Sample records for higher maximum temperature

  1. Effect of temperature and dissolved oxygen on biological nitrification at high ammonia concentrations.

    PubMed

    Weon, S Y; Lee, S I; Koopman, B

    2004-11-01

    Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.

  2. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    NASA Astrophysics Data System (ADS)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  3. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures

    PubMed Central

    Welch, Jarrod R.; Vincent, Jeffrey R.; Auffhammer, Maximilian; Moya, Piedad F.; Dobermann, Achim; Dawe, David

    2010-01-01

    Data from farmer-managed fields have not been used previously to disentangle the impacts of daily minimum and maximum temperatures and solar radiation on rice yields in tropical/subtropical Asia. We used a multiple regression model to analyze data from 227 intensively managed irrigated rice farms in six important rice-producing countries. The farm-level detail, observed over multiple growing seasons, enabled us to construct farm-specific weather variables, control for unobserved factors that either were unique to each farm but did not vary over time or were common to all farms at a given site but varied by season and year, and obtain more precise estimates by including farm- and site-specific economic variables. Temperature and radiation had statistically significant impacts during both the vegetative and ripening phases of the rice plant. Higher minimum temperature reduced yield, whereas higher maximum temperature raised it; radiation impact varied by growth phase. Combined, these effects imply that yield at most sites would have grown more rapidly during the high-yielding season but less rapidly during the low-yielding season if observed temperature and radiation trends at the end of the 20th century had not occurred, with temperature trends being more influential. Looking ahead, they imply a net negative impact on yield from moderate warming in coming decades. Beyond that, the impact would likely become more negative, because prior research indicates that the impact of maximum temperature becomes negative at higher levels. Diurnal temperature variation must be considered when investigating the impacts of climate change on irrigated rice in Asia. PMID:20696908

  4. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.

    2005-08-01

    Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.

  5. Effects of temperature on the gas exchange of leaves in the light and dark.

    PubMed

    Hofstra, G; Hesketh, J D

    1969-09-01

    Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.

  6. Towards bridging the gap between climate change projections and maize producers in South Africa

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus

    2018-05-01

    Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.

  7. Effects of temperature and light on photosynthesis of dominant species of a northern hardwood forest. [Populus grandidentata, Quercus rubra, Betula papyrifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurik, T.W.; Weber, J.A.; Gates, D.M.

    1988-06-01

    The response of CO{sub 2} exchange rate (CER) to temperature and light was determined for 14 dominant plant species of a northern deciduous hardwood forest in northern lower Michigan. Leaves at the top of the canopy had temperature optima near 25 C for CER, whereas leaves in the understory had optima near 20 C. There was no change in optimum temperature over the growing season, and overall shapes of response curves were similar among species. The lack of change in temperature optima may be a result of little change in growing conditions rather than a lack of ability to acclimatize.more » Nine of 11 species in the understory had no significant differences in light-saturated, maximum CERs, whereas at the top of the canopy Populus grandidentata had a higher maximum CER than Quercus rubra and Betula papyrifera. The species in the understory also differed little in light-saturation points for CER. Species at the top of the canopy had higher values for maximum CER, light-saturation point for CER, and maximum conductance than did species in the understory.« less

  8. Middle Holocene thermal maximum in eastern Beringia

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; Bartlein, P. J.

    2015-12-01

    A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.

  9. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang

    2012-03-01

    The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  11. The mixing effects for real gases and their mixtures

    NASA Astrophysics Data System (ADS)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  12. Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.

    PubMed

    Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl

    2009-12-01

    Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.

  13. Temperature and molecular-weight dependences of acoustic behaviors of polystyrene studied using Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh, Soo Han; Lee, Byoung Wan; Ko, Jae-Hyeon; Lee, Hyeonju; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo

    2017-04-01

    The acoustic properties of three polystyrene polymers with different molecular weights were investigated as a function of temperature by using Brillouin light scattering. The longitudinal sound velocity showed a change in the slope, which depended on the molecular weight, at the glass transition temperature. The absorption coefficient exhibited a maximum above the glass transition temperature, and the maximum temperature became higher as the molecular weight was increased. Comparison with previous acoustic studies on polystyrene indicate that a substantial frequency dispersion caused by strong coupling between the longitudinal acoustic waves and the segmental motions exists in the high-temperature range.

  14. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  15. Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael

    2010-08-27

    We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.

  16. Statistical downscaling of CMIP5 outputs for projecting future maximum and minimum temperature over the Haihe River Bain, China

    NASA Astrophysics Data System (ADS)

    Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd

    2016-04-01

    Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.

  17. The association of remotely-sensed outdoor temperature with blood pressure levels in REGARDS: a cross-sectional study of a large, national cohort of African-American and white participants

    PubMed Central

    2011-01-01

    Background Evidence is mounting regarding the clinically significant effect of temperature on blood pressure. Methods In this cross-sectional study the authors obtained minimum and maximum temperatures and their respective previous week variances at the geographic locations of the self-reported residences of 26,018 participants from a national cohort of blacks and whites, aged 45+. Linear regression of data from 20,623 participants was used in final multivariable models to determine if these temperature measures were associated with levels of systolic or diastolic blood pressure, and whether these relations were modified by stroke-risk region, race, education, income, sex hypertensive medication status, or age. Results After adjustment for confounders, same-day maximum temperatures 20°F lower had significant associations with 1.4 mmHg (95% CI: 1.0, 1.9) higher systolic and 0.5 mmHg (95% CI: 0.3, 0.8) higher diastolic blood pressures. Same-day minimum temperatures 20°F lower had a significant association with 0.7 mmHg (95% CI: 0.3, 1.0) higher systolic blood pressures but no significant association with diastolic blood pressure differences. Maximum and minimum previous-week temperature variabilities showed significant but weak relationships with blood pressures. Parameter estimates showed effect modification of negligible magnitude. Conclusions This study found significant associations between outdoor temperature and blood pressure levels, which remained after adjustment for various confounders including season. This relationship showed negligible effect modification. PMID:21247466

  18. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  19. Origin of two maxima in specific heat in enthalpy relaxation under thermal history composed of cooling, annealing, and heating.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2016-12-01

    The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.

  20. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    NASA Astrophysics Data System (ADS)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  1. Physical Limitations of Phosphor layer thickness and concentration for White LEDs.

    PubMed

    Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung

    2018-02-05

    Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

  2. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  3. Do the western Himalayas defy global warming?

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Park, Won-Kyu; Singh, Jayendra; Dubey, Bhasha

    2004-09-01

    Observational records and reconstructions from tree rings reflect premonsoon (March to May) temperature cooling in the western Himalaya during the latter part of the 20th century. A rapid decrease of minimum temperatures at around three times higher rate, as compared to the rate of increase in maximum temperatures found in local climate records is responsible for the cooling trend in mean premonsoon temperature. The increase of the diurnal temperature range is attributed to large scale deforestation and land degradation in the area and shows the higher influence of local forcing factors on climate in contrast to the general trend found in higher latitudes of the northern Hemisphere.

  4. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    NASA Astrophysics Data System (ADS)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  5. Maximum performance of solar heat engines: Discussion of thermodynamic availability and other second law considerations and their implications

    NASA Astrophysics Data System (ADS)

    Boehm, R. F.

    1985-09-01

    A review of thermodynamic principles is given in an effort to see if these concepts may indicate possibilities for improvements in solar central receiver power plants. Aspects related to rate limitations in cycles, thermodynamic availability of solar radiation, and sink temperature considerations are noted. It appears that considerably higher instantaneous plant efficiencies are possible by raising the maximum temperature and lowering the minimum temperature of the cycles. Of course, many practical engineering problems will have to be solved to realize the promised benefits.

  6. The neotropical shrub Lupinus elegans, fromtemperate forests, may not adapt to climate change.

    PubMed

    Soto-Correa, J C; Sáenz-Romero, C; Lindig-Cisneros, R; de la Barrera, E

    2013-05-01

    Considering that their distribution is limited to altitudinal gradients along mountains that are likely to become warmer and drier, climate change poses an increased threat to temperate forest species from tropical regions. We studied whether the understorey shrub Lupinus elegans, endemic to temperate forests of west-central Mexico, will be able to withstand the projected temperature increase under seven climate change scenarios. Seeds were collected along an altitudinal gradient and grown in a shade-house over 7 months before determining their temperature tolerance as electrolyte leakage. The plants from colder sites tolerated lower temperatures, i.e. the temperature at which half of the maximum electrolyte leakage occurred (LT50), ranged from −6.4 ± 0.7 to −2.4 ± 0.3 °C. In contrast, no pattern was found for tolerance to high temperature (LT50 average 42.8 ± 0.3 °C). The climate change scenarios considered here consistently estimated an increase in air temperature during the present century that was higher for the maximum air temperature than for the mean or minimum. In particular, the anomaly from the normal maximum air temperature at the study region ranged from 2.8 °C by 2030 to 5.8 °C by 2090. In this respect, the inability of L. elegans to adapt to increasingly higher temperatures found here, in addition to a possible inhibition of reproduction caused by warmer winters, may limit its future distribution.

  7. Equatorial temperature anomaly during solar minimum

    NASA Astrophysics Data System (ADS)

    Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    2001-11-01

    We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.

  8. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  9. Low-temperature vibrational dynamics of fused silica and binary silicate glasses

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Shi, Ying; Hrdina, Ken; Moore, Lisa; Wu, Jingshi; Daemen, Luke L.; Cheng, Yongqiang

    2018-02-01

    Inelastic neutron scattering was used to study the vibrational dynamics of fused silica and its mixed binary glasses that were doped with either TiO2 or K2O . The energy transfer was measured from zero to 180 meV where the so-called Boson peaks (BP) at low energy and molecular vibrations at high energy are included. Although most of the vibrational spectra at the high energy resemble those reported in earlier literature, a defect-mode-like peak is observed for the doped binary systems near 120 meV . At very low temperature, the BP intensity increases rapidly with temperature and then, at higher temperature, the peak intensity decreases. As a result, a maximum is observed in the temperature dependence of the BP intensity. This maximum was shown in all four samples, but the pure SiO2 sample shows the highest intensity peak and the lowest temperature for peak position. Broadband energy spectra reveal a shift of intensity from BP to the more localized modes at higher energy. Temperature evolution of BP and its relationship with heat conduction and thermal expansion are discussed.

  10. Designing Ground Antennas for Maximum G/T: Cassegrain or Gregorian?

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.

    2005-01-01

    For optimum performance, a ground antenna system must maximize the ratio of received signal to the receiving system noise power, defined as the ratio of antenna gain to system-noise temperature (G/T). The total system noise temperature is the linear combination of the receiver noise temperature (including the feed system losses) and the antenna noise contribution. Hence, for very low noise cryogenic receiver systems, antenna noise-temperature properties are very significant contributors to G/T.It is well known that, for dual reflector systems designed for maximum gain, the gain performance of the antenna system is the same for both Cassegrain and Gregorian configurations. For a12-meter antenna designed to be part of the large array based Deep Space Network, a Cassegrain configuration designed for maximum G/T at X-band was 0.7 dB higher than the equivalent Gregorian configuration. This study demonstrates that, for maximum GIT, the dual shaped Cassegrain design is always better than the Gregorian.

  11. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  12. Meteorological variables affect fertility rate after intrauterine artificial insemination in sheep in a seasonal-dependent manner: a 7-year study.

    PubMed

    Palacios, C; Abecia, J A

    2015-05-01

    A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures (Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR (P < 0.01) and summer inseminations under lower SR values (P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T (P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum (P < 0.05) and minimum Ts (P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.

  13. Meteorological variables affect fertility rate after intrauterine artificial insemination in sheep in a seasonal-dependent manner: a 7-year study

    NASA Astrophysics Data System (ADS)

    Palacios, C.; Abecia, J. A.

    2015-05-01

    A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures ( Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR ( P < 0.01) and summer inseminations under lower SR values ( P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T ( P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum ( P < 0.05) and minimum Ts ( P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.

  14. In vitro thermal profile suitability assessment of acids and bases for thermochemical ablation: underlying principles.

    PubMed

    Freeman, Laura A; Anwer, Bilal; Brady, Ryan P; Smith, Benjamin C; Edelman, Theresa L; Misselt, Andrew J; Cressman, Erik N K

    2010-03-01

    To measure and compare temperature changes in a recently developed gel phantom for thermochemical ablation as a function of reagent strength and concentration with several acids and bases. Aliquots (0.5-1 mL) of hydrochloric acid or acetic acid and sodium hydroxide or aqueous ammonia were injected for 5 seconds into a hydrophobic gel phantom. Stepwise increments in concentration were used to survey the temperature changes caused by these reactions. Injections were performed in triplicate, measured with a thermocouple probe, and plotted as functions of concentration and time. Maximum temperatures were reached almost immediately in all cases, reaching 75 degrees C-110 degrees C at the higher concentrations. The highest temperatures were seen with hydrochloric acid and either base. More concentrated solutions of sodium hydroxide tended to mix incompletely, such that experiments at 9 M and higher were difficult to perform consistently. Higher concentrations for any reagent resulted in higher temperatures. Stronger acid and base combinations resulted in higher temperatures versus weak acid and base combinations at the same concentration. Maximum temperatures obtained are in a range known to cause tissue coagulation, and all combinations tested therefore appeared suitable for further investigation in thermochemical ablation. Because of the loss of the reaction chamber shape at higher concentrations of stronger agents, the phantom does not allow complete characterization under these circumstances. Adequate mixing of reagents to maximize heating potential and avoid systemic exposure to unreacted acid and base must be addressed if the method is to be safely employed in tissues. In addition, understanding factors that control lesion shape in a more realistic tissue model will be critical. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  15. Soil temperatures under urban trees and asphalt

    Treesearch

    Howard G. Halverson; Gordon M. Heisler

    1981-01-01

    Summer temperatures under trees planted in holes cut through an asphalt cover in a parking lot and in soil beneath the surrounding asphalt were higher than soil temperatures under trees at a control site. Winter minimums were not different, but maximum summer temperature exceeded the control by 3ºC beneath the parking lot trees and up to 10ºC beneath...

  16. Thermal characteristics of wild and captive Micronesian Kingfisher nesting habitats

    USGS Publications Warehouse

    Kesler, Dylan C.; Haig, Susan M.

    2004-01-01

    To provide information for managing the captive population of endangered Guam Micronesian kingfishers (Halcyon cinnamomina cinnamomina), four biologically relevant thermal metrics were compared among captive facilities on the United States mainland and habitats used by wild Micronesian kingfishers on the island of Pohnpei (H. c. reichenbachii), Federated States of Micronesia. Additionally, aviaries where kingfishers laid eggs were compared to those in which birds did not attempt to breed. Compared to aviaries, habitats used by wild Pohnpei kingfishers had 3.2A?C higher daily maximum and minimum temperatures and the proportion of time when temperatures were in the birds' thermoneutral zone was 45% greater. No differences were found in the magnitude of temperature fluctuation in captive and wild environments. In captive environments in which birds bred, daily maximum temperatures were 2.1A?C higher and temperatures were within the thermoneutral zone 25% more often than in the aviaries where the kingfishers did not breed. No differences were found in the magnitude of temperature fluctuation or the daily minimum temperature. Results suggest that the thermal environment has the potential to influence reproduction, and that consideration should be given to increasing temperatures in captive breeding facilities to improve propagation of the endangered Micronesian kingfisher.

  17. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    NASA Astrophysics Data System (ADS)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  18. Thermal buffering of concrete by seaweeds during a prolonged summer heatwave

    NASA Astrophysics Data System (ADS)

    Naylor, Larissa; Coombes, Martin

    2014-05-01

    Hard coastal infrastructure is subject to aggressive environmental conditions, including a suite of weathering processes in the intertidal zone. These processes, along with waves, lead to costly deterioration of coastal structures. Existing methods (e.g. coatings, less porous concrete) to reduce the risk of concrete deterioration rapidly lose their effectiveness in the intertidal zone. Additionally, a changing climate will lead to increased frequency of storms, higher sea level and higher extreme temperatures - and therefore, pose an increased risk of deterioration. Might there be a biogenic solution? New research (Coombes et al. 2013) has shown that fucoid seaweeds reduce microclimatic extremes and variability under normal summer conditions. The results presented here supplement these findings in two ways. First, they demonstrate that fucoid seaweeds act as a thermal buffer during a prolonged summer heatwave in Britain (July 2013). Over 36 days of continuous monitoring at two sites in Cornwall, UK, 19 of which were during the official heatwave, there were statistically significant differences (p = 0.000) in the maximum temperatures between thick seaweed (7.5 - 9.5 cm thickness) and thin seaweed (2 - 2.5 cm thickness) plots. Maximum temperatures reached 22°C and 33°C, for thick seaweed and thin seaweed plots, respectively. Variations in maximum temperatures between the two sites appear to be related to aspect. Second, the significantly different maximum temperature results between plots also demonstrate that seaweed thickness is an important factor influencing thermal buffering capacity. These data clearly demonstrate that fucoid seaweeds buffer concrete seawalls against extreme temperature fluxes during a heatwave, probably limiting the efficiency of deteriorative processes such as thermal expansion and contraction and salt crystallisation.

  19. Influence of Water Relations and Temperature on Leaf Movements of Rhododendron Species 1

    PubMed Central

    Nilsen, Erik Tallak

    1987-01-01

    Rhododendron maximum L. and R. Catawbiense L. are subcanopy evergreen shrubs of the eastern United States deciduous forest. Field measurements of climate factors and leaf movements of these species indicated a high correlation between leaf temperature and leaf curling; and between leaf water potential and leaf angle. Laboratory experiments were performed to isolate the influence of temperature and cellular water relations on leaf movements. Significant differences were found between the patterns of temperature induction of leaf curling in the two species. Leaves of the species which curled at higher temperatures (R. catawbiense) also froze at higher leaf temperatures. However, in both cases leaf curling occurred at leaf temperatures two to three degrees above the leaf freezing point. Pressure volume curves indicated that cellular turgor loss was associated with a maximum of 45% curling while 100% or more curling occurred in field leaves which still had positive cell turgor. Moisture release curves indicated that 70% curling requires a loss of greater than 60% of symplastic water which corresponds to leaf water potentials far below those experienced in field situations. Conversely, most laboratory induced changes in leaf angle could be related to leaf cell turgor loss. PMID:16665296

  20. Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study

    NASA Astrophysics Data System (ADS)

    van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.

    2016-01-01

    Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.

  1. Negative to positive magnetoresistance and magnetocaloric effect in Pr 0.6Er 0.4Al 2

    DOE PAGES

    Pathak, Arjun K.; Gschneidner, Jr., K. A.; Pecharsky, V. K.

    2014-10-13

    We report on the magnetic, magnetocaloric and magnetotransport properties of Pr 0.6Er 0.4Al 2. The title compound exhibits a large positive magnetoresistance (MR) for H ≥ 40 kOe and a small but non negligible negative MR for H ≤ 30 kOe. The maximum positive MR reaches 13% at H = 80 kOe. The magnetic entropy and adiabatic temperature changes as functions of temperature each show two anomalies: a broad dome-like maximum below 20 K and a relatively sharp peak at higher temperature. As a result, observed behaviors are unique among other binary and mixed lanthanide compounds.

  2. The Ultrachopper tip: a wound temperature study.

    PubMed

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  3. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants

    NASA Astrophysics Data System (ADS)

    Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.

    2016-10-01

    A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher ( P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.

  4. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  5. Magnitude of temperature elevation is associated with neurologic and survival outcomes in resuscitated cardiac arrest patients with postrewarming pyrexia.

    PubMed

    Grossestreuer, Anne V; Gaieski, David F; Donnino, Michael W; Wiebe, Douglas J; Abella, Benjamin S

    2017-04-01

    Avoidance of pyrexia is recommended in resuscitation guidelines, including after treatment with targeted temperature management (TTM). Which aspects of postresuscitation pyrexia are harmful and modifiable have not been conclusively determined. This retrospective multicenter registry study collected serial temperatures during 72 hours postrewarming to assess the relationship between 3 aspects of pyrexia (maximum temperature, pyrexia duration, timing of first pyrexia) and neurologic outcome (primary) and survival (secondary) at hospital discharge. Adult TTM-treated patients from 13 US hospitals between 2005 and 2015 were included. One hundred seventy-nine of 465 patients had at least 1 temperature greater than or equal to 38°C. Pyrexic temperatures were associated with better survival than nonpyrexic temperatures (adjusted odds ratio [aOR], 1.54; 95% confidence interval [CI], 1.00-2.35). Higher maximum temperature was associated with worse outcome (neurologic aOR, 0.30 [95% CI, 0.10-0.84]; survival aOR, 0.25 [95% CI, 0.10-0.59]) in pyrexic patients. There was no significant relationship between pyrexia duration and outcomes unless duration was calculated as hours greater than or equal to 38.8°C, when longer duration was associated with worse outcomes (neurologic aOR, 0.86 [95% CI, 0.75-1.00]; survival aOR, 0.82 [95% CI, 0.72-0.93]). In postarrest TTM-treated patients, pyrexia was associated with increased survival. Patients experiencing postrewarming pyrexia had worse outcomes at higher temperatures. Longer pyrexia duration was associated with worse outcomes at higher temperatures. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    USGS Publications Warehouse

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  7. The differential influence of temperature on Phytophthora megakarya and Phytophthora palmivora pod lesion expansion, mycelia growth, gene expression, and metabolite profiles

    USDA-ARS?s Scientific Manuscript database

    Phytophthora megakarya and Phytophthora palmivora cause cacao black pod rot of cacao. P. megakarya occurs in Africa while P. palmivora is distributed world-wide. P. palmivora has a higher temperature maximum (34°C) than P. megakarya (30°C). Factors contributing to temperature maxima in Phytophtho...

  8. Climate change effects on livestock in the Northeast U.S. and strategies for adaptation

    USDA-ARS?s Scientific Manuscript database

    The livestock industries are a major contributor to the economy of the northeastern United States. Climate models predict increased average maximum temperatures, days with temperatures exceeding 25°C, and higher annual precipitation in the Northeast. These environmental changes combined with increas...

  9. GROWTH RATES AND ELEMENTAL COMPOSITION OF ALEXANDRIUM MONILATUM, A REDTIDE DINOFLAGELLATE

    EPA Science Inventory

    The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division d-1 at 31 C. Salinities above 15 psu had ...

  10. Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).

    PubMed

    Sepulveda, C; Dickson, K A

    2000-10-01

    Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.

  11. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.

  12. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less

  13. Simulation of the Velocity and Temperature Distribution of Inhalation Thermal Injury in a Human Upper Airway Model by Application of Computational Fluid Dynamics.

    PubMed

    Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an

    2015-01-01

    Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.

  14. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  15. Association between summer temperature and body weight in Japanese adolescents and children: An ecological analysis.

    PubMed

    Yokoya, Masana; Higuchi, Yukito

    2016-11-01

    Several experimental studies reported evidence of a negative energy balance at higher temperatures. However, corresponding weight loss has not been noted in clinical practice. This study investigated the geographical association between outdoor temperature and body weight in Japanese adolescents and children. An ecological analysis was conducted using prefecture-level data on the mean body weight of Japanese adolescents and children over a 25-year period and Japanese mesh (regional) climatic data on the mean annual temperature, mean daily maximum temperature in August, and mean daily minimum temperature in January were also analyzed. Correlation analysis uncovered a stronger association between weight and the mean daily maximum temperature in August than with other climatic variables. Moreover, multiple regression analysis indicated that height and the mean daily maximum temperature in August were statistically significant predictors of weight. This suggests that geographical differences in weight in Japanese adolescents and children can be explained by the complementary relationship between height-associated weight gain and weight loss caused by summer heat. Summer temperatures may reduce the proportion of children who are overweight and contribute to geographical differences in body weight in Japanese adolescents and children. Am. J. Hum. Biol. 28:789-795, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Analyses of Deformation and Stress of Oil-free Scroll Compressor Scroll

    NASA Astrophysics Data System (ADS)

    Peng, Bin; Li, Yaohong; Zhao, Shenxian

    2017-12-01

    The solid model of orbiting and fixed scroll is created by the Solidworks The deformation and stress of scrolls under gas force, temperature field, inertia force and the coupling field are analyzed using the Ansys software. The deformation for different thickness and height scroll tooth is investigated. The laws of deformation and stress for scrolls are gotten. The research results indicate that the stress and deformation of orbiting scroll are mainly affected by the temperature field. The maximum deformation occurs in the tooth head of scroll wrap because of the largest gas forces and the highest temperature in the tooth head of scroll wrap. The maximum stress is located in the end of the tooth, and the maximum stress of the coupling field is not the sum of loads. The scroll tooth is higher, and the deformation is bigger. The scroll tooth is thicker, and the deformation is smaller.

  17. Critical Review of Industrial Techniques for Thermal-Conductivity Measurements of Thermal Insulation Materials

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Ulf; Hameury, Jacques; Strnad, Radek; Turzó-Andras, Emese; Wu, Jiyu

    2015-07-01

    This paper presents a critical review of current industrial techniques and instruments to measure the thermal conductivity of thermal insulation materials, especially those insulations that can operate at temperatures above and up to . These materials generally are of a porous nature. The measuring instruments dealt with here are selected based on their maximum working temperature that should be higher than at least . These instruments are special types of the guarded hot-plate apparatus, the guarded heat-flow meter, the transient hot-wire and hot-plane instruments as well as the laser/xenon flash devices. All technical characteristics listed are quoted from the generally accessible information of the relevant manufacturers. The paper includes rankings of the instruments according to their standard retail price, the maximum sample size, and maximum working temperature, as well as the minimum in their measurement range.

  18. High-temperature durability considerations for HSCT combustor

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1992-01-01

    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.

  19. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants.

    PubMed

    Abecia, J A; Arrébola, F; Macías, A; Laviña, A; González-Casquet, O; Benítez, F; Palacios, C

    2016-10-01

    A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly (P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher (P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.

  20. Influence of temperature on muscle recruitment and muscle function in vivo.

    PubMed

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  1. Rated Temperature Of Silver/Zinc Batteries Is Increased

    NASA Technical Reports Server (NTRS)

    Hill, Derek P.

    1992-01-01

    Report shows silver-zinc batteries of specific commercial type (28 V, 20 A*h, Eagle-Picher Battery MAR 4546-5) operated safely at higher temperature than previously thought possible. Batteries operated to 239 degrees F (115 degrees C) without going into sustained thermal runaway. Operated 49 degrees F (27 degrees C) above previous maximum.

  2. Analytical Assessment of the Relationship between 100MWp Large-scale Grid-connected Photovoltaic Plant Performance and Meteorological Parameters

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang

    2017-05-01

    This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.

  3. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less

  4. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    NASA Astrophysics Data System (ADS)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  5. Magnetic and structural transitions in La1-xAxCoO3 ( A=Ca , Sr, and Ba)

    NASA Astrophysics Data System (ADS)

    Kriener, M.; Braden, M.; Kierspel, H.; Senff, D.; Zabara, O.; Zobel, C.; Lorenz, T.

    2009-06-01

    We report thermal-expansion, lattice-constant, and specific-heat data of the series La1-xAxCoO3 for 0≤x≤0.30 with A=Ca , Sr, and Ba. For the undoped compound LaCoO3 , the thermal-expansion coefficient α(T) exhibits a pronounced maximum around T=50K caused by a temperature-driven spin-state transition from a low-spin state of the Co3+ ions at low temperatures toward a higher spin state at higher temperatures. The partial substitution of the La3+ ions by divalent Ca2+ , Sr2+ , or Ba2+ ions causes drastic changes in the macroscopic properties of LaCoO3 . The large maximum in α(T) is suppressed and completely vanishes for x≳0.125 . For A=Ca three different anomalies develop in α(T) with further increasing x , which are visible in specific-heat data as well. Together with temperature-dependent x-ray data, we identify several phase transitions as a function of the doping concentration x and temperature. From these data we propose an extended phase diagram for La1-xCaxCoO3 .

  6. Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy

    1988-01-01

    The nonisothermal crystallization kinetics of PEEK APC-2 and of 450G neat resin PEEK material were compared using a differential scanning calorimeter to monitor heat flow during crystallization; the effects of cooling rate on the crystallization temperature, the degree of crystallinity, and the conversion rate were investigated. A modified Avrami (1940) analysis was used to describe nonisothermal crystallization kinetics. It was found that, compared with the 450G neat resin PEEK, the nonisothermal crystallization of the PEEK APC-2 composite is characterized by higher initiation temperature, higher heat flow maximum temperature, and greater relative conversion by primary processes.

  7. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  8. Irreversible Brownian Heat Engine

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2017-10-01

    We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.

  9. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    PubMed

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  10. Temperature tolerance of young-of-the-year cisco, Coregonus artedii

    USGS Publications Warehouse

    Edsall, Thomas A.; Colby, Peter J.

    1970-01-01

    Young-of-the-year ciscoes (Coregonus artedii) acclimated to 2, 5, 10, 20 and 25 C and tested for tolerance to high and low temperatures provide the first detailed description of the thermal tolerance of coregonids in North America. The upper ultimate lethal temperature of the young ciscoes was 26 C (6 C higher than the maximum sustained temperature tolerated by adult ciscoes in nature) and the ultimate lower lethal temperature approached 0 C (near that commonly tolerated in nature by adult ciscoes). The temperature of 26 C is slightly higher than the lowest ultimate upper lethal temperature recorded for North American freshwater fishes; however, published information on the depth distributions of fishes in the Great Lakes suggests that some of the other coregonids may be less tolerant of high temperatures than the cisco.

  11. Low Temperature Soda-Oxygen Pulping of Bagasse.

    PubMed

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  12. Heat Treatment Devices and Method of Operation Thereof to Produce Dual Microstructure Superalloys Disks

    NASA Technical Reports Server (NTRS)

    Gayda, John (Inventor); Gabb, Timothy P. (Inventor); Kantzos, Peter T. (Inventor)

    2003-01-01

    A heat treatment assembly and heat treatment methods are disclosed for producing different microstructures in the bore and rim portions of nickel-based superalloy disks, particu- larly suited for gas turbine applications. The heat treatment assembly is capable of being removed from the furnace and disassembled to allow rapid fan or oil quenching of the disk. For solutioning heat treatments of the disk, temperatures higher than that of this solvus temperature of the disk are used to produce coarse grains in the rim of each disk so as to give maximum creep and dwell crack resistance at the rim service temperature. At the same time, solution temperature lower than the solvus temperature of the disk are provided to produce fine grain in the bore of the disk so as to give maximum strength and low cycle fatigue resistance.

