-1) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.
Hydroxyethylated graphene oxide as potential carriers for methotrexate delivery
NASA Astrophysics Data System (ADS)
Du, Libo; Suo, Siqingaowa; Luo, Dan; Jia, Hongying; Sha, Yinlin; Liu, Yang
2013-06-01
In this study, we presented a simple approach to prepare hydroxyethylated graphene oxide (HE-GO) with high water solubility and physiological stability. The successful synthesis of HE-GO was confirmed by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The loading of anticancer drug methotrexate (MTX) onto this nanocarrier (MTX/HE-GO) was investigated. The results of in vitro drug release experiment showed that the rate of MTX release from MTX/HE-GO was pH dependent. Moreover, cell viability assay demonstrated that HE-GO loaded with MTX exhibits higher anticancer activity against human lung adenocarcinoma epithelial cell line than non-vehicle MTX.
Hasegawa, Kohei; Jartti, Tuomas; Mansbach, Jonathan M.; Laham, Federico R.; Jewell, Alan M.; Espinola, Janice A.; Piedra, Pedro A.; Camargo, Carlos A.
2015-01-01
Background. We investigated whether children with a higher respiratory syncytial virus (RSV) genomic load are at a higher risk of more-severe bronchiolitis. Methods. Two multicenter prospective cohort studies in the United States and Finland used the same protocol to enroll children aged <2 years hospitalized for bronchiolitis and collect nasopharyngeal aspirates. By using real-time polymerase chain reaction analysis, patients were classified into 3 genomic load status groups: low, intermediate, and high. Outcome measures were a length of hospital stay (LOS) of ≥3 days and intensive care use, defined as admission to the intensive care unit or use of mechanical ventilation. Results. Of 2615 enrolled children, 1764 (67%) had RSV bronchiolitis. Children with a low genomic load had a higher unadjusted risk of having a length of stay of ≥3 days (52%), compared with children with intermediate and those with high genomic loads (42% and 51%, respectively). In a multivariable model, the risk of having a length of stay of ≥3 days remained significantly higher in the groups with intermediate (odds ratio [OR], 1.43; 95% confidence interval [CI], 1.20–1.69) and high (OR, 1.58; 95% CI, 1.29–1.94) genomic loads. Similarly, children with a high genomic load had a higher risk of intensive care use (20%, compared with 15% and 16% in the groups with low and intermediate genomic loads, respectively). In a multivariable model, the risk remained significantly higher in the group with a high genomic load (OR, 1.43; 95% CI, 1.03–1.99). Conclusion. Children with a higher RSV genomic load had a higher risk for more-severe bronchiolitis. PMID:25425699
In vivo measurement of spinal column viscoelasticity--an animal model.
Hult, E; Ekström, L; Kaigle, A; Holm, S; Hansson, T
1995-01-01
The goal of this study was to measure the in vivo viscoelastic response of spinal motion segments loaded in compression using a porcine model. Nine pigs were used in the study. The animals were anaesthetized and, using surgical techniques, four intrapedicular screws were inserted into the vertebrae of the L2-L3 motion segment. A miniaturized servohydraulic exciter capable of compressing the motion segment was mounted on to the screws. In six animals, a loading scheme consisting of 50 N and 100 N of compression, each applied for 10 min, was used. Each loading period was followed by 10 min restitution with zero load. The loading scheme was repeated four times. Three animals were examined for stiffening effects by consecutively repeating eight times 50 N loading for 5 min followed by 5 min restitution with zero load. This loading scheme was repeated using a 100 N load level. The creep-recovery behavior of the motion segment was recorded continuously. Using non-linear regression techniques, the experimental data were used for evaluating the parameters of a three-parameter standard linear solid model. Correlation coefficients of the order of 0.85 or higher were obtained for the three independent parameters of the model. A survey of the data shows that the viscous deformation rate was a function of the load level. Also, repeated loading at 100 N seemed to induce long-lasting changes in the viscoelastic properties of the porcine lumbar motion segment.
Shan, Zhi; Wade, Kelly R; Schollum, Meredith L; Robertson, Peter A; Thambyah, Ashvin; Broom, Neil D
2017-10-01
Part I of this study explored mechanisms of disc failure in a complex posture incorporating physiological amounts of flexion and shear at a loading rate considerably lower than likely to occur in a typical in vivo manual handling situation. Given the strain-rate-dependent mechanical properties of the heavily hydrated disc, loading rate will likely influence the mechanisms of disc failure. Part II investigates the mechanisms of failure in healthy discs subjected to surprise-rate compression while held in the same complex posture. 37 motion segments from 13 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object at a displacement rate of 400 mm/min. Seven of the 37 samples reached the predetermined displacement prior to a reduction in load and were classified as early stage failures, providing insight to initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy. The average failure load under high rate complex loading was 6.96 kN (STD 1.48 kN), significantly lower statistically than for low rate complex loading [8.42 kN (STD 1.22 kN)]. Also, unlike simple flexion or low rate complex loading, direct radial ruptures and non-continuous mid-wall tearing in the posterior and posterolateral regions were commonly accompanied by disruption extending to the lateral and anterior disc. This study has again shown that multiple modes of damage are common when compressing a segment in a complex posture, and the load bearing ability, already less than in a neutral or flexed posture, is further compromised with high rate complex loading.
Effects of Vibration and G-Loading on Heart Rate, Breathing Rate, and Response Time
NASA Technical Reports Server (NTRS)
Godinez, Angelica; Ayzenberg, Ruthie; Liston, Dorian B.; Stone, Leland S.
2013-01-01
Aerospace and applied environments commonly expose pilots and astronauts to G-loading and vibration, alone and in combination, with well-known sensorimotor (Cohen, 1970) and performance consequences (Adelstein et al., 2008). Physiological variables such as heart rate (HR) and breathing rate (BR) have been shown to increase with G-loading (Yajima et al., 1994) and vibration (e.g. Guignard, 1965, 1985) alone. To examine the effects of G-loading and vibration, alone and in combination, we measured heart rate and breathing rate under aerospace-relevant conditions (G-loads of 1 Gx and 3.8 Gx; vibration of 0.5 gx at 8, 12, and 16 Hz).
Endres, Michael J; Donkin, Chris; Finn, Peter R
2014-04-01
Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision-making (more false alarms, faster evidence accumulation rates for false alarms [vFA], and lower scores on a Response Precision Index [RPI] measure of information processing efficiency). The WM load increased disinhibited decision-making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision-making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision-making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative-incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation-evaluation-decision process. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Endres, Michael J.; Donkin, Chris; Finn, Peter R.
2014-01-01
Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision making (more false alarms, faster evidence accumulation rates for false alarms (vFA), and lower scores on a Response Precision Index (RPI) measure of information processing efficiency). The WM load increased disinhibited decision making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative – incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation – evaluation – decision process. PMID:24611834
Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun
2017-12-01
The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.
Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.
Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can
2012-05-01
A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. Copyright © 2012 Wiley Periodicals, Inc.
Crimean-Congo hemorrhagic fever: CXCL10 correlates with the viral load.
Papa, Anna; Yagci Caglayık, Dilek; Christova, Iva; Tsergouli, Katerina; Korukluoglu, Gulay; Uyar, Yavuz
2015-06-01
Crimean-Congo hemorrhagic fever (CCHF) is a human disease with high fatality rate. Although its pathogenesis is not elucidated yet, it is considered that cytokines play a significant role in the progression and outcome of the disease. Serum CXCL10 levels were estimated in 35 patients with acute CCHF and were correlated with the viral load, and various demographic and clinical parameters. The mean CXCL10 concentration in the patients' group was higher compared to the respective value in the control group (4421.74 pg/ml vs. 28.47 pg/ml, P < 0.05). A strong positive correlation between CXCL10 and viral load was seen (rs = 0.57, P < 0.001), while the outcome of the disease was related with the viral load (rs = 0.47, P = 0.004) and the presence of hemorrhagic manifestations (P < 0.001). The study provides an insight into the strong correlation between CXCL10 and viral load in acute CCHF cases suggesting that it plays an important role in CCHF pathogenesis. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Singaravelu, J.; Sundaresan, S.; Nageswara Rao, B.
2013-04-01
This article presents a methodology for evaluation of the proof load factor (PLF) for clamp band system (CBS) made of M250 Maraging steel following fracture mechanics principles.CBS is most widely used as a structural element and as a separation system. Using Taguchi's design of experiments and the response surface method (RSM) the compact tension specimens were tested to establish an empirical relation for the failure load ( P max) in terms of the ultimate strength, width, thickness, and initial crack length. The test results of P max closely matched with the developed RSM empirical relation. Crack growth rates of the maraging steel in different environments were examined. Fracture strength (σf) of center surface cracks and through-crack tension specimens are evaluated utilizing the fracture toughness ( K IC). Stress induced in merman band at flight loading conditions is evaluated to estimate the higher load factor and PLF. Statistical safety factor and reliability assessments were made for the specified flaw sizes useful in the development of fracture control plan for CBS of launch vehicles.
Respiratory load perception in overweight and asthmatic children.
MacBean, Victoria; Wheatley, Lorna; Lunt, Alan C; Rafferty, Gerrard F
2017-05-01
Overweight asthmatic children report greater symptoms than normal weight asthmatics, despite comparable airflow obstruction. This has been widely assumed to be due to heightened perception of respiratory effort. Three groups of children (healthy weight controls, healthy weight asthmatics, overweight asthmatics) rated perceived respiratory effort throughout an inspiratory resistive loading protocol. Parasternal intercostal electromyogram was used as an objective marker of respiratory load; this was expressed relative to tidal volume and reported as a ratio of the baseline value (neuroventilatory activity ratio (NVEAR)). Significant increases in perception scores (p<0.0001), and decreases in NVEAR (p<0.0001) were observed from lowest to highest resistive load. Higher BMI increased overall perception scores, with no influence of asthma or BMI-for-age percentile on the resistance-perception relationships. These data, indicating elevated overall respiratory effort in overweight asthmatic children but comparable responses to dynamic changes in load, suggest that the greater disease burden in overweight asthmatic children may be due to altered respiratory mechanics associated with increased body mass. Copyright © 2017 Elsevier B.V. All rights reserved.