  13. Airflow and temperature distribution inside the maxillary sinus: a computational fluid dynamics simulation.

    PubMed

    Zang, Hongrui; Liu, Yingxi; Han, Demin; Zhang, Luo; Wang, Tong; Sun, Xiuzhen; Li, Lifeng

    2012-06-01

    The airflow velocity and flux in maxillary sinuses were much lower than those in the nasal cavity, and the temperature in maxillary sinuses was much higher than the temperature in the middle meatus. With the increase of maximum diameter of the ostium, the above indices changed little. The purpose of the paper was to investigate, first, the flow and temperature distribution inside normal maxillary sinus in inspiration, and second, flow and temperature alteration with the increase of maximum ostium diameter. Three-dimensional models with nasal cavities and bilateral maxillary sinuses were constructed for computational fluid dynamics analysis. Virtual surgeries were implemented for the maxillary ostium, the maximum diameters of which were 8, 10, 12, and 15 mm, respectively. The finite volume method was used for numerical simulation. The indices of velocity, pressure, vector, and temperature were processed and compared between models. The airflow velocity in maxillary sinuses (average velocity 0.062 m/s) was much lower than that in the middle meatus (average velocity 3.26 m/s). With the increase of ostium diameter, airflow characteristics distributed in the maxillary sinuses changed little. The normal temperature in the maxillary sinus remained almost constant at 34°C and changed little with the increase of ostium diameter.

  14. Potential ability of zeolite to generate high-temperature vapor using waste heat

    NASA Astrophysics Data System (ADS)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  15. Temperature dependence of electroresistance for La0.67Ba0.33MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Gupta, Ajai K.; Kumar, Vijay; Bhalla, G. L.; Khare, Neeraj

    2007-12-01

    The influence of dc biasing current on temperature dependence of resistance of La0.67Ba0.33MnO3 bulk sample is reported. A decrease in the resistance (electroresistance) on the application of higher bias current is observed. The electroresistance is maximum at metal insulator transition temperature (TMI) and decreases when the temperature is either increased or decreased from TMI. A two-phase model is proposed to explain the occurrence of electroresistance. The higher bias current leads to an increase in alignment of spins and thus, in turn, leads to an increase in spin stiffness coefficient and decrease in the resistance at TMI.

  16. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less

  17. Nature-based solutions to promote human resilience and wellbeing in cities during increasingly hot summers.

    PubMed

    Panno, Angelo; Carrus, Giuseppe; Lafortezza, Raffaele; Mariani, Luigi; Sanesi, Giovanni

    2017-11-01

    Air temperatures are increasing because of global climate change. A warming phenomenon strongly related to global climate change is the urban heat island. It has been shown that the hotter temperatures occurring in cities during the summer negatively affect human wellbeing, but little is known about the potential mechanisms underlying the relationships between hotter temperatures, cognitive psychological resources and wellbeing. The aim of the present research is to understand whether, and how, spending time in urban green spaces, which can be considered as a specific kind of Nature-Based Solution (NBS), helps the recovery of cognitive resources and wellbeing. The main hypothesis is that contact with urban green is related to wellbeing through the depletion of cognitive resources (i.e., ego depletion). Moreover, we expected that individuals showing higher scores of ego depletion also report a higher estimate of the maximum temperature reached during the summer. The results of a survey (N = 115) conducted among visitors to Parco Nord Milano, a large urban park located in Milan (Italy), point out that people visiting the park during the summer show a higher level of wellbeing as well as a lower level of ego depletion. A mediation analysis shows that visiting urban green spaces is associated with greater wellbeing through less ego depletion. Our results also point out that, as expected, people showing a higher level of ego depletion tend to overestimate the maximum air temperature. Implications for future studies and applied interventions regarding the role of NBS to promote human wellbeing are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. [The quantitative changes of defeacation during the larval development ofCerura vinula L. (Lepidoptera)].

    PubMed

    Hintze-Podufal, Ch

    1970-12-01

    During the larval development ofCerura vinula L. consecutive instars are of increasing length. The time requirement for each instar is temperature dependent. They are shorter at higher and longer at lower temperatures.The data of the first larval instars suggest that the leaves were digested at a much higher rate at 18° C than at 25°C and 30° C. The data of the 5. instar do not show this difference as clearly. During the 5. instar maximum of defeacation was reached by an s-shaped curve. This curve may be divided into two different phases: During the first phase there is a steady increase. During the second phase the rise decreases steadily until the maximum of defeacation is reached. The first phase may be shortened by higher temperatures, while the second phase may not be altered. Short cyclic variations with irregular periodic length of 8-16 hours seeme to be superimposed on this s-shaped curve. There is evidence that the position of their maxima and minima are correlated with the day-night cycle. This effect is described quantitatively by the tendency-curve.

  19. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge.

    PubMed

    Huiliñir, Cesar; Villegas, Manuel

    2015-10-01

    The simultaneous effect of initial moisture content (initial Mc) and air-flow rate (AFR) on biodrying performance was evaluated. For the study, a 3(2) factorial design, whose factors were AFR (1, 2 and 3 L/min kg(TS)) and initial Mc (59, 68 and 78% w.b.), was used. Using energy and water mass balance the main routes of water removal, energy use and efficiencies were determined. The results show that initial Mc has a stronger effect on the biodrying than the AFR, affecting the air outlet temperature and improving the water removal, with higher maximum temperatures obtained around 68% and the lowest maximum matrix temperature obtained at initial Mc = 78%.Through the water mass balance it was found that the main mechanism for water removal was the aeration, with higher water removal at intermediate initial Mc (68%) and high AFR (3 L/min kg(TS)). The energy balance indicated that bioreaction is the main energy source for water evaporation, with higher energy produced at intermediate initial Mc (68%). Finally, it was found that low values of initial Mc (59%) improve biodrying efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  1. Thermal study of longitudinal and torsional ultrasound phacoemulsification: tracking the temperature of the corneal surface, incision, and handpiece.

    PubMed

    Jun, Bokkwan; Berdahl, John P; Kim, Terry

    2010-05-01

    To evaluate the change and difference in the corneal surface, incision, and handpiece temperatures during longitudinal and torsional ultrasound (US) phacoemulsification with standard incisions (2.75 mm) and microincisions (2.20 mm) and the thermal effect on wounds. Department of Ophthalmology, Duke University, Durham, North Carolina, USA. In this prospective study, human cadaver eyes had simulated phacoemulsification. Group 1 had a 2.75 mm incision with 100% longitudinal US; Group 2, a 2.20 mm incision with 100% longitudinal US; Group 3, a 2.75 mm incision with 100% torsional US; and Group 4, a 2.20 mm incision with 100% torsional US. During phacoemulsification, the corneal incision was evaluated by surgical microscopy and scanning electron microscopy (SEM) and images of the corneal surface, incision, and handpiece were captured with an infrared camera. Twelve eyes (3 each group) were evaluated. The maximum incision temperature was higher in the longitudinal groups than in the torsional groups. With the same US modality, the maximum microincision temperature was higher than the maximum standard incision temperature. After application of full power for 40 seconds, wound burn was observed in all eyes in the longitudinal groups and no eyes in the torsional groups. On SEM, there was more extensive loss of Descemet membrane in the longitudinal groups than in the torsional groups. Incision temperature was influenced by US modality and was significantly lower with torsional US than with longitudinal US. Using torsional US with smaller incisions may decrease the risk for wound burn in eyes with denser cataracts. (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Duration of shoot elongation in Scots pine varies within the crown and between years.

    PubMed

    Schiestl-Aalto, Pauliina; Nikinmaa, Eero; Mäkelä, Annikki

    2013-10-01

    Shoot elongation in boreal and temperate trees typically follows a sigmoid pattern where the onset and cessation of growth are related to accumulated effective temperature (thermal time). Previous studies on leader shoots suggest that while the maximum daily growth rate depends on the availability of resources to the shoot, the duration of the growth period may be an adaptation to long-term temperature conditions. However, other results indicate that the growth period may be longer in faster growing lateral shoots with higher availability of resources. This study investigates the interactions between the rate of elongation and the duration of the growth period in units of thermal time in lateral shoots of Scots pine (Pinus sylvestris). Length development of 202 lateral shoots were measured approximately three times per week during seven growing seasons in 2-5 trees per year in a mature stand and in three trees during one growing season in a sapling stand. A dynamic shoot growth model was adapted for the analysis to determine (1) the maximum growth rate and (2) the thermal time reached at growth completion. The relationship between those two parameters and its variation between trees and years was analysed using linear mixed models. The shoots with higher maximum growth rate within a crown continued to grow for a longer period in any one year. Higher July-August temperature of the previous summer implied a higher requirement of thermal time for growth completion. The results provide evidence that the requirement of thermal time for completion of lateral shoot extension in Scots pine may interact with resource availability to the shoot both from year to year and among shoots in a crown each year. If growing season temperatures rise in the future, this will affect not only the rate of shoot growth but its duration also.

  3. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  4. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures

    PubMed Central

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-01-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300–500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment. PMID:29637067

  5. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-03-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature (i.e., 700°C (BC700)), have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.

  6. Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    PubMed Central

    Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.

    2010-01-01

    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020

  7. Heat shock protein expression enhances heat tolerance of reptile embryos

    PubMed Central

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-01-01

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes. PMID:25080340

  8. Gastrointestinal temperature trends in football linemen during physical exertion under heat stress.

    PubMed

    Coris, Eric E; Mehra, Shabnam; Walz, Stephen M; Duncanson, Robert; Jennings, Jason; Nugent, Dylan; Zwygart, Kira; Pescasio, Michele

    2009-06-01

    Exertional heat stroke is the third leading cause of death in US athletes. Elevations in core temperature in the digestive tract (TGI) have correlated with core temperature and are possible indicators of those at increased risk of heat stroke. The primary objective was to compare a.m. vs. p.m. TGI variation in collegiate football linemen during intense "two-a-day" preseason practice. A secondary objective was to compare longitudinal TGI in offensive and defensive linemen. Cross-sectional observational study. Division I Intercollegiate Athletics Football Program. TGI was monitored during consecutive preseason sessions. TGI, heat illness, weight changes, environmental stress, and subjective symptoms. Mean TGI were 37.8°C and 38.3°C during a.m. and p.m. practices, respectively. The a.m. practices revealed higher TGI gain (1.8°C) compared to p.m. (1.4°C). The p.m. practices had higher maximum TGI than a.m. practices (39.1°C versus 38.8, P=0.0001). Mean time to maximum temperature (Tmax) was 1 hr and 30 min for a.m. and 1 hr and 22 min for p.m. practices. Offensive linemen trended toward higher mean TGI than defensive players (38.0°C vs. 36.7°C, P = 0.069). The rate of rise in TGI was significantly greater in a.m. practices. A decrease in rate of TGI rise was seen from the first to last a.m. practices of the week (P = 0.004). Significant TGI elevations in asymptomatic athletes are common in extreme heat during football practice. Intense a.m. practices in full gear result in higher net temperature gain and rate of temperature gain than p.m. practices. Offensive linemen trended toward higher TGI than defensive linemen. As players acclimatized, a decrease in the rate of TGI increase was appreciable, particularly in a.m. practices. Appreciating cumulative heat stress and variations in heat stress related to scheduling of practice is critical.

  9. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  10. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  11. Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, Shufen; Zhao, Junnan; Yan, Qingyu; Ma, Jan; Hng, Huey Hoon

    2011-05-01

    n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3- x Se x materials are used.

  12. Heat Wave and Mortality: A Multicountry, Multicommunity Study

    PubMed Central

    Gasparrini, Antonio; Armstrong, Ben G.; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; Coelho, Micheline de Sousa Zanotti Stagliorio; Pan, Xiaochuan; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel D.; Bell, Michelle L.; Scortichini, Matteo; Michelozzi, Paola; Punnasiri, Kornwipa; Li, Shanshan; Tian, Linwei; Garcia, Samuel David Osorio; Seposo, Xerxes; Overcenco, Ala; Zeka, Ariana; Goodman, Patrick; Dang, Tran Ngoc; Dung, Do Van; Mayvaneh, Fatemeh; Saldiva, Paulo Hilario Nascimento; Williams, Gail; Tong, Shilu

    2017-01-01

    Background: Few studies have examined variation in the associations between heat waves and mortality in an international context. Objectives: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. Methods: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave–mortality relation over lags of 0–10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. Results: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave–mortality associations, but not daily minimum temperature. Conclusions: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026 PMID:28886602

  13. High-temperature responses of North American cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less

  14. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    PubMed

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  15. Infectious Disease in a Warming World: How Weather Influenced West Nile Virus in the United States (2001–2005)

    PubMed Central

    Soverow, Jonathan E.; Wellenius, Gregory A.; Fisman, David N.; Mittleman, Murray A.

    2009-01-01

    Background The effects of weather on West Nile virus (WNV) mosquito populations in the United States have been widely reported, but few studies assess their overall impact on transmission to humans. Objectives We investigated meteorologic conditions associated with reported human WNV cases in the United States. Methods We conducted a case–crossover study to assess 16,298 human WNV cases reported to the Centers for Disease Control and Prevention from 2001 to 2005. The primary outcome measures were the incidence rate ratio of disease occurrence associated with mean weekly maximum temperature, cumulative weekly temperature, mean weekly dew point temperature, cumulative weekly precipitation, and the presence of ≥ 1 day of heavy rainfall (≥ 50 mm) during the month prior to symptom onset. Results Increasing weekly maximum temperature and weekly cumulative temperature were similarly and significantly associated with a 35–83% higher incidence of reported WNV infection over the next month. An increase in mean weekly dew point temperature was significantly associated with a 9–38% higher incidence over the subsequent 3 weeks. The presence of at least 1 day of heavy rainfall within a week was associated with a 29–66% higher incidence during the same week and over the subsequent 2 weeks. A 20-mm increase in cumulative weekly precipitation was significantly associated with a 4–8% increase in incidence of reported WNV infection over the subsequent 2 weeks. Conclusions Warmer temperatures, elevated humidity, and heavy precipitation increased the rate of human WNV infection in the United States independent of season and each others’ effects. PMID:19654911

  16. Effect of Vacuum Frying on Changes in Quality Attributes of Jackfruit (Artocarpus heterophyllus) Bulb Slices.

    PubMed

    Maity, Tanushree; Bawa, A S; Raju, P S

    2014-01-01

    The effect of frying temperatures and durations on the quality of vacuum fried jackfruit (JF) chips was evaluated. Moisture content and breaking force of JF chips decreased with increase in frying temperature and time during vacuum frying whereas the oil content increased. The frying time for JF chips was found to be 30, 25, and 20 minutes at 80, 90, and 100°C, respectively. JF chips fried at higher temperature resulted in maximum shrinkage (48%). The lightness in terms of hunter L (*) value decreased significantly (P < 0.05) during frying. Sensory evaluation showed maximum acceptability for JF chips fried at 90°C for 25 min. Frying under vacuum at lower temperatures was found to retain bioactive compounds such as total phenolics, total flavonoids, and total carotenoids in JF chips. Almost 90% of carotenoids were lost from the samples after 30 min of frying at 100°C.

  17. Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe-Cr alloys.

    PubMed

    Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L

    2012-08-15

    We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.

  18. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    NASA Astrophysics Data System (ADS)

    Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong

    2016-04-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.

  19. The effects of spatial sampling choices on MR temperature measurements.

    PubMed

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  20. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  1. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Soppet, W.K.

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment.more » Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.« less

  2. [Effect of addition of instant corn flour on rheological characteristics of wheat flour and breadmaking III].

    PubMed

    Martínez, F; el-Dahs, A A

    1993-12-01

    The instant corn flour prepared by the hydrothermal process using corn grits soaked in water at room temperature (28-30 degrees C) for 5 hours and steaming for 1 minute at 118 degrees C presented characteristics similar to that of flours prepared with grits soaked in water at temperature higher than room temperature and different steaming time (5 and 15 minutes). The addition of instant corn flour up of a 25% mixture with wheat flour reduced the peak of maximum viscosity during the heating cycle; however, the final viscosity during the cooling cycle was increased. The water absorption was increased with the increase of substitution in the level of wheat flour. Extensibility, maximum resistance and values of area were reduced with an increase in the level of instant corn flour in the mixture. However, extension resistance and proportional number were increased. Bread prepared from a mixture of instant corn flour and wheat flour showed higher weight with low loaf volume, color and texture of the crumb related to bread wheat.

  3. Potential for adaptation to climate change in a coral reef fish.

    PubMed

    Munday, Philip L; Donelson, Jennifer M; Domingos, Jose A

    2017-01-01

    Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise. © 2016 John Wiley & Sons Ltd.

  4. Long-term trends in daily temperature extremes in Iraq

    NASA Astrophysics Data System (ADS)

    Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.

    2017-12-01

    The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.

  5. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1951-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.

  6. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest

    NASA Astrophysics Data System (ADS)

    Song, Qing-Hai; Deng, Yun; Zhang, Yi-Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.

  7. Future changes over the Himalayas: Maximum and minimum temperature

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with highest magnitude under RCP8.5. This higher rate of increase is imparted from the predominant rise of Tmax as compared to Tmin.

  8. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    NASA Astrophysics Data System (ADS)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  9. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system--an empirical approach to uphold food security.

    PubMed

    Subash, N; Gangwar, B; Singh, Rajbir; Sikka, A K

    2015-01-01

    Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of 8.8 % in system productivity. This study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature variability under a rice-rice cropping system in humid, subhumid, and semiarid ecosystems.

  10. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    PubMed

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.

    PubMed

    Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik

    2015-08-01

    Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The consequences of a greater available activity period will depend on the extent to which changes in climate alters other related factors, such as the nature and level of competition between the respective species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    NASA Astrophysics Data System (ADS)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  13. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  14. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    NASA Astrophysics Data System (ADS)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a spherical variogram over conterminous land of Spain, and converted on a regular 10 km2 grid (resolution similar to the mean distance between stations) to map the results. In the conterminous land of Spain the distance at which couples of stations have a common variance in temperature (both maximum Tmax, and minimum Tmin) above the selected threshold (50%, r Pearson ~0.70) on average does not exceed 400 km, with relevant spatial and temporal differences. The spatial distribution of the CDD shows a clear coastland-to-inland gradient at annual, seasonal and monthly scale, with highest spatial variability along the coastland areas and lower variability inland. The highest spatial variability coincide particularly with coastland areas surrounded by mountain chains and suggests that the orography is one of the most driving factor causing higher interstation variability. Moreover, there are some differences between the behaviour of Tmax and Tmin, being Tmin spatially more homogeneous than Tmax, but its lower CDD values indicate that night-time temperature is more variable than diurnal one. The results suggest that in general local factors affects the spatial variability of monthly Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for Tmin respect to Tmax. The results suggest that in general local factors affects the spatial variability of Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for minimum temperature respect to maximum temperature. A conservative distance for reference series could be evaluated in 200 km, that we propose for continental land of Spain and use in the development of MOTEDAS.

  15. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  16. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  17. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  18. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.

    PubMed

    Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn

    2006-06-01

    The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.

  19. Latitudinal patterns in the life-history traits of three isolated Atlantic populations of the deep-water shrimp Plesionika edwardsii (Decapoda, Pandalidae)

    NASA Astrophysics Data System (ADS)

    González, José A.; Pajuelo, José G.; Triay-Portella, Raül; Ruiz-Díaz, Raquel; Delgado, João; Góis, Ana R.; Martins, Albertino

    2016-11-01

    Patterns in the life-history traits of the pandalid shrimp Plesionika edwardsii are studied for the first time in three isolated Atlantic populations (Madeira, Canaries and Cape Verde Islands) to gain an understanding of their latitudinal variations. The maximum carapace size of the populations studied, as well as the maximum weight, showed clear latitudinal patterns. The patterns observed may be a consequence of the temperature experienced by shrimps during development, 1.37 ° C higher in the Canaries and 5.96 ° C higher in the Cape Verde Islands than in Madeira. These temperature differences among populations may have induced phenotypic plasticity because the observed final body size decreased as the temperature increased. A latitudinal north-south pattern was also observed in the maximum size of ovigerous females, with larger sizes found in the Madeira area and lower sizes observed in the Cape Verde Islands. A similar pattern was observed in the brood size and maximum egg size. Females of P. edwardsii produced smaller eggs in the Cape Verde Islands than did those at the higher latitude in Madeira. P. edwardsii was larger at sexual maturity in Madeira than in the Cape Verde Islands. The relative size at sexual maturity is not affected by latitude or environmental factors and is the same in the three areas studied, varying slightly between 0.568 and 0.585. P. edwardsii had a long reproductive season with ovigerous females observed all year round, although latitudinal variations were observed. Seasonally, there were more ovigerous females in spring and summer in Madeira and from winter to summer in the Cape Verde Islands. P. edwardsii showed a latitudinal pattern in size, with asymptotic size and growth rate showing a latitudinal compensation gradient as a result of an increased growth performance in the Madeira population compared to that of the Cape Verde Islands.

  20. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations with charge-balancing oxygen vacancies. At higher temperatures near 700 °C, maximum enthalpy of formation shifts toward higher dopant concentrations, as a result of defect disordering. This concentration coincides with that of maximum ionic conductivity, extending the correlation seen previously near room temperature. It is also possible to co-dope these systems with Sm and Nd to further enhance ionic conductivity. For doubly doped ceria electrolytes, the solid solution phase of Ce1-xSm0.5xNd0.5xO2-0.5x (0 ≤ x ≤ 0.30) was investigated. It has been shown that for doubly doped ceria, the maximum enthalpy of formation occurs towards higher dopant concentration than that of singly doped counterparts, with less exothermic association enthalpies. These studies provide insight into the structure-composition-property-stability relations and aid in the rational design of the future SOFCs electrolytes.

  1. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  2. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves.

    PubMed

    Hoffmann, G; Schmidt, M; Ammon, C

    2016-09-01

    In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.

  3. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert.

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2012-04-01

    Heterothermy, a variability in body temperature beyond the normal limits of homeothermy, is widely viewed as a key adaptation of arid-adapted ungulates. However, desert ungulates with a small body mass, i.e. a relatively large surface area-to-volume ratio and a small thermal inertia, are theoretically less likely to employ adaptive heterothermy than are larger ungulates. We measured body temperature and activity patterns, using implanted data loggers, in free-ranging Arabian oryx (Oryx leucoryx, ±70 kg) and the smaller Arabian sand gazelle (Gazella subgutturosa marica, ±15 kg) inhabiting the same Arabian desert environment, at the same time. Compared to oryx, sand gazelle had higher mean daily body temperatures (F(1,6) = 47.3, P = 0.0005), higher minimum daily body temperatures (F(1,6) = 42.6, P = 0.0006) and higher maximum daily body temperatures (F(1,6) = 11.0, P = 0.02). Despite these differences, both species responded similarly to changes in environmental conditions. As predicted for adaptive heterothermy, maximum daily body temperature increased (F(1,6) = 84.0, P < 0.0001), minimum daily body temperature decreased (F(1,6) = 92.2, P < 0.0001), and daily body temperature amplitude increased (F(1,6) = 97.6, P < 0.0001) as conditions got progressively hotter and drier. There were no species differences in activity levels, however, both gazelle and oryx showed a biphasic or crepuscular rhythm during the warm wet season but shifted to a more nocturnal rhythm during the hot dry season. Activity was attenuated during the heat of the day at times when both species selected cool microclimates. These two species of Arabian ungulates employ heterothermy, cathemerality and shade seeking very similarly to survive the extreme, arid conditions of Arabian deserts, despite their size difference.

  4. The association between consecutive days' heat wave and cardiovascular disease mortality in Beijing, China.

    PubMed

    Yin, Qian; Wang, Jinfeng

    2017-02-23

    Although many studies have examined the effects of heat waves on the excess mortality risk (ER) posed by cardiovascular disease (CVD), scant attention has been paid to the effects of various combinations of differing heat wave temperatures and durations. We investigated such effects in Beijing, a city of over 20 million residents. A generalized additive model (GAM) was used to analyze the ER of consecutive days' exposure to extreme high temperatures. A key finding was that when extremely high temperatures occur continuously, at varying temperature thresholds and durations, the adverse effects on CVD mortality vary significantly. The longer the heat wave lasts, the greater the mortality risk is. When the daily maximum temperature exceeded 35 °C from the fourth day onward, the ER attributed to consecutive days' high temperature exposure saw an increase to about 10% (p < 0.05), and at the fifth day, the ER even reached 51%. For the thresholds of 32 °C, 33 °C, and 34 °C, from the fifth day onward, the ER also rose sharply (16, 29, and 31%, respectively; p < 0.05). In addition, extreme high temperatures appeared to contribute to a higher proportion of CVD deaths among elderly persons, females and outdoor workers. When the daily maximum temperature was higher than 33 °C from the tenth consecutive day onward, the ER of CVD death among these groups was 94, 104 and 149%, respectively (p < 0.05), which is considerably higher than the ER for the overall population (87%; p < 0.05). The results of this study may assist governments in setting standards for heat waves, creating more accurate heat alerts, and taking measures to prevent or reduce temperature-related deaths, especially against the backdrop of global warming.

  5. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India.

    PubMed

    Basu, Samarpita; Roy, Abhijit Sarma; Mohanty, Kaustubha; Ghoshal, Aloke K

    2013-09-01

    The present study aimed to isolate a high CO2 and temperature tolerant microalga capable of sequestering CO2 from flue gas. Microalga strain SA1 was isolated from a freshwater body of Assam and identified as Scenedesmus obliquus (KC733762). At 13.8±1.5% CO2 and 25 °C, maximum biomass (4.975±0.003 g L(-1)) and maximum CO2 fixation rate (252.883±0.361 mg L(-1) d(-1)) were obtained which were higher than most of the relevant studies. At elevated temperature (40 °C) and 13.8±1.5% CO2 maximum biomass (0.883±0.001 g L(-1)) was obtained. The carbohydrate, protein, lipid, and chlorophyll content of the CO2 treated SA1 were 30.87±0.64%, 9.48±1.65%, 33.04±0.46% and 6.03±0.19% respectively, which were higher than previous reports. Thus, SA1 could prove to be a potential candidate for CO2 sequestration from flue gas as well as for the production of value added substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, R.J.

    1982-07-29

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  8. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, Richard J.

    1985-01-01

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  9. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  10. Temperature and Precipitation trends in Kashmir valley, North Western Himalayas

    NASA Astrophysics Data System (ADS)

    Shafiq, Mifta Ul; Rasool, Rehana; Ahmed, Pervez; Dimri, A. P.

    2018-01-01

    Climate change has emerged as an important issue ever to confront mankind. This concern emerges from the fact that our day-to-day activities are leading to impacts on the Earth's atmosphere that has the potential to significantly alter the planet's shield and radiation balance. Developing countries particularly whose income is particularly derived from agricultural activities are at the forefront of bearing repercussions due to changing climate. The present study is an effort to analyze the changing trends of precipitation and temperature variables in Kashmir valley along different elevation zones in the north western part of India. As the Kashmir valley has a rich repository of glaciers with its annual share of precipitation, slight change in the temperature and precipitation regime has far reaching environmental and economic consequences. The results from Indian Meteorological Department (IMD) data of the period 1980-2014 reveals that the annual mean temperature of Kashmir valley has increased significantly. Accelerated warming has been observed during 1980-2014, with intense warming in the recent years (2001-2014). During the period 1980-2014, steeper increase, in annual mean maximum temperature than annual mean minimum temperature, has been observed. In addition, mean maximum temperature in plain regions has shown higher rate of increase when compared with mountainous areas. In case of mean minimum temperature, mountainous regions have shown higher rate of increase. Analysis of precipitation data for the same period shows a decreasing trend with mountainous regions having the highest rate of decrease which can be quite hazardous for the fragile mountain environment of the Kashmir valley housing a large number of glaciers.

  11. Influence of shoulder diameter on Temperature and Z-parameter during friction stir welding of Al 6082 alloy

    NASA Astrophysics Data System (ADS)

    Kishore Mugada, Krishna; Adepu, Kumar

    2018-03-01

    In this research article, the effect of increasing shoulder diameter on temperature and Zener Holloman (Z)-parameter for friction stir butt welded AA6082-T6 was studied. The temperature at the Advancing side (AS) of weld was measured using the K-Type thermocouple at four different equidistant locations. The developed analytical model is utilized to predict the maximum temperature (Tpeak) during the welding. The strain, strain rate, Z- Parameter for all the shoulders at four distinct locations were evaluated. The temperature increases with increase in shoulder diameter and the maximum temperature was recorded for 24mm shoulder diameter. The computed log Z values are compared with the available process map and results shows that the values are in stable flow region and near to stir zone the values are in Dynamic recrystallization region (DRX). The axial load (Fz) and total tool torque (N-m) are found to be higher for shoulder diameter of 21 mm i.e., 6.3 kN and 56.5 N-m respectively.

  12. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India

    NASA Astrophysics Data System (ADS)

    Jayakumar, M.; Rajavel, M.; Surendran, U.

    2016-12-01

    A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.

  13. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  14. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted

  15. Heat shock protein expression enhances heat tolerance of reptile embryos.

    PubMed

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-09-22

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The effect of chemical vapor deposition temperature on the performance of binder-free sewage sludge-derived anodes in microbial fuel cells.

    PubMed

    Feng, Huajun; Jia, Yufeng; Shen, Dongsheng; Zhou, Yuyang; Chen, Ting; Chen, Wei; Ge, Zhipeng; Zheng, Shuting; Wang, Meizhen

    2018-04-13

    Conversion of sewage sludge (SS) into value-added material has garnered increasing attention due to its potential applications. In this study, we propose a new application of the sewage sludge-derived carbon (SSC) as an electrode without binder in microbial fuel cells (MFCs). SS was firstly converted into SSC monoliths by methane chemical vapor method at different temperature (600, 800, 1000 or 1200°C). Scanning electron microscopy images showed that carbon micro-wires were present on the surfaces of the samples prepared at 1000 and 1200°C. The results showed that it was beneficial for converting sludge into a highly conductive electrode and increasing carbon content of the electrode at higher temperatures, thereby improving the current generation. The conductivity results show that a higher temperature favors the conversion of sludge into a highly conductive electrode. The MFC using an SSC anode processed at 1200°C generated the maximum power density of 2228mWm -2 and the maximum current density of 14.2Am -2 . This value was 5 times greater than that generated by an MFC equipped with a graphite anode. These results present a promising means of converting SS into electrode materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Environmental Survival of Mycobacterium avium subsp. paratuberculosis in Different Climatic Zones of Eastern Australia

    PubMed Central

    Begg, Douglas J.; Dhand, Navneet K.; Watt, Bruce; Whittington, Richard J.

    2014-01-01

    The duration of survival of both the S and C strains of Mycobacterium avium subsp. paratuberculosis in feces was quantified in contrasting climatic zones of New South Wales, Australia, and detailed environmental temperature data were collected. Known concentrations of S and C strains in feces placed on soil in polystyrene boxes were exposed to the environment with or without the provision of shade (70%) at Bathurst, Armidale, Condobolin, and Broken Hill, and subsamples taken every 2 weeks were cultured for the presence of M. avium subsp. paratuberculosis. The duration of survival ranged from a minimum of 1 week to a maximum of 16 weeks, and the provision of 70% shade was the most important factor in extending the survival time. The hazard of death for exposed compared to shaded samples was 20 and 9 times higher for the S and C strains, respectively. Site did not affect the survival of the C strain, but for the S strain, the hazard of death was 2.3 times higher at the two arid zone sites (Broken Hill and Condobolin) than at the two temperate zone sites (Bathurst and Armidale). Temperature measurements revealed maximum temperatures exceeding 60°C and large daily temperature ranges at the soil surface, particularly in exposed boxes. PMID:24463974

  18. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE PAGES

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-09-17

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  19. Effects of temperature on development, mortality, mating and blood feeding behavior of Culiseta incidens (Diptera: Culicidae).

    PubMed

    Su, T; Mulla, M S

    2001-06-01

    Culiseta incidens Thomson is distributed over most of the western USA and Canada northward to Alaska. Because this mosquito is difficult to colonize, its biology has not been well investigated. We colonized this species in 1998 and studied the effects of temperature on various aspects of its life cycle. The time required for egg melanization and the duration of the egg stage were negatively correlated with temperature. The proportion of fertile egg rafts was temperature-independent. An inverse relationship existed between temperature and egg hatch. Molting and stadium duration after hatching were temperature-dependent, with higher temperature accelerating development and molting. Larvae and pupae experienced lower mortality and higher molting success at lower temperatures. Survivorship of adult mosquitoes fed on sugar solution was inversely proportional to temperature, lethal times for 50% mortality (LT50) were greater at the lower temperature than at the higher temperature. Females survived longer than did males at all test temperatures. Because this species is eurygamous, mating only occurred in large cages. Mating success was also affected by temperature. At the test temperatures, 20 degrees C, 25 degrees C and 30 degrees C, mating started from 3-5 days after emergence and reached a peak on days 13-15 after emergence. Maximum mating rates at 20 degrees C and 25 degrees C were higher than at 30 degrees C. Blood feeding, as indicated by cumulative feeding rates, was affected by cage size, mosquito age and temperature. Mosquitoes in large cages exhibited a much higher feeding rate than in small cages. With age, the cumulative blood feeding rate increased, with the highest rate at 25 degrees C, followed by 20 degrees C and 30 degrees C. At all temperatures tested, most of the blood fed females were mated.

  20. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle.

    PubMed

    Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L

    2016-06-01

    Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.

    PubMed

    Polgar, Gianluca; Khang, Tsung Fei; Chua, Teddy; Marshall, David J

    2015-01-01

    The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20°C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following 'in situ' environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Climate change and the impact of extreme temperatures on aviation

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  3. Endothermy in the temperate scarab Cyclocephala signaticollis.

    PubMed

    Zermoglio, Paula F; Castelo, Marcela K; Lazzari, Claudio R

    2018-07-01

    The increase in body temperature over that of the environment has been frequently reported in insects, in particular in relation with flight activity. Scarab beetles of the genus Cyclocephala living in tropical areas are known to exploit the heat produced by thermogenic plants, also producing heat by endothermy. Here, we report the first case of endothermy in a species of this genus living in a temperate region, Cyclocephala signaticollis. We characterised the phenomenon in this beetle using infrared thermography and exposing them to different thermal conditions. We evaluated the frequency of endothermic bouts, the nature of their periodic occurrence and their association with the activity cycles of the beetles. We found that endothermy occurs in both males and females in a cyclic fashion, at the beginning of the night, around 21:00 local time. The mean temperature increase was of 9 °C, and the mean duration of the bouts was 7 min. During endothermic bouts, the temperature of the thorax was on average 3.6 °C higher than that of the head and 4.8 °C above that of the abdomen. We found no differences between females and males in the maximum temperature attained and in the duration of the endothermy bouts. The activity period of the beetles extends throughout the whole night, with maximum activity between 22:00 and 23:00. By subjecting the beetles to different light regimes we were able to determine that the rhythm of endothermy is not controlled by the circadian system. Finally, we experimentally tested if by performing endothermy the scarabs try to reach a particular body temperature or if they invest a given amount of energy in heating up, instead. Our results indicate that at lower ambient temperature beetles show higher increase in body temperature, and that endothermy bouts last longer than at relatively higher ambient temperatures. We discuss our findings in relation to the ecology and behaviour of this beetle pest. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Properties of Hail Storms over China and the United States from the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Ni, Xiang; Liu, Chuntao; Zhang, Qinghong; Cecil, Daniel J.

    2016-01-01

    A 16-yr record of hail reports over the southeast US and from weather stations in China are collocated with Precipitation Features (PF) derived from the Tropical Rainfall Measurement Mission (TRMM) radar and passive microwave observations. While U.S. hail reports are dominated by cases with hail size greater than 19 mm, hail reports in China mostly include diameters of 1-10 nm and mostly occur over the Tibetan Plateau. The fraction of PFs collocated with hail reports (hail PFs) reaches 3% in the plains of the U.S. In China, the fraction is higher in high elevation regions than low elevation regions. Hail PFs in the U.S. show lower brightness temperatures, higher lightning flash rates, stronger maximum reflectivity, and higher echo tops than those in China, consistent with the larger hail diameters in the U.S. reports. The average near surface maximum reflectivity of hail PFs at higher elevations (greater than or equal to 2000 m) in China is about 5 dB smaller than those at low elevations. Larger hail is reported with PFs having stronger maximum reflectivity above 6 km, though the median of maximum reflectivity values at levels below 5 km is close among the storms with large and small hail sizes.

  5. Increased Frequency of Large Blowdown Formation in Years With Hotter Dry Seasons in the Northwestern Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Anderson, L. O.; Bohlman, S.

    2015-12-01

    Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.

  6. Temperature influence on the development and loss of seawater tolerance in two fast-growing strains of Atlantic salmon

    USGS Publications Warehouse

    Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.

    2004-01-01

    Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.

  7. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  8. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  9. Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications.

    PubMed

    Kim, Sanghyeok; Won, Sejeong; Sim, Gi-Dong; Park, Inkyu; Lee, Soon-Bok

    2013-03-01

    Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.

  10. Magnetic hyperthermia in water based ferrofluids: Effects of initial susceptibility and size polydispersity on heating efficiency

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Muthukumaran, T.; Philip, John

    2018-04-01

    The effects of initial susceptibility and size polydispersity on magnetic hyperthermia efficiency in two water based ferrofluids containing phosphate and TMAOH coated superparamagnetic Fe3O4 nanoparticles were studied. Experiments were performed at a fixed frequency of 126 kHz on four different concentrations of both samples and under different external field amplitudes. It was observed that for field amplitudes beyond 45.0 kAm-1, the maximum temperature rise was in the vicinity of 42°C (hyperthermia limit) which indicated the suitability of the water based ferrofluids for hyperthermia applications. The maximum temperature rise and specific absorption rate were found to vary linearly with square of the applied field amplitudes, in accordance with theoretical predictions. It was further observed that for a fixed sample concentration, specific absorption rate was higher for the phosphate coated samples which was attributed to the higher initial static susceptibility and lower size polydispersity of phosphate coated Fe3O4.

  11. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  12. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.

    PubMed

    Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime

    2015-01-01

    We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.

  13. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  14. Doping reaction of PH3 and B2H6 with Si(100)

    NASA Astrophysics Data System (ADS)

    Yu, Ming L.; Vitkavage, D. J.; Meyerson, B. S.

    1986-06-01

    The reaction of phosphine PH3 and diborane B2H6 on Si(100) surfaces was studied by surface analytical techniques in relation to the in situ doping process in the chemical vapor deposition of silicon. Phosphine chemisorbs readily either nondissociatively at room temperature or dissociatively with the formation of silicon-hydrogen bonds at higher temperatures. Hydrogen can be desorbed at temperatures above 400 °C to generate a phosphorus layer. Phosphorus is not effective in shifting the Fermi level until the coverage reaches 2×1014/cm2. A maximum shift of 0.45 eV toward the conduction band was observed. In contrast, diborane has a very small sticking coefficient and the way to deposit boron is to decompose diborane directly on the silicon surface at temperatures above 600 °C. Boron at coverages less than 2×1014/cm2 is very effective in shifting the Fermi level toward the valence band and a maximum change of 0.4 eV was observed.

  15. Effect of Vacuum Frying on Changes in Quality Attributes of Jackfruit (Artocarpus heterophyllus) Bulb Slices

    PubMed Central

    Bawa, A. S.; Raju, P. S.

    2014-01-01

    The effect of frying temperatures and durations on the quality of vacuum fried jackfruit (JF) chips was evaluated. Moisture content and breaking force of JF chips decreased with increase in frying temperature and time during vacuum frying whereas the oil content increased. The frying time for JF chips was found to be 30, 25, and 20 minutes at 80, 90, and 100°C, respectively. JF chips fried at higher temperature resulted in maximum shrinkage (48%). The lightness in terms of hunter L * value decreased significantly (P < 0.05) during frying. Sensory evaluation showed maximum acceptability for JF chips fried at 90°C for 25 min. Frying under vacuum at lower temperatures was found to retain bioactive compounds such as total phenolics, total flavonoids, and total carotenoids in JF chips. Almost 90% of carotenoids were lost from the samples after 30 min of frying at 100°C. PMID:26904648

  16. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    PubMed

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments. © 2016 John Wiley & Sons Ltd.

  17. Leaf Dynamics of Panicum maximum under Future Climatic Changes

    PubMed Central

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932

  18. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  19. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  20. Temperature distribution of a simplified rotor due to a uniform heat source

    NASA Astrophysics Data System (ADS)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  1. Valorization of residual bacterial biomass waste after polyhydroxyalkanoate isolation by hydrothermal treatment.

    PubMed

    Wei, Liqing; Liang, Shaobo; Coats, Erik R; McDonald, Armando G

    2015-12-01

    Hydrothermal treatment (HTT) was used to convert residual bacterial biomass (RBB), recovered from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production, into valuable bioproducts. The effect of processing temperatures (150, 200, and 250°C) on the bioproducts (water-solubles (WSs), bio-oil, insoluble residue, and gas) was investigated. The yields of bio-oil and gas were higher at higher temperatures. The maximum WS content (28 wt%) was obtained at 200°C. GCMS analysis showed higher content of aromatics and N-containing compounds with increasing temperature. ESI-MS revealed chemical compounds (e.g. protein, carbohydrate, lipids, and lignin) associated with RBB are fragmented into smaller molecules (monomers) at higher HTT temperatures. The WS fraction contained totally 838, 889 and 886mg/g acids and 160, 31 and 21 mg/g carbohydrate for HTT at 150, 200, and 250°C, respectively. The solid residues contain unconverted compounds, especially after HTT at 150°C. The WS products (acids and carbohydrates) could be used directly for PHA biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fragile-to-strong transition in liquid silica

    NASA Astrophysics Data System (ADS)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2016-03-01

    We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  3. Climate change and health: Indoor heat exposure in vulnerable populations☆

    PubMed Central

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Dvonch, J. Timothy; O'Neill, Marie S.

    2015-01-01

    Introduction Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures’ responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings PMID:22071034

  4. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P

    2016-04-01

    We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.

  5. Internal Waves in CVX

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.

    1996-01-01

    Near the liquid-vapor critical point, density stratification supports internal gravity waves which affect 1-g viscosity measurements in the CVX (Critical Viscosity of Xenon) experiment. Two internal-wave modes were seen in the horizontal viscometer. The frequencies of the two modes had different temperature dependences: with decreasing temperature, the higher frequency increased monotonically from 0.7 to 2.8 Hz, but the lower frequency varied non-monotonically, with a maximum of 1.0 Hz at 20 mK above the critical temperature. The measured frequencies agree with independently calculated frequencies to within 15%.

  6. Non-contact Creep Resistance Measurement for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, J.; Bradshaw, C.; Rogers, J. R.; Rathz, T. J.; Wall, J. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2005-01-01

    Conventional techniques for measuring creep are limited to about 1700 C, so a new technique is required for higher temperatures. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is rotated quickly enough to cause creep deformation by centrifugal acceleration. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  7. Parametric Investigation of the Kinetics of Growth of Carbon-Nanotube Arrays on Iron Nanoparticles in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.

    2015-03-01

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.

  8. Overload characteristics of paper-polypropylene-paper cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, A.

    1990-09-01

    The short-time rating of PPP pipe-type cable may be lower than the equivalent paper cable sized to carry the same normal load. The ratings depend on the relative conductor sizes and the maximum allowable conductor temperatures of the insulation. The insulation thermal resistivity may be a significant parameter for overload times of approximately one hour and should be verified for PPP insulation. The thermal capacitance temperature characteristic of PPP insulation is not known. However, the overload ratings are not very sensitive to this parameter. Overload ratings are given for maximum conductor temperatures from 105 C to 130 C. Use ofmore » ratings based on temperatures greater than 105 C would require testing to determine the extent of degradation of the insulation at these higher temperatures. PPP-insulated cable will be thermally stable over a wider range of operating conditions (voltage and current) compared with paper-insulated cable. The short-circuit ratings of PPP- and paper-insulated cable systems and the positive/negative and zero sequence impedances are compared. 21 refs., 22 figs., 5 tabs.« less

  9. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    PubMed

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  10. Influence of geomagnetic activity on mesopause temperature over Yakutia

    NASA Astrophysics Data System (ADS)

    Gavrilyeva, Galina; Ammosov, Petr

    2018-03-01

    The long-term temperature changes of the mesopause region at the hydroxyl molecule OH (6-2) nighttime height and its connection with the geomagnetic activity during the 23rd and beginning of the 24th solar cycles are presented. Measurements were conducted with an infrared digital spectrograph at the Maimaga station (63° N, 129.5° E). The hydroxyl rotational temperature (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of ˜ 87 km. The average temperatures obtained for the period 1999 to 2015 are considered. The season of observations starts at the beginning of August and lasts until the middle of May. The maximum of the seasonally averaged temperatures is delayed by 2 years relative to the maximum of the solar radio emission flux (wavelength of 10.7 cm), and correlates with a change in geomagnetic activity (Ap index). Temperature grouping in accordance with the geomagnetic activity level showed that in years with high activity (Ap > 8), the mesopause temperature from October to February is about 10 K higher than in years with low activity (Ap < = 8). Cross-correlation analysis showed no temporal shift between geomagnetic activity and temperature. The correlation coefficient is equal to 0.51 at the 95 % level.

  11. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  12. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2018-04-01

    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2  °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

  13. Intrapulpal Temperature Increases Caused by 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets During Simulated Pulpal Fluid Circulation.

    PubMed

    Stein, Steffen; Wenzler, Johannes; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-04-01

    This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (T max ). Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and T max . Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and T max , and T2 and T max . The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.

  14. Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.

    1992-06-01

    The determination of the thermal effects of Nd:YAG laser energy on enamel and dentin is critical in understanding the clinical applications of caries removal and surface modification. Recently extracted non-carious third molars were sterilized with gamma irradiation. Calculus and cementum were removed using scaling instruments and 600 grit sand paper. The smear layer produced by sanding was removed with a solution of 0.5 M EDTA (pH 7.4) for two minutes. Enamel and dentin surfaces were exposed to a pulsed Nd:YAG laser with 150 microsecond(s) pulse duration. Laser energy was delivered to the teeth with a 320 micrometers diameter fiberoptic delivery system, for exposure times of 1, 10 and 30 seconds. Laser parameters varied from 0.3 to 3.0 W, 10 to 30 Hz and 30 to 150 mJ/pulse. Other conditions included applications of hot coffee, carbide bur in a dental air-cooled turbine drill and soldering iron. Infrared thermography was used to measure the maximum surface temperature on, and thermal penetration distance into enamel and dentin. Thermographic data were analyzed with a video image processor to determine the diameter of maximum surface temperature and thermal penetration distance of each treatment. Between/within statistical analysis of variance (p

  15. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  16. [Effects of sand-covering on apple trees transpiration and fruit quality in dry land orchards of Longdong, Gansu].

    PubMed

    Zhang, Kun; Yin, Xiao-ning; Liu, Xiao-yong; Wang, Fa-lin

    2010-11-01

    Aiming at the seasonal drought in the dry land orchards of Longdong, Gansu Province, a sand-covering experiment was conducted with 15-year-old Nagafu No. 2 apple trees, with the soil water content, temperature, stem sap flow velocity, leaf stomatal conductance, and fruit quality measured. In the orchard covered with 5-cm-thick riversand, the increment of soil temperature in February-April was lower than 1 degrees C, while in June-July, it was 2.44 degrees C and 2.61 degrees C on sunny and cloudy days, respectively. The soil water content was over 60% of field capacity throughout the growing season. On sunny days with high soil water content (H season), the stem sap flow curve presented a wide peak. Under sand- covering, the sap flow started 0.6 h earlier, and the maximum sap flow velocity was 25.5% higher than the control. On cloudy days of H season, the maximum sap flow velocity was 165.6% higher than the control. On sunny days with low soil water content (L season), the sap flow curve had a single peak, and under sand covering, the sap flow started 0.5-1 h earlier than the control on sunny days. The maximum sap flow velocity was 794 g x h(-1). On cloudy days of L season, the sap flow started 1 h earlier, and the maximum sap flow velocity was 311.0% higher than the control. The evaporation of the control was 156.0% higher than that of sand-covering from March to July, suggesting that excessive ground water evaporation was the main reason to cause soil drought. Under sand-covering, single fruit mass was improved obviously whereas fruit firmness was reduced slightly, and soluble solids, vitamin C, total sugar, and organic acid contents were somewhat promoted.

  17. Increase of child car seat temperature in cars parked in the outpatient parking lot.

    PubMed

    Sugimura, Tetsu; Suzue, Junji; Kamada, Makoto; Ozaki, Yukiko; Tananari, Yoshifumi; Maeno, Yasuki; Ito, Shinichi; Nishino, Hiroshi; Kakimoto, Noriko; Yamakawa, Rumi

    2011-12-01

    A guideline for the safe use of child car seats (CS) was published by the Japan Pediatric Society in 2008. There have been few studies of the increase of temperature of a CS in parked cars. The aim of this study was to determine the change in the temperature of the CS in cars parked in full sun. The temperature of CS was measured during summer (July and August) in 2006, 2007, and 2008. The CS used in this study (n= 50) were for children (≤ 6 years old) who were taken by car to Sugimura Children's Medical Clinic. Temperatures were only measured on sunny days. Measurements were performed from 09.00 to 17.00 hours. Thermochron (Thermochron i-Button: G type, Maxim Integrated Products, CA, USA) was used to measure the temperatures. The maximum temperatures of CS were compared in time at the clinic, taking into consideration seat colors, and car colors. Of the 50 cars, three cars were excluded due to being in the shade while the temperature was measured. A total of 47 cars were used for this study. The temperature of the CS ranged from 38.0 to 65.5°C (47.8 ± 5.8°C). Eighteen CS (38.3%) reached a temperature of 50°C or above. The maximum temperature of the 13.00-15.00-hours group was significantly higher than that of the 09.00-11.00-hours group (P= 0.035). The CS temperatures in the black car group were significantly higher than those of the white car group (P= 0.013). CS may become very hot while a car is parked in sun, especially if the car and the CS are black, so the CS should be cooled before a young child is placed in it. Guardians of small children should be aware of this risk. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  18. Current and Projected Heat-Related Morbidity and Mortality in Rhode Island.

    PubMed

    Kingsley, Samantha L; Eliot, Melissa N; Gold, Julia; Vanderslice, Robert R; Wellenius, Gregory A

    2016-04-01

    Climate change is expected to cause increases in heat-related mortality, especially among the elderly and very young. However, additional studies are needed to clarify the effects of heat on morbidity across all age groups and across a wider range of temperatures. We aimed to estimate the impact of current and projected future temperatures on morbidity and mortality in Rhode Island. We used Poisson regression models to estimate the association between daily maximum temperature and rates of all-cause and heat-related emergency department (ED) admissions and all-cause mortality. We then used downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5; a standardized set of climate change model simulations) projections to estimate the excess morbidity and mortality that would be observed if this population were exposed to the temperatures projected for 2046-2053 and 2092-2099 under two representative concentration pathways (RCP): RCP 8.5 and 4.5. Between 2005 and 2012, an increase in maximum daily temperature from 75 to 85°F was associated with 1.3% and 23.9% higher rates of all-cause and heat-related ED visits, respectively. The corresponding effect estimate for all-cause mortality from 1999 through 2011 was 4.0%. The association with all-cause ED admissions was strongest for those < 18 or ≥ 65 years of age, whereas the association with heat-related ED admissions was most pronounced among 18- to 64-year-olds. If this Rhode Island population were exposed to temperatures projected under RCP 8.5 for 2092-2099, we estimate that there would be 1.2% (range, 0.6-1.6%) and 24.4% (range, 6.9-41.8%) more all-cause and heat-related ED admissions, respectively, and 1.6% (range, 0.8-2.1%) more deaths annually between April and October. With all other factors held constant, our findings suggest that the current population of Rhode Island would experience substantially higher morbidity and mortality if maximum daily temperatures increase further as projected. Kingsley SL, Eliot MN, Gold J, Vanderslice RR, Wellenius GA. 2016. Current and projected heat-related morbidity and mortality in Rhode Island. Environ Health Perspect 124:460-467; http://dx.doi.org/10.1289/ehp.1408826.

  19. High methane natural gas/air explosion characteristics in confined vessel.

    PubMed

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate).

    PubMed

    Wright, D D; Gilbert, J L; Lautenschlager, E P

    1999-08-01

    A novel material, self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) has been previously developed in this laboratory. It consists of high-strength PMMA fibers embedded in a matrix of PMMA derived from the fibers. As a composite material, uniaxial SRC-PMMA has been shown to have greatly improved flexural, tensile, fracture toughness and fatigue properties when compared to unreinforced PMMA. Previous work examined one empirically defined processing condition. This work systematically examines the effect of processing time and temperature on the thermal properties, fracture toughness and fracture morphology of SRC-PMMA produced by a hot compaction method. Differential scanning calorimetry (DSC) shows that composites containing high amounts of retained molecular orientation exhibit both endothermic and exothermic peaks which depend on processing times and temperatures. An exothermic release of energy just above Tg is related to the release of retained molecular orientation in the composites. This release of energy decreases linearly with increasing processing temperature or time for the range investigated. Fracture toughness results show a maximum fracture toughness of 3.18 MPa m1/2 for samples processed for 65 min at 128 degrees C. Optimal structure and fracture toughness are obtained in composites which have maximum interfiber bonding and minimal loss of molecular orientation. Composite fracture mechanisms are highly dependent on processing. Low processing times and temperatures result in more interfiber/matrix fracture, while higher processing times and temperatures result in higher ductility and more transfiber fracture. Excessive processing times result in brittle failure. Copyright 1999 Kluwer Academic Publishers

  1. Displacement damage dose and implantation temperature effects on the trapping and release of deuterium implanted into SiC

    NASA Astrophysics Data System (ADS)

    Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.

    2017-09-01

    Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.

  2. Body temperature, thermoregulatory behaviour and pelt characteristics of three colour morphs of springbok (Antidorcas marsupialis).

    PubMed

    Hetem, Robyn S; de Witt, Brenda A; Fick, Linda G; Fuller, Andrea; Kerley, Graham I H; Meyer, Leith C R; Mitchell, Duncan; Maloney, Shane K

    2009-03-01

    Using intra-abdominal miniature data loggers, we measured core body temperature in female springbok (Antidorcas marsupialis) of three colour morphs (black, normal and white), free-living in the Karoo, South Africa, for one year. During winter, white springbok displayed lower daily minimum body temperatures (37.4+/-0.5 degrees C), than both black (38.1+/-0.3 degrees C) and normal (38.0+/-0.6 degrees C) springbok. During spring, black springbok displayed higher daily maximum body temperatures (40.7+/-0.1 degrees C) than both white (40.2+/-0.2 degrees C) and normal (40.2+/-0.2 degrees C) springbok. These high maximum body temperatures were associated with larger daily amplitudes of nychthemeral rhythm of body temperature (2.0+/-0.2 degrees C), than that of white (1.6+/-0.1 degrees C) and normal (1.7+/-0.2 degrees C) springbok. Biophysical properties of sample springbok pelts were consistent with these patterns, as the black springbok pelt showed lower reflectance in the visible spectral range, and higher heat load from simulated solar radiation, than did the pelts of the other two springbok. Black springbok had lower diurnal activity in winter, consistent with them having to forage less because their metabolic cost of homeothermy was lower, but were disadvantaged in hot periods. White springbok, by contrast, were more protected from solar heat load, but potentially less able to meet the energy cost of homeothermy in winter. Thus energy considerations may underlie the rarity of the springbok colour morphs.

  3. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  4. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  5. Ferric Oxide Mediated Formation of PCDD/Fs from 2-Monochlorophenol

    PubMed Central

    Nganai, Shadrack; Lomnicki, Slawo; Dellinger, Barry

    2012-01-01

    The copper oxide, surface-mediated formation of polychlorinated dibenzop-dioxins and dibenzofurans (PCDD/F) from precursors such as chlorinated phenols is considered to be a major source of PCDD/F emissions from combustion sources. In spite of being present at 2–50x higher concentrations than copper oxide, virtually no studies of the iron oxide-mediated formation of PCDD/F have been reported in the literature. We have performed packed bed, flow reactor studies of the reaction of 50 ppm gas phase 2-monochlorophenol (2-MCP) over a surface of 5% iron oxide on silica over a temperature range of 200–500 °C. Dibenzo-p-dioxin (DD), 1-monochlorodibenzo-p-dioxin (1-MCDD), 4,6-dichlorodibenzofuran (4,6-DCDF), and dibenzofuran (DF) were formed in maximum yields of 0.1, 0.2, 0.3, and 0.4 %, respectively. The yield of PCDD/F over iron oxide peaked at temperatures 50–100 °C higher in temperature than over copper oxide. The maximum yields of DD, 1-MCDD and 4,6-DCDF were 2x and 5x higher over iron oxide, respectively, than over copper oxide, while DF was not observed at all for copper oxide. The resulting PCDD/PCDF ratio was 0.39 versus 1.2 observed for iron oxide and copper oxide, respectively, which is in agreement with PCDD to PCDF ratios in full-scale combustors that are typically ≪1. The combination of 2–50x higher concentrations of iron oxide than copper oxide in most full-scale combustors and 2.5x higher yields of PCDD/F observed in the laboratory, suggest that iron oxide may contribute as much as 5–125x more than copper oxide to the emissions of PCDD/F from full-scale combustors. PMID:19238966

  6. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  7. A global view of F-region electron density and temperature at solar maximum

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Hoegy, W. R.

    1982-01-01

    It is pointed out that the thermal structure of the ionosphere represents a quasi-static balance between a variety of heat sources and sinks which vary spatially and temporally on a wide range of time scales. The present investigation has the objective to present selected early results from the Dynamics Explorer-2 (DE-2) Langmuir probe instrument and to make an initial evaluation of how the thermal structure of the ionosphere at solar maximum differs from that observed at solar minimum. Bowen et al. (1964) and Brace and Reddy (1965) devised early empirical models of the F region electron temperature (Te), based on satellite Langmuir probe measurements at low levels of solar activity. The global structure of Te and the electron density (Ne) obtained in the current investigation is not very different from that reported by Brace and Reddy. The primary difference at solar maximum is that Ne is everywhere much higher, but Te differs only in detail.