Gervasio, Michelle; Lu, Kathy; Davis, Richey
2015-09-15
This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.
Ribeiro, Ana P.; Sacco, Isabel C. N.; Dinato, Roberto C.; João, Silvia M. A.
2016-01-01
BACKGROUND: The risk factors for the development of plantar fasciitis (PF) have been associated with the medial longitudinal arch (MLA), rearfoot alignment and calcaneal overload. However, the relationships between the biomechanical variables have yet to be determined. OBJECTIVE: The goal of this study was to investigate the relationships between the MLA, rearfoot alignment, and dynamic plantar loads in runners with unilateral PF in acute and chronic phases. METHOD: Cross-sectional study which thirty-five runners with unilateral PF were evaluated: 20 in the acute phase (with pain) and 15 with previous chronic PF (without pain). The MLA index and rearfoot alignment were calculated using digital images. The contact area, maximum force, peak pressure, and force-time integral over three plantar areas were acquired with Pedar X insoles while running at 12 km/h, and the loading rates were calculated from the vertical forces. RESULTS: The multiple regression analyses indicated that both the force-time integral (R 2=0.15 for acute phase PF; R 2=0.17 for chronic PF) and maximum force (R 2=0.35 for chronic PF) over the forefoot were predicted by an elevated MLA index. The rearfoot valgus alignment predicted the maximum force over the rearfoot in both PF groups: acute (R 2=0.18) and chronic (R 2=0.45). The rearfoot valgus alignment also predicted higher loading rates in the PF groups: acute (R 2=0.19) and chronic (R 2=0.40). CONCLUSION: The MLA index and the rearfoot alignment were good predictors of plantar loads over the forefoot and rearfoot areas in runners with PF. However, rearfoot valgus was demonstrated to be an important clinical measure, since it was able to predict the maximum force and both loading rates over the rearfoot. PMID:26786073
Impact of a protective vest and spacer garment on exercise-heat strain.
Cheuvront, Samuel N; Goodman, Daniel A; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N
2008-03-01
Protective vests worn by global security personnel, and weighted vests worn by athletes, may increase physiological strain due to added load, increased clothing insulation and vapor resistance. The impact of protective vest clothing properties on physiological strain, and the potential of a spacer garment to reduce physiological strain, was examined. Eleven men performed 3 trials of intermittent treadmill walking over 4 h in a hot, dry environment (35 degrees C, 30% rh). Volunteers wore the US Army battledress uniform (trial B), B + protective vest (trial P), and B + P + spacer garment (trial S). Biophysical clothing properties were determined and found similar to many law enforcement, industry, and sports ensembles. Physiological measurements included core (T (c)), mean skin (T (sk)) and chest (T (chest)) temperatures, heart rate (HR), and sweating rate (SR). The independent impact of clothing was determined by equating metabolic rate in all trials. In trial P, HR was +7 b/min higher after 1 h of exercise and +19 b/min by the fourth hour compared to B (P < 0.05). T (c) (+0.30 degrees C), T (sk) (+1.0 degrees C) and Physiological Strain Index were all higher in P than B (P < 0.05). S did not abate these effects except to reduce T (sk) (P > S) via a lower T (chest) (-0.40 degrees C) (P < 0.05). SR was higher (P < 0.05) in P and S versus B, but the magnitude of differences was small. A protective vest increases physiological strain independent of added load, while a spacer garment does not alter this outcome.
The effect of rehearsal rate and memory load on verbal working memory.
Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark
2015-01-15
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory
Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark
2014-01-01
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-second delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. PMID:25467303
Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery.
Khandekar, Sameera V; Kulkarni, M G; Devarajan, Padma V
2014-01-01
In this paper, we present polyaspartic acid, a biodegradable polymer as a reducing and functionalizing agent for the synthesis of doxorubicin loaded gold nanoparticles by a green process. Gold nanoparticles were stable to electrolytes and pH. Secondary amino groups of polyaspartic acid enabled reduction of gold chloride to form gold nanoparticles of size 55 +/-10 nm, with face centered cubic crystalline structure as confirmed by UV, TEM, SAED and XRD studies. Cationic doxorubicin was readily loaded onto anionic polyaspartic acid gold nanoparticles by ionic complexation. Fluorescence studies confirmed doxorubicin loading while FTIR spectra confirmed ionic complexation. Doxorubicin loading onto polyaspartic acid gold nanoparticles was studied at doxorubicin/polyaspartic acid molar ratios 1:10 to 1:1. As the molar ratio tended to unity, although loading up to 60% was achieved, colloidal instability resulted and is attributed to effective covering of negative charges of polyaspartic acid. Stable doxorubicin loaded polyaspartic acid gold nanoparticles of 105 +/- 15.1 nm with doxorubicin loading of 23.85% w/w and zeta potential value of -28 +/- 0.77 mV were obtained at doxorubicin/polyaspartic acid molar ratio 1:10. Higher doxorubicin release rate from the doxorubicin loaded polyaspartic acid gold nanoparticles in an acid medium (i.e., pH 5.5) as compared to that in pH 7.4 and deionized water is a desirable characteristic for tumor targeted delivery. Enhanced cytotoxicity and 3 fold higher uptake of doxorubicin loaded polyaspartic acid gold nanoparticles as compared to doxorubicin solution were seen in MCF-7 breast cancer cells while polyaspartic acid gold nanoparticles revealed no cytotoxicity confirming safety. Prominent regression in tumor size in-vivo in fibrosarcoma tumor induced mouse model was observed upto 59 days with doxorubicin loaded polyaspartic acid gold nanoparticles while doxorubicin solution treated mice showed regrowth beyond 23rd day. Moreover, a decrease of body weight of 35% indicating severe toxicity with doxorubicin solution as compared to only 20% with gradual recovery after day 30 in case of doxorubicin loaded polyaspartic acid gold nanoparticles confirmed their lower toxicity and enhanced efficacy.
Thomas A. Waldrop; Lucy Brudnak; Sandra Rideout-Hanzak
2013-01-01
Fuel distribution in the Southern Appalachian Mountain region was measured on 1,008 study plots that were stratified by topographic position (aspect and slope position). Few fuel differences occurred among topographic positions indicating that fuel accumulation is no greater on highly productive sites than on less productive sites. Litter was slightly higher on...
Li, Chunyan; Wu, Shubiao; Dong, Renjie
2015-03-15
This paper demonstrates the potential of tidal flow operated constructed wetland application for the removal dynamics of organic matter, nitrogen and phosphorus. Near-complete removal of organic matter was achieved with a constant removal efficiency of 95%, irrespective of TOC influent loadings ranged from 10 g/m(2) · d to 700 g/m(2) · d. High NH4(+)-N removal at 95% efficiency under influent loading of 17 g/m(2) · d, was stably obtained and was not negatively influenced by increasing influent organic carbon loading rate. Increased influent TOC loading (350 g/m(2) · d to 700 g/m(2) · d) significantly enhanced denitrification capacity and increased TN removal from 30% to 95%. Under tidal flow operation, a higher carbon supply (C/N = 20) for complete TN removal was demonstrated as comparing to that observed in traditional CWs approaches. In addition, the removal of phosphorus was strongly influenced by organic loadings. However, further investigations are needed to elucidate the detailed mechanism that would explain the role of organic loading in phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Respiratory Changes in Response to Cognitive Load: A Systematic Review.
Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M; Van den Bergh, Omer
2016-01-01
When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load.
Respiratory Changes in Response to Cognitive Load: A Systematic Review
Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M.
2016-01-01
When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load. PMID:27403347
Frequency-dependent selection can lead to evolution of high mutation rates.
Rosenbloom, Daniel I S; Allen, Benjamin
2014-05-01
Theoretical and experimental studies have shown that high mutation rates can be advantageous, especially in novel or fluctuating environments. Here we examine how frequency-dependent competition may lead to fluctuations in trait frequencies that exert upward selective pressure on mutation rates. We use a mathematical model to show that cyclical trait dynamics generated by "rock-paper-scissors" competition can cause the mutation rate in a population to converge to a high evolutionarily stable mutation rate, reflecting a trade-off between generating novelty and reproducing past success. Introducing recombination lowers the evolutionarily stable mutation rate but allows stable coexistence between mutation rates above and below the evolutionarily stable rate. Even considering strong mutational load and ignoring the costs of faithful replication, evolution favors positive mutation rates if the selective advantage of prevailing in competition exceeds the ratio of recombining to nonrecombining offspring. We discuss a number of genomic mechanisms that may meet our theoretical requirements for the adaptive evolution of mutation. Overall, our results suggest that local mutation rates may be higher on genes influencing cyclical competition and that global mutation rates in asexual species may be higher in populations subject to strong cyclical competition.
Folnegović, Z; Folnegović-Smalc, V
1992-01-01
STUDY OBJECTIVE--The aim was to examine why differences exist in schizophrenia prevalence and risk in some areas of Croatia, when schizophrenia incidence rates do not appear to vary. DESIGN--Areas differing by schizophrenia admission rates in patients born in 1953 and admitted by the age of 31 years are compared using a number of indicators relating both to general population characteristics and to those of schizophrenic cases in these populations. SETTING--The study covers the whole of Croatia (4,601,469 inhabitants, 1981 census). SUBJECTS--By the age of 31 years, out of 80,445 individuals born in Croatia in 1953, 464 were admitted for and diagnosed as having schizophrenia. MAIN RESULTS--Admission risk rates are higher in those parts of Croatia where emigration rates are high and lower where immigration rates are high. There is also a positive correlation with schizophrenia prevalence and manic depressive psychosis rates. There is a negative correlation with age of onset of schizophrenia and with schizophrenic reproduction rates. In the study areas, hospital incidence rates are not significantly different. CONCLUSIONS--Economic migration and negative selection in the domestic population are likely to be the most significant factors leading to differences in schizophrenia prevalence. The approximately equal incidence rates in the population, with different prevalence and admission risks, are linked to differences in the disease onset among schizophrenics with a positive family history for this condition. In other words, these patients, when part of the population with a greater prevalence and a greater hereditary loading, experience the onset more often at an earlier age. Thus they have a lower reproduction rate than in a population with a lower prevalence and a lower hereditary loading. Thus incidence rates in populations with different prevalences and different hereditary loads are maintained roughly equal over generations. Images PMID:1645081
The ergonomics of vertical turret lathe operation.
Pratt, F M; Corlett, E N
1970-12-01
A study of the work load of 14 vertical turret lathe operators engaged on different work tasks in two factories is reported. For eight of these workers continuous heart rate recordings were made throughout the day. It was shown that in four cases improved technology was unlikely to lead to higher output and certain aspects of posture and equipment manipulation were major contributors to the limitations on increased output. The role of the work-rest schedule in increasing work loads was also demonstrated. Improvements in technology and methods to reduce the extent of certain work loads to enable heavy work to be done in shorter periods followed by light work or rest periods are given as means to modify and improve the output of these machines. Finally, the direction for the development of a predictive model for man-machine matching is introduced.
Laboratory constraints on models of earthquake recurrence
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian; Goldsby, David
2014-12-01
In this study, rock friction "stick-slip" experiments are used to develop constraints on models of earthquake recurrence. Constant rate loading of bare rock surfaces in high-quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip-rate-dependent process that also determines the size of the stress drop and, as a consequence, stress drop varies weakly but systematically with loading rate. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. The experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a nonlinear slip predictable model. The fault's rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence covary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability, and successive stress drops are strongly correlated indicating a "memory" of prior slip history that extends over at least one recurrence cycle.
Klepsch, Melina; Schmitz, Florian; Seufert, Tina
2017-01-01
Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results. PMID:29201011
Composite electrodes for electrochemical supercapacitors.
Li, Jun; Yang, Quanmin; Zhitomirsky, Igor
2010-01-07
Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.
Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D
2014-11-01
This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01. Copyright © 2014 Elsevier Ltd. All rights reserved.
Composite Electrodes for Electrochemical Supercapacitors
NASA Astrophysics Data System (ADS)
Li, Jun; Yang, Quan Min; Zhitomirsky, Igor
2010-03-01
Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.
Composite Electrodes for Electrochemical Supercapacitors
2010-01-01
Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass. PMID:20672101
Da Ros, C; Cavinato, C; Cecchi, F; Bolzonella, D
2014-01-01
In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m(3)d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm(3)biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.
[Heart rate and energy expenditure during extravehicular activity in different time of day].
Stepanova, S I; Katuntsev, V P; Osipov, Iu Iu; Galichiĭ, V A
2013-01-01
The article discusses the comparative heart rate (HR) characteristics associated with day and night extravehicular activities (EVA). HR was commonly higher in the night but not in the daytime. Presumably, the reason is psychological and physiological challenges of the night work on the background of natural performance decrement. These circumstances could lead to elevation of psychic tension and, consequently, increase of heartbeats to a greater extent as compared with daytime EVA. According to the correlation analysis data, the pattern of HR relation to physical loads evaluated by energy expenditure in the daytime was other than at night, i.e. it was positive unlike the nighttime correlation. We cannot exclude it that in the daytime increase in cardiac output (CO) in response to physical work was largely due to increase in HR, whereas it was stroke volume that dominated during night work; at least, it could support CO fully in the periods of low loading.
Rendenbach, Carsten; Sellenschloh, Kay; Gerbig, Lucca; Morlock, Michael M; Beck-Broichsitter, Benedicta; Smeets, Ralf; Heiland, Max; Huber, Gerd; Hanken, Henning
2017-11-01
CAD/CAM reconstruction plates have become a viable option for mandible reconstruction. The aim of this study was to determine whether CAD/CAM plates provide higher fatigue strength compared with conventional fixation systems. 1.0 mm miniplates, 2.0 mm conventional locking plates (DePuy Synthes, Umkirch, Germany), and 2.0 mm CAD/CAM plates (Materialise, Leuven, Belgium/DePuy Synthes) were used to reconstruct a polyurethane mandible model (Synbone, Malans, CH) with cortical and cancellous bone equivalents. Mastication was simulated via cyclic dynamic testing using a universal testing machine (MTS, Bionix, Eden Prairie, MN, USA) until material failure reached a rate of 1 Hz with increasing loads on the left side. No significant difference was found between the groups until a load of 300 N. At higher loads, vertical displacement differed increasingly, with a poorer performance of miniplates (p = 0.04). Plate breakage occurred in miniplates and conventional locking plates. Screw breakage was recorded as the primary failure mechanism in CAD/CAM plates. Stiffness was significantly higher with the CAD/CAM plates (p = 0.04). CAD/CAM plates and reconstruction plates provide higher fatigue strength than miniplates, and stiffness is highest in CAD/CAM systems. All tested fixation methods seem sufficiently stable for mandible reconstruction. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.; Friend, E. L.
1973-01-01
Wind-up-turn maneuvers were performed to establish the values of airplane normal force coefficient for buffet onset, wing-rock onset, and buffet loads with various combinations of leading- and trailing-edge flap deflections. Data were gathered at both subsonic and transonic speeds covering a range from Mach 0.64 to Mach 0.92. Buffet onset and buffet loads were obtained from wingtip acceleration and wing-root bending-moment data, and wing-rock onset was obtained from airplane roll rate data. Buffet onset, wing-rock onset, and buffet loads were similarly affected by the various combinations of leading- and training-edge flaps. Subsonically, the 12 deg leading-edge-flap and trailing-edge-flap combination was most effective in delaying buffet onset, wing-rock onset, and equivalent values of buffet loads to a higher value of airplane normal force coefficient. This was the maximum flap deflection investigated. Transonically, however, the optimum leading-edge flap position was generally less than 12 deg.
Friedman, M. Reuel; Stall, Ron; Silvestre, Anthony J.; Mustanski, Brian; Shoptaw, Steve; Surkan, Pamela J.; Rinaldo, Charles R.; Plankey, Michael W.
2014-01-01
INTRODUCTION Men who have sex with men and women (MSMW) have been shown in cross-sectional studies to suffer HIV-related health disparities above and beyond those found among men who have sex with men only (MSMO). We conducted a secondary data analysis over a 7-year time frame of participants in the Multicenter AIDS Cohort Study (MACS), a longstanding prospective cohort study, to examine whether MSMW had persistently higher rates of depression symptoms, polydrug use, and (among HIV positive MSM) HIV viral load levels compared with MSMO. METHODS Men were behaviorally defined as bisexual if they reported sexual activity with at least one male and one female partner between study waves 38-50. We used generalized mixed modeling with repeated measures to test differences in CES-D score, polydrug use, and viral load between sexually active MSMO (n=111) and MSMW (n=1514), adjusting for age, income, and race/ethnicity, and recent seroconversion. RESULTS MSMW were significantly more likely than MSMO to have higher CES-D scores, polydrug use, and viral load levels (all p-values <.01). Outcome trajectories did not differ significantly over time between these groups. Black and Hispanic HIV positive MSMW had higher viral load levels relative to White HIV positive MSMW (p-values<.01). DISCUSSION Compared with MSMO, MSMW in the MACS suffer from profound and persistent HIV-related health disparities across biological, behavioral, and psychosocial domains. Further qualitative and quantitative research contextualizing the pathways underlying these disparities is recommended for intervention development targeting MSMW at risk for HIV acquisition and transmission. PMID:24662298
Zekveld, Adriana A; Kramer, Sophia E; Festen, Joost M
2011-01-01
The aim of the present study was to evaluate the influence of age, hearing loss, and cognitive ability on the cognitive processing load during listening to speech presented in noise. Cognitive load was assessed by means of pupillometry (i.e., examination of pupil dilation), supplemented with subjective ratings. Two groups of subjects participated: 38 middle-aged participants (mean age = 55 yrs) with normal hearing and 36 middle-aged participants (mean age = 61 yrs) with hearing loss. Using three Speech Reception Threshold (SRT) in stationary noise tests, we estimated the speech-to-noise ratios (SNRs) required for the correct repetition of 50%, 71%, or 84% of the sentences (SRT50%, SRT71%, and SRT84%, respectively). We examined the pupil response during listening: the peak amplitude, the peak latency, the mean dilation, and the pupil response duration. For each condition, participants rated the experienced listening effort and estimated their performance level. Participants also performed the Text Reception Threshold (TRT) test, a test of processing speed, and a word vocabulary test. Data were compared with previously published data from young participants with normal hearing. Hearing loss was related to relatively poor SRTs, and higher speech intelligibility was associated with lower effort and higher performance ratings. For listeners with normal hearing, increasing age was associated with poorer TRTs and slower processing speed but with larger word vocabulary. A multivariate repeated-measures analysis of variance indicated main effects of group and SNR and an interaction effect between these factors on the pupil response. The peak latency was relatively short and the mean dilation was relatively small at low intelligibility levels for the middle-aged groups, whereas the reverse was observed for high intelligibility levels. The decrease in the pupil response as a function of increasing SNR was relatively small for the listeners with hearing loss. Spearman correlation coefficients indicated that the cognitive load was larger in listeners with better TRT performances as reflected by a longer peak latency (normal-hearing participants, SRT50% condition) and a larger peak amplitude and longer response duration (hearing-impaired participants, SRT50% and SRT84% conditions). Also, a larger word vocabulary was related to longer response duration in the SRT84% condition for the participants with normal hearing. The pupil response systematically increased with decreasing speech intelligibility. Ageing and hearing loss were related to less release from effort when increasing the intelligibility of speech in noise. In difficult listening conditions, these factors may induce cognitive overload relatively early or they may be associated with relatively shallow speech processing. More research is needed to elucidate the underlying mechanisms explaining these results. Better TRTs and larger word vocabulary were related to higher mental processing load across speech intelligibility levels. This indicates that utilizing linguistic ability to improve speech perception is associated with increased listening load.