  8. Effects of Temperature on Sound Production and Auditory Abilities in the Striped Raphael Catfish Platydoras armatulus (Family Doradidae)

    PubMed Central

    Papes, Sandra; Ladich, Friedrich

    2011-01-01

    Background Sound production and hearing sensitivity of ectothermic animals are affected by the ambient temperature. This is the first study investigating the influence of temperature on both sound production and on hearing abilities in a fish species, namely the neotropical Striped Raphael catfish Platydoras armatulus. Methodology/Principal Findings Doradid catfishes produce stridulation sounds by rubbing the pectoral spines in the shoulder girdle and drumming sounds by an elastic spring mechanism which vibrates the swimbladder. Eight fish were acclimated for at least three weeks to 22°, then to 30° and again to 22°C. Sounds were recorded in distress situations when fish were hand-held. The stridulation sounds became shorter at the higher temperature, whereas pulse number, maximum pulse period and sound pressure level did not change with temperature. The dominant frequency increased when the temperature was raised to 30°C and the minimum pulse period became longer when the temperature decreased again. The fundamental frequency of drumming sounds increased at the higher temperature. Using the auditory evoked potential (AEP) recording technique, the hearing thresholds were tested at six different frequencies from 0.1 to 4 kHz. The temporal resolution was determined by analyzing the minimum resolvable click period (0.3–5 ms). The hearing sensitivity was higher at the higher temperature and differences were more pronounced at higher frequencies. In general, latencies of AEPs in response to single clicks became shorter at the higher temperature, whereas temporal resolution in response to double-clicks did not change. Conclusions/Significance These data indicate that sound characteristics as well as hearing abilities are affected by temperatures in fishes. Constraints imposed on hearing sensitivity at different temperatures cannot be compensated even by longer acclimation periods. These changes in sound production and detection suggest that acoustic orientation and communication are affected by temperature changes in the neotropical catfish P. armatulus. PMID:22022618

  9. Austrian glaciers in historical documents of the last 400 years: implications for historical hydrology

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea; Seiser, Bernd

    2014-05-01

    First documentations of Austrian glaciers date from as early as 1601. Early documentations were triggered by glacier advances that created glacier-dammed lakes that caused floods whenever the dam collapsed . Since then, Austrian glaciers have been documented in drawings, descriptions and later on in maps and photography. These data are stored in historical archives but today only partly exploited for historical glaciology. They are of special interest for historical hydrology in glacier-covered basins, as the extent of the snow, firn and ice cover and its elevation affect the hydrological response of the basin to precipitation events in several ways: - Firn cover: the more area is covered by firn, the higher is the capacity for retention or even refreezing of liquid precipitation and melt water. - Ice cover: the area covered by glaciers can be affected by melt and contributes to a peak discharge on summer afternoons. - Surface elevation and temperatures: in case of precipitation events, the lower surface temperatures and higher surface elevation of the glaciers compared to ice-free ground have some impact on the capacity to store precipitation. - Glacier floods: for the LIA maximum around 1850, a number of advancing glaciers dammed lakes which emptied during floods. These parameters show different variability with time: glacier area varies only by about 60% to 70% between the LIA maximum and today. The variability of the maximum meltwater peak changes much more than the area. Even during the LIA maximum, several years were extremely warm, so that more than twice the size of today's glacier area was subject to glacier melt. The minimum elevations of large glaciers were several hundred meters lower than today, so that in terms of today's summer mean temperatures, the melt water production from ice ablation would have been much higher than today. A comparison of historical glacier images and description with today's makes it clear that the extent of the snow cover and thus the albedo of the glacier surface has been highly variable. This has significant impact on the meltwater production. These historical glacier data complement the first available runoff data from the early 20th century taken close to the glacier tongues.

  10. Free-Flight Skin Temperature and Pressure Measurements on a Slightly Blunted 25 Deg Cone-Cylinder-Flare Configuration to a Mach Number of 9.89

    NASA Technical Reports Server (NTRS)

    Bond, Aleck C.; Rumsey, Charles B.

    1957-01-01

    Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.

  11. A Note on the Spatio Temporal Variations in the Temperature and Relative Humidity over Akure, Ondo State, Nigeria

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.

    2007-07-01

    This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics

  12. Parametric design criteria of an updated thermoradiative cell operating at optimal states

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Peng, Wanli; Lin, Jian; Chen, Xiaohang; Chen, Jincan

    2017-11-01

    An updated mode of the thermoradiative cell (TRC) with sub-band gap and non-radiative losses is proposed, which can efficiently harvest moderate-temperature heat energy and convert a part of heat into electricity. It is found that when the TRC is operated between the heat source at 800 K and the environment at 300 K , its maximum power output density and efficiency can attain 1490 W m-2 and 27.2 % , respectively. Moreover, the effects of some key parameters including the band gap and voltage output on the performance of the TRC are discussed. The optimally working regions of the power density, efficiency, band gap, and voltage output are determined. The maximum efficiency and power output density of the TRC operated at different temperatures are calculated and compared with those of thermophotovoltaic cells (TPVCs) and thermionic energy converters (TECs), and consequently, it is revealed that the maximum efficiency of the TRC operated at the moderate-temperature range is much higher than that of the TEC or the TPVC and the maximum power output density of the TRC is larger than that of the TEC but smaller than that of the TPVC. Particularly, the TRC is manufactured more easily than the near-field TPVC possessing a nanoscale vacuum gap. The results obtained will be helpful for engineers to choose the semiconductor materials, design and manufacture TRCs, and control operative conditions.

  13. Climate change and health: Indoor heat exposure in vulnerable populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu; Sanchez, Brisa N., E-mail: brisa@umich.edu; Jolliet, Olivier, E-mail: ojolliet@umich.edu

    2012-01-15

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 inmore » Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.« less

  14. Lifshitz transition and thermoelectric properties of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Suszalski, Dominik; Rut, Grzegorz; Rycerz, Adam

    2018-03-01

    This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L >10 μ m at sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping strength. Behavior of the thermoelectric figure of merit (Z T ) is also discussed.

  15. Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities.

    PubMed

    Yang, Jun; Zhou, Maigeng; Li, Mengmeng; Liu, Xiaobo; Yin, Peng; Sun, Qinghua; Wang, Jun; Wu, Haixia; Wang, Boguang; Liu, Qiyong

    2018-08-01

    Few studies have analyzed the health effects of temperature variability (TV) accounting for both interday and intraday variations in ambient temperature. In this study, TV was defined as the standard deviations of the daily minimum and maximum temperature during different exposure days. Distributed lag non-linear Poisson regression model was used to examine the city-specific effect of TV on mortality in 31 Chinese municipalities and provincial capital cities. The national estimate was pooled through a meta-analysis based on the restricted maximum likelihood estimation. To assess effect modification on TV-mortality association by individual characteristics, stratified analyses were further fitted. Potential effect modification by city characteristics was performed through a meta-regression analysis. In total, 259 million permanent residents and 4,481,090 non-accidental deaths were covered in this study. The effect estimates of TV on mortality were generally increased by longer exposure days. A 1 °C increase in TV at 0-7 days' exposure was associated with a 0.60% (95% CI: 0.25-0.94%), 0.65% (0.24-1.05%), 0.82% (0.29-1.36%), 0.86% (0.42-1.31%), 0.98% (0.57-1.39%) and 0.54% (-0.11-1.20%) increase in non-accidental, cardiovascular, IHD, stroke, respiratory and COPD mortalities, respectively. Those with lower levels of educational attainment were significantly susceptible to TV. Cities with dense population, higher mean temperatures, and relative humidity and lower diurnal temperature ranges also had higher mortality risks caused by TV. This study demonstrated that TV had considerable health effects. An early warning system to alert residents about large temperature variations is recommended, which may have a significant impact on the community awareness and public health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  17. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    PubMed

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.

  18. Comparison of infrared canopy temperature in a rubber plantation and tropical rain forest.

    PubMed

    Song, Qing-Hai; Deng, Yun; Zhang, Yi -Ping; Deng, Xiao-Bao; Lin, You-Xing; Zhou, Li-Guo; Fei, Xue-Hai; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Gao, Jin-Bo

    2017-10-01

    Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (T c  - T a ) between canopy temperature (T c ) and air temperature (T a ) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (T c  - T a ) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (T c  - T a ) than the TR throughout the entire year. Infrared measurements of T c can be used to calculate canopy stomatal conductance in both forests. The difference in (T c  - T a ) at three g c levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (T c  - T a ) in the RP was relatively sensitive to the degree of stomatal closure.

  19. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  20. Temperature rise and parasitic infection interact to increase the impact of an invasive species.

    PubMed

    Laverty, Ciaran; Brenner, David; McIlwaine, Christopher; Lennon, Jack J; Dick, Jaimie T A; Lucy, Frances E; Christian, Keith A

    2017-04-01

    Invasive species often detrimentally impact native biota, e.g. through predation, but predicting such impacts is difficult due to multiple and perhaps interacting abiotic and biotic context dependencies. Higher mean and peak temperatures, together with parasites, might influence the impact of predatory invasive host species additively, synergistically or antagonistically. Here, we apply the comparative functional response methodology (relationship between resource consumption rate and resource supply) in one experiment and conduct a second scaled-up mesocosm experiment to assess any differential predatory impacts of the freshwater invasive amphipod Gammarus pulex, when uninfected and infected with the acanthocephalan Echinorhynchus truttae, at three temperatures representative of current and future climate. Individual G. pulex showed Type II predatory functional responses. In both experiments, infection was associated with higher maximum feeding rates, which also increased with increasing temperatures. Additionally, infection interacted with higher temperatures to synergistically elevate functional responses and feeding rates. Parasitic infection also generally increased Q 10 values. We thus suggest that the differential metabolic responses of the host and parasite to increasing temperatures drives the synergy between infection and temperature, elevating feeding rates and thus enhancing the ecological impact of the invader. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  1. Fuel freeze-point investigations. Final report, September 1982-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmarais, L.A.; Tolle, F.F.

    1984-07-01

    The objective of this program was to conduct a detailed assessment of the low-temperature environment to which USAF aircraft are exposed for the purpose of defining a maximum acceptable fuel freeze-point and also to define any operational changes required with the use of a high freeze-point fuel. A previous study of B-52, C-141, and KC-135 operational missions indicated that the -58 C freeze point specification was too conservative. Based on recommendations resulting from the previous program, several improvements in the method of analysis were made, such as: expansion of the atmospheric temperature data base, the addition of ground temperature analysis,more » the addition of fuel-freezing analysis to the one-dimensional fuel-temperature computer program, and the examination of heat transfer in external fuel tanks, such as pylon or tip tanks. The B-52, C-141, and KC-135 mission were analyzed again, along with the operational missions of two tactical airplanes, the A-10 and F-15; -50C was determined to be the maximum allowable freeze point for a general-purpose USAF aviation turbine fuel. Higher freeze points can be tolerated if the probability of operational interference is acceptably low or if operational changes can be made. Study of atmospheric temperatures encountered for the missions of the five-study aircraft indicates that a maximum freeze point of -48 C would not likely create any operational difficulties in Northern Europe.« less

  2. Adverse Climatic Conditions and Impact on Construction Scheduling and Cost

    DTIC Science & Technology

    1988-01-01

    ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures

  3. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  4. Measuring temperature rise during orthopaedic surgical procedures.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  6. Geomagnetic activity signature in seasonal variations of mesopause temperature over Yakutia

    NASA Astrophysics Data System (ADS)

    Gavrilyeva, G. A.; Ammosov, P. P.; Ammosova, A. M.; Koltovskoi, I. I.; Sivtseva, V. I.

    2017-11-01

    Research of the seasonal change of mesopause temperature at height of nightglow of hydroxyl excited molecules and its correlation with geomagnetic activity during the 23 solar cycle is presented. An infrared digital spectrograph installed at the Maimaga station (63°N, 129.5°E) measured P-branches of the OH(6-2) band. The rotational temperature of OH emission (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of 87 km. The database of TOH comprises 2864 nightly average temperatures obtained from August 1999 to May 2015 is considered. The observation starts at the beginning of August and ends in the middle of May. It was revealed that the maximum flux of radio emission from the Sun with a wavelength of 10.7 cm is 2 years ahead of the maximum of seasonally averaged temperature. Temperature is correlated with a change of Ap-index which is a measure of geomagnetic activity. Nightly mean TOH were grouped in accordance with the geomagnetic activity level: the temperatures measured during years with a high activity (Ap> 8), and low activity (Ap <= 8). It was found that the mesopause temperature from October to February is higher by a factor of about ·10 K than during years with low activity (Ap <= 8). There is no dependence of the TOH on the level of geomagnetic activity in autumn and spring.

  7. An optically accessible pyrolysis microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.

    2016-01-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  8. On heat transfer in squish gaps

    NASA Astrophysics Data System (ADS)

    Spurk, J. H.

    1986-06-01

    Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.

  9. An optically accessible pyrolysis microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraban, J. H.; Ellison, G. Barney; David, D. E.

    2016-01-15

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  10. [Monitoring on spatial and temporal changes of snow cover in the Heilongjiang Basin based on remote sensing].

    PubMed

    Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping

    2014-09-01

    This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.

  11. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    PubMed Central

    Lawson, Tracy; Geider, Richard J.

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 − 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt. PMID:28081236

  12. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.

    PubMed

    Boatman, Tobias G; Lawson, Tracy; Geider, Richard J

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.

  13. Optimization of intermittent microwave–convective drying using response surface methodology

    PubMed Central

    Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid

    2015-01-01

    In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706

  14. Electrical conductivity of high-purity germanium crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  15. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

  16. Effect of interface structure regulation caused by variation of imidization rate on conduction current characteristics of PI/nano-Al2O3 three-layer composite films

    NASA Astrophysics Data System (ADS)

    Ma, Xinyu; Liu, Lizhu; Zhang, Xiaorui; He, Hongju

    2018-06-01

    A series of sandwich structure PI films were prepared by different imidization process, with pure PI film as the interlayer and PI/Al2O3 composite films as outer layers. The imidization rate of the film with different cured processes was calculated by characterizing by infrared spectrum (FT-IR), and the morphology of interlayer interface with different imidization rates by scanning electron microscope (SEM). When the imidization conditions of the first and second films were 260 °C/120 min, the composite films displayed better interface structure and higher imidization rate (ID) than others. Moreover, results also showed that the conduction current of three-layer composite film steadily improved with increased ID and temperature, and was higher than that of the pure film. At the temperature of 30 °C, the electrical aging threshold at different ID was obtained. When the ID reached the maximum value of 78.9%, the electrical aging threshold reached the maximum 41.69 kV/mm.

  17. Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2016-12-01

    The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, M.P.M.; Glastra, P.; Lembrechts, J.F.M.M.

    The uptake processes of {sup 134}Cs in two earthworm species were investigated as well as the effect of temperature on these processes. The results show that equilibrium concentrations in the two species differ by 1.5- to fivefold. Equilibrium concentrations range from 367 to 963 Bq g{sup {minus}1} in Lumbricus rubellus and from 920 to 1,893 g{sup {minus}1} in Eisenia foetida; biological half-lives range from 56 to 119 h and 52 to 64 h, respectively. Assimilation was two to four times higher in E. foetida and elimination rate one to two times higher in E. foetida than in L. rubellus. Further,more » the results show that temperature may affect the {sup 134}Cs concentration in these earthworms by a factor of 1.4 to 2.1 between 10 and 20 C, depending on the species. The maximum difference found within one species was a factor of 2.6. Their results show no clear effect of temperature on the assimilation, but a small negative effect on elimination, resulting in an increasing biological half-life and concentration factor with higher temperatures.« less

  19. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae).

    PubMed

    Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C

    2014-04-01

    We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.

  20. Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil

    NASA Astrophysics Data System (ADS)

    Salvador, Mozar de A.; de Brito, J. I. B.

    2017-06-01

    During the 1980s, a new agricultural frontier arouse in Brazil, which occupied part of the states of Maranhão, Tocantins, Piauí, and Bahia. Currently, this new frontier is known as the MATOPIBA region. The region went through intense transformations in its social and environmental characteristics, with the emergence of extensive areas of intensive agriculture and large herds. The purpose of this research was to study the climatic variabilities of temperature in the MATOPIBA region through extreme climate indexes of ClimAp tool. Data from 11 weather stations were analyzed for yearly air temperature (maximum and minimum) in the period of 1970 to 2012. To verify the trend in the series, we used methods of linear regression analysis and Kendall-tau test. The annual analysis of maximum and minimum temperatures and of the temperature extremes indexes showed a strong positive trend in practically every series (with p value less than 0.05). These results indicated that the region went through to a significant heating process in the last 3 decades. The indices of extreme also showed a significant positive trend in most of the analyzed stations, indicating a higher frequency of warm days during the year.

  1. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment.

    PubMed

    Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong

    2014-12-08

    In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  2. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    NASA Astrophysics Data System (ADS)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  3. High ambient temperature and risk of intestinal obstruction in cystic fibrosis.

    PubMed

    Ooi, Chee Y; Jeyaruban, Christina; Lau, Jasmine; Katz, Tamarah; Matson, Angela; Bell, Scott C; Adams, Susan E; Krishnan, Usha

    2016-04-01

    Distal intestinal obstruction syndrome (DIOS) and constipation in cystic fibrosis (CF) are conditions associated with impaction and/or obstruction by abnormally viscid mucofaecal material within the intestinal lumen. Dehydration has been proposed as a risk factor for DIOS and constipation in CF. The study primarily aimed to determine whether warmer ambient temperature and lower rainfall are risk factors for DIOS and constipation in CF. Hospitalisations for DIOS (incomplete or complete) and/or constipation were retrospectively identified (2000-2012). Genotype, phenotype, temperatures and rainfall data (for the week preceding and season of hospitalisation) were collected. Twenty-seven DIOS (59.3% incomplete; 40.7% complete) and 44 constipation admissions were identified. All admitted patients were pancreatic insufficient. Meconium ileus was significantly more likely in DIOS than constipation (64.7% vs. 33.3%; P = 0.038) and in complete than incomplete DIOS (100% vs. 57.1%; P = 0.04). The maximum temperature of the week before DIOS admission (mean (standard deviation) = 28.0 (5.8) °C) was significantly higher than the maximum temperature of the season of admission (25.2 (3.4) °C; P = 0.002). Similarly, the maximum temperature of the week before hospitalisation for constipation (mean (standard deviation) = 27.9 (6.3) °C) was significantly warmer compared with the season of admission (24.0 (4.1) °C; P < 0.0001). There were no significant differences between levels of rainfall during the week before hospitalisation and the season of admission for both DIOS and constipation. Relatively high ambient temperature may play a role in the pathogenesis of DIOS and constipation in CF. © 2016 The Authors Journal of Paediatrics and Child Health © 2016 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Effect of temperature on the electrical properties of a metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-silicon capacitor

    NASA Astrophysics Data System (ADS)

    Chen, Y. Q.; Xu, X. B.; Lei, Z. F.; Y Liao, X.; Wang, X.; Zeng, C.; En, Y. F.; Huang, Y.

    2015-01-01

    A metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-semiconductor capacitor was fabricated, and the temperature dependence of its electrical properties was investigated. Within the temperature range of 300-220 K, the maximum memory window is up to 1.26 V, and it could be attributed to a higher coercive field of the ferroelectric film at a lower temperature, which is induced by the deeper and more box-shaped potential well based on the defect-domain interaction model. The memory window decreases with increasing temperature from 300 to 400 K, and the larger sweep voltage leads to a smaller memory window at a higher temperature, which could be attributed to temperature-dependent polarization of the ferroelectric film and charge injection from an Si substrate of the capacitor. With the temperature increasing from 220 to 400 K, the leakage current density increases with temperature by about one order, and the corresponding conduction mechanism is discussed. The results could provide useful guidelines for design and application of ferroelectric memory.

  5. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  6. Couleurs, etoiles, temperatures.

    NASA Astrophysics Data System (ADS)

    Spite, F.

    The eye is able to distinguish very tiny color differences of contiguous objects (at high light level, cones vision), but it is not a reliable colorimeter. Hot objects (a heated iron rod) emits some red light, a hotter object would provide a yellow-orange light (the filament of a bulb) and a still hotter one a white or even bluish light : this may be at reverse of common life codes, where "red" means hot water and/or danger, and "blue" cool water or cool air. Stars are a good illustration of the link between temperatures and colors. A heated iron rod has a temperature of about 800 K. Let us recall that K is a temperature unit (Kelvin) such that the Kelvin temperature is the Celsius temperature +273).The so called red stars (or cool stars) have temperature around 3000 K, higher than "white-hot iron". The Sun has a still higher temperature (5800 K) and its color is white : the solar light is by definition the "white light", and includes violet, blue, green, yellow, orange and red colors in balanced proportions (the maximum in the yellow-green). It is often said that the Sun is a yellow star. Admittedly, a brief glimpse at the Sun (take care ! never more than a VERY brief glimpse !) provides a perception of yellow light, but such a vision, with the eye overwhelmed by a fierce light, is not able to provide a good evaluation of the solar color : prefer a white sheet of paper illuminated by the Sun at noon and conclude that "the Sun is a white star". It is sometimes asked why red, white and bluish stars are seen in the sky, but no green stars : the solar light has its maximum intensity in the green, but such a dominant green light, equilibrated by some blue and some red light, is what we call "white", so that stars similar to the Sun, with a maximum in the green, are seen as white stars. Faint stars (rods vision of the eye) are also seen as white stars. Spots on the Sun (never look at the Sun ! let us say spots on "projected images of the Sun") appear as black spots : they are in fact bright areas, only slightly less luminous than the undisturbed surface of the Sun, but the eye has a particular of enhancing enormously the contrasts.

  7. Effect of laser pulsing on the composition measurement of an Al-Mg-Si-Cu alloy using three-dimensional atom probe.

    PubMed

    Sha, G; Ringer, S P

    2009-04-01

    The effect of laser pulse energy on the composition measurement of an Al-Mg-Si-Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20-80K and a voltage range of 2.5-5kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9nJ with a beam spot size of about 5microm, providing an equivalent voltage pulse fraction, approximately 14% at 80K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.

  8. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi.

    PubMed

    Xu, Xue-Feng; Ji, Xiang

    2006-01-01

    We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.

  9. Thyroid hormone fluctuations indicate a thermoregulatory function in both a tropical (Alouatta palliata) and seasonally cold-habitat (Macaca fuscata) primate.

    PubMed

    Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J

    2017-11-01

    Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.

  10. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions.

    PubMed

    Jaichansukkit, Teerapong; Suwanasopee, Thanathip; Koonawootrittriron, Skorn; Tummaruk, Padet; Elzo, Mauricio A

    2017-03-01

    The aim of this study was to determine the effects of daily ranges and maximum ambient temperatures, and other risk factors on reproductive failure of Landrace (L) and Yorkshire (Y) sows under an open-house system in Thailand. Daily ambient temperatures were added to information on 35,579 litters from 5929 L sows and 1057 Y sows from three commercial herds. The average daily temperature ranges (ADT) and the average daily maximum temperatures (PEAK) in three gestation periods from the 35th day of gestation to parturition were classified. The considered reproductive failure traits were the occurrences of mummified fetuses (MM), stillborn piglets (STB), and piglet death losses (PDL) and an indicator trait for number of piglets born alive below the population mean (LBA). A multiple logistic regression model included farrowing herd-year-season (HYS), breed group of sow (BG), parity group (PAR), number of total piglets born (NTB), ADT1, ADT2, ADT3, PEAK1, PEAK2, and PEAK3 as fixed effects, while random effects were animal, repeated observations, and residual. Yorkshire sows had a higher occurrence of LBA than L sows (P = 0.01). The second to fifth parities sows had lower reproductive failures than other parities. The NTB regression coefficients of log-odds were positive (P < 0.01) for all traits. Narrower ranges of ADT3 increased the occurrence of MM, STB, and PDL (P < 0.01), while higher PEAK3 increased the occurrence of MM, STB, PDL, and LBA (P < 0.001). To reduce the risk of reproductive failures, particularly late in gestation, producers would need to closely monitor their temperature management strategies.

  11. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures

    NASA Astrophysics Data System (ADS)

    Park, Sieun; Kang, Seok-Won; Kim, Ketack

    2017-12-01

    The operation of electrochemical double layer capacitors at high currents and viscosities and at low temperatures is difficult. Under these conditions, ion transport is limited, and some of the electrode area is unavailable for adsorption, which results in a low capacitance. Increasing the temperature helps to increase the ionic movement, leading to enhanced adsorption and increased capacitance. In contrast, ion desorption (self-discharge) surpasses the capacitance improvement when ions gain a high amount of energy with increasing temperature. For example, temperatures as high as 70 °C cause a very high rate of ionic desorption in acetonitrile solutions in which the individual properties of the two electrolytes-tetraethylammonium tetrafluoroborate (TEA BF4) and ethylmethylimidazolium tetrafluoroborate (EMI BF4)-are not distinguishable. The capacitance improvement and self-discharge are balanced, resulting in a capacitance peak at mid-range temperatures, i.e., 35-45 °C, in the more viscous electrolyte, i.e., TEA BF4. The less viscous electrolyte, i.e., EMI BF4 has a wider capacitance peak from 25 to 45 °C and higher capacitance than that of TEA BF4. Because the maximum power is obtained in the mid-temperature range (35-45 °C), it is necessary to control the viscosity and temperature to obtain the maximum power in a given device.

  12. Quantifying Observed Temperature Extremes in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Sura, P.; Stefanova, L. B.; Griffin, M.; Worsnop, R.

    2011-12-01

    There is broad consensus that the most hazardous effects of climate change are related to a potential increase (in frequency and/or intensity) of extreme weather and climate events. In particular, the statistics of regional daily temperature extremes are of practical interest for the agricultural community and energy suppliers. This is notably true for the Southeastern United States where winter hard freezes are a relatively rare and potentially catastrophic event. Here we use a long record of quality-controlled observations collected from 272 National Weather Service (NWS) Cooperative Observing Network (COOP) stations throughout Florida, Georgia, Alabama, and South and North Carolina to provide a detailed climatology of temperature extremes in the Southeastern United States. We employ two complementary approaches. First, we analyze the effect of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO) on the non-Gaussian (i.e. higher order) statistics of wintertime daily minimum and maximum temperatures. We find a significant and spatially varying impact of ENSO and AO on the non-Gaussian statistics of daily maximum and minimum temperatures throughout the domain. Second, the extremes of the temperature distributions are studied by calculating the 1st and 99th percentiles, and then analyzing the number of days with record low/high temperatures per season. This analysis of daily temperature extremes reveals oscillating, multi-decadal patterns with spatially varying centers of action.

  13. Stirling Cooler Designed for Venus Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Mellott, Kenneth D.

    2004-01-01

    Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.

  14. Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.

    PubMed

    Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B

    2016-08-01

    Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.

  15. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  16. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    NASA Astrophysics Data System (ADS)

    Challa, Ravi Kumar

    The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid, fiber and minerals, simulated thin stillage was prepared with carbohydrate mixtures and tested for fouling rates. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties of starch, waxy and high amylose and short chain carbohydrates, corn syrup solids and glucose. Interaction effects of glucose with starch varieties were studied. In the first experiment, short chain carbohydrates individual and interaction effects with starch were studied. For mixtures prepared from glucose and corn syrup solids, no fouling was observed. Mixtures prepared from starch, a long glucose polymer, showed marked fouling. Corn syrup solids and glucose addition to pure starch decreased the mean fouling rates and maximum fouling resistances. Between corn syrup solids and glucose, starch fouling rates were reduced with addition of glucose. Induction periods of pure mixtures of either glucose or corn syrup solids were longer than the test period (5 h). Pure starch mixture had no induction period. Maximum fouling resistance was higher for mixtures with higher concentration of longer polymers. Waxy starch had a longer induction period than high amylose starch. Maximum fouling resistance was higher for waxy than high amylose starch. Addition of glucose to waxy or high amylose starch increased induction period of mixtures longer than 5 h test period. It appears that the bulk fluid temperature plays an important role on carbohydrate mixture fouling rates. Higher bulk fluid temperatures increased the initial fouling rates of the carbohydrate mixtures. Carbohydrate type, depending on the polymer length, influenced the deposit formation. Longer chain carbohydrate, starch, had higher fouling rates compared to shorter carbohydrates such as glucose and corn syrup solids. For insoluble carbohydrate mixtures, fouling was severe. As carbohydrate solubility increased with bulk fluid temperature, surface reaction increased at probe surface and resulted in deposit formation. Higher surface temperatures eliminated induction periods for thin stillage and fouling was rapid on probe surface.

  17. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  18. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    PubMed

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  19. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    PubMed Central

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models. PMID:22649564

  20. Control of electrothermal heating during regeneration of activated carbon fiber cloth.

    PubMed

    Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J

    2011-01-15

    Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.

  1. A Maximum Radius for Habitable Planets.

    PubMed

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  2. Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire

    DTIC Science & Technology

    2017-03-15

    Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity

  3. Climate factors affecting fertility after cervical insemination during the first months of the breeding season in Rasa Aragonesa ewes

    NASA Astrophysics Data System (ADS)

    Santolaria, P.; Yániz, J.; Fantova, E.; Vicente-Fiel, S.; Palacín, I.

    2014-09-01

    This study was carried out to examine the impact of several climate variables on the pregnancy rate after cervical artificial insemination (AI) of Rasa Aragonesa ewes. Data were derived from 8,977 inseminations in 76 well-managed flocks performed during the first month of the breeding season (July to October). The following data were recorded for each animal: farm, year, month of AI, parity, lambing-treatment interval, inseminating ram, AI technician, and climatic variables such as mean, maximum and minimum temperature, mean and maximum relative humidity, rainfall, and mean and maximum temperature-humidity index (THI) for each day from day 12 before AI to day 14 post-AI. Means were furthermore calculated for the following periods around AI (day 0): -12 to 0, -2 to 0, AI day, 0 to 2, and 0 to 14. Logistic regression analysis indicated that the likelihood of pregnancy decreased when maximum temperature in the 2 days prior to AI was higher than 30 °C (by a factor of 0.81). Fertility was also lower for primiparous ewes and in multiparous ewes with more than five previous parturitions. Other factors with significant impact on fertility were flock, technician, inseminating ram, and a lambing-AI interval longer than 240 days. It was concluded that the 2 days prior to AI seems to be the period when heat stress had the greatest impact on pregnancy rate in Rasa Aragonesa ewes.

  4. Optimisation of Croton gratissimus Oil Extraction by n-Hexane and Ethyl Acetate Using Response Surface Methodology.

    PubMed

    Jiyane, Phiwe Charles; Tumba, Kaniki; Musonge, Paul

    2018-04-01

    The extraction of oil from Croton gratissimus seeds was studied using the three-factor five-level full-factorial central composite rotatable design (CCRD) of the response surface methodology (RSM). The effect of the three factors selected, viz., extraction time, extraction temperature and solvent-to-feed ratio on the extraction oil yield was investigated when n-hexane and ethyl acetate were used as extraction solvents. The coefficients of determination (R 2 ) of the models developed were 0.98 for n-hexane extraction and 0.97 for ethyl acetate extraction. These results demonstrated that the models developed adequately represented the processes they described. From the optimized model, maximum extraction yield obtained from n-hexane and ethyl acetate extraction were 23.88% and 23.25%, respectively. In both cases the extraction temperature and solvent-to-feed ratio were 35°C and 5 mL/g, respectively. In n-hexane extraction the maximum conditions were reached only after 6 min whereas in ethyl acetate extraction it took 20 min to get the maximum extraction oil yield. Oil extraction of Croton gratissimus seeds, in this work, favoured the use of n-hexane as an extraction solvent as it offered higher oil yields at low temperatures and reduced residence times.

  5. Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.

    PubMed

    Golombeck, M A; Dössel, O; Raiser, J

    2003-09-01

    Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.

  6. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds.

    PubMed

    Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-09-15

    We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.

  7. Hot Weather Impacts on New York City Restaurant Food Safety Violations and Operations.

    PubMed

    Dominianni, Christine; Lane, Kathryn; Ahmed, Munerah; Johnson, Sarah; McKELVEY, Wendy; Ito, Kazuhiko

    2018-06-06

    Previous studies have shown that higher ambient air temperature is associated with increased incidence of gastrointestinal illnesses, possibly as a result of leaving potentially hazardous food in the temperature danger zone for too long. However, little is known about the effect of hot weather on restaurant practices to maintain safe food temperatures. We examined hot weather impacts on restaurant food safety violations and operations in New York City using quantitative and qualitative methods. We used data from 64,661 inspections conducted among 29,614 restaurants during May to September, 2011 to 2015. We used Poisson time-series regression to estimate the cumulative relative risk (CRR) of temperature-related food safety violations across a range of daily maximum temperature (13 to 40°C [56 to 104°F]) over a lag of 0 to 3 days. We present CRRs for an increase in daily maximum temperature from the median (28°C [82°F]) to the 95th percentile (34°C [93°F]) values. Maximum temperature increased the risk of violations for cold food holding above 5°C (41°F) (CRR, 1.19; 95% CI, 1.14, 1.25) and insufficient refrigerated or hot holding equipment (CRR, 2.37; 95% CI, 2.02, 2.79). We also conducted focus groups among restaurant owners and managers to aid interpretation of findings and identify challenges or knowledge gaps that prevent hot weather preparedness. Focus group participants cited refrigeration issues as a common problem during hot weather. Participants expressed the need for more guidance on hot weather and power outages to be delivered concisely. Our findings suggest that hotter temperatures may compromise cold and hot food holding, possibly by straining refrigeration or other equipment. The findings have public health implications because holding potentially hazardous foods in the temperature danger zone allows foodborne pathogens to proliferate and increases risk for foodborne illness. Distribution of simple guidelines that can be easily accessed during emergencies could help restaurants respond better.

  8. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  9. Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization.

    PubMed

    Sharma, Sachin; Kumar Poddar, Maneesh; Moholkar, Vijayanand S

    2017-05-01

    This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1-5wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T 10% =320°C (4wt%), T 50 =373°C (4wt%), maximum degradation temperature=384°C (4wt%); glass transition temperature=64.8°C (4wt%); tensile strength=20MPa (2wt%), Young's modulus=1.31GPa (2wt%), Percentage elongation=17.5% (1wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young's modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior - which is typical of the neat copolymer. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of Hydrostatic Pressure on Growth and Luminescence of a Moderately-Piezophilic Luminous Bacteria Photobacterium phosphoreum ANT-2200

    PubMed Central

    Martini, Séverine; Al Ali, Badr; Garel, Marc; Nerini, David; Grossi, Vincent; Pacton, Muriel; Casalot, Laurence; Cuny, Philippe; Tamburini, Christian

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean. PMID:23818946

  11. Buoyancy-assisted mixed convective flow over backward-facing step in a vertical duct using nanofluids

    NASA Astrophysics Data System (ADS)

    Mohammed, H. A.; Al-aswadi, A. A.; Yusoff, M. Z.; Saidur, R.

    2012-03-01

    Laminar mixed convective buoyancy assisting flow through a two-dimensional vertical duct with a backward-facing step using nanofluids as a medium is numerically simulated using finite volume technique. Different types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2 and TiO2 with 5 % volume fraction are used. The wall downstream of the step was maintained at a uniform wall temperature, while the straight wall that forms the other side of the duct was maintained at constant temperature equivalent to the inlet fluid temperature. The walls upstream of the step and the backward-facing step were considered as adiabatic surfaces. The duct has a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The downstream wall was fixed at uniform wall temperature 0 ≤ Δ T≤ 30 °C, which was higher than the inlet flow temperature. The Reynolds number in the range of 75 ≤ Re ≤ 225 was considered. It is found that a recirculation region was developed straight behind the backward-facing step which appeared between the edge of the step and few millimeters before the corner which connect the step and the downstream wall. In the few millimeters gap between the recirculation region and the downstream wall, a U-turn flow was developed opposite to the recirculation flow which mixed with the unrecirculated flow and traveled along the channel. Two maximum and one minimum peaks in Nusselt number were developed along the heated downstream wall. It is inferred that Au nanofluid has the highest maximum peaks while diamond nanofluid has the highest minimum peak. Nanofluids with a higher Prandtl number have a higher peak of Nusselt numbers after the separation and the recirculation flow disappeared.

  12. Influence of Thawing Methods and Storage Temperatures on Bacterial Diversity, Growth Kinetics, and Biogenic Amine Development in Atlantic Mackerel.

    PubMed

    Onyango, S; Palmadottir, H; Tómason, T; Marteinsson, V T; Njage, P M K; Reynisson, E

    2016-11-01

    Limited knowledge is currently available on the influence of fish thawing and subsequent storage conditions on bacterial growth kinetics, succession, and diversity alongside the production of biogenic amines. This study aimed to address these factors during the thawing and subsequent storage of mackerel. Thawing was either done fast in 18°C water for 2 h or slowly at 30°C overnight. Subsequent storage was at 30°C (ambient) for 36 h and 2 to 5°C (refrigerated) for 12 days. The cultivation methods used were total viable counts, hydrogen sulfide-producing bacteria, and Pseudomonas . Maximum growth rate, population density, and lag time were fitted on the counts using the Baranyi model. The bacterial diversity and succession were based on sequencing of 16S rRNA amplicons, and biogenic amines were quantified on high-pressure liquid chromatography-UV. The results show that lag time of hydrogen sulfide-producing bacteria was significantly affected by both thawing methods, and further, the interaction between thawing and storage significantly affected the maximum growth rate of these bacteria. However, the maximum growth rate of Pseudomonas was higher during refrigerated storage compared with storage at ambient temperature. Total viable counts showed longer lag time and reduced growth rate under refrigerated storage. Higher bacterial diversity was correlated to slow thawing and storage at ambient temperature compared with slow thawing and refrigerated storage. Overall, Acinetobacter and Psychrobacter genera were the dominant bacterial populations. The amine levels were low and could not be differentiated along the thawing and storage approaches, despite a clear increase in bacterial load, succession, and diversity. This corresponded well with the low abundance of biogenic amine-producing bacteria, with the exception of the genus Proteus , which was 8.6% in fast-thawed mackerel during storage at ambient temperature. This suggests that the decarboxylation potential is dependent on both microbial load and microbial community structure.

  13. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].

    PubMed

    Schulze, E -D; Lange, O L; Koch, W

    1972-12-01

    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO 2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.

  14. Boundary effects in a quasi-two-dimensional driven granular fluid.

    PubMed

    Smith, N D; Smith, M I

    2017-12-01

    The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.

  15. Current and Projected Heat-Related Morbidity and Mortality in Rhode Island

    PubMed Central

    Kingsley, Samantha L.; Eliot, Melissa N.; Gold, Julia; Vanderslice, Robert R.; Wellenius, Gregory A.

    2015-01-01

    Background: Climate change is expected to cause increases in heat-related mortality, especially among the elderly and very young. However, additional studies are needed to clarify the effects of heat on morbidity across all age groups and across a wider range of temperatures. Objectives: We aimed to estimate the impact of current and projected future temperatures on morbidity and mortality in Rhode Island. Methods: We used Poisson regression models to estimate the association between daily maximum temperature and rates of all-cause and heat-related emergency department (ED) admissions and all-cause mortality. We then used downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5; a standardized set of climate change model simulations) projections to estimate the excess morbidity and mortality that would be observed if this population were exposed to the temperatures projected for 2046–2053 and 2092–2099 under two representative concentration pathways (RCP): RCP 8.5 and 4.5. Results: Between 2005 and 2012, an increase in maximum daily temperature from 75 to 85°F was associated with 1.3% and 23.9% higher rates of all-cause and heat-related ED visits, respectively. The corresponding effect estimate for all-cause mortality from 1999 through 2011 was 4.0%. The association with all-cause ED admissions was strongest for those < 18 or ≥ 65 years of age, whereas the association with heat-related ED admissions was most pronounced among 18- to 64-year-olds. If this Rhode Island population were exposed to temperatures projected under RCP 8.5 for 2092–2099, we estimate that there would be 1.2% (range, 0.6–1.6%) and 24.4% (range, 6.9–41.8%) more all-cause and heat-related ED admissions, respectively, and 1.6% (range, 0.8–2.1%) more deaths annually between April and October. Conclusions: With all other factors held constant, our findings suggest that the current population of Rhode Island would experience substantially higher morbidity and mortality if maximum daily temperatures increase further as projected. Citation: Kingsley SL, Eliot MN, Gold J, Vanderslice RR, Wellenius GA. 2016. Current and projected heat-related morbidity and mortality in Rhode Island. Environ Health Perspect 124:460–467; http://dx.doi.org/10.1289/ehp.1408826 PMID:26251954

  16. The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Stooksbury, David Emory

    Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.

  17. Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India.

    PubMed

    Kumar, Rajesh; Dash, Chinmaya; Rani, Khushbu

    2017-09-01

    Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover ( p  < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.

  18. The Shifting Climate Portfolio of the Greater Yellowstone Area

    PubMed Central

    Sepulveda, Adam J.; Tercek, Michael T.; Al-Chokhachy, Robert; Ray, Andrew M.; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann W.; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change. PMID:26674185

  19. The shifting climate portfolio of the Greater Yellowstone Area

    USGS Publications Warehouse

    Sepulveda, Adam; Tercek, Mike T; Al-Chokhachy, Robert K.; Ray, Andrew; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  20. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  1. Impacts of Larval Connectivity on Coral Heat Tolerance

    NASA Astrophysics Data System (ADS)

    Pinsky, M. L.; Kleypas, J. A.; Thompson, D. M.; Castruccio, F. S.; Curchitser, E. N.; Watson, J. R.

    2016-02-01

    The sensitivity of corals to elevated temperature depends on their acclimation and adaptation to the local maximum temperature regime. Through larval dispersal, however, coral populations can receive larvae from regions that are significantly warmer or colder. If these exogenous larvae carry genetic-based tolerances to colder or warmer temperatures, then the thermal sensitivity of the receiving population may be lower or higher, respectively. Using a high-resolution Regional Ocean Modeling System (ROMS) configuration for the Coral Triangle region, we quantify the potential role of connectivity in determining the thermal stress threshold (TST) of a typical broadcast spawner. The model results suggest that even with a pelagic larval dispersal period of only 10 days, many reefs receive larvae from reefs that are warmer or cooler than the local temperature, and that accounting for this connectivity improves bleaching predictions. This has important implications for conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than would be predicted based on local conditions alone.

  2. Upper atmosphere wind and temperature structure at sonmiani derived from the rocket grenade experiments conducted during 1965 - 1967

    NASA Technical Reports Server (NTRS)

    Rahmatullah, M.

    1972-01-01

    The grenade-TMA firing conducted in 1965-1967 bring out the following important features regarding the stratospheric circulation in the subtropics: (1) The temperature pattern during the month of March/April at Sonmiani is characterized by higher temperature than the corresponding CIRA 1965 value. (2) Double maxima in temperature has often been observed during spring. (3) In March the zonal wind is predominantly westerly reaching a maximum value of about 45 m/s at 55 km. (4) The meridional component exhibits oscillatory character between 45 and 60 kms. (5) The change from winter westerlies to summer easterlies first occurred around 50 km during April and gradually affected higher levels as the month progressed. (6) The height of the principal maxima at Sonmiani is located at 105 + or - 5 km. In autumn the wind at the principal maxima is below 100 m/s and is directed to NW, in spring it is of the order of 118 m/s but directed to E or NE.

  3. Performance of a New Model for Predicting End of Flowering Date (bbch 69) of Grapevine (Vitis Vinifera L.)

    NASA Astrophysics Data System (ADS)

    Gentilucci, Matteo

    2017-04-01

    The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.

  4. Marine heatwaves and optimal temperatures for microbial assemblage activity.

    PubMed

    Joint, Ian; Smale, Dan A

    2017-02-01

    The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3 H leucine, measured in a temperature gradient from 5°C to 38°C. Q 10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the assemblage optimum temperature (T opt ), which was out of phase with sea surface temperature. In July, highest 3 H-leucine incorporation rates were measured at temperatures that were only 2.8°C greater than ambient sea surface temperature but in winter, T opt was ∼20°C higher than the ambient sea surface temperature. Sea surface temperatures for the adjacent English Channel and Celtic Sea for 1982-2014 have periodically been >3°C higher than climatological mean temperatures. This suggests that discrete periods of anomalously high temperatures might be close to, or exceed, temperatures at which maximum microbial assemblage activity occurs. The frequency and magnitude of marine heatwaves are likely to increase as a consequence of anthropogenic climate change and extreme temperatures may influence the role of bacterial assemblages in biogeochemical processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen

    Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less

  6. Superconducting order from disorder in 2H-TaSe2-xSx

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; Liu, Yu; Abeykoon, Milinda; Dooryhee, Eric; Tomic, Aleksandra; Huang, Yanan; Warren, John B.; Bozin, Emil S.; Billinge, Simon J. L.; Sun, Yuping; Zhu, Yimei; Kotliar, Gabriel; Petrovic, Cedomir

    2017-12-01

    We report on the emergence of robust superconducting order in single crystal alloys of TaSe2-xSx (0 ≤ × ≤ 2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature Tc(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe2 and/or 2H-TaS2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gargarella, P., E-mail: piter@ufscar.br; Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo; Pauly, S.

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  8. Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

    PubMed Central

    Hashem, Mohamed

    2007-01-01

    The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees,was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum biomass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn,Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature 20℃ in case of S. delica while it was 25℃ for T. viride. Incubation of T. viride at higher temperatures (30℃ and 35℃) enhanced the removal efficiency of Pb and Cd than low temperatures (15℃ and 20℃) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals. PMID:24015084

  9. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges.

    PubMed

    Yuan, Wubiao; Gao, Guang; Shi, Qi; Xu, Zhiguang; Wu, Hongyan

    2018-04-01

    Diatoms are one of the most important groups of phytoplankton in terms of abundance and ecological functionality in the ocean. They usually dominate the phytoplankton communities in coastal waters and experience frequent and large fluctuations in light. In order to evaluate the combined effects of ocean warming and acidification on the diatom's exploitation of variable light environments, we grew a globally abundant diatom Thalassiosira pseudonana under two levels of temperature (18, 24 °C) and pCO 2 (400, 1000 μatm) to examine its physiological performance after light challenge. It showed that the higher temperature increased the photoinactivation rate in T. pseudonana at 400 μatm pCO 2 , while the higher pCO 2 alleviated the negative effect of the higher temperature on PSII photoinactivation. Higher pCO 2 stimulated much faster PsbA removal, but it still lagged behind the photoinactivation of PSII under high light. Although the sustained phase of nonphotochemical quenching (NPQs) and activity of superoxide dismutase (SOD) were provoked during the high light exposure in T. pseudonana under the combined pCO 2 and temperature conditions, it could not offset the damage caused by these multiple environmental changes, leading to decreased maximum photochemical yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Mostafa, Nasser Y.; Abd Elkader, Omar H.; Hemeda, D. M.; Tawfik, A.; Mostafa, M.

    2015-11-01

    A series of Zn1-xNixFe2O4 nano ferrite (with x=0, 0.2, 0.4, 0.6, 0.8, and 1) compositions were synthesized using the combustion technique. The powder samples were characterized by XRD. The X-ray analysis showed that the samples were single phase spinel cubic structure. The AC resistivity decreases by increasing the frequency from 1 kHz to 10 kHz. As the frequency of the applied field increases the hopping of charge carrier also increase, thereby decreasing the resistivity. A shift in dielectric maximum is observed toward higher temperature with increasing the Ni content from 536 K to 560 K at 1 kHz. The HRTEM (high resolution TEM) images of four compositions have lattice spacing which confirms the crystalline nature of the samples. The surface morphology SEM of the sample consists of some grains with relatively homogenies distribution with an average size varying from 0.85 to 0.92 μm. The values for entropy change in this work are still small but are significally higher than the values that have been reported for iron oxide nanoparticle. The magnetic entropy change was calculated from measurements of M (H, T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (ΔS) obtained near Curie temperature which makes these material candidates for magnetocaloric applications.

  11. Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop.

    PubMed

    Pramanik, P; Chakrabarti, Bidisha; Bhatia, Arti; Singh, S D; Maity, A; Aggarwal, P; Krishnan, P

    2018-03-14

    An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO 2 m -2  s -1 ) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m -2  s -1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm -3 ); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm -3 ). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.

  12. Low-temperature overpressurization protection system setpoint analysis using RETRAN-02/MOD5 for Salem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, R.J.; Feltus, M.A.

    The low-temperature overpressurization protection system (LTOPS) is designed to protect the reactor pressure vessel (RPV) from brittle failure during startup and cooldown maneuvers in Westinghouse pressurized water reactors. For the Salem power plants, the power-operated relief valves (PORVs) mitigate pressure increases above a setpoint where an operational startup transient may put the RPV in the embrittlement fracture zone. The Title 10, Part 50, Code of Federal Regulations Appendix G limit, given by plant technical specifications, conservatively bounds the maximum pressure allowed during those transients where the RPV can suffer brittle fracture (usually below 350{degrees}F). The Appendix G limit is amore » pressure versus temperature curve that is more restrictive at lower RPV temperatures and allows for higher pressures as the temperature approaches the upper bounding fracture temperature.« less

  13. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Abhilash, K. P.; Christopher Selvin, P.; Nalini, B.; Somasundaram, K.; Sivaraj, P.; Chandra Bose, A.

    2016-04-01

    The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol-gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10-3 S cm-1 has been obtained for the sample at higher temperatures.

  14. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic.

    PubMed

    Stewart, M; Stafford, K J; Dowling, S K; Schaefer, A L; Webster, J R

    2008-03-18

    The possibility that pain can be detected from changes in eye temperature and heart rate variability (HRV) during disbudding was examined in thirty calves, randomly assigned to four treatments: 1) sham handling (control), 2) local anaesthetic (LA, cornual nerve injection) and sham disbudded, 3) sham LA and disbudded, 4) LA and disbudded. During a 40 min sampling period, maximum eye temperature, behavior and HRV parameters were recorded continuously. One week later, twelve disbudded calves were injected with adrenocorticotrophic hormone (ACTH) or saline and maximum eye temperature was recorded. There was a rapid drop in eye temperature during the 5 min following disbudding without LA (P<0.05). Eye temperature then increased and was higher than baseline over the remaining sampling period following both disbudding procedures (P<0.001), a response which could not be explained by increased physical activity LA increased eye temperature prior to disbudding (P<0.001). Heart rate increased (P<0.001) during the 5 min following disbudding with and without LA, however, LF/HF ratio only increased during this time (P<0.01) following disbudding without LA. Eye temperature did not change following ACTH, suggesting that hypothalamus-pituitary-adrenal axis (HPA) activity is not responsible for the changes in eye temperature following disbudding. The increase in LF/HF ratio following disbudding without LA suggests an acute sympathetic response to pain, which could be responsible for the drop in eye temperature via vasoconstriction. HRV and eye temperature together may be a useful non-invasive and more immediate index of pain than HPA activity alone.

  15. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    PubMed

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  16. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  17. Synthesis, photophysical, and electrochemical properties of wide band gap tetraphenylsilane-carbazole derivatives: Effect of the substitution position and naphthalene side chain

    NASA Astrophysics Data System (ADS)

    Ho, Kar Wei; Ariffin, A.

    2016-12-01

    Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.

  18. Spectral optimization simulation of white light based on the photopic eye-sensitivity curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Qi, E-mail: qidai@tongji.edu.cn; Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat

    Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330–390 lm/W, which is higher than the previously reportedmore » theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions.« less

  19. Body mass modulates huddling dynamics and body temperature profiles in rabbit pups.

    PubMed

    Bautista, Amando; Zepeda, José Alfredo; Reyes-Meza, Verónica; Féron, Christophe; Rödel, Heiko G; Hudson, Robyn

    2017-10-01

    Altricial mammals typically lack the physiological capacity to thermoregulate independently during the early postnatal period, and in litter-bearing species the young benefit strongly from huddling together with their litter siblings. Such litter huddles are highly dynamic systems, often characterized by competition for energetically favorable, central positions. In the present study, carried out in domestic rabbits Oryctolagus cuniculus, we asked whether individual differences in body mass affect changes in body temperature during changes in the position within the huddle. We predicted that pups with relatively lower body mass should be more affected by such changes arising from huddle dynamics in comparison to heavier ones. Changes in pups' maximum body surface temperature (determined by infrared thermography) were significantly affected by changes in the number of their neighbors in the litter huddle, and indeed these temperature changes largely depended on the pups' body mass relative to their litter siblings. Lighter pups showed significant increases in their maximum body surface temperature when their number of huddling partners increased by one or two siblings whereas pups with intermediate or heavier body mass did not show such significant increases in maximum body temperature when experiencing such changes. A similar pattern was found with respect to average body surface temperature. This strong link between changes in the number of huddling partners and body surface temperature in lighter pups might, on the one hand, arise from a higher vulnerability of such pups due to their less favorable body surface area-to-volume ratio. On the other hand, as lighter pups generally had fewer neighbors than heavier ones and thus typically a comparatively smaller body surface in contact with siblings, they potentially had more to gain from increasing their number of neighbors. The present findings might help to understand how individual differences in body mass within a litter lead to the emergence of individual differences in sibling interactions during early postnatal life in different species of altricial and litter-bearing mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Role of Coulomb blockade and spin-flip scattering in tunneling magnetoresistance of FeCo-Si-O nanogranular films

    NASA Astrophysics Data System (ADS)

    Kumar, Hardeep; Ghosh, Santanu; Bürger, Danilo; Li, Lin; Zhou, Shengqiang; Kabiraj, Debdulal; Avasthi, Devesh Kumar; Grötzschel, Rainer; Schmidt, Heidemarie

    2011-04-01

    In this work, we report the effect of FeCo atomic fraction (0.33 < x < 0.54) and temperature on the electrical, magnetic, and tunneling magnetoresistance (TMR) properties of FeCo-Si-O granular films prepared by atom beam sputtering technique. Glancing angle x-ray diffraction and TEM studies reveal that films are amorphous in nature. The dipole-dipole interactions (particle-matrix mixing) is evident from zero-field cooled and field-cooled magnetic susceptibility measurements and the presence of oxides (mainly Fe-related) is observed by x-ray photoelectron spectroscopy analysis. The presence of Fe-oxides is responsible for the observed reduction of saturation magnetization and rapid increase in coercivity below 50 K. TMR has been observed in a wide temperature range, and a maximum TMR of -4.25% at 300 K is observed for x = 0.39 at a maximum applied field of 60 kOe. The fast decay of maximum TMR at high temperatures and lower TMR values at 300 K when compared to PFeCo2/(1+PFeCo2), where PFeCo is the spin polarization of FeCo are in accordance with a theoretical model that includes spin-flip scattering processes. The temperature dependent study of TMR effect reveals a remarkably enhanced TMR at low temperatures. The TMR value varies from -2.1% at 300 K to -14.5% at 5 K for x = 0.54 and a large MR value of -18.5% at 5 K for x = 0.39 is explained on the basis of theoretical models involving Coulomb blockade effects. Qualitatively particle-matrix mixing and the presence of Fe-oxides seems to be the source of spin-flip scattering, responsible for fast decay of TMR at high temperatures. A combination of higher order tunneling (in Coulomb blockade regime) and spin-flip scattering (high temperature regime) explains the temperature dependent TMR of these films.

  1. Calcination Conditions on the Properties of Porous TiO2 Film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Pei, Xiaobei; Bai, Jiawei; He, Hongbo

    2014-03-01

    Porous TiO2 films were deposited on SiO2 precoated glass-slides by sol-gel method using PEG1000 as template. The strongest XRD diffraction peak at 2θ = 25.3° is attributed to [101] plane of anatase TiO2 in the film. The increases of calcination temperature and time lead to stronger diffraction peak intensity. High transmittance and blue shift of light absorption edge are the properties of the film prepared at high calcination temperature. The average pore size of the films increases with the increasing calcination temperature as the result of TiO2 crystalline particles growing up and aggregation, accompanied with higher specific surface area. Photocatalytic activity of porous TiO2 films increases with the increasing calcination temperature. The light absorption edge of the films slightly moves to longer wavelength region along with the increasing calcination time. The mesoporous film calcinated at 500 °C for 2 h has the highest transmittance, the maximum surface area, and the maximum total pore volume. Consequently, the optimum degradation activity is achieved on the porous TiO2 film calcinated at 500 °C for 2 h.

  2. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe[subscript 0.92] using designer diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh

    Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less

  4. Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite

    NASA Astrophysics Data System (ADS)

    Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.

    2018-03-01

    Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.

  5. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate.

    PubMed

    Clark, Timothy D; Jeffries, Kenneth M; Hinch, Scott G; Farrell, Anthony P

    2011-09-15

    Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates (M(O2,min) and M(O2,max), respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope (M(O2,max)-M(O2,min)) for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (T(opt)) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As T(opt) for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding T(opt), these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.

  6. Environment in pediatric wards: light, sound, and temperature.

    PubMed

    Oliveira, Lia; Gomes, Cláudia; Bacelar Nicolau, Leonor; Ferreira, Luís; Ferreira, Rosário

    2015-09-01

    The mutual relationship between sleep and disease is well known, becoming more relevant whenever the disease leads to hospitalization. We intend to describe patterns of environmental factors of some pediatric wards, and to verify if these are in line with those recommended. As a secondary aim, we characterize sleep quality during hospitalization. Five pediatric wards of a tertiary-level hospital were included. Light, sound, and temperature were measured and assessed through descriptive statistics. The following recommended values were considered: maximum light 100 Lux, maximum sound 45 dB, and optimal temperature 20-24 °C. A questionnaire was prepared to assess children's sleep, and it was completed by a caregiver. Light values were within the desirable limits for 86% of evaluated time. In all wards, the intensity of sound was much higher than desirable, being above 45 dB during 85% of evaluated time. The temperature was above 24 °C during 78% of total time. Based on 34 answered questionnaires (out of 50 distributed), almost half of the respondents believe that sleep quality and restlessness are worse at the hospital. Most children slept for a longer time at home. Eighteen children awoke more times at the hospital, and those awakenings were mostly attributed to noise. The sound and temperature were higher than recommended. The different values between these wards may be due to different levels of care, but this shows that there are no standard rules on this matter. A worse quality and shorter duration of sleep at hospital were reported. Comprehensive studies are necessary to evaluate the impact of environmental factors on disease recovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2018-03-01

    Quantum optimal control theory is applied to determine numerically the terahertz and nonresonant laser pulses leading, respectively, to the highest degree of orientation and alignment of the asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero and 50 K lead after 50 ps to an orientation with ⟨ΦZx⟩ = 0.959 73 and ⟨⟨ΦZx⟩⟩ = 0.742 30, respectively. For the zero temperature, the orientation is close to its maximum theoretical value; for the higher temperature, it is below the maximum theoretical value. The mechanism by which the terahertz pulse populates high lying rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature leads to an alignment with ⟨ΦZy 2 ⟩ =0.944 16 and consists of several kick pulses with a duration of ≈0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is 6 ps long and yields a lower alignment with ⟨⟨ΦZy 2 ⟩ ⟩ =0.717 20 .

  8. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    PubMed

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  9. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  10. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    PubMed

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  11. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  12. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...

  13. Temperature-induced excess mortality in Moscow, Russia.

    PubMed

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality-temperature relationship indicated that this relationship was V-shaped with the minimum around 18 degrees C. Each 1 degree C increment of average daily temperature above 18 degrees C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1 degrees C drop of average daily temperature from +18 degrees C to -10 degrees C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13-30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1 degrees C increase of variation of temperature throughout the day, mortality increased by 0.3-1.9%, depending on other assumptions of the model.

  14. Temperature-induced excess mortality in Moscow, Russia

    NASA Astrophysics Data System (ADS)

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality temperature relationship indicated that this relationship was V-shaped with the minimum around 18°C. Each 1°C increment of average daily temperature above 18°C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1°C drop of average daily temperature from +18°C to -10°C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13 30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1°C increase of variation of temperature throughout the day, mortality increased by 0.3 1.9%, depending on other assumptions of the model.

  15. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  16. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

  17. Prehydrolysis of aspen wood with water and with dilute aqueous sulfuric acid

    Treesearch

    Edward L. Springer; John F. Harris

    1982-01-01

    Water prehydrolysis of aspen wood was compared with 0.40% sulfuric acid prehydrolysis at a reaction temperature of 170°C. Acid prehydrolysis gave much higher yields of total anhydroxylose units in the prehydrolyzate and removed significantly less anhydroglucose from the wood than did the water treatment. At maximum yields of total anhydroxylose units in the...

  18. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  19. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  20. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  1. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  2. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  3. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  4. Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate.

    PubMed

    Fatehi, Pedram; Shen, Jing; Hamdan, Fadia C; Ni, Yonghao

    2013-02-15

    In this work, the adsorption of lignocelluloses of pre-hydrolysis liquor (PHL) on precipitated calcium carbonate (PCC) was studied in the presence of poly diallyldimethylammonium chloride (PDADMAC) or cationic polyacrylamide (CPAM). The results revealed that adding PCC to PHL and subsequently adding cationic polymers to PHL/PCC systems was more effective than adding cationic polymers to PHL and then adding PCC to the cationic polymer/PHL systems. At the same dosage applied, PDADMAC resulted in a higher adsorption of lignocelluloses on PCC than CPAM did due to its higher charge density. The adsorption of lignocelluloses on PCC reached its maximum in 3h, and a high temperature reduced the adsorption level as the adsorption was an exothermic process. The maximum adsorptions of 530 mg/g oligo-sugars, 203 mg/g lignin and 58 mg/g furfural on PCC were achieved via adding 0.8 mg/g PDADMAC2 (i.e. higher MW PDADMAC) to PCC/PHL system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy?