Augmented bioavailability of felodipine through an α-linolenic acid-based microemulsion.
Singh, Mahendra; Kanoujia, Jovita; Parashar, Poonam; Arya, Malti; Tripathi, Chandra B; Sinha, V R; Saraf, Shailendra K; Saraf, Shubhini A
2018-02-01
The oral bioavailability of felodipine, a dihydropyridine calcium channel antagonist, is about 15%. This may be due to poor water solubility, and a lower intestinal permeability than a BCS class I drug, and hepatic first-pass metabolism of the drug. Many drugs are unpopular due to solubility issues. The goal of this study was to develop and optimize a felodipine-containing microemulsion to improve the intestinal permeability and bioavailability of the drug. The felodipine microemulsions were developed with the selected components, i.e., α-linolenic acid as the oil phase, Tween 80 as a surfactant, and isopropyl alcohol as co-surfactant using Box-Behnken design and characterized for in vitro release and particle size. The optimized felodipine-loaded microemulsion was investigated for physicochemical interaction, surface morphology, intestinal permeability, rheology, cytotoxicity, cellular uptake, pharmacodynamic (electrocardiogram and heart rate variability), and pharmacokinetic studies to explore its suitability as a promising oral drug delivery system for the treatment of hypertension. The optimized felodipine-loaded microemulsion showed significantly higher (P < 0.05) apparent permeability coefficients (Papp) at 7.918 × 10 -5 cm/s after 1 h, when compared with conventional formulations that are marketed tablet, drug oily solution, and drug emulsion, which showed a maximum Papp of 3.013, 4.428, and 5.335 × 10 -5 cm/s, respectively. The optimized felodipine-loaded microemulsion showed biocompatibility and no cytotoxicity. Cellular uptake studies confirmed payload delivery to a cellular site on the J774.A1 cell line. The rheology study of the optimized felodipine-loaded microemulsion revealed Newtonian-type flow behavior and discontinuous microemulsion formation. In pharmacodynamic studies, significant differences in parameters were observed between the optimized felodipine-loaded microemulsion and marketed formulation. The optimized felodipine-loaded microemulsion showed significantly higher (p < 0.01) C max (7.12 ± 1.04 μg/ml) than marketed tablets (2.44 ± 1.03 μg/ml). It was found that AUC last obtained from the optimized felodipine-loaded microemulsion (84.53 ± 10.73 μg h/ml) was significantly higher (p < 0.01) than the marketed tablet (27.41 ± 5.54 μg h/ml). The relative bioavailability (Fr) of the optimized felodipine-loaded microemulsion was about 308.3% higher than that of the marketed formulation. The results demonstrate that the prepared microemulsion is an advanced and efficient oral delivery system of felodipine for the management of hypertension.
Singh, Gurdev; Soundarapandian, S
2018-03-01
The long standing need of the implant manufacturing industries is to fabricate multi-matrix, customized porous scaffold as cost-effectively. In recent years, freeze casting has shown greater opportunity in the fabrication of porous scaffolds (tricalcium phosphate, hydroxyapatite, bioglass, alumina, etc.) such as at ease and good control over pore size, porosity, a range of materials and economic feasibility. In particular, tricalcium phosphate (TCP) has proved as it possesses good biocompatible (osteoinduction, osteoconduction, etc.) and biodegradability hence beta-tricalcium phosphate (β-TCP, particle size of 10µm) was used as base material and camphene was used as a freezing vehicle in this study. Both freezing conditions such as constant freezing temperature (CFT) and constant freezing rate (CFR) were used for six different conditional samples (CFT: 30, 35 and 40vol% solid loading; similarly CFR: 30, 35 and 40vol% solid loading) to study and understand the effect of various properties (pore size, porosity and compressive strength) of the freeze-cast porous scaffold. It was observed that the average size of the pore was varying linearly as from lower to higher when the solid loading was varying higher to lower. With the help of scanning electron micrographs (SEM), it was observed that the average size of pore during CFR (9.7/ 6.5/ 4.9µm) was comparatively higher than the process of CFT (6.0/ 4.8/ 2.6µm) with respect to the same solid loading (30/ 35/ 40vol%) conditions. From the Gas pycnometer analysis, it was found that the porosity in both freezing conditions (CFT, CFR) were almost near values such as 32.8% and 28.5%. Further to be observed that with the increase in solid loading, the total porosity value has decreased due to the reduction in the concentration of the freezing vehicle. Hence, the freezing vehicle was found as responsible for the formation of appropriate size and orientation of pores during freeze casting. The compressive strength (CS) testing was clearly indicated that the CS was majorly depending on the size of pore which was depending on solid loading. The CS of CFT-based samples (smaller pore sizes and higher resistance to the propagation of crack) were higher due to the higher solid content (pore size) in compared with CFR-based samples on the similar solid loading conditions. As evidently, it was noted that the CFT-based sample with 40% solid loading has given the compressive strength which has come in the range of cancellous bone. The positive note was that the ratio of Ca/P has come as 1.68 (natural bone) after sintering and that was the required value recommended by the food and drug administration (FDI) for manufacturing of bone implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rating curve estimation of nutrient loads in Iowa rivers
Stenback, G.A.; Crumpton, W.G.; Schilling, K.E.; Helmers, M.J.
2011-01-01
Accurate estimation of nutrient loads in rivers and streams is critical for many applications including determination of sources of nutrient loads in watersheds, evaluating long-term trends in loads, and estimating loading to downstream waterbodies. Since in many cases nutrient concentrations are measured on a weekly or monthly frequency, there is a need to estimate concentration and loads during periods when no data is available. The objectives of this study were to: (i) document the performance of a multiple regression model to predict loads of nitrate and total phosphorus (TP) in Iowa rivers and streams; (ii) determine whether there is any systematic bias in the load prediction estimates for nitrate and TP; and (iii) evaluate streamflow and concentration factors that could affect the load prediction efficiency. A commonly cited rating curve regression is utilized to estimate riverine nitrate and TP loads for rivers in Iowa with watershed areas ranging from 17.4 to over 34,600km2. Forty-nine nitrate and 44 TP datasets each comprising 5-22years of approximately weekly to monthly concentrations were examined. Three nitrate data sets had sample collection frequencies averaging about three samples per week. The accuracy and precision of annual and long term riverine load prediction was assessed by direct comparison of rating curve load predictions with observed daily loads. Significant positive bias of annual and long term nitrate loads was detected. Long term rating curve nitrate load predictions exceeded observed loads by 25% or more at 33% of the 49 measurement sites. No bias was found for TP load prediction although 15% of the 44 cases either underestimated or overestimate observed long-term loads by more than 25%. The rating curve was found to poorly characterize nitrate and phosphorus variation in some rivers. ?? 2010 .
Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.
Akunna, J C; Abdullahi, Y A; Stewart, N A
2007-01-01
In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.
Viberg, Bjarke; Rasmussen, Katrine M V; Overgaard, Søren; Rogmark, Cecilia
2017-01-01
Background and purpose The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between biomechanical and clinical studies on PF-LCP. Methods A systematic literature search of relevant biomechanical and clinical studies was conducted in PubMed on December 1, 2015. 7 biomechanical studies and 15 clinical studies were included. Results Even though the biomechanical studies showed equivalent or higher failure loads for femoral neck fracture, the clinical results were far worse, with a 37% complication rate. There were no biomechanical studies on pertrochanteric fractures. Biomechanical studies on subtrochanteric fractures showed that PF-LCP had a lower failure load than with proximal femoral nail, but higher than with angled blade plate. 4 clinical studies had complication rates less than 8% and 9 studies had complication rates between 15% and 53%. Interpretation There was no clear relation between biomechanical and clinical studies. Biomechanical studies are generally inherently different from clinical studies, as they examine the best possible theoretical use of the implant without considering the long-term outcome in a clinical setting. Properly designed clinical studies are mandatory when introducing new implants, and they cannot be replaced by biomechanical studies. PMID:28287002
A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.
NASA Astrophysics Data System (ADS)
Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.
2017-12-01
Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.
Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba
2018-03-01
In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2014-01-01
The Advanced Structures and Composites Center at the University of Maine (UMaine) performed live load testing : and rating factor analysis for two bridges (No. 5506 and No. 5507) in Batchelders Grant, Maine. The bridge load : rating performed by cons...
2017-04-20
Categorization Guide for High -Loading- Rate Applications – History and Rationale by Robert Jensen, David Flanagan, Daniel DeSchepper, and Charles...Adhesives: Test Method, Group Assignment, and Categorization Guide for High -Loading- Rate Applications – History and Rationale by Robert Jensen...Categorization Guide for High - Loading-Rate Applications – History and Rationale 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys
NASA Astrophysics Data System (ADS)
Chan, Dennis K.
SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the localization of stress to the interface of solder joints at high strain rates. The MEFM is further extended to predict failure in brittle materials. Such an extension allows for fracture prediction within intermetallic compounds (IMCs) in solder joints. It has been experimentally observed that the failure mode shifts from bulk solder to the IMC layer with increasing loading rates. The extension of the MEFM would allow for prediction of the fracture mode within the solder joint under different loading conditions. A fracture model capable of predicting failure modes at higher strain rates is necessary, as mobile electronics are becoming ubiquitous. Mobile devices are prone to being dropped which can induce loading rates within solder joints that are much larger than experienced under thermo-mechanical fatigue. A range of possible damage accumulation parameters for Cu6Sn 5 is determined for the MEFM. A value within the aforementioned range is used to demonstrate the increasing likelihood of IMC fracture in solder joints with larger loading rates. The thesis is concluded with remarks about ongoing work that include determining a more accurate damage accumulation parameter for Cu6Sn 5 IMC, and on using machining as a technique for extracting failure parameters for the MEFM.