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2010-10-01

    Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy.

  6. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  7. Preparation and thermal properties of mineral-supported polyethylene glycol as form-stable composite phase change materials (CPCMs) used in asphalt pavements.

    PubMed

    Jin, Jiao; Lin, Feipeng; Liu, Ruohua; Xiao, Ting; Zheng, Jianlong; Qian, Guoping; Liu, Hongfu; Wen, Pihua

    2017-12-05

    Three kinds of mineral-supported polyethylene glycol (PEG) as form-stable composite phase change materials (CPCMs) were prepared to choose the most suitable CPCMs in asphalt pavements for the problems of asphalt pavements rutting diseases and urban heat islands. The microstructure and chemical structure of CPCMs were characterized by SEM, FT-IR and XRD. Thermal properties of the CPCMs were determined by TG and DSC. The maximum PEG absorption of diatomite (DI), expanded perlite (EP) and expanded vermiculite (EVM) could reach 72%, 67% and 73.6%, respectively. The melting temperatures and latent heat of CPCMs are in the range of 52-55 °C and 100-115 J/g, respectively. The results show that PEG/EP has the best thermal and chemical stability after 100 times of heating-cooling process. Moreover, crystallization fraction results show that PEG/EP has slightly higher latent heats than that of PEG/DI and PEG/EVM. Temperature-adjusting asphalt mixture was prepared by substituting the fine aggregates with PEG/EP CPCMs. The upper surface maximum temperature difference of temperature-adjusting asphalt mixture reaches about 7.0 °C in laboratory, and the surface peak temperature reduces up to 4.3 °C in the field experiment during a typical summer day, indicating a great potential application for regulating pavement temperature field and alleviating the urban heat islands.

  8. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil.

    PubMed

    Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2018-05-01

    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology.

    PubMed

    Oliveira, Túlio Ítalo S; Rosa, Morsyleide F; Cavalcante, Fabio Lima; Pereira, Paulo Henrique F; Moates, Graham K; Wellner, Nikolaus; Mazzetto, Selma E; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    A central composite design was used to determine effects of pH (2.0-4.5), extraction temperature (70-90 °C) and time (120-240 min) on the yield, degree of methoxylation (DM) and galacturonic acid content (GA) of pectins extracted from banana peels with citric acid. Changes in composition during the main steps of pectin extraction were followed by Fourier transform infrared (FTIR) spectroscopy. FTIR was also used to determine DM and GA of pectins. Harsh temperature and pH conditions enhanced the extraction yield, but decreased DM. GA presented a maximum value at 83 °C, 190 min, and pH 2.7. The yield of galacturonic acid (YGA), which took into account both the extraction yield and the pectin purity, was improved by higher temperature and lower pH values. The optimum extraction conditions, defined as those resulting in a maximum YGA while keeping DM at a minimum of 51%, were: 87 °C, 160 min, pH 2.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  11. Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles

    NASA Astrophysics Data System (ADS)

    Takács, Ádám; Kocsis, Bence

    2018-04-01

    The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.

  12. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high efficiency in the gas core reactors. The model is also used to predict the convective and radiation heat fluxes for the gas core reactors. The maximum value of heat flux occurs at the exit of the reactor core. Radiation heat flux increases with higher wall temperature. This behavior is due to the fact that the radiative heat flux is strongly dependent on wall temperature. This study also found that at temperature close to 3500 K the radiative heat flux is comparable with the convective heat flux in a uranium fluoride failed gas core reactor.

  13. Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses.

    PubMed

    Kılınç, Halil İbrahim; Kesim, Bülent; Gümüş, Hasan Önder; Dinçel, Mehmet; Erkaya, Selçuk

    2014-08-01

    This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. Ninety-one square prism-shaped (1 × 1 × 1.5 mm) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P<.05). SBS values of none of the groups differed from those of the control group (P>.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (P<.05). Grinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength.

  14. Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tracking Study

    PubMed Central

    Mann, Jennifer K.; Alfasso, Ruth; English, Paul B.; King, Galatea C.; Lincoln, Rebecca A.; Margolis, Helene G.; Rubado, Dan J.; Sabato, Joseph E.; West, Nancy L.; Woods, Brian; Navarro, Kathleen M.; Balmes, John R.

    2012-01-01

    Background: Extreme hot weather conditions have been associated with increased morbidity and mortality, but risks are not evenly distributed throughout the population. Previously, a heat vulnerability index (HVI) was created to geographically locate populations with increased vulnerability to heat in metropolitan areas throughout the United States. Objectives: We sought to determine whether areas with higher heat vulnerability, as characterized by the HVI, experienced higher rates of morbidity and mortality on abnormally hot days. Methods: We used Poisson regression to model the interaction of HVI and deviant days (days whose deviation of maximum temperature from the 30-year normal maximum temperature is at or above the 95th percentile) on hospitalization and mortality counts in five states participating in the Environmental Public Health Tracking Network for the years 2000 through 2007. Results: The HVI was associated with higher hospitalization and mortality rates in all states on both normal days and deviant days. However, associations were significantly stronger (interaction p-value < 0.05) on deviant days for heat-related illness, acute renal failure, electrolyte imbalance, and nephritis in California, heat-related illness in Washington, all-cause mortality in New Mexico, and respiratory hospitalizations in Massachusetts. Conclusion: Our results suggest that the HVI may be a marker of health vulnerability in general, although it may indicate greater vulnerability to heat in some cases. PMID:22538066

  15. A biomarker record of temperature and phytoplankton community in Okinawa Trough since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Ruan, Jiaping

    2017-04-01

    A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to <1 ℃ in the Holocene when the Kuroshio Current was intensified. Correspondingly, the phytoplankton biomarkers (e.g., C37:2 alkenone, brassicasterol, C30 1,15-diols and dinosterol) suggest a shift of planktonic community assemblages with coccolithophorids becoming more abundant in the Holocene at the expense of diatoms/dinoflagellates. Such a shift is related to the variability of nutrient, temperature and salinity in the Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.

  16. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  17. Hotter nests produce hatchling lizards with lower thermal tolerance.

    PubMed

    Dayananda, Buddhi; Murray, Brad R; Webb, Jonathan K

    2017-06-15

    In many regions, the frequency and duration of summer heatwaves is predicted to increase in future. Hotter summers could result in higher temperatures inside lizard nests, potentially exposing embryos to thermally stressful conditions during development. Potentially, developmentally plastic shifts in thermal tolerance could allow lizards to adapt to climate warming. To determine how higher nest temperatures affect the thermal tolerance of hatchling geckos, we incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii , at two fluctuating temperature regimes to mimic current nest temperatures (mean 23.2°C, range 10-33°C, 'cold') and future nest temperatures (mean 27.0°C, range 14-37°C, 'hot'). Hatchlings from the hot incubation group hatched 27 days earlier and had a lower critical thermal maximum (CT max 38.7°C) and a higher critical thermal minimum (CT min 6.2°C) than hatchlings from cold incubation group (40.2 and 5.7°C, respectively). In the field, hatchlings typically settle under rocks near communal nests. During the hatching period, rock temperatures ranged from 13 to 59°C, and regularly exceeded the CT max of both hot- and cold-incubated hatchlings. Because rock temperatures were so high, the heat tolerance of lizards had little effect on their ability to exploit rocks as retreat sites. Instead, the timing of hatching dictated whether lizards could exploit rocks as retreat sites; that is, cold-incubated lizards that hatched later encountered less thermally stressful environments than earlier hatching hot-incubated lizards. In conclusion, we found no evidence that CT max can shift upwards in response to higher incubation temperatures, suggesting that hotter summers may increase the vulnerability of lizards to climate warming. © 2017. Published by The Company of Biologists Ltd.

  18. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  19. Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars.

    PubMed

    Michelin, Michele; Ruiz, Héctor A; Polizeli, Maria de Lourdes T M; Teixeira, José A

    2018-01-01

    This work presents an integrated and multi-step approach for the recovery and/or application of the lignocellulosic fractions from corncob in the production of high value added compounds as xylo-oligosaccharides, enzymes, fermentable sugars, and lignin in terms of biorefinery concept. For that, liquid hot water followed by enzymatic hydrolysis were used. Liquid hot water was performed using different residence times (10-50min) and holding temperature (180-200°C), corresponding to severities (log(R 0 )) of 3.36-4.64. The most severe conditions showed higher xylo-oligosaccharides extraction (maximum of 93%) into the hydrolysates and higher recovery of cellulose on pretreated solids (maximum of 65%). Subsequently, hydrolysates and solids were used in the production of xylanases and cellulases, respectively, as well as, pretreated solids were also subjected to enzymatic hydrolysis for the recovery of lignin and fermentable sugars from cellulose. Maximum glucose yield (100%) was achieved for solids pretreated at log(R 0 ) of 4.42 and 5% solid loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetic limitations on the diffusional control theory of the ablation rate of carbon.

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1971-01-01

    It is shown that the theoretical maximum oxidation rate is limited in many cases even at temperatures much higher than 1650 deg K, not by oxygen transport, but by the kinetics of the carbon-oxygen reaction itself. Mass-loss rates have been calculated at air pressures of 0.01 atm, 1 atm, and 100 atm. It is found that at high temperatures the rate of the oxidation reaction is much slower than has generally been assumed on the basis of a simple linear extrapolation of Scala's 'fast' and 'slow' rate expressions. Accordingly it cannot be assumed that a transport limitation inevitably must be reached at high temperatures.

  1. Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Burcham, Frank W., Jr.

    1986-01-01

    An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.

  2. Climatic indicators over Catalonia during the last century

    NASA Astrophysics Data System (ADS)

    Busto, M.; Prohom, M.

    2010-09-01

    The Meteorological Service of Catalonia releases a yearly bulletin whose main objective is to try to detect climate trends over Catalonia during the last decades. Climate indicators are obtained from the analysis of historical daily air temperature, sea temperature and rainfall series. Those series have been first completed, analyzed for quality control and homogenized to ensure its final reliability. Regarding homogenization, monthly air temperature series have been tested and corrected according to the methodology proposed by Caussinus and Mestre (2004). For the two longest air temperature series, the calculated correction factors have been transferred to the daily values following Vincent et al. (2002) recommendations, while no significant inhomogeneities have been detected for precipitation series. The analysis of temperature trends, for the period 1950-2010, of 17 selected climatic series spread across the territory shows a common temperature increase between +0.19 to +0.24 °C/decade. This warming trend is uniform and no specific sub-regional trends are detected. Furthermore, the seasonal approach reveals that mean maximum temperature increases at a higher rate than mean minimum temperature. The summer temperature rise is the most significant, between +0.32 and +0.44 °C/decade, while autumn is the only season showing no significant positive trend. The summer maximum temperature shows the highest increase, exceeding +0.39 °C/decade in all the 17 series. The climatic extremes analysis of the longest Catalan series (Ebre Observatory in Roquetes, Tarragona, since 1905 and Fabra Observatory in Barcelona since 1913) reveals an increase in the number of summer days, tropical nights, minimum of maximum temperature, warm days and warm nights, and a decrease in the number of frost days, cold nights, cold days and cold spell duration indicator. Concerning precipitation, the only significant trend is the reduction of snow days. These trends were calculated according to the Expert Team on Climate Change Detection and Indices (ETCCDI). The sea temperature trend in l'Estartit (NE coast of Catalonia, Costa Brava) since 1974 shows a steady increment in all the measured levels (surface, -20 m, -50 m and -80 m) of +0,33 °C/decade on average. Temperature increment is maximum at -20 m, with +0.36 °C/decade variation. Moreover, there is an increase in the sea level of +3.35 cm/decade. CAUSSINUS, H. and MESTRE, O. (2004): Detection and correction of artificial shifts in climate series. Journal of the Royal Statistical Society Series C - Applied Statistics, 53, 405-425. VINCENT, L.A., ZHANG, X., BONSAL, B.R., HOGG, W.D. (2002): Homogenization of daily temperatures over Canada. Journal of Climate, 15, 1322-1334

  3. Climatic significance of the ostracode fauna from the Pliocene Kap Kobenhavn Formation, north Greenland

    USGS Publications Warehouse

    Brouwers, E.M.; Jorgensen, N.O.; Cronin, T. M.

    1991-01-01

    The Kap Kobenhavn Formation crops out in Greenland at 80??N latitude and marks the most northerly onshore Pliocene locality known. The sands and silts that comprise the formation were deposited in marginal marine and shallow marine environments. An abundant and diverse vertebrate and invertebrate fauna and plant megafossil flora provide age and paleoclimatic constraints. The age estimated for the Kap Kobenhavn ranges from 2.0 to 3.0 million years old. Winter and summer bottom water paleotemperatures were estimated on the basis of the ostracode assemblages. The marine ostracode fauna in units B1 and B2 indicate a subfrigid to frigid marine climate, with estimated minimum sea bottom temperatures (SBT) of -2??C and estimated maximum SBT of 6-8??C. Sediments assigned to unit B2 at locality 72 contain a higher proportion of warm water genera, and the maximum SBT is estimated at 9-10??C. The marginal marine fauna in the uppermost unit B3 (locality 68) indicates a cold temperate to subfrigid marine climate, with an estimated minimum SBT of -2??C and an estimated maximum SBT ranging as high as 12-14??C. These temperatures indicated that, on the average, the Kap Kobenhavn winters in the late Pliocene were similar to or perhaps 1-2??C warmer than winters today and that summer temperatures were 7-8??C warmer than today. -from Authors

  4. Polymeric composites on the basis of Martian ground for building future mars stations

    NASA Astrophysics Data System (ADS)

    Mukbaniani, O. V.; Aneli, J. N.; Markarashvili, E. G.; Tarasashvili, M. V.; Aleksidze, N. D.

    2016-04-01

    The colonization of Mars will require obtaining building materials which can be put in place and processed into buildings via various constructive technologies. We tried to use artificial Martian ground - AMG (GEO PAT 11-234 (2015)) and special resins for the preparation of building block prototypes. The composite material has been obtained based on the AMG as filler, epoxy resin (type ED-20) and tetraethoxysilane - TEOS. We have studied strengthening - softening temperatures and water absorption of the AMG polymer composites that are determined by epoxy resin and TEOS modification. Comparison of the experimental results shows that composites containing modified filler have higher values of the maximum ultimate strength, resistance and flexibility parameters than unmodified composites with definite loading. Modified composites also have a higher softening temperature and lower water absorption.

  5. Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.

    2011-05-01

    This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.

  6. Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa

    PubMed Central

    Seymour, Roger S.; Maass, Erika; Bolin, Jay F.

    2009-01-01

    Background and Aims Floral thermogenesis occurs in at least 12 families of ancient seed plants. Some species show very high rates of respiration through the alternative pathway, and some are thermoregulatory, with increasing respiration at decreasing ambient temperature. This study assesses the intensity and regulation of respiration in three species of African Hydnora that represent the Hydnoraceae, an unusual family of holoparasitic plants from arid environments. Methods Long-term respirometry (CO2 production) and thermometry were carried out on intact flowers of H. africana, H. abyssinica and H. esculenta in the field, and short-term measurements were made on floral parts during the protogynous flowering sequence. Key Results For H. africana, there was no temperature elevation in either the osmophores or the gynoecial chamber in any phase, and mass-specific respiration rates of the flower parts were low (maximum 8·3 nmol CO2 g−1 s−1 in osmophore tissue). Respiration tracked ambient and floral temperatures, eliminating the possibility of the inverse relationship expected in thermoregulatory flowers. Hydnora abyssinica flowers had higher respiration (maximum 27·5 nmol g−1 s−1 in the osmophores) and a slight elevation of osmophore temperature (maximum 2·8 °C) in the female stage. Respiration by gynoecial tissue was similar to that of osmophores in both species, but there was no measurable elevation of gynoecial chamber temperature. Gynoecial chamber temperature of H. esculenta could reach 3·8 °C above ambient, but there are no respiration data available. Antheral tissue respiration was maximal in the male phase (4·8 nmol g−1 s−1 in H. africana and 10·3 nmol g−1 s−1 in H. abyssinica), but it did not raise the antheral ring temperature, which showed that thermogenesis is not a by-product of pollen maturation or release. Conclusions The exceptionally low thermogenesis in Hydnora appears to be associated with scent production and possibly gynoecial development, but has little direct benefit to beetle pollinators. PMID:19584128

  7. Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018

  8. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-03-01

    Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.

  9. Axillary and Tympanic Temperature Measurement in Children and Normal Values for Ages.

    PubMed

    Oguz, Fatma; Yildiz, Ismail; Varkal, Muhammet Ali; Hizli, Zeynep; Toprak, Sadik; Kaymakci, Kevser; Saygili, Seha Kamil; Kilic, Ayşe; Unuvar, Emin

    2018-03-01

    The aim of the study was define the normal values of tympanic and axillary body temperature in healthy children. This observational cross-sectional study was performed in healthy children aged 0 to 17 years who visited the ambulatory general pediatric of Istanbul Medical Faculty. Of 1364 children, 651 (47.7%) were girls and 713 were boys, the mean (SD, range) age was 72.5 (53.6, 1-204) months. The mean (SD) axillary body temperature was 36.04°C (0.46°C; minimum, 35.0°C; maximum, 37.6°C). The 95th and 99th percentiles were 36.8°C and 37.0°C, respectively. The mean (SD) tympanic body temperature was 36.91°C (0.46°C; minimum, 35.15°C; maximum, 37.9°C). The 95th and 99th percentiles were 37.6°C and 37.8°C, respectively. There were statistically significant differences between sexes for only tympanic body temperatures. Both axillary and tympanic body temperatures were statistically higher in 0 to 2 months compared with other age groups. For this age group, the 99th percentile was 37.5°C for axillary and 37.85°C for tympanic temperature. Axillary and tympanic body temperatures should be considered as fever when they are more than 37.0°C and 37.8°C, respectively. For 0 to 2 months, fever is 37.5°C and 37.85°C in axillary and tympanic temperatures, respectively.

  10. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  11. Effect of light-emitting diode colour temperature on magnifier reading performance of the visually impaired.

    PubMed

    Wolffsohn, James S; Palmer, Eshmael; Rubinstein, Martin; Eperjesi, Frank

    2012-09-01

    As light-emitting diodes become more common as the light source for low vision aids, the effect of illumination colour temperature on magnifier reading performance was investigated. Reading ability (maximum reading speed, critical print size, threshold near visual acuity) using Radner charts and subjective preference was assessed for 107 participants with visual impairment using three stand magnifiers with light emitting diode illumination colour temperatures of 2,700 K, 4,500 K and 6,000 K. The results were compared with distance visual acuity, prescribed magnification, age and the primary cause of visual impairment. Reading speed, critical print size and near visual acuity were unaffected by illumination colour temperature (p > 0.05). Reading metrics decreased with worsening acuity and higher levels of prescribed magnification but acuity was unaffected by age. Each colour temperature was preferred and disliked by a similar number of patients and was unrelated to distance visual acuity, prescribed magnification and age (p > 0.05). Patients had better near acuity (p = 0.002), critical print size (p = 0.034) and maximum reading speed (p < 0.001), and the improvement in near from distance acuity was greater (p = 0.004) with their preferred rather than least-liked colour temperature illumination. A range of colour temperature illuminations should be offered to all visually impaired individuals prescribed with an optical magnifier for near tasks to optimise subjective and objective benefits. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  12. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  13. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.

    PubMed

    Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K

    2017-01-01

    The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B 1 + maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.

  14. Properties of hail storms over China and the United States from the Tropical Rainfall Measuring Mission

    PubMed Central

    Ni, Xiang; Liu, Chuntao; Zhang, Qinghong; Cecil, Daniel J.

    2018-01-01

    A 16-yr record of hail reports over the south U.S. and from weather stations in China are collocated with Precipitation Features (PF) derived from the Tropical Rainfall Measuring Mission (TRMM) radar and passive microwave observations. Differences in the way hail is reported in the two nations make it difficult to draw meaningful conclusions about storm frequency. But taking the two together yields a wide spectrum of hail sizes, suitable for comparing with remote sensing measurements. While U.S. hail reports are dominated by cases with hail size greater than 19 mm, hail reports in China mostly include diameters of 1–10 mm and mostly occur over the Tibetan Plateau. The fraction of PFs collocated with hail reports (hail PFs) reaches 3% in the plains of the U.S. In China, the fraction is higher in high elevation regions than low elevation regions. Hail PFs (as reported in the U.S.) show lower brightness temperatures, higher lightning flash rates, stronger maximum reflectivity, and higher echo tops than those with smaller hail, as reported in China. The average near surface maximum reflectivity of hail PFs at high elevations (≥ 2000 m) in China is about 5 dB smaller than those at low elevations. Larger hail is reported with PFs having stronger maximum reflectivity above 6 km, though the median of maximum reflectivity values at levels below 5 km is similar among the storms with large and small hail sizes. PMID:29377045

  15. Effect of ambient temperature and air pollutants on the risk of preterm birth, Rome 2001-2010.

    PubMed

    Schifano, Patrizia; Lallo, Adele; Asta, Federica; De Sario, Manuela; Davoli, Marina; Michelozzi, Paola

    2013-11-01

    Although the prevalence of preterm births ranges from 5 to 13% and represents the leading cause of perinatal mortality and morbidity in developed countries, the etiology of preterm birth remains uncertain. We aimed to evaluate the effect of short-term exposure to high and low temperatures and air pollution on preterm delivery and to identify socio-demographic and clinical maternal risk factors enhancing individual susceptibility. We analyzed all singleton live births by natural delivery that occurred in Rome in 2001-2010. A time-series approach was used to estimate the effect of exposure to minimum temperature, maximum apparent temperature, heat waves, particulate matter with an aerodynamic diameter of 10μm or less (PM10), ozone, and nitrogen dioxide in the month preceding delivery; the analysis was conducted separately for cold and warm seasons. Socio-demographic and clinical risk factors were included as interaction terms. Preterm births comprised nearly 6% of our cohort. An increase of 1.9% (95% confidence interval (CI) 0.86-2.87) in daily preterm births per 1°C increase in maximum apparent temperature in the 2days preceding delivery was estimated for the warm season. Older women, women with higher education levels, and women with obstetric or chronic pathologies reported during delivery had a lower effect of temperature on the risk of preterm birth, while women with a chronic disease in the two years before delivery and mothers<20years showed a higher effect. A +19% (95% CI 7.91-31.69) increase in preterm births was observed during heat waves. Temperature had no effect during the cold season. We detected a significant effect of PM10 on preterm-birth risk at a lag period of 12-22days during the warm season (+0.69%; 95% CI 0.23-1.15, for 1μg/m(3) increase of pollutant); women with obstetric pathologies and with a higher education level showed a higher risk. Our results suggest a possible short-term effect of heat and a more delayed and prolonged effect of PM10 exposure on preterm-birth risk, as well as the existence of more susceptible subgroups of women. Our observations support the few reported investigations, and may help to increase awareness among public-health stakeholders and clinicians regarding the role of these environmental exposures as risk factors for premature birth and health consequences for children later in life. © 2013.

  16. At the edge of the thermal window: effects of elevated temperature on the resting metabolism, hypoxia tolerance and upper critical thermal limit of a widespread African cichlid

    PubMed Central

    McDonnell, Laura H.; Chapman, Lauren J.

    2015-01-01

    Tropical inland fishes are predicted to be especially vulnerable to thermal stress because they experience small temperature fluctuations that may select for narrow thermal windows. In this study, we measured resting metabolic rate (RMR), critical oxygen tension (Pcrit) and critical thermal maximum (CTMax) of the widespread African cichlid (Pseudocrenilabrus multicolor victoriae) in response to short-term acclimation to temperatures within and above their natural thermal range. Pseudocrenilabrus multicolor collected in Lake Kayanja, Uganda, a population living near the upper thermal range of the species, were acclimated to 23, 26, 29 and 32°C for 3 days directly after capture, and RMR and Pcrit were then quantified. In a second group of P. multicolor from the same population, CTMax and the thermal onset of agitation were determined for fish acclimated to 26, 29 and 32°C for 7 days. Both RMR and Pcrit were significantly higher in fish acclimated to 32°C, indicating decreased tolerance to hypoxia and increased metabolic requirements at temperatures only slightly (∼1°C) above their natural thermal range. The CTMax increased with acclimation temperature, indicating some degree of thermal compensation induced by short-term exposure to higher temperatures. However, agitation temperature (likely to represent an avoidance response to increased temperature during CTMax trials) showed no increase with acclimation temperature. Overall, the results of this study demonstrate that P. multicolor is able to maintain its RMR and Pcrit across the range of temperatures characteristic of its natural habitat, but incurs a higher cost of resting metabolism and reduced hypoxia tolerance at temperatures slightly above its present range. PMID:27293734

  17. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  18. Influence of temperature on growth rate and lag phase of fungi isolated from Argentine corn.

    PubMed

    González, H H; Resnik, S L; Vaamonde, G

    1988-03-01

    The influence of temperature on the growth of nine strains of fungi belonging to the genera Eurotium, Aspergillus, Penicillium and Fusarium has been investigated for the temperature range 15-35 degrees C. The lag phase and the growth rate were evaluated by using a laboratory medium. The maximum growth rate for E. repens, A. wentii and P. chrysogenum was observed at about 25 degrees C, for P. citrinum near 30 degrees C and for F. semitectum and F. moniliforme between 20 and 25 degrees C. The growth rate of A. niger, A. flavus and A. parasiticus increased with increasing temperatures in the range studied. For all strains studied it appeared that the higher the growth rate the lower the lag phase was.

  19. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  20. Thermal tolerances of fishes occupying groundwater and surface-water dominated streams

    USGS Publications Warehouse

    Farless, Nicole; Brewer, Shannon K.

    2017-01-01

    A thermal tolerance study mimicking different stream environments could improve our ecological understanding of how increasing water temperatures affect stream ectotherms and improve our ability to predict organism responses based on river classification schemes. Our objective was to compare the thermal tolerances of stream fishes of different habitat guilds among 3 exposure periods: critical thermal maximum (CTmax, increase of 2°C/h until loss of equilibrium [LOE] and death [D]), and 2 longer-term treatments (net daily increase of 1°C) that mimicked spring-fed (SF; 4°C daily increase) and non-spring-fed (NSF; 8°C daily increase) conditions. Fishes in the pelagic habitat guild had a 1°C higher average CTmax than benthic fishes. Thermal responses of species depended on exposure period with higher and increased variation in tolerances associated with the SF and NSF exposure periods. Logperch, Orangebelly Darter, Orangethroat Darter, and Southern Redbelly Dace were more sensitive to thermal increases regardless of SF or NSF treatment than were the 3 remaining species (Brook Silverside, Central Stoneroller, and Redspot Chub), which represented average thermal responses among the species tested. The 3 species that had a higher thermal response to CTmax-D (lethal endpoint of death) also were able to increase their tolerances more than other species in both SF and NSF treatments. Our data indicate finer guild designations may be useful for predicting thermal-response patterns. A diel thermal refuge increases the thermal responses of ectotherms to daily maxima, but the patterns across our SF and NSF treatments were similar suggesting minimum refuge temperatures may be more important than maximums. Nonetheless, stream temperature cooling over a 24-h period is important to ectotherm thermal tolerances, a result suggesting that sources of cooler water to streams might benefit from protection.

  1. Thermochemical formation of polychlorinated dibenzo-p-dioxins and dibenzofurans on the fly ash matrix from metal smelting sources.

    PubMed

    Wu, Xiaolin; Zheng, Minghui; Zhao, Yuyang; Yang, Hongbo; Yang, Lili; Jin, Rong; Xu, Yang; Xiao, Ke; Liu, Wenbin; Liu, Guorui

    2018-01-01

    Metal smelting processes are important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The present work aims to clarify the formation characteristics of PCDD/Fs by heterogeneous mechanisms on fly ash from typical multiple secondary aluminum (SAl), secondary lead (SPb) smelting, and iron ore sintering (SNT) sources in China. The formation characteristics of PCDD/Fs on fly ash were studied in the temperature range 250-450 °C for 10-150 min. Substantial thermochemical formation of PCDD/Fs on SAl and SNT ash was observed. The maximum increase of PCDD/F concentrations under 350 °C for 30 min was 604 times greater than the initial concentration in SAl ash. The concentration of PCDD/Fs was 77 times greater than that of SNT fly ash under 350 °C for 30 min. However, the maximum increase of PCDD/F concentrations was less than 8 times that in raw SPb ash under 350 °C. Contents of total organic carbon (TOC), Cu, Al, Zn and Cl, which are widely recognized as important elements for promoting PCDD/F formation, were obviously higher in SAl and SNT ash than in SPb ash. This may explain the greater observed formation times of PCDD/Fs on SAl and SNT ash than that on SPb ash. It was found that several congeners tended to form at higher temperatures than those for SAl ash. Activation energy calculation according to the Arrhenius equations could explain the dominant formation of those congeners at much higher temperatures on SAl ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  3. Influence of carbonization conditions on the pyrolytic carbon deposition in acacia and eucalyptus wood chars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Gupta, R.C.

    1997-04-01

    The amount of deposited pyrolytic carbon (resulting from the cracking of volatile matter) was found to depend on wood species and carbonization conditions, such as temperature and heating rate. Maximum pyrolytic carbon deposition in both the acacia and eucalyptus wood chars has been observed at a carbonization temperature of 800 C. Rapid carbonization (higher heating rate) of wood significantly reduces the amount of deposited pyrolytic carbon in resulting chars. Results also indicate that the amount of deposited pyrolytic carbon in acacia wood char is less than that in eucalyptus wood char.

  4. Evaluation of nickel-hydrogen battery for space application

    NASA Technical Reports Server (NTRS)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  5. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    PubMed

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird.

    PubMed

    Kruuk, Loeske E B; Osmond, Helen L; Cockburn, Andrew

    2015-08-01

    Despite extensive research on the topic, it has been difficult to reach general conclusions as to the effects of climate change on morphology in wild animals: in particular, the effects of warming temperatures have been associated with increases, decreases or stasis in body size in different populations. Here, we use a fine-scale analysis of associations between weather and offspring body size in a long-term study of a wild passerine bird, the cooperatively breeding superb fairy-wren, in south-eastern Australia to show that such variation in the direction of associations occurs even within a population. Over the past 26 years, our study population has experienced increased temperatures, increased frequency of heatwaves and reduced rainfall - but the mean body mass of chicks has not changed. Despite the apparent stasis, mass was associated with weather across the previous year, but in multiple counteracting ways. Firstly, (i) chick mass was negatively associated with extremely recent heatwaves, but there also positive associations with (ii) higher maximum temperatures and (iii) higher rainfall, both occurring in a period prior to and during the nesting period, and finally (iv) a longer-term negative association with higher maximum temperatures following the previous breeding season. Our results illustrate how a morphological trait may be affected by both short- and long-term effects of the same weather variable at multiple times of the year and that these effects may act in different directions. We also show that climate within the relevant time windows may not be changing in the same way, such that overall long-term temporal trends in body size may be minimal. Such complexity means that analytical approaches that search for a single 'best' window for one particular weather variable may miss other relevant information, and is also likely to make analyses of phenotypic plasticity and prediction of longer-term population dynamics difficult. © 2015 John Wiley & Sons Ltd.

  7. Increasing the thermopower of crown-ether-bridged anthraquinones.

    PubMed

    Ismael, Ali K; Grace, Iain; Lambert, Colin J

    2015-11-07

    We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either () crown-ether or () diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The thermopowers of both and are negative and at room temperature are optimised by binding with TTF alone, achieving thermpowers of -600 μV K(-1) and -285 μV K(-1) respectively. At much lower temperatures, which are relevant to cascade coolers, we find that for , a combination of TTF and Na(+) yields a maximum thermopower of -710 μV K(-1) at 70 K, whereas a combination of TTF and Li(+) yields a maximum thermopower of -600 μV K(-1) at 90 K. For , we find that TTF doping yields a maximum thermopower of -800 μV K(-1) at 90 K, whereas at 50 K, the largest thermopower (of -600 μV K(-1)) is obtain by a combination TTF and K(+) doping. At room temperature, we obtain power factors of 73 μW m(-1) K(-2) for (in combination with TTF and Na(+)) and 90 μW m(-1) K(-2) for (with TTF). These are higher or comparable with reported power factors of other organic materials.

  8. Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment.

    PubMed

    Wang, Jing Jing; Sun, Wen Shuo; Jin, Meng Tong; Liu, Hai Quan; Zhang, Weijia; Sun, Xiao Hong; Pan, Ying Jie; Zhao, Yong

    2014-06-02

    The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4-30 °C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, λ; the maximum growth rate, μmax; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 °C). The results showed that AEW treatment could markedly (p<0.05) decrease the growth rate (μmax) and extend the lag time (λ) during the post-treatment storage at 30, 25, 20 and 15 °C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p<0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 °C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  10. Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882-1984

    NASA Astrophysics Data System (ADS)

    Dessens, J.; Bücher, A.

    In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.

  11. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.

    PubMed

    Casner, Kayce L; Forister, Matthew L; O'Brien, Joshua M; Thorne, James; Waetjen, David; Shapiro, Arthur M

    2014-06-01

    Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18-22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land-use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working-landscape area below which further loss of working-landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. © 2014 Society for Conservation Biology.

  12. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by local lithology, especially by the higher proportion of fine particles and more thermally conductive minerals, together with higher water saturation are fundamental for higher maximum active layer thickness found at Berry Hill slopes.

  13. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2011-07-01

    The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L.

  14. The range of medication storage temperatures in aeromedical emergency medical services.

    PubMed

    Madden, J F; O'Connor, R E; Evans, J

    1999-01-01

    The United States Pharmacopoeia (USP) recommends that medication storage temperatures should be maintained between 15 degrees C and 30 degrees C (59 degrees F to 86 degrees F). Concerns have been raised that storage temperatures in EMS may deviate from this optimal range, predisposing drugs to degradation. This study was conducted to determine whether temperatures inside the drug box carried by paramedics aboard a helicopter remained within the range. The Aviation Section, with a paramedic on board, utilizes two helicopters and conducts approximately 80 patient care flights per month. A dual-display indoor/outdoor thermometer with memory was used to measure the highest and lowest temperatures during each shift. The thermometer was kept with medications in a nylon drug bag, which remained on the helicopter except when needed for patient care. Ambient temperature measurements at the location of the helicopter base were obtained from the National Climatic Data Center. Temperature ranges were recorded during day shift (8 AM to 4 PM) and night shift (4 PM to 12 AM) during the winter from December 1, 1995, to March 13, 1996, and summer from June 17, 1996, to September 14, 1996. Statistical analysis was performed using chi-square and the Bonferroni-adjusted t-test. Compared with the winter day period, the winter night period had lower minimum (13.2 degrees C vs 14.7 degrees C, p = 0.003) and maximum (20.3 degrees C vs 21.2 degrees C, p = 0.02) temperatures. Both were below the USP minimum. The summer day period had higher maximum temperatures than the summer night period (31.2 degrees C vs 27.6 degrees C, p = 5 x 10(-9)). The mean daytime summer maximum exceeded the USP upper limit. Storage temperatures outside of the USP range were observed during 49% of winter days, 62% of winter nights, 56% of summer days, and 27% of summer nights. There was a significant tendency for summer days (p = 8 x 10(-8)) and winter nights (p = 0.009) to be outside of the acceptable range. There was moderate correlation between ambient and drug box temperatures (r2 = 0.49). Medications stored aboard an EMS helicopter are exposed to extremes of temperature, even inside a drug bag. Measures are needed to attenuate storage temperature fluctuations aboard aeromedical helicopters.

  15. Increases in maximum stream temperatures after slash burning in a small experimental watershed.

    Treesearch

    Al Levno; Jack Rothacher

    1969-01-01

    The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.

  16. Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser.

    PubMed

    Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A

    2018-05-17

    A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.

  17. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T

    2014-04-01

    Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress. © 2013 Society for Conservation Biology.

  18. Effect of pressure on the α relaxation in glycerol and xylitol

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  19. Comparison of microtweezers based on three lateral thermal actuator configurations

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-06-01

    Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.

  20. Photoluminescence Investigation of p-type GaAs/AlGaAs Quantum Well Infrared Detectors(QWIPs) Designed for Normal Incidence Detection in the 10 micron region.

    NASA Astrophysics Data System (ADS)

    Hegde, S. M.; Brown, Gail J.; Capano, Michael; Eyink, Kurt

    1997-03-01

    We have investigated MBE grown p-type, GaAs/AlGaAs QWIPs by photoluminescence spectroscopy. Excitation intensity, and temperature dependent photoluminescence spectra from 4.5K to 295K were studied. The PL-spectra were fitted with multiple gaussians to extract information on inter-subband (c1-hh1) peak loactions, full width at half maximum(FWHM), intensity and integrated intensity. A detailed analysis of the origin of the observed peaks and their thermal actiavtion energies was carried out. X-ray diffraction measurements were used to confirm the high qualiuty of the grown MQW structures and the Al-composition in the AlGaAs barriers. Temperature dependent photoconductivity measurements were used to measure the relative photoresponse from the hh1-to-continuum states in the valence subband transitions of these detector structures in the 10 micron region. It is found that high photoluminescence efficiency for the intersubband free-to-free transition at higher temperatures correl! ates with good photoresponse at th ose higher temperatures.

  1. Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites

    NASA Astrophysics Data System (ADS)

    Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.

    2018-05-01

    Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.

  2. Tunnel magnetoresistance in ultrathin L10 MnGa/MgO perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Sugihara, A.; Mizukami, S.

    2018-06-01

    L10 MnGa is one of the interesting magnetic alloys for spin-transfer-torque based applications because such alloys have high perpendicular magnetic anisotropy, small magnetization, and low Gilbert damping. Magnetic tunnel junctions (MTJs) with ultrathin MnGa electrodes have recently been demonstrated using the room temperature growth technique of MnGa on paramagnetic B2-ordered CoGa templates, which exhibited a small TMR ratio of  ∼3%. To obtain a higher TMR ratio, we systematically investigated the annealing dependence of the TMR ratio with MTJs with 1–5 nm thick MnGa electrodes in this study. The TMR ratios were 2%–3% without annealing, which were the same as those reported previously, and the TMR ratios reached their maximum values of 6%–8% at an annealing temperature of approximately 250 °C for the MTJs with 2–5 nm MnGa electrodes. The TMR ratio increased to approximately 25% at 10 K for those MTJs. These TMR ratios were slightly higher than those reported in MTJs with 30 nm-thick MnGa electrodes. The annealing temperature at which TMR showed the maximum value tended to decrease with decreasing MnGa thickness, and this low annealing endurance may be attributed to the atomic mixing between MnGa and barrier/buffer layers. The TMR ratio was discussed in terms of both coherent tunneling based on first principles calculations with different element terminations at the interface and incoherent tunneling.

  3. Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps.

    PubMed

    Holloway, J C; Geiser, F

    2001-11-01

    Little information is available on seasonal changes in thermal physiology and energy expenditure in marsupials. To provide new information on the subject, we quantified how body mass, body composition, metabolic rate, maximum heat production, body temperature and thermal conductance change with season in sugar gliders (Petaurus breviceps) held in outdoor aviaries. Sugar gliders increased body mass in autumn to a peak in May/June, which was caused to a large extent by an increase in body fat content. Body mass then declined to minimum values in August/September. Resting metabolic rate both below and above the thermoneutral zone (TNZ) was higher in summer than in winter and the lower critical temperature of the TNZ occurred at a higher ambient temperature (Ta) in summer. The basal metabolic rate was as much as 45% below that predicted from allometric equations for placental mammals and was about 15% lower in winter than in summer. In contrast, maximum heat production was raised significantly by about 20% in winter. This, together with an approximately 20% decrease in thermal conductance, resulted in a 13 degrees C reduction of the minimum effective Ta gliders were able to withstand. Our study provides the first evidence that, despite the apparent lack of functional brown adipose tissue, sugar gliders are able to significantly increase heat production in winter. Moreover, the lower thermoregulatory heat production at most TaS in winter, when food in the wild is scarce, should allow them to reduce energy expenditure.

  4. Thermoeconomical Productivity Analysis in Manufacturing Sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Liana Aji, Widya; Purqon, Acep

    2017-07-01

    Negative temperature is a phenomenon interesting to study. In negative temperature regime, Boltzmann distribution is inverted where many particles occupy the higher energy states than the lower one. Iyetomi proposed a negative temperature case in Japan and applied it to the labor productivity distribution where the particle and energy state are replaced by worker and labor productivity, respectively. In this paper, we investigate the negative temperature concept to the labor productivity distribution in manufacturing sector in Indonesia which is divided by three industry groups according to BPS (Center of Statistical Agency of Indonesia), i. e. large and medium industries, small industry, and micro industry. For all industry groups, food industry possesses maximum productivity. The results represent that the negative temperature of large and medium industries is around ten times lower than negative temperature of micro industry indicating large and medium industries is lack demand of worker, while the negative temperature of small industry is among the temperature negative of large and medium industries and micro industry.

  5. Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor

    PubMed Central

    de Cesare, Giampiero; Nascetti, Augusto; Caputo, Domenico

    2015-01-01

    In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied. PMID:26016913

  6. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    NASA Astrophysics Data System (ADS)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  7. The Impacts of Air Temperature on Accidental Casualties in Beijing, China.

    PubMed

    Ma, Pan; Wang, Shigong; Fan, Xingang; Li, Tanshi

    2016-11-02

    Emergency room (ER) visits for accidental casualties, according to the International Classification of Deceases 10th Revision Chapters 19 and 20, include injury, poisoning, and external causes (IPEC). Annual distribution of 187,008 ER visits that took place between 2009 and 2011 in Beijing, China displayed regularity rather than random characteristics. The annual cycle from the Fourier series fitting of the number of ER visits was found to explain 63.2% of its total variance. In this study, the possible effect and regulation of meteorological conditions on these ER visits are investigated through the use of correlation analysis, as well as statistical modeling by using the Distributed Lag Non-linear Model and Generalized Additive Model. Correlation analysis indicated that meteorological variables that positively correlated with temperature have a positive relationship with the number of ER visits, and vice versa. The temperature metrics of maximum, minimum, and mean temperatures were found to have similar overall impacts, including both the direct impact on human mental/physical conditions and indirect impact on human behavior. The lag analysis indicated that the overall impacts of temperatures higher than the 50th percentile on ER visits occur immediately, whereas low temperatures show protective effects in the first few days. Accidental casualties happen more frequently on warm days when the mean temperature is higher than 14 °C than on cold days. Mean temperatures of around 26 °C result in the greatest possibility of ER visits for accidental casualties. In addition, males were found to face a higher risk of accidental casualties than females at high temperatures. Therefore, the IPEC-classified ER visits are not pure accidents; instead, they are associated closely with meteorological conditions, especially temperature.

  8. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  9. Body temperature, activity patterns, and hunting in free-living cheetah: biologging reveals new insights.

    PubMed

    Hetem, Robyn S; Mitchell, Duncan; de Witt, Brenda A; Fick, Linda G; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2018-05-31

    As one of the few felids that is predominantly diurnal, cheetahs (Acinonyx jubatus Von Schreber, 1775) can be exposed to high heat loads in their natural habitat. Little is known about long-term patterns of body temperature and activity (including hunting) in cheetahs because long-term concurrent measurements of body temperature and activity never have been reported for cheetahs, or indeed for any free-living felid. We report here body temperature and locomotor activity measured with implanted data loggers over seven months in five free-living cheetahs in Namibia. Air temperature ranged from a maximum of 39ºC in summer to -2ºC in winter. Cheetahs had higher (∼0.4 ºC) maximum 24h body temperatures, later acrophase (∼1 h), with larger fluctuations in the range of the 24h body temperature rhythm (∼0.4 ºC) during a hot-dry period than during a cool-dry period, but maintained homeothermy irrespective of the climatic conditions. As ambient temperatures increased, the cheetahs shifted from a diurnal to a crepuscular activity pattern, with reduced activity between 9:00 and 15:00 and increased nocturnal activity. The timing of hunts followed the general pattern of activity; the cheetahs hunted when they were on the move. Cheetahs hunted if an opportunity presented itself, on occasion they hunted in the midday heat or in total darkness (new moon). Biologging revealed insights into cheetah biology that are not accessible by traditional observer-based techniques. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  11. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  12. Climate trends of the North American prairie pothole region 1906-2000

    USGS Publications Warehouse

    Millett, B.; Johnson, W.C.; Guntenspergen, G.

    2009-01-01

    The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1°C in the north to nearly 10°C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0°C, while maximum daily temperatures cooled by 0.15°C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand.

  13. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  14. Immobilization of pectin depolymerising polygalacturonase using different polymers.

    PubMed

    Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali

    2016-01-01

    Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; MacNutt, M J; Hinch, S G; Healey, M C

    2003-09-01

    Our knowledge of the swimming capabilities and metabolic rates of adult salmon, and particularly the influence of temperature on them, is extremely limited, and yet this information is critical to understanding the remarkable upstream migrations that these fish can make. To remedy this situation, we examined the effects of temperature on swimming performance and metabolic rates of 107 adult fish taken from three stocks of sockeye salmon Oncorhynchus nerka and one stock of coho salmon O. kisutch at various field and laboratory locations, using large, portable, swim tunnels. The salmon stocks were selected because of differences in their ambient water temperature (ranging from 5 degrees C to 20 degrees C) and the total distance of their in-river migrations (ranging from approximately 100 km for coastal stocks to approximately 1100 km for interior stocks). As anticipated, differences in routine metabolic rate observed among salmon stocks were largely explained by an exponential dependence on ambient water temperature. However, the relationship between water temperature and maximum oxygen consumption (MO2max), i.e. the MO2 measured at the critical swimming speed (Ucrit), revealed temperature optima for MO2max that were stock-specific. These temperature optima were very similar to the average ambient water temperatures for the natal stream of a given stock. Furthermore, at a comparable water temperature, the salmon stocks that experienced a long and energetically costly in-river migration were characterized by a higher MO2max, a higher scope for activity, a higher Ucrit and, in some cases, a higher cost of transport, relative to the coastal salmon stocks that experience a short in-river migration. We conclude that high-caliber respirometry can be performed in a field setting and that stock-specific differences in swimming performance of adult salmon may be important for understanding upstream migration energetics and abilities.

  16. When do Indians feel hot? Internet searches indicate seasonality suppresses adaptation to heat

    NASA Astrophysics Data System (ADS)

    Singh, Tanya; Siderius, Christian; Van der Velde, Ype

    2018-05-01

    In a warming world an increasing number of people are being exposed to heat, making a comfortable thermal environment an important need. This study explores the potential of using Regional Internet Search Frequencies (RISF) for air conditioning devices as an indicator for thermal discomfort (i.e. dissatisfaction with the thermal environment) with the aim to quantify the adaptation potential of individuals living across different climate zones and at the high end of the temperature range, in India, where access to health data is limited. We related RISF for the years 2011–2015 to daily daytime outdoor temperature in 17 states and determined at which temperature RISF for air conditioning starts to peak, i.e. crosses a ‘heat threshold’, in each state. Using the spatial variation in heat thresholds, we explored whether people continuously exposed to higher temperatures show a lower response to heat extremes through adaptation (e.g. physiological, behavioural or psychological). State-level heat thresholds ranged from 25.9 °C in Madhya Pradesh to 31.0 °C in Orissa. Local adaptation was found to occur at state level: the higher the average temperature in a state, the higher the heat threshold; and the higher the intra-annual temperature range (warmest minus coldest month) the lower the heat threshold. These results indicate there is potential within India to adapt to warmer temperatures, but that a large intra-annual temperature variability attenuates this potential to adapt to extreme heat. This winter ‘reset’ mechanism should be taken into account when assessing the impact of global warming, with changes in minimum temperatures being an important factor in addition to the change in maximum temperatures itself. Our findings contribute to a better understanding of local heat thresholds and people’s adaptive capacity, which can support the design of local thermal comfort standards and early heat warning systems.

  17. Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States.

    PubMed

    Lahr, Eleanor C; Dunn, Robert R; Frank, Steven D

    2018-01-01

    Photosynthesis is a fundamental process that trees perform over fluctuating environmental conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red maple is common in cities, yet there is little understanding of how physiological processes affect the long-term growth, condition, and ecosystem services provided by urban trees. In the first year of our study, we measured leaf-level gas exchange and performed short-term temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In the second year, we compared urban planted cultivars and urban wildtype trees. In the first year, urban planted trees had higher maximum rates of photosynthesis and higher overall rates of photosynthesis and stomatal conductance throughout the summer, relative to suburban or rural wildtype trees. Urban planted trees again had higher maximum rates of photosynthesis in the second year. However, urban wildtype trees had higher water use efficiency as air temperatures increased and similar overall rates of photosynthesis, relative to cultivars, in mid and late summer. Our results show that physiological differences between cultivars and wildtype trees may relate to differences in their genetic background and their responses to local environmental conditions, contingent on the identity of the horticultural variety. Overall, our results suggest that wildtype trees should be considered for some urban locations, and our study is valuable in demonstrating how site type and tree type can inform tree planting strategies and improve long-term urban forest sustainability.

  18. The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers

    PubMed Central

    PRESSMAN, ETAN; PEET, MARY M.; PHARR, D. MASON

    2002-01-01

    Continuous exposure of tomato ‘Trust’ to high temperatures (day/night temperatures of 32/26 °C) markedly reduced the number of pollen grains per flower and decreased viability. The effect of heat stress on pollen viability was associated with alterations in carbohydrate metabolism in various parts of the anther during its development. Under control, favourable temperature conditions (28/22 °C), starch accumulated in the pollen grains, where it reached a maximum value 3 d before anthesis; it then diminished towards anthesis. During anther development, the concentration of total soluble sugars gradually increased in the anther walls and in the pollen grains (but not in the locular fluid), reaching a maximum at anthesis. Continuous exposure of the plants to high temperatures (32/26 °C) prevented the transient increase in starch concentration and led to decreases in the concentrations of soluble sugars in the anther walls and the pollen grains. In the locular fluid, however, a higher soluble sugar concentration was detected under the high‐temperature regime throughout anther development. These results suggest that a major effect of heat stress on pollen development is a decrease in starch concentration 3 d before anthesis, which results in a decreased sugar concentration in the mature pollen grains. These events possibly contribute to the decreased pollen viability in tomato. PMID:12466104

  19. C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawarada, H., E-mail: kawarada@waseda.jp; Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555; Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051

    2014-07-07

    By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600 V at a gate-drain distance (L{sub GD}) of 7 μm. We fabricated some MOSFETs for which V{sub B}/L{sub GD} > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-Hmore » surface by atomic layer deposition (ALD) at 450 °C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.« less

  20. Analysis of temperature trends in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag

    2017-04-01

    An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.

  1. Blueberry polyphenol oxidase: Characterization and the kinetics of thermal and high pressure activation and inactivation.

    PubMed

    Terefe, Netsanet Shiferaw; Delon, Antoine; Buckow, Roman; Versteeg, Cornelis

    2015-12-01

    Partially purified blueberry polyphenol oxidase (PPO) in Mcllvaine buffer (pH=3.6, typical pH of blueberry juice) was subjected to processing at isothermal-isobaric conditions at temperatures from 30 to 80 °C and pressure from 0.1 to 700 MPa. High pressure processing at 30-50 °C at all pressures studied caused irreversible PPO activity increase with a maximum of 6.1 fold increase at 500 MPa and 30 °C. Treatments at mild pressure-mild temperature conditions (0.1-400 MPa, 60 °C) also caused up to 3 fold PPO activity increase. Initial activity increase followed by a decrease occurred at relatively high pressure-mild temperature (400-600 MPa, 60 °C) and mild pressure-high temperature (0.1-400 MPa, 70-80 °C) combinations. At temperatures higher than 76 °C, monotonic decrease in PPO activity occurred at 0.1 MPa and pressures higher than 500 MPa. The activation/inactivation kinetics of the enzyme was successfully modelled assuming consecutive reactions in series with activation followed by inactivation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  3. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and hasmore » been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.« less

  4. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.

    2018-02-01

    Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071-2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.

  5. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960-2015

    NASA Astrophysics Data System (ADS)

    Cui, Lifang; Wang, Lunche; Lai, Zhongping; Tian, Qing; Liu, Wen; Li, Jun

    2017-11-01

    The variation characteristics of air temperature and precipitation in the Yangtze River Basin (YRB), China during 1960-2015 were analysed using a linear regression (LR) analysis, a Mann-Kendall (MK) test with Sen's slope estimator and Sen's innovative trend analysis (ITA). The results showed that the annual maximum, minimum and mean temperature significantly increased at the rate of 0.15°C/10yr, 0.23°C/10yr and 0.19°C/10yr, respectively, over the whole study area during 1960-2015. The warming magnitudes for the above variables during 1980-2015 were much higher than those during 1960-2015:0.38°C/10yr, 0.35°C/10yr and 0.36°C/10yr, respectively. The seasonal maximum, minimum and mean temperature significantly increased in the spring, autumn and winter seasons during 1960-2015. Although the summer temperatures also increased at some extent, only the minimum temperature showed a significant increasing trend. Meanwhile, the highest rate of increase of seasonal mean temperature occurred in winter (0.24°C/10yr) during 1960-2015 and spring (0.50°C/10yr) during 1980-2015, which indicated that the significant warming trend for the whole YRB could be attributed to the remarkable temperature increases in winter and spring months. However, both the annual and seasonal warming magnitudes showed large regional differences, and a higher warming rate was detected in the eastern YRB and the western source region of the Yangtze River on the Qinghai-Tibetan Plateau (QTP). Additionally, annual precipitation increased by approximately 12.02 mm/10yr during 1960-2015 but decreased at the rate of 19.63 mm/10yr during 1980-2015. There were decreasing trends for precipitation in all four seasons since 1980 in the YRB, and a significant increasing trend was only detected in summer since 1960 (12.37 mm/10yr). Overall, a warming-wetting trend was detected in the south-eastern and north-western YRB, while there was a warming-drying trend in middle regions.

  6. Intensity of Cold Water and its effects on marine culturing farms along the southeast coast of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hwa; Shim, JeongHee; Choi, Yang-Ho; Kim, Sang-Woo; Shim, Jeong-Min

    2017-04-01

    To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southeast coast of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for aquaculture environments operated by NIFS during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below 10℃) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days (CWI2d) was higher than 100, mass fish mortality occurred. The four-day average CWI (CWI4d) showed a high negative correlation with surface temperature from July-August in the Guryongpo area (R2 = 0.5), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from 7-23℃, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the fish industry along the southeast coast of Korea.

  7. Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom, Jeff; Mahesh, Krishnan

    2009-04-15

    Direct numerical simulation (DNS) is used to study chemically reacting, laminar vortex rings. A novel, all-Mach number algorithm developed by Doom et al. [J. Doom, Y. Hou, K. Mahesh, J. Comput. Phys. 226 (2007) 1136-1151] is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H{sub 2}/air combustion proposed by Mueller et al. [M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125]. Diluted H{sub 2} at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis number and stroke ratio (ratiomore » of piston stroke length to diameter). Results show that auto-ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, {zeta}{sub MR} (Mastorakos et al. [E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Combust. Flame 109 (1997) 198-223]). Subsequent evolution of the flame is not predicted by {zeta}{sub MR}; a most reactive temperature T{sub MR} is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates toward the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non-reacting vortex ring. (author)« less

  8. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2017-05-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa ( I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  9. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces.

    PubMed

    Smoot, L M; Pierson, M D

    1998-10-01

    Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.

  10. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.

    PubMed

    Chen, Liyan; Vadlani, Praveen V; Madl, Ronald L

    2014-01-15

    Phytic acid of soy meal (SM) could influence protein and important mineral digestion of monogastric animals. Aspergillus oryzae (ATCC 9362) solid-state fermentation was applied to degrade phytic acid in SM. Two-stage temperature fermentation protocol was investigated to increase the degradation rate. The first stage was to maximize phytase production and the second stage was to realize the maximum enzymatic degradation. In the first stage, a combination of 41% moisture, a temperature of 37 °C and inoculum size of 1.7 mL in 5 g substrate (dry matter basis) favored maximum phytase production, yielding phytase activity of 58.7 U, optimized via central composite design. By the end of second-stage fermentation, 57% phytic acid was degraded from SM fermented at 50 °C, compared with 39% of that fermented at 37 °C. The nutritional profile of fermented SM was also studied. Oligosaccharides were totally removed after fermentation and 67% of total non-reducing polysaccharides were decreased. Protein content increased by 9.5%. Two-stage temperature protocol achieved better phytic acid degradation during A. oryzae solid state fermentation. The fermented SM has lower antinutritional factors (phytic acid, oligosaccharides and non-reducing polysaccharides) and higher nutritional value for animal feed. © 2013 Society of Chemical Industry.

  11. The Evolution of the Stratopause During the 2006 Major Warming: Satellite Data and Assimilated Meteorological Analyses

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Krueger, Kirstin; Pawson, Steven; Schwartz, Michael J.; Daffer, William H.; Livesey, Nathaniel J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Russell, James M., III; Waters, Joe W.

    2007-01-01

    Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data show the polar stratopause, usually higher than and separated from that at midlatitudes, dropping from <55-60 to near 30 km, and cooling dramatically in January 2006 during a major stratospheric sudden warming (SSW). After a nearly isothermal period, a cool stratopause reforms near 75 km in early February, then drops to <55 km and warms. The stratopause is separated in longitude as well as latitude, with lowest temperatures in the transition regions between higher and lower stratopauses. Operational assimilated meteorological analyses, which are not constrained by data at stratopause altitude, do not capture a secondary temperature maximum that overlies the stratopause or the very high stratopause that reforms after the SSW; they underestimate the stratopause altitude variation during the SSW. High-quality daily satellite temperature measurements are invaluable in improving our understanding of stratopause evolution and its representation in models and assimilation systems.

  12. Superconducting order from disorder in 2H-TaSe 2-xS x

    DOE PAGES

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; ...

    2017-02-24

    Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less

  13. Trends in extremes of temperature, dew point, and precipitation from long instrumental series from central Europe

    NASA Astrophysics Data System (ADS)

    Kürbis, K.; Mudelsee, M.; Tetzlaff, G.; Brázdil, R.

    2009-09-01

    For the analysis of trends in weather extremes, we introduce a diagnostic index variable, the exceedance product, which combines intensity and frequency of extremes. We separate trends in higher moments from trends in mean or standard deviation and use bootstrap resampling to evaluate statistical significances. The application of the concept of the exceedance product to daily meteorological time series from Potsdam (1893 to 2005) and Prague-Klementinum (1775 to 2004) reveals that extremely cold winters occurred only until the mid-20th century, whereas warm winters show upward trends. These changes were significant in higher moments of the temperature distribution. In contrast, trends in summer temperature extremes (e.g., the 2003 European heatwave) can be explained by linear changes in mean or standard deviation. While precipitation at Potsdam does not show pronounced trends, dew point does exhibit a change from maximum extremes during the 1960s to minimum extremes during the 1970s.

  14. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  15. Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis.

    PubMed

    Hartner, Sonja; Ali, Moazzam; Schulz, Christof; Winterer, Markus; Wiggers, Hartmut

    2009-11-04

    Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

  16. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  17. Versatile benzimidazole/triphenylamine hybrids: efficient nondoped deep-blue electroluminescence and good host materials for phosphorescent emitters.

    PubMed

    Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge

    2010-09-03

    Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.

  18. Artificial wetlands as tools for frog conservation: stability and variability of reproduction characteristics in Sahara frog populations in Tunisian man-made lakes.