Confirmation of Monod Model for Biofiltration of Styrene Vapors from Waste Flue Gas
Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; AslHashemi, Ahmad
2012-01-01
Background: The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. Methods: A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. Results: The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. Conclusion: In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution. PMID:24688940
Vocal impact of a prolonged reading task in dysphonic versus normophonic female teachers.
Remacle, Angélique; Morsomme, Dominique; Berrué, Elise; Finck, Camille
2012-11-01
This study evaluates the effect of a 2-hour reading task between 70 and 75 dB(A) in 16 normophonic and 16 dysphonic female teachers with vocal nodules. Objective measurements (acoustic analysis, voice range measurements, and aerodynamic measurements) and subjective self-ratings were collected before and every 30 minutes during the reading to determine the voice evolution in both groups. Fundamental frequency, lowest frequency, highest frequency (F-High), highest intensity, and intensity range increase through the reading, whereas shimmer decreases. Maximum phonation time decreases after 30 minutes. Estimated subglottal pressure (ESP) and sound pressure level increase during the first hour. Afterward, ESP decreases. Self-ratings worsen through time. When comparing the normophonic and the dysphonic teachers, self-ratings reveal more complaints in the dysphonic group. Few differences in objective measurements are found between both groups: normophonic teachers show lower ESP, higher F-High, and greater frequency range. Frequency modifications from acoustic analysis and voice range measurements suggest an increased laryngeal tension during vocal load, while subjects perceive a worsening of voice. Aerodynamic parameters depict first a deterioration of voice efficiency and then an adaptation to the prolonged reading. The comparison between both groups shows a discrepancy between objective measurements and self-ratings, suggesting that both approaches are necessary to have a complete view of vocal load effects. Surprisingly, both groups behave similarly through vocal load, without more or quicker deterioration of voice in the dysphonic group. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Park, Ji-Man; Baek, Chang-Hyun; Heo, Seong-Joo; Kim, Seong-Kyun; Koak, Jai-Young; Kim, Shin-Koo; Belser, Urs C
The aim of this study was to compare the loosening of interchangeable one-piece abutments connected to internal-connection-type implants after cyclic loading. Four implant abutment groups (n = 7 in each group) with Straumann tissue-level implants were assessed: Straumann solid abutment (group S), Southern Implants solid abutment (group SI), Implant Direct straight abutment (group ID), and Blue Sky Bio regular platform abutment (group BSB). The implant was firmly held in a special jig to ensure fixation. Abutment screws were tightened to manufacturers' recommended torque with a digital torque gauge. The hemispherical loading members were fabricated for the load cell of a universal testing machine to evenly distribute the force on the specimens and to fulfill the ISO 14801:2007 standard. A cyclic loading of 25 N at 30 degrees to the implant's long axis was applied for a duty of a half million cycles. Tightening torques were measured prior to the loading. Removal torques were measured after cyclic loading. The data were analyzed with one-way analysis of variance (ANOVA), and the significance level was set at P < .05. The mean removal torques after cyclic loading were 34.0 ± 1.1 Ncm (group S), 25.0 ± 1.5 Ncm (group SI), 23.9 ± 2.1 Ncm (group ID), and 27.9 ± 1.3 Ncm (group BSB). Removal torques of each group were statistically different in the order of group S > group BSB > groups SI and ID (P < .05). The mean reduction rates were -2.9% ± 3.2% (group S), -21.9% ± 4.8% (group SI), -20.2% ± 7.2% (group ID), and -6.9% ± 4.3% (group BSB) after a half million cycles, respectively. Reduction rates of groups S and BSB were statistically lower than those of groups SI and ID (P < .01). The standard deviation of group S was lower than group BSB. The removal torque of the original Straumann abutment was significantly higher than those of the copy abutments. The reduction rate of the groups S and BSB abutments was lower than those of the other copy abutments.
Laboratory constraints on models of earthquake recurrence
Beeler, Nicholas M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian D.; Goldsby, David L.
2014-01-01
In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.
NASA Astrophysics Data System (ADS)
Pham, Thi Tham
2002-11-01
A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant effects on acidogenesis and methanogenesis at the concentration levels studied. A significant inhibition of acetoclastic activity was observed for NP at 100 mg/L, with acetic acid consumption rate at 38% of that for controls. No evidence for anaerobic degradation of benzotriazole and its derivatives was observed; however, both batch and continuous experiments suggested that anaerobic degradation of NP occurred. Kinetic analysis of operational data obtained for the anaerobic treatment of ADF in UASB reactors indicated that the substrate utilization rate was independent of the reactor biomass concentration. The maximum rate of substrate utilization and the half-velocity constants for ADF treatment were 28.4 g COD/L/d and 648 mg COD/L, respectively. For 1.2% ADF, the biomass yield and endogenous decay coefficients were 0.027 g VSS/g COD and 0.012 d-1 , respectively.
Strategies for the Evolution of Sex
NASA Astrophysics Data System (ADS)
Erzan, Ayse
2002-03-01
Using a bit-string model of evolution we find a successful route to diploidy and sex in simple organisms, for a step-like fitness function. Assuming that an excess of deleterious mutations triggers the conversion of haploids to diploidy and sex, we find that only one pair of sexual organisms can take over a finite population, if they engage in sexual reproduction under unfavorable conditions, and otherwise perform mitosis. Then, a haploid-diploid (HD) cycle is established, with an abbreviated haploid phase, as in present day sexual reproduction. If crossover is allowed during meiosis, HD cycles of arbitrary duration can be maintained. We find that the sexual population has a higher mortality rate than asexual diploids, but also a relaxation rate that is an order of magnitude higher. As a result, sexuals have a higher adaptability and lower mutational load on the average, since they can select out the undesirable genes much faster.
NASA Technical Reports Server (NTRS)
Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin
2004-01-01
The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.
Tensile strength and failure load of sutures for robotic surgery.
Abiri, Ahmad; Paydar, Omeed; Tao, Anna; LaRocca, Megan; Liu, Kang; Genovese, Bradley; Candler, Robert; Grundfest, Warren S; Dutson, Erik P
2017-08-01
Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.1002/jbm.820190511 ). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1-6, 2014. doi: 10.1097/SLA.0b013e3182a5c8b8 ). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force. Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements. Generally, Vicryl and PDS sutures had the highest mechanical strength (47-179 kN/cm 2 ), while Silk had the lowest (40-106 kN/cm 2 ). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27-50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389-1402, 2002. doi: 10.1007/s00464-001-8283-7 ). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture. Availability of suture tensile strength and failure load data will help define software safety protocols for alerting a surgeon prior to suture failure during robotic surgery. Awareness of suture strength weakening with direct instrument manipulation may lead to the development of better techniques to further reduce intraoperative suture breakage.
I can see clearly now: the effects of age and perceptual load on inattentional blindness
Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli
2014-01-01
Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie’s Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7–8, 9–10, 11–12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task. PMID:24795596
I can see clearly now: the effects of age and perceptual load on inattentional blindness.
Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli
2014-01-01
Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie's Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7-8, 9-10, 11-12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task.
NASA Technical Reports Server (NTRS)
Choi, S. R.; Gyekenyesi, J. P.
2001-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&
Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D
2016-02-01
This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.
Methane production by anaerobic digestion of water hyacinth (Eichhornia crassipes)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1980-01-01
Water hyacinth under conventional high-rate digestion conditions exhibited higher CH4 yields and energy recovery efficiencies when grown in sewage-fed lagoons than when grown in a fresh water pond. Mesophilic digestion provided the highest recovery of feed energy in the product gas as CH4, while thermophilic digestion, when operated at sufficiently high loading rates and reduced detention times, gave the highest specific CH4 production rates. CH4 yields, volatile solids reduction, and energy recovery as CH4 from the sewage-grown water hyacinth were in the same range as those observed for other biomass substrates when digested under similar conditions.
Taylor, Jeffrey B; Nguyen, Anh-Dung; Griffin, Janet R; Ford, Kevin R
2018-06-01
Metatarsal and midfoot injuries are common in American football. Footwear design may influence injury rates by altering plantar foot loading patterns in these regions. The purpose of this study was to determine the effect of cleat design on in-shoe plantar foot loading during a football-specific, resisted pushing task. Twenty competitive football players (age 14.7 ± 1.8 years, height 1.72 ± 0.10 m, and mass 71.8 ± 26.9 kg) completed three trials of pushing a weighted sled at maximal effort in a standard shoe (CLEAT) and artificial turf-specific shoe (TURF), with flexible in-shoe force measuring insoles. Repeated measures ANOVAs identified mean differences in maximum force and relative load under all regions of the foot. Results showed higher forces in the CLEAT under the medial (p < 0.001) and lateral (p = 0.004) midfoot, central (p = 0.007) and lateral (p < 0.001) forefoot, and lesser toes (p = 0.01), but lower forces in the hallux (p = 0.02) compared to the TURF shoe. Additionally, relative loading was higher in the CLEAT under the medial (p < 0.001) and lateral (p = 0.002) midfoot and lateral (p < 0.001) forefoot, but lower in the medial forefoot (p = 0.006) and hallux (p < 0.001) compared to the TURF shoe. The two shoes elicited distinct plantar loading profiles and may influence shoe selection decisions during injury prevention or rehabilitation practices.
Development of implants composed of bioactive materials for bone repair
NASA Astrophysics Data System (ADS)
Xiao, Wei
The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.
Gutierrez, J.S.; Dietz, M.W.; Masero, J.A.; Gill, Robert E.; Dekinga, Anne; Battley, Phil F.; Sanchez-Guzman, J. M.; Piersma, Theunis
2012-01-01
Birds of marine environments have specialized glands to excrete salt, the saltglands. Located on the skull between the eyes, the size of these organs is expected to reflect their demand, which will vary with water turnover rates as a function of environmental (heat load, salinity of prey and drinking water) and organismal (energy demand, physiological state) factors. On the basis of inter- and intraspecific comparisons of saltgland mass (m sg) in 29 species of shorebird (suborder Charadrii) from saline, fresh and mixed water habitats, we assessed the relative roles of organism and environment in determining measured m sg species. The allometric exponent, scaling dry m sg to shorebird total body mass (m b), was significantly higher for coastal marine species (0??88, N=19) than for nonmarine species (0??43, N=14). Within the marine species, those ingesting bivalves intact had significantly higher m sg than species eating soft-bodied invertebrates, indicating that seawater contained within the shells added to the salt load. In red knots (Calidris canutus), dry m sg varied with monthly averaged ambient temperature in a U-shaped way, with the lowest mass at 12??5??C. This probably reflects increased energy demand for thermoregulation at low temperatures and elevated respiratory water loss at high temperatures. In fuelling bar-tailed godwits (Limosa lapponica), dry m sg was positively correlated with intestine mass, an indicator of relative food intake rates. These findings suggest once more that saltgland masses vary within species (and presumably individuals) in relation to salt load, that is a function of energy turnover (thermoregulation and fuelling) and evaporative water needs. Our results support the notion that m sg is strongly influenced by habitat salinity, and also by factors influencing salt load and demand for osmotically free water including ambient temperature, prey type and energy intake rates. Saltglands are evidently highly flexible organs. The small size of saltglands when demands are low suggests that any time costs of adjustment are lower than the costs of maintaining a larger size in this small but essential piece of metabolic machinery. ?? 2011 The Authors. Functional Ecology ?? 2011 British Ecological Society.
Young, Simon W; Clarke, Henry D; Graves, Stephen E; Liu, Yen-Liang; de Steiger, Richard N
2015-05-01
Total knee arthroplasty (TKA) systems permit a degree of femoro-tibial component size mismatch. The effect of mismatched components on revision rates has not been evaluated in a large study. We reviewed 21,906 fixed-bearing PFC Sigma primary TKAs using the Australian Orthopaedic Association National Joint Replacement Registry, dividing patients into three groups: no femoro-tibial size mismatch, tibial component size > femoral component size, and femoral component > tibial component. Revision rates were higher when the femoral size was greater than the tibia, compared to both equal size (HR = 1.20 (1.00, 1.45), P = 0.047) and to tibial size greater than femoral (HR = 1.60 (1.08, 2.37), P = 0.019). Potential mechanisms to explain these findings include edge loading of polyethylene and increased tibial component stresses. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of Preseason Training on the Sleep Characteristics of Professional Rugby League Players.
Thornton, Heidi R; Delaney, Jace A; Duthie, Grant M; Dascombe, Ben J
2018-02-01
To investigate the influence of daily and exponentially weighted moving training loads on subsequent nighttime sleep. Sleep of 14 professional rugby league athletes competing in the National Rugby League was recorded using wristwatch actigraphy. Physical demands were quantified using GPS technology, including total distance, high-speed distance, acceleration/deceleration load (SumAccDec; AU), and session rating of perceived exertion (AU). Linear mixed models determined effects of acute (daily) and subacute (3- and 7-d) exponentially weighted moving averages (EWMA) on sleep. Higher daily SumAccDec was associated with increased sleep efficiency (effect-size correlation; ES = 0.15; ±0.09) and sleep duration (ES = 0.12; ±0.09). Greater 3-d EWMA SumAccDec was associated with increased sleep efficiency (ES = 0.14; ±0.09) and an earlier bedtime (ES = 0.14; ±0.09). An increase in 7-d EWMA SumAccDec was associated with heightened sleep efficiency (ES = 0.15; ±0.09) and earlier bedtimes (ES = 0.15; ±0.09). The direction of the associations between training loads and sleep varied, but the strongest relationships showed that higher training loads increased various measures of sleep. Practitioners should be aware of the increased requirement for sleep during intensified training periods, using this information in the planning and implementation of training and individualized recovery modalities.
Farana, Roman; Jandacka, Daniel; Uchytil, Jaroslav; Zahradnik, David; Irwin, Gareth
2017-01-01
The aim of this study was to examine the biomechanical injury risk factors at the wrist, including joint kinetics, kinematics and stiffness in the first and second contact limb for parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back handspring with parallel and T-shape hand positions. Synchronised kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. A two-way repeated measure analysis of variance (ANOVA) assessed differences in the kinematic and kinetic parameters between the techniques for each contact limb. The main findings highlighted that in both the RO techniques, the second contact limb wrist joint is exposed to higher mechanical loads than the first contact limb demonstrated by increased axial compression force and loading rate. In the parallel technique, the second contact limb wrist joint is exposed to higher axial compression load. Differences between wrist joint kinetics highlight that the T-shape technique may potentially lead to reducing these bio-physical loads and consequently protect the second contact limb wrist joint from overload and biological failure. Highlighting the biomechanical risk factors facilitates the process of technique selection making more objective and safe.
Kongsong, Mullika; Songsurang, Kultida; Sangvanich, Polkit; Siralertmukul, Krisana; Muangsin, Nongnuj
2014-11-01
Mucoadhesive thiolated chitosan suitable as a carrier for low water soluble drugs was designed and synthesized by conjugating 5-amino-2-mercaptobenzimidazole (MBI) using methylacrylate (MA) as the linking agent. A 14.4% degree of substitution of MA, as determined by (1)H NMR analysis, and 11.86±0.01μmol thiol groups/g of polymer, as determined by Ellman's method, was obtained. The MBI-MA-chitosan had an 11-fold stronger mucoadhesive property compared to unmodified chitosan at pH 1.2, as determined by the periodic acid: Schiff colorimetric method. Chitosan, MA-chitosan and MBI-MA-chitosan were fabricated as well-formed microspheres using electrospray ionization, including an entrapment efficiency of simvastatin (SV) of over 80% for the MBI-MA-chitosan. The mucoadhesiveness of the SV-loaded MBI-MA-CS microspheres was still higher than that for SV-loaded chitosan at pH 1.2 and 6.4. The SV-loaded MBI-MA-CS microspheres revealed a reduced burst effect and an increased release rate (more than fivefold higher than pure SV) of SV over 12h. Copyright © 2014 Elsevier B.V. All rights reserved.
Advances in the study of mechanical properties and constitutive law in the field of wood research
NASA Astrophysics Data System (ADS)
Zhao, S.; Zhao, J. X.; Han, G. Z.
2016-07-01
This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.
Liu, Chun-Jen; Kao, Jia-Horng
2013-05-01
Clinical outcomes of chronic hepatitis B virus (HBV) infection vary widely. In addition to host factors, several viral factors including HBV genotype, viral load, specific viral mutations and quantitative HBsAg levels, have been associated with disease outcomes. Among viral factors, HBV genotype correlates with not only the clinical outcomes, but also with the response to interferon treatment. Currently, 10 HBV genotypes have been identified. Compared with genotype A and B cases, patients with genotypes C and D have lower rates and usually delayed onset of spontaneous HBeAg seroconversion. HBV-genotype C has a higher frequency of basal core promoter (BCP) A1762T/G1764A mutation and preS deletion, and a higher viral load than genotype B. Similarly, genotype D has a higher prevalence of BCP A1762T/G1764A mutation than genotype A. These observations suggest pathogenic differences between HBV genotypes. Genotyping of HBV can help practicing physicians identify chronic hepatitis B patients at risk of disease progression. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
29 CFR 1910.180 - Crawler locomotive and truck cranes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...
29 CFR 1910.180 - Crawler locomotive and truck cranes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...
29 CFR 1910.180 - Crawler locomotive and truck cranes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...
29 CFR 1910.180 - Crawler locomotive and truck cranes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...
29 CFR 1910.180 - Crawler locomotive and truck cranes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... readily available. (iv) No cranes shall be rerated in excess of the original load ratings unless such...) No crane shall be loaded beyond the rated load, except for test purposes as provided in paragraph (e... limited to freely suspended loads. Cranes shall not be used for dragging loads sideways. (v) No hoisting...
[Relationship between performance rating and risk of low back pain in manufacturing line workers].
Higuchi, Yoshiyuki; Funahashi, Atsushi; Izumi, Hiroyuki; Kumashinro, Masaharu
2012-03-01
It is possible that the performance rating of line workers is affected by the risk factors for musculoskeletal disorders that are included in their work more so than by the actual takt time. To investigate whether performance rating relates to the risk factors for musculoskeletal disorders, we analyzed a dataset obtained from a self-administered questionnaire answered by assembly line workers (n=1579). As a result, performance rating had a significant association with unsuitable work environments, poor working postures and handling of heavy loads. The workers who reported the fastest rating had a higher exposure than others to the risk factors for occupational low back pain. The results of our study support the effectiveness of performance rating as an index of work burden.
Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan
2018-02-01
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Live load testing and load rating of five reinforced concrete bridges.
DOT National Transportation Integrated Search
2014-10-01
Five cast-in-place concrete T-beam bridges Eustis #5341, Whitefield #3831, Cambridge #3291, Eddington #5107, : and Albion #2832 were live load tested. Revised load ratings were computed either using test data or detailed : analysis when possi...
Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M
2018-01-01
This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.
Muschalla, Beate; Linden, Michael
2009-10-01
Workplace phobia is defined as a phobic anxiety reaction with symptoms of panic occurring when thinking of or approaching the workplace. People suffering from workplace phobia regularly avoid confrontation with the workplace and are often on sick leave. The specific characteristics of workplace phobia are investigated empirically in comparison to established anxiety disorders. Two hundred thirty patients from an inpatient psychosomatic rehabilitation hospital were interviewed concerning workplace phobia and established anxiety disorders. Additionally, the patients filled in self-rating questionnaires on general and workplace phobic symptom load. Subjectively perceived degree of work load, sick leave, and therapy participation were assessed. Participants with workplace phobia reached significantly higher scores in workplace phobia self-rating than did participants with established anxiety disorders. A similar significant difference was not found concerning the general psychosomatic symptom load. Workplace phobics were more often on sick leave than patients with established anxiety disorders. Workplace phobia can occur as an alonestanding anxiety disorder. It has an own clinical value due to its specific consequences for work participation. Workplace phobia requires special therapeutic attention and treatment instead of purely 'sick leave' certification.
Su, Kai; Gong, Yihong; Wang, Chunming; Wang, Dong-An
2011-06-01
The present study aims to develop a novel open and hollow shell-structure cell microcarrier (SSCM) to improve the anchorage-dependent cell (ADC) loading efficiency, increase the space for cell proliferation and tissue regeneration, and better propel its therapeutic effects. Gelatin particles were prepared with oil/water/oil (o/w/o) technique and modified by an adjustable surface crosslinking technique and subsequent release of uncrosslinked material. Optical microscopy and scanning electron microscopy (SEM) were utilized to observe the morphologies of the microcarriers. Cell loading tests were performed to evaluate the biocompatibilities and effect on osteogenesis of SSCM. SSCMs were successfully fabricated via the surface technique. The shell-structure could allow the cell to attach and grow on both outer and inner surface of sphere and provide adequate space for cell proliferation and extracellular matrix (ECM) secretion. The cell loading rate, proliferation rate and osteogenesis-related gene expressions on the SSCMs were higher than those on the spherical gelatin microcarriers. The outstanding performance of injectable SSCMs endowed with favorable micro-structure, desirable cytocompatibility and enhanced cell affinity makes them as a good choice as cell delivery vehicle for transplanting therapeutic cells towards the scope of tissue regeneration.
Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.
Zielinska, M; Wojnowska-Baryla, I
2006-05-01
Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.
Vibration and loads in hingeless rotors. Volume 1: Theoretical analyses
NASA Technical Reports Server (NTRS)
Watts, G. A.; London, R. J.
1972-01-01
Analytic methods are developed for calculating blade loads and shaft-transmitted vibratory forces in stiff bladed hingeless rotors operating at advance ratios from mu = .3 to mu = 2.0. Calculated shaft harmonic moments compared well with experimental values when the blade first flap frequency was in the region of two-per-revolution harmonic excitation. Calculated blade bending moment azimuthal distributions due to changes in cyclic pitch agreed well with experiment at radial stations near the blade root at values of the ratio of first flap frequency to rotor rotation rate from 1.5 to 5.0. At stations near the blade tip good agreement was only obtained at the higher values of frequency ratio.
Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed
Russoniello, Chrtopher J.; Konikow, Leonard F.; Kroeger, Kevin D.; Fernandez, Cristina; Andres, A. Scott; Michael, Holly A.
2016-01-01
Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwater-borne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.
Xu, Jia-Jia; Zhang, Zheng-Zhe; Ji, Zheng-Quan; Zhu, Ying-Hong; Qi, Si-Yu; Tang, Chong-Jian; Jin, Ren-Cun
2018-06-01
The stability and resilience of an anaerobic ammonium oxidation (anammox) system under transient nanoscale Zero-Valent Iron (nZVI) (50, 75 and 100 mg L -1 ), hydraulic shock (2-fold increase in flow rate) and their combination were studied in an up-flow anaerobic sludge blanket reactor. The response to the shock loads can be divided into three phases i.e. shock, inertial and recovery periods. The effects of the shock loads were directly proportional to the shock intensity. The effluent quality was gradually deteriorated after exposure to high nZVI level (100 mg L -1 ) for 2 h. The higher effluent sensitivity index and response caused by unit intensity of shock was observed under hydraulic and combined shocks. Notably, the specific anammox activity and the content of heme c were considerably reduced during the shock phase and the maximum loss rates were about 30.5% and 24.8%, respectively. Nevertheless, the extracellular polymeric substance amount in the shock phase was enhanced in varying degrees and variation tendency was disparate at all the tested shock loads. These results suggested that robustness of the anammox system was dependent on the magnitude shocks applied and the reactor resistance can be improved by reducing hydraulic retention time with the increase of nZVI concentration under these circumstances. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electric vehicle utilization for ancillary grid services
NASA Astrophysics Data System (ADS)
Aziz, Muhammad
2018-02-01
Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.
Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites
NASA Astrophysics Data System (ADS)
Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.
2015-05-01
The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.
NASA Technical Reports Server (NTRS)
Wierwille, W. W.; Rahimi, M.; Casali, J. G.
1985-01-01
As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.
NASA Technical Reports Server (NTRS)
Lauer, J. L.
1978-01-01
Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.
Calibration of LRFR live load factors using weigh-in-motion data.
DOT National Transportation Integrated Search
2006-06-01
The Load and Resistance Factor Rating (LRFR) code for load rating bridges is based on factors calibrated from structural : load and resistance statistics to achieve a more uniform level of reliability for all bridges. The liveload factors in the : LR...
Weigh-in-motion (WIM) data for site-specific LRFR bridge load rating.
DOT National Transportation Integrated Search
2011-08-12
The live load factors in the Load and Resistant Factor Rating (LRFR) Manual are based on load data from Ontario : thought to be representative of traffic volumes nationwide. However, in accordance with the methodology for : developing site-specific l...
New doxorubicin nanocarriers based on cyclodextrins.
Viale, Maurizio; Giglio, Valentina; Monticone, Massimiliano; Maric, Irena; Lentini, Giovanni; Rocco, Mattia; Vecchio, Graziella
2017-10-01
Polymeric nanoparticles and fibrin gels (FBGs) are attractive biomaterials for local delivery of a variety of biotherapeutic agents, from drugs to proteins. We combined these different drug delivery approaches by preparing nanoparticle-loaded FBGs characterized by their intrinsic features of drug delivery rate and antiproliferative/apoptotic activities. Inclusion complexes of doxorubicin (DOXO) with oligomeric β-cyclodextrins (oCyD) functionalized with different functional groups were studied. These nanocarriers were able to interact with FBGs as shown by a decreased release rate of DOXO. One of these complexes, oCyDNH 2 /DOXO, demonstrated good antiproliferative and apoptotic activity in vitro, reflecting a higher drug uptake by cells. As hypothesized, the nanocarrier/FBG complexes showed a lower drug release rate than similar FBGs loaded with the corresponding non-functionalized oCyD/DOXO. Taken together, our results provide experimental evidence that oCyDNH 2 /DOXO complexes may be useful components in enhanced FBGs and further build support for the great promise these complex molecules hold for clinical use in localized anticancer therapy of inoperable or surgically removable tumors of different histological origin.
The role of different ion species in the cessation of magnetic reconnection
NASA Astrophysics Data System (ADS)
Tenfjord, P.; Hesse, M.
2017-12-01
Ions of ionospheric, plasmaspheric, or plasma mantle origin mass-load the source plasma resulting in the reduction of the Alfvén velocity and reconnection rate. Among other parameters, the mass-loading effect is impacted by the gyroradii of the cold ions, which are much smaller than those of the hotter ions. Consequently the cold ions are magnetized down to smaller spatial scales compared to the hotter population. It is therefore likely that the magnitude and timescales of reconnection rate reductions are impacted not only by the mass density in the inflow region, but also by the nature of the ion species and their temperatures. Using Particle-In-Cell (PIC) simulations with time-dependent inflow of different ion species and different densities, we investigate possible mechanisms for the cessation of magnetic reconnection. We describe how protons and higher mass ions get captured by the reconnection process, and whether and when they slow down the reconnection process. Furthermore, we investigate in detail how the electron diffusion region responds to the rate changes imposed by varying inflow populations.
Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet
2011-05-01
Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Lerch, Bradley A.; Sellers, Cory
2013-01-01
In this paper time and/or rate dependent deformation regions are experimentally mapped out as a function of temperature. It is clearly demonstrated that the concept of a threshold stress (a stress that delineate reversible and irreversible behavior) is valid and necessary at elevated temperatures and corresponds to the classical yield stress at lower temperatures. Also the infinitely slow modulus, (Es) i.e. the elastic modulus of the material if it was loaded at an infinitely slow strain rate, and the "dynamic modulus", modulus, Ed, which represents the modulus of the material if it is loaded at an infinitely fast rate are used to delineate rate dependent from rate independent regions. As demonstrated at elevated temperatures there is a significant difference between the two modulus values, thus indicating both significant time-dependence and rate dependence. In the case of the nickel-based super alloy, ME3, this behavior is also shown to be grain size specific. Consequently, at higher temperatures viscoelastic behavior exist below k (i.e., the threshold stress) and at stresses above k the behavior is viscoplastic. Finally a multi-mechanism, stress partitioned viscoelastic model, capable of being consistently coupled to a viscoplastic model is characterized over the full temperature range investigated for Ti-6-4 and ME3.
Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J
2014-10-01
There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (<3°). Surface EMG increased more in medial gastrocnemius than in the other recorded muscles. At initial recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.
Improvement of suspended sediment concentration estimation for the Yarlung Zangbo river
NASA Astrophysics Data System (ADS)
Zeng, C.; Zhang, F.
2017-12-01
Suspended sediment load of a river represents integrated results of soil erosion, ecosystem variation and landform change occurring within basin over a specified period. Accurate estimation of suspended sediment concentration is important for calculating suspended sediment load, therefore is helpful for evaluating the impact of natural and anthropogenic factors on earth system processes under the background of global climate change. However, long-term observation of suspended sediment concentration usually very difficult in harsh condition areas e.g. rivers on the Tibet Plateau. This study proposed two sediment rating curve subdivision methods, the flood rank method and suspended sediment concentration stages method, to improve the estimations of daily suspended sediment concentration of the Yarlung Zangbo river during 2007 to 2009. The flood rank method, hypothesized that the higher water flow with larger erosive power can mobilize sediment sources not available during lower flows, suitable for application where sediments were mainly transported by first few flood events. The suspended sediment concentration stages method, assumed that precipitation is the dominating driving force of sediment erosion and transport processes during the flooding periods, suitable for application where soil erosion was closely related to precipitation events. Compared to traditional sediment rating curve and subdivision methods, results showed that the proposed methods can improve suspended sediment concentration and subsequent suspended sediment load estimations in the middle reach of the Yarlung Zangbo river with higher coefficients of determination (R2) and Nash-Sutcliffe efficiency coefficients (NSE), and yielded smaller bias (BIAS) and root-mean-square errors (RMSE). This study can provide guidelines for regional ecological and environmental management.
Effects of mass loading on dayside solar wind-magnetosphere interactions
NASA Astrophysics Data System (ADS)
Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Lotko, W.
2016-12-01
Satellite observations have shown that terrestrial-sourced plasmas mass load the dayside magnetopause and cause reductions in local reconnection rates. Whether the integrated dayside reconnection rate is affected by these local mass-loading processes is still an open question. Several mechanisms have been proposed to describe the control of dayside reconnection, including the local-control and global-control hypotheses. We have conducted a series of controlled numerical simulations to investigate the response of dayside solar wind-magnetopshere (SW-M) coupling to mass loading processes. Our simulation results show that the coupled SW-M system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in the local reconnection rate does not affect magnetosheath properties and the geoeffective length in the upstream solar wind, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, the magnetosheath properties and the geoeffective length are significantly modified by slowing down the local reconnection rate, resulting in a significant reduction in the integrated dayside reconnection rate. The response of magnetosheath properties to mass loading is expected from the Cassak-Shay asymmetric reconnection theory through conservation of energy. The physical origin of the transition regime between local and global control is qualitatively explained. The parameters that determine the transition regime depend on the location, spatial extension and density of the mass loading process.
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2015-02-26
The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zumbakytė-Šermukšnienė, Renata; Kajėnienė, Alma; Vainoras, Alfonsas; Berškienė, Kristina; Augutienė, Viktorija
2010-01-01
We consider the human body as an adaptable, complex, and dynamic system capable of organizing itself, though there is none, the only one, factor inside the system capable of doing this job. Making use of the computerized ECG analysis system "Kaunas-load" with parallel registration of ECG carrying out body motor characteristics, ABP, or other processes characterizing hemodynamics enable one to reveal and evaluate the synergistic aspects of essential systems of the human body what particularly extends the possibilities of functional diagnostics. The aim of the study was to determine the features of alterations in the functional condition of basketball and football players and nonathletes during the bicycle ergometry test by applying the model of evaluation of the functional condition of the human body. The study population consisted of 266 healthy athletes and nonathletes. Groups of male basketball players, male football players, male nonathletes, female basketball players, and female nonathletes were studied. A computerized ECG analysis system "Kaunas-load" that is capable of both registering and analyzing the power developed by the subject and 12-lead ECG synchronically were used for evaluating the functional condition of the CVS. The subject did a computer-based bicycle ergometry test. The following ECG parameters at rest and throughout the load - HR, JT interval, and the deduced JT/RR ratio index that reflects the condition between regulatory and supplying systems - were evaluated. After measuring ABP, the pulse amplitude (S-D) was evaluated. The pulse blood pressure ratio amplitude (S-D)/S that depicts the connection between the periphery and regulatory systems was also evaluated. Speeds of changes in physiological parameters during physical load were evaluated too. Heart rate and JT/RR ratio of athletes at the rest and during load were lower, and JT interval of rest was longer and became shorter more slowly during load, compared to that of healthy nonathletes. The pulse arterial blood pressure amplitude of men at rest and during load was higher than that of women. The pulse ABP amplitude of athletes was higher than that of nonathletes. The relative pulse ABP amplitude in the state of rest in the groups of men was higher than in groups of women. The relative pulse amplitude of female basketball players at rest and during load was higher than that of female nonathletes. Significant differences in the dynamics of speed of changes in HR, the pulse ABP amplitude, and the relative pulse ABP amplitude of male and female basketball players, male football players, as well as male and female nonathletes were observed. The newly deduced parameters, namely, speeds of changes in the parameters with changes in the phase of the load reflect very well peculiarities of functional condition of the human body during bicycle ergometry test. The sum total of those newly deduced parameters and customary parameters reveals new functional peculiarities of the human body.
The impact of physical and mental tasks on pilot mental workoad
NASA Technical Reports Server (NTRS)
Berg, S. L.; Sheridan, T. B.
1986-01-01
Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots.
DOT National Transportation Integrated Search
2016-06-01
Load and Resistance Factor Rating (LRFR) is a reliability-based rating procedure complementary to Load and Resistance Factor Design (LRFD). The intent of LRFR is to provide consistent reliability for all bridges regardless of in-situ condition. The p...
Purchase, Cromwell; Napier, Kathryn R; Nicolson, Susan W; McWhorter, Todd J; Fleming, Patricia A
2013-05-01
Nectarivores face a constant challenge in terms of water balance, experiencing water loading or dehydration when switching between food plants or between feeding and fasting. To understand how whitebellied sunbirds and New Holland honeyeaters meet the challenges of varying preformed water load, we used the elimination of intramuscular-injected [(14)C]-l-glucose and (3)H2O to quantify intestinal and renal water handling on diets varying in sugar concentration. Both sunbirds and honeyeaters showed significant modulation of intestinal water absorption, allowing excess water to be shunted through the intestine when on dilute diets. Despite reducing their fractional water absorption, both species showed linear increases in water flux and fractional body water turnover as water intake increased (both afternoon and morning), suggesting that the modulation of fractional water absorption was not sufficient to completely offset dietary water loads. In both species, glomerular filtration rate was independent of water gain (but was higher for the afternoon), as was renal fractional water reabsorption (measured in the afternoon). During the natural overnight fast, both sunbirds and honeyeaters arrested whole kidney function. Evaporative water loss in sunbirds was variable but correlated with water gain. Both sunbirds and honeyeaters appear to modulate intestinal water absorption as an important component of water regulation to help deal with massive preformed water loads. Shutting down glomerular filtration rate during the overnight fast is another way of saving energy for osmoregulatory function. Birds maintain osmotic balance on diets varying markedly in preformed water load by varying both intestinal water absorption and excretion through the intestine and kidneys.
Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K
2012-07-01
Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Do, Quyet H.; Fielitz, Thomas R.; Zeng, Changchun; Arda Vanli, O.; Zhang, Chuck; Zheng, Jim P.
2013-08-01
Vanadium pentoxide (V2O5) deposited on porous multiwalled carbon nanotube (MWCNT) buckypaper using supercritical fluid CO2(scCO2) deposition shows excellent performance for electrochemical capacitors. However, the low weight loading of V2O5 is one of the main problems. In this paper, design of experiments and response surface methods were employed to explore strategies for improving the active material loading by increasing the organo-vanadium precursor adsorption. A second-order response surface model was fitted to the designed experiments to predict the loading of the vanadium precursors onto carbon nanotube buckypaper as a function of time, temperature and pressure of CO2, buckypaper functionalization, precursor type, initial precursor mass and stir speed. Operation conditions were identified by employing a model that led to a precursor loading of 19.33%, an increase of 72.28% over the initial screening design. CNTs-V2O5 composite electrodes fabricated from deposited samples using the optimized conditions demonstrated outstanding electrochemical performance (947.1 F g-1 of V2O5 at a high scan rate 100 mV s-1). The model also predicted operation conditions under which light precursor aggregation took place. The V2O5 from aggregated precursor still possessed considerable specific capacitance (311 F g-1 of V2O5 at a scan rate 100 mV s-1), and the significantly higher V2O5 loading (˜81%) contributed to an increase in overall electrode capacitance.
Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Reed; Ickes, Andrew; Wallner, Thomas
2015-01-01
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less
NASA Astrophysics Data System (ADS)
Regmi, Chhabilal; Dhakal, Dipesh; Wohn Lee, Soo
2018-02-01
An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min-1 and 0.023 min-1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.
Study on Mechanical Properties of Barite Concrete under Impact Load
NASA Astrophysics Data System (ADS)
Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.
2018-03-01
In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.
Load research manual. Volume 2: Fundamentals of implementing load research procedures
NASA Astrophysics Data System (ADS)
1980-11-01
This manual will assist electric utilities and state regulatory authorities in investigating customer electricity demand as part of cost-of-service studies, rate design, marketing research, system design, load forecasting, rate reform analysis, and load management research. Load research procedures are described in detail. Research programs at three utilities are compared: Carolina Power and Light Company, Long Island Lighting Company, and Southern California Edison Company. A load research bibliography and glossaries of load research and statistical terms are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefek, T.; Daugherty, W.; Estochen, E.
Compaction of lower layers in the fiberboard assembly has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests of cane fiberboard, higher moisture content has been shown to correspond to higher total compaction, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction compared tomore » a static load. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted to acquire immediate and cumulative changes in geometric data for various moisture levels. Two sample sets have undergone a complete dynamic test regimen, one set for 27 weeks, and the second set for 47 weeks. The dynamic input, data acquisition, test effects on sample dynamic parameters, and results from this test program are summarized and compared to regulatory specifications for dynamic loading. Compaction of the bottom fiberboard layers due to the accumulation of moisture is one possible cause of an increase in the axial gap at the top of the package. The net compaction of the bottom layers will directly add to the axial gap. The moisture which caused this compaction migrated from the middle region of the fiberboard assembly (which is typically the hottest). This will cause the middle region to shrink axially, which will also contribute directly to the axial gap. Measurement of the axial gap provides a screening tool for identifying significant change in the fiberboard condition. The data in this report provide a basis to evaluate the impact of moisture and fiberboard compaction on 9975 package performance during storage at the Savannah River Site (SRS).« less