    PubMed

    Bellakhal, Meher; Neveu, André; Fertouna-Bellakhal, Mouna; Aleya, Lotfi

    2017-12-01

    Amphibian populations are in decline principally due to climate change, environmental contaminants, and the reduction in wetlands. Even though data concerning current population trends are scarce, artificial wetlands appear to play a vital role in amphibian conservation. This study concerns the reproductive biology of the Sahara frog over a 2-year period in four Tunisian man-made lakes. Each month, gonad state (parameters: K, GSI, LCI), fecundity, and fertility of females (using 1227 clutches) were evaluated in the field under controlled conditions. Clutches were present for 110-130 days at two of the sites, but only for 60-80 days at the other two. Maximum egg laying occurred in May, corresponding to the highest point in the gonad somatic index. Clutch densities were higher in the smaller lakes. Female fecundity was in relation to body size; mean clutch fecundity attained 1416 eggs, with no differences observed according to site. Egg fertility varied over a 1-year period, with a maximum in May followed by a decrease when water temperature was at its highest. Eggs were smaller at the beginning of spawning; maximum size was in May, which might explain the higher fertility, but no maternal influence was detected. Embryonic development was strictly dependent on temperature. The population at each site appeared as a small patch within a metapopulation in overall good health, as shown by the relative temporal stability in reproduction variables. Constructed wetlands may therefore play an important role in the conservation of amphibians, especially in semi-arid zones.

  19. Spring and Summer Proliferation of Floating Macroalgae in a Mediterranean Coastal Lagoon (Tancada Lagoon, Ebro Delta, NE Spain)

    NASA Astrophysics Data System (ADS)

    Menéndez, M.; Comín, F. A.

    2000-08-01

    During the last 10 years, a drastic change in the structure of the community of primary producers has been observed in Tancada Lagoon (Ebro Delta, NE Spain). This consisted of a decrease in the abundance of submerged rooted macrophyte cover and a spring and summer increase in floating macroalgae. Two spatial patterns have been observed. In the west part of the lagoon, Chaetomorpha linum Kützing, dominated during winter and decreased progressively in spring when Cladophora sp. reached its maximum development. In the east part of the lagoon, higher macroalgal diversity was observed, together with lower cover in winter and early spring. Cladophora sp., Gracilaria verrucosa Papenfuss and Chondria tenuissima Agardh, increased cover and biomass in summer. Maximum photosynthetic production was observed in spring for G. verrucosa (10·9 mg O 2 g -1 DW h -1) and C. tenuissima (19·0 mg O 2 g -1 DW h -1) in contrast with Cladophora sp. (15·9 mg O 2 g -1 DW h -1) and Chaetomorpha linum (7·2 mg O 2 g -1 DW h -1) which reached maximum production in summer. Increased conductivity from reduced freshwater inflow, and higher water temperatures during periods of lagoon isolation, mainly in summer, were the main physical factors associated with an increase in floating macroalgal biomass across the lagoon. Reduced nitrogen availability and temperature-related changes in carbon availability during summer were related to a decrease in abundance of C. linum and increases in G. verrucosa and Cladophora sp.

  20. Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses

    PubMed Central

    Kesim, Bülent; Gümüş, Hasan Önder; Dinçel, Mehmet; Erkaya, Selçuk

    2014-01-01

    PURPOSE This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. MATERIALS AND METHODS Ninety-one square prism-shaped (1 × 1 × 1.5 mm) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. RESULTS The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P<.05). SBS values of none of the groups differed from those of the control group (P>.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (P<.05). CONCLUSION Grinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength. PMID:25177476

  1. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells.

    PubMed

    Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti

    2017-02-01

    Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit f H at high temperatures in the brown trout in vivo. Copyright © 2017 the American Physiological Society.

  3. The Effects of Metabolic Work Rate and Ambient Environment on Physiological Tolerance Times While Wearing Explosive and Chemical Personal Protective Equipment

    PubMed Central

    Costello, Joseph T.; Stewart, Kelly L.; Stewart, Ian B.

    2015-01-01

    This study evaluated the physiological tolerance times when wearing explosive and chemical (>35 kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4, and 5.5 km·h−1 in the following environmental conditions, 21, 30, and 37°C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39°C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate, and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37 < WBGT30 < WBGT21; P < 0.05) and work intensities (5.5 < 4 < 2.5 km·h−1; P < 0.001). The majority of trials (85/108; 78.7%) were terminated due to participant's heart rate exceeding 90% of their maximum. A total of eight trials (7.4%) lasted the full duration. Only nine (8.3%) trials were terminated due to volitional fatigue and six (5.6%) due to core temperatures in excess of 39°C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multilayered PPE. PMID:25866818

  4. Heat tolerance of two Cladonia species and Campylopus praemorsus in a hot steam vent area of Hawaii.

    PubMed

    Kappen, Ludger; Smith, Clifford W

    1980-01-01

    Temperatures were measured in soil, Cladonia skottsbergii, Cl. oceanica, and Campylopus praemorsus growing in the almost barren geothermal area at Puhimau, Hawaii. The measurements were made in the early morning in winter when insolation and air temperatures were minimal and the geothermal effects were predominant. Measurements were made on healthy, dew moistened plants. Close to steam vents Campylopus praemorsus forms thick cushions on hot soil and temperatures up to 29.8°C are recorded in the active parts of the moss. Cladonia oceanica grows exclusively on moss in this area, but not as close to steam vents as the moss itself. Maximum temperatures were 27.2°C in stunted and 23°C in ramified growth forms. In this area Cl. skottsbergii normally colonizes tree stumps of Metrosideros only where the steam is already cool. Maximum temperatures were 23°C in normal thalli, through higher temperatures were measured in partly damaged or killed thalli overhanging the stump where they are immersed in hot steam. With respect to heat tolerance only Campylopus can be considered as adapted to the hot environment. Therefore it is able to colonize the hot dry soil while deriving its moisture from adjacent steam vents. The lichens, particularly Cl. skottsbergii, are not adapted and are as sensitive to heat as most other lichens. Therefore they can only survive where there is at most a small geothermal impact yet they are obviously dependent on moisture from the steam vents.

  5. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    PubMed Central

    Collier, Catherine J.; Ow, Yan X.; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L.; O'Brien, Katherine R.; Hrebien, Victoria; Adams, Matthew P.

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature. PMID:28878790

  6. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    PubMed

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species ( Cymodocea serrulata, Halodule uninervis , and Zostera muelleri ). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum ( T opt ) for gross photosynthesis of Z. muelleri , which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The T opt for photosynthesis of the tropical species, H. uninervis and C. serrulata , was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature ( T opt varied by 1°C in C. serrulata and 2°C in H. uninervis , and the variation did not follow changes in ambient water temperature). The T opt for gross photosynthesis were higher than T opt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis ( 33°C), but remained unchanged at 35°C in C. serrulata . Both estimated plant net productivity and T opt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri , indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.

  7. Does hot weather affect work-related injury? A case-crossover study in Guangzhou, China.

    PubMed

    Sheng, Rongrong; Li, Changchang; Wang, Qiong; Yang, Lianping; Bao, Junzhe; Wang, Kaiwen; Ma, Rui; Gao, Chuansi; Lin, Shao; Zhang, Ying; Bi, Peng; Fu, Chuandong; Huang, Cunrui

    2018-04-01

    Despite increasing concerns about the health effects of climate change, the extent to which workers are affected by hot weather is not well documented. This study aims to investigate the association between high temperatures and work-related injuries using data from a large subtropical city in China. We used workers' compensation claims to identify work-related injuries in Guangzhou, China during 2011-2012. To feature the heat effect, the study period was restricted to the warm seasons in Guangzhou (1 May-31 October). We conducted a time-stratified case-crossover study to examine the association between ambient outdoor temperatures, including daily maximum and minimum temperatures, and cases of work-related injury. The relationships were assessed using conditional Poisson regression models. Overall, a total of 5418 workers' compensation claims were included over the study period. Both maximum and minimum temperatures were significantly associated with work-related injuries, but associations varied by subgroup. One °C increase in maximum temperature was associated with a 1.4% (RR = 1.014, 95%CIs 1.012-1.017) increase in daily injury claims. Significant associations were seen for male and middle-aged workers, workers in small and medium-sized enterprises, and those working in manufacturing sector. And 1 °C increase in minimum temperature was associated with 1.7% (RR = 1.017, 95%CIs 1.012-1.021) increase in daily injury claims. Significant associations were observed for female and middle-aged workers, workers in large-sized enterprises, and those working in transport and construction sectors. We found a higher risk of work-related injuries due to hot weather in Guangzhou, China. This study provides important epidemiological evidence for policy-makers and industry that may assist in the formulation of occupational safety and climate adaptation strategies. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were investigated using thermal expansion analyzer, Thermo-calc, scanning electron microscope, x-ray diffraction, and Ultra-high temperature confocal microscope. The results indicate that the experimental steel should be austenitized in the temperature range of 1025-1075 °C, which can give a maximum hardness of 62 HRc with the microstructure consisting of martensite, retained austenite, and some undissolved carbides. With increasing austenitizing temperature, the amount of retained austenite increases, while the volume fraction of carbides increases first and then decreases. The starting temperature and finish temperature of martensite formation decrease with increasing cooling rates. Air-quenched samples can obtain less retained austenite, more compact microstructure, and higher hardness, compared with that of oil-quenched samples. For HMSS, the martensitic transformation takes place at some isolated areas with a slow nucleation rate.

  9. Low temperature resistivity plateau and non-saturating magnetoresistance in Type-II Weyl semimetal WP2

    NASA Astrophysics Data System (ADS)

    Nagpal, V.; Kumar, P.; Sudesh, Patnaik, S.

    2018-04-01

    We have studied the resistivity and magnetoresistance (MR) properties of the recently predicted type-II Weyl semimetal WP2. Polycrystalline WP2 is synthesized using solid state reaction and crystallizes in an orthorhombic structure with the Cmc21 spacegroup. The temperature dependent resistivity is enhanced with the application of magnetic field and a resistivity plateau is observed at low temperatures. We find a small dip in resistivity around 30K at 5T field suggesting that there might be a metal-insulator-like transition at higher magnetic fields. A non-saturating magnetoresistance is observed at low temperatures with maximum MR ˜ 94% at 2K and 6T. The value of MR decreases with the increase in temperature. We see a deviation from Kohler's power law which implies that the system comprises of two types of charge carriers.

  10. The Effect of Artificial Aging on the Tensile Properties of Alclad 24S-T and 24S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kotanchik, Joseph N.; Woods, Walter; Zender, George W.

    1943-01-01

    An experimental study was made to determine the effect of artificial aging on the tensile properties of alclad 24S-T and 24S-T aluminum-alloy sheet material. The results of the tests show that certain combinations of aging time and temperature cause a marked increase in the yield strength and a small increase in the ultimate strength; these increases are accompanied by a very large decrease in elongation. A curve is presented that shows the maximum yield strengths that can be obtained by aging this material at various combinations of time and temperature. The higher values of yield stress are obtained in material aged at relatively longer times and lower temperatures.

  11. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2017-02-01

    The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are highlighted by subtracting the zonal mean temperatures from maps. Terrains can be characterized as low or high reflectance and low or high TI. Low maximum temperatures result from high reflectance surfaces while low minimum temperatures from low-TI material. Conversely, high maximum temperatures result from dark surface, and high minimum temperatures from high-TI materials. Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric, consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (∼3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact is broad (∼200 km).

  12. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling

    PubMed Central

    Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo

    2015-01-01

    A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687

  13. Optimization of antibacterial activity by Gold-Thread (Coptidis Rhizoma Franch) against Streptococcus mutans using evolutionary operation-factorial design technique.

    PubMed

    Choi, Ung-Kyu; Kim, Mi-Hyang; Lee, Nan-Hee

    2007-11-01

    This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature (R2 = -0.79) and in a longer extraction time (R2 = -0.71). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent (R2 = -0.12). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at 80 degrees C extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.

  14. Efficiency and Safety: The Best Time to Valve a Plaster Cast.

    PubMed

    Steiner, Samuel R H; Gendi, Kirollos; Halanski, Matthew A; Noonan, Kenneth J

    2018-04-18

    The act of applying, univalving, and spreading a plaster cast to accommodate swelling is commonly performed; however, cast saws can cause thermal and/or abrasive injury to the patient. This study aims to identify the optimal time to valve a plaster cast so as to reduce the risk of cast-saw injury and increase spreading efficiency. Plaster casts were applied to life-sized pediatric models and were univalved at set-times of 5, 8, 12, or 25 minutes. Outcome measures included average and maximum force applied during univalving, blade-to-skin touches, cut time, force needed to spread, number of spread attempts, spread completeness, spread distance, saw blade temperature, and skin surface temperature. Casts allowed to set for ≥12 minutes had significantly fewer blade-to-skin touches compared with casts that set for <12 minutes (p < 0.001). For average and maximum saw blade force, no significant difference was observed between individual set-times. However, in a comparison of the shorter group (<12 minutes) and the longer group (≥12 minutes), the longer group had a higher average force (p = 0.009) but a lower maximum force (p = 0.036). The average temperature of the saw blade did not vary between groups. The maximum force needed to "pop," or spread, the cast was greater for the 5-minute and 8-minute set-times. Despite requiring more force to spread the cast, 0% of attempts at 5 minutes and 54% of attempts at 8 minutes were successful in completely spreading the cast, whereas 100% of attempts at 12 and 25 minutes were successful. The spread distance was greatest for the 12-minute set-time at 5.7 mm. Allowing casts to set for 12 minutes is associated with decreased blade-to-skin contact, less maximum force used with the saw blade, and a more effective spread. Adherence to the 12-minute interval could allow for fewer cast-saw injuries and more effective spreading.

  15. Optical and magneto-optical properties of AuMnSn

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Janssen, Y.; Park, J. M.; Cho, B. K.

    2006-03-01

    We have measured room-temperature magneto-optical properties of AuMnSn on a single-crystalline sample. The maximum polar Kerr rotation was predicted to be very large, about -0.7° at 1.2eV [L. Offernes, P. Ravindran, and A. Kjekshus, Appl. Phys. Lett. 82, 2862 (2003)]. We found the experimental maximum Kerr rotation and ellipticity were about three times smaller than predicted and appeared at energies about 0.6eV higher than predicted, which is possibly due to inaccurate handling of the theory based on the local spin-density approximation to density-function theory for the localized 4d and 5d orbitals in AuMnSn.

  16. Weather and Prey Predict Mammals' Visitation to Water.

    PubMed

    Harris, Grant; Sanderson, James G; Erz, Jon; Lehnen, Sarah E; Butler, Matthew J

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs.

  17. Weather and Prey Predict Mammals’ Visitation to Water

    PubMed Central

    Harris, Grant; Sanderson, James G.; Erz, Jon; Lehnen, Sarah E.; Butler, Matthew J.

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs. PMID:26560518

  18. Measurement of SAR-induced temperature increase in a phantom and in vivo with comparison to numerical simulation

    PubMed Central

    Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.

    2013-01-01

    Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188

  19. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    PubMed

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  20. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis.

    PubMed

    Jayasundara, Nishad; Somero, George N

    2013-06-01

    An insufficient supply of oxygen under thermal stress is thought to define thermal optima and tolerance limits in teleost fish. When under thermal stress, cardiac function plays a crucial role in sustaining adequate oxygen supply for respiring tissues. Thus, adaptive phenotypic plasticity of cardiac performance may be critical for modifying thermal limits during temperature acclimation. Here we investigated effects of temperature acclimation on oxygen consumption, cardiac function and blood oxygen carrying capacity of a eurythermal goby fish, Gillichthys mirabilis, acclimated to 9, 19 and 26°C for 4 weeks. Acclimation did not alter resting metabolic rates or heart rates; no compensation of rates was observed at acclimation temperatures. However, under an acute heat ramp, warm-acclimated fish exhibited greater heat tolerance (CTmax=33.3, 37.1 and 38.9°C for 9°C-, 19°C- and 26°C-acclimated fish, respectively) and higher cardiac arrhythmia temperatures compared with 9°C-acclimated fish. Heart rates measured under an acute heat stress every week during 28 days of acclimation suggested that both maximum heart rates and temperature at onset of maximum heart rates changed over time with acclimation. Hemoglobin levels increased with acclimation temperature, from 35 g l(-1) in 9°C-acclimated fish to 60-80 g l(-1) in 19°C- and 26°C-acclimated fish. Oxygen consumption rates during recovery from acute heat stress showed post-stress elevation in 26°C-acclimated fish. These data, coupled with elevated resting metabolic rates and heart rates at warm temperatures, suggest a high energetic cost associated with warm acclimation in G. mirabilis. Furthermore, acclimatory capacity appears to be optimized at 19°C, a temperature shown by behavioral studies to be close to the species' preferred temperature.

  1. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor.

    PubMed

    Marchin, Renée M; Dunn, Robert R; Hoffmann, William A

    2014-12-01

    In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.

  2. Ceramics for the advanced automotive gas turbine engine: A look at a single shaft design

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.

    1977-01-01

    The results of a preliminary analysis of a single shaft regenerative design with a single stage radial turbine are presented to show the fuel economy that can be achieved at high turbine inlet temperatures, with this particular advanced design, if the turbine tip speed and regenerator inlet temperature are not limited. The engine size was 100 hp for application to a 3500 lb auto. The fuel economy was analyzed by coupling the engine to the auto through a continuously variable speed-ratio transmission and operating the system at constant turbine inlet temperature over the Composite Driving Cycle. The fuel was gasoline and the analysis was for a 85 F day. With a turbine inlet temperature of 2500 F the fuel economy was 26.2 mpg, an improvement of 18 percent over that of 22.3 mpg with a turbine inlet temperature of 1900 F. The turbine tip speed needed for best economy with the 2500 F engine was 2530 ft/sec. The regenerator temperature was approximately 2200 F at idle. Disk stresses were estimated for one single stage radial turbine and two two-stage radial-axial turbines and compared with maximum allowable stress curves estimated for a current ceramic material. Results show a need for higher Weibull Modulus, higher strength ceramics.

  3. Structural and optical properties of tin disulphide thin films grown by flash evaporation

    NASA Astrophysics Data System (ADS)

    Banotra, Arun; Padha, Naresh

    2018-04-01

    Tin Disulphide thin films were deposited by Flash Evaporation method on corning Glass Substrate at different substrate temperatures. The deposited films were undertaken for Structural, Optical and compositional characterizations. Compositional analysis of the films exhibited decrease in the sulphur content enabling S/Sn ratio to vary from 2.05 to 1.32 with increasing substrate temperature. X-ray diffraction reveals amorphous nature of the as-deposited films with varying substrate temperatures. Optical measurements estimated from absorbance spectra suggest higher absorbance at λ≤500nm and higher transmission at λ≥500nm with bandgap changes from 2.45eV to 2.09eV. The 323K as-deposited films were undertaken for annealing which transforms the films into crystalline form corresponding to hexagonal SnS2 phase at 423K and above. However, the optical response for the annealed samples shows a higher transmission of 70% in the visible region which increases further in the Infrared region of the spectrum achieving maximum transmission upto 98%. This higher transmission in the Visible to Infrared region of the solar spectrum in amorphous as well as crystalline form makes the film suitable for their use as a window layer in the Solar Cell Design.

  4. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  6. Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Zabusov, O.; Fedotova, S.; Frolov, A.; Saltykov, M.; Maltsev, D.

    2013-04-01

    In this paper the influence of structural parameters on the tendency of steels to reversible temper embrittlement was studied for assessment of performance properties of reactor pressure vessel steels with extended service life. It is shown that the growth of prior austenite grain size leads to an increase of the critical embrittlement temperature in the initial state. An embrittlement heat treatment at the temperature of maximum manifestation of temper embrittlement (480 °C) shifts critical embrittlement temperature to higher values due to the increase of the phosphorus concentration on grain boundaries. There is a correlation between phosphorus concentration on boundaries of primary austenite grains and the share of brittle intergranular fracture (that, in turn, depends on impact test temperature) in the fracture surfaces of the tested Charpy specimens.

  7. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  8. A temperature compensation methodology for piezoelectric based sensor devices

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji

    2017-08-01

    A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.

  9. Precipitation and Temperature Effects on Populations of Aedes albopictus (Diptera: Culicidae): Implications for Range Expansion

    PubMed Central

    ALTO, BARRY W.; JULIANO, STEVEN A.

    2008-01-01

    We investigated how temperature and precipitation regime encountered over the life cycle of Aedes albopictus (Skuse) affects populations. Caged populations of A. albopictus were maintained at 22, 26, and 30°C. Cages were equipped with containers that served as sites for oviposition and larval development. All cages were assigned to one of three simulated precipitation regimes: (1) low fluctuation regime - water within the containers was allowed to evaporate to 90% of its maximum before being refilled, (2) high fluctuation regime - water was allowed to evaporate to 25% of its maximum before being refilled, and (3) drying regime - water was allowed to evaporate to complete container dryness before being refilled. Greater temperature and the absence of drying resulted in greater production of adults. Greater temperature in combination with drying were detrimental to adult production. These precipitation effects on adult production were absent at 22°C. Greater temperatures and drying treatments yielded higher and lower eclosion rates, respectively and, both yielded greater mortality. Development time and size of adults decreased with increased temperatures, and drying produced larger adults. Greater temperatures resulted in greater egg mortality. These results suggest that populations occurring in warmer regions are likely to produce more adults as long as containers do not dry completely. Populations in cooler regions are likely to produce fewer adults with the variability of precipitation contributing less to variation in adult production. Predicted climate change in North America is likely to extend the northern distribution of A. albopictus and to limit further its establishment in arid regions. PMID:11580037

  10. Temperature and salinity regulation of growth and gas exchange of Salicornia fruticosa (L.) L.

    PubMed

    Abdulrahman, Farag Saleh; Williams, George J

    1981-03-01

    Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C 3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20-25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO 2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO 2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.

  11. Increases in external cause mortality due to high and low temperatures: evidence from northeastern Europe

    NASA Astrophysics Data System (ADS)

    Orru, Hans; Åström, Daniel Oudin

    2017-05-01

    The relationship between temperature and mortality is well established but has seldom been investigated in terms of external causes. In some Eastern European countries, external cause mortality is substantial. Deaths owing to external causes are the third largest cause of mortality in Estonia, after cardiovascular disease and cancer. Death rates owing to external causes may reflect behavioural changes among a population. The aim for the current study was to investigate if there is any association between temperature and external cause mortality, in Estonia. We collected daily information on deaths from external causes (ICD-10 diagnosis codes V00-Y99) and maximum temperatures over the period 1997-2013. The relationship between daily maximum temperature and mortality was investigated using Poisson regression, combined with a distributed lag non-linear model considering lag times of up to 10 days. We found significantly higher mortality owing to external causes on hot (the same and previous day) and cold days (with a lag of 1-3 days). The cumulative relative risks for heat (an increase in temperature from the 75th to 99th percentile) were 1.24 (95% confidence interval, 1.14-1.34) and for cold (a decrease from the 25th to 1st percentile) 1.19 (1.03-1.38). Deaths due to external causes might reflect changes in behaviour among a population during periods of extreme hot and cold temperatures and should therefore be investigated further, because such deaths have a severe impact on public health, especially in Eastern Europe where external mortality rates are high.

  12. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    NASA Astrophysics Data System (ADS)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  13. Effect of solar activity on the repetitiveness of some meteorological phenomena

    NASA Astrophysics Data System (ADS)

    Todorović, Nedeljko; Vujović, Dragana

    2014-12-01

    In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth's weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27-29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10-12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12-16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.

  14. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.

  15. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 2. Properties of energy carriers and energy yield.

    PubMed

    Richter, F; Fricke, T; Wachendorf, M

    2011-04-01

    In order to determine influencing parameters on energy production of the IFBB process, herbage from a lowland hay meadow (Arrhenaterion) was sampled and ensiled at eight dates between 27 April and 21 June 2007. The silage from each date was processed in six IFBB treatments with and without hydrothermal conditioning at different temperatures. Methane yields and higher heating values were determined and an energy balance was calculated with whole-crop digestion (WCD) of the silage as reference system. Maximum net energy yields were 10.2 MWh ha(-1) for the IFBB treatment without hydrothermal conditioning and 9.0 MWh ha(-1) for the treatment with hydrothermal conditioning at 50 °C. WCD achieved a maximum net energy yield of 3.7 MWh ha(-1). Energy conversion efficiency ranged from 0.24 to 0.54 and was predicted with high accuracy by temperature of hydrothermal conditioning as well as concentration of neutral detergent fibre and dry matter in the silage (R(2)=0.90). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes

    NASA Astrophysics Data System (ADS)

    Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong

    2014-07-01

    A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.

  17. Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.

    Treesearch

    S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx

    1999-01-01

    Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...

  18. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Living in a coastal lagoon environment: photosynthetic and biochemical mechanisms of key marine macroalgae.

    PubMed

    García-Sánchez, Marta; Korbee, Nathalie; Pérez-Ruzafa, Isabel María; Marcos, Concepción; Figueroa, Félix L; Pérez-Ruzafa, Ángel

    2014-10-01

    The physiological status of Cystoseira compressa, Padina pavonica and Palisada tenerrima was studied by in vivo chlorophyll fluorescence, pigment content, stoichiometry (C:N), accumulation of UV photoprotectors and antioxidant activity; comparing their photosynthetic response in a coastal lagoon (Mar Menor) and in Mediterranean coastal waters. In general, the specimens reached their highest ETRmax in spring in the Lagoon, but in summer in the Mediterranean, coinciding with their maximum biomass peak. The species exhibited a dynamic photoinhibition. Except C. compressa, they showed a lower decrease in Fv/Fm and higher recovery rates in the Mediterranean populations when exposed to high irradiance. The higher salinity and temperature of the lagoon could impair the photoprotection mechanisms. The acclimation to lagoon environments is species-specific and involves complex regulatory mechanisms. The results underline the importance of N in repair, avoidance, quenching and scavenging mechanisms. In general, Lagoon specimens showed higher pigment concentration. Although xanthophylls play important photo-protective and antioxidant roles, the observed trend is more likely to be explained by the higher temperatures reached in the lagoon compared to Mediterranean. Therefore the studied photosynthetic and biochemical mechanisms can be effective not only for high irradiance, but also for higher temperatures in a climate change scenario, but are highly dependent on nutrient availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Xenon gas field ion source from a single-atom tip

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  1. Metabolism, food consumption and growth of plaice ( Pleuronectes platessa) and flounder ( Platichthys flesus) in relation to fish size and temperature

    NASA Astrophysics Data System (ADS)

    Fonds, M.; Cronie, R.; Vethaak, A. D.; Van Der Puyl, P.

    Daily rates of oxygen consumption, food consumption and growth of plaice ( Pleuronectes platessa) and flounder ( Platichthys flesus) have been measured in the laboratory at various constant temperatures. Oxygen consumption was related to body weight of the fish as a power function, with a weight exponent of between 0.71 and 0.85. No significant effects of temperature or feeding on this exponent were found. Flounder showed a significantly higher metabolic rate and a higher temperature coefficient for metabolism than plaice. Maximum daily rates of food consumption and the weight increment of fish fed with excess rations of fresh mussel meat could also be related to fish weights by means of power functions. For plaice these exponents decreased from about 0.9 at low temperatures (2-6 C°) to about 0.7 at high temperatures (18-22°C). Such a temperature effect on the weight exponent indicates that small juvenile fish eat more and grow faster at higher temperatures than do large older fish, and that large fish do better at low temperatures. After scaling of daily food consumption and growth in proportion to metabolic weights of the fish (W 0.78), feeding and growth at different fish sizes and temperatures can be compared and temperature-growth rate models can be used for investigations of feeding in natural populations. Compared to plaice, young flounder ate more and grew faster at higher temperatures (> 14°C). This may partly explain the preference of flounder for the shallower parts of coastal areas and estuaries, where summer temperatures and food densities are higher. Energy budgets of young plaice and flounder fed with excess rations of mussel meat indicate that at least 29% of the food energy is used for metabolism while about 37% of the food energy is converted into growth. The net conversion efficiency was estimated at 0.45 for food and growth in units of ash-free dry weight, and at 0.53 for food and growth in energy units. Analysis of the energy budget showed that the assimilated physiologically useful food energy is divided almost equally over metabolism (42-47%) and growth (53-55%). It is suggested that flatfish spend relatively less energy in swimming and therefore convert more food energy into growth than (pelagic) roundfish.

  2. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  3. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  4. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  5. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  6. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  7. Temperature changes in dental implants following exposure to hot substances in an ex vivo model.

    PubMed

    Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I

    2008-06-01

    The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.

  8. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  9. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    USGS Publications Warehouse

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.

  10. Cell growth and catecholase production for Polyporus versicolor in submerged culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1977-04-01

    Cell growth and catecholase production for Polyporus versicolor (ATCC 12679) were studied in mechanically agitated submerged culture, as functions of temperature. The exponential-phase growth rate exhibited a maximum at 28/sup 0/C. Over the range of 20/sup 0/C to approximately 30/sup 0/C, both cell mass and enzyme yield factors were constant. At higher temperatures (30 to 40/sup 0/C) cell mass yield factor decreased and enzyme yield factor increased. Specific respiration rate of P. versicolor was determined. Thermal deactivation of catecholase was investigated between 30 and 50/sup 0/C, and deactivation rates were fit to an Arrhenius rate expression.

  11. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on regional climate extremes as well. The scenarios generated with the high-resolution model simulation were compared with the coarse resolution CMIP5 model scenarios to identify region specific features that might be better resolved in the former simulation.

  12. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking.

    PubMed

    Lindgren, T; Norbäck, D

    2002-12-01

    The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.

  13. Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.

    PubMed

    Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim

    2009-09-01

    Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.

  14. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis

    PubMed Central

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-01-01

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455

  15. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis.

    PubMed

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-10-15

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.

  16. Effects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)

    PubMed Central

    Maiditsch, Isabelle Pia; Ladich, Friedrich

    2014-01-01

    Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456

  17. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae

    PubMed Central

    Candebat, Caroline; Ruhbaum, Yannick; Álvarez-Fernández, Santiago; Claireaux, Guy; Zambonino-Infante, José-Luis; Peck, Myron A.

    2017-01-01

    Most of the thermal tolerance studies on fish have been performed on juveniles and adults, whereas limited information is available for larvae, a stage which may have a particularly narrow range in tolerable temperatures. Moreover, previous studies on thermal limits for marine and freshwater fish larvae (53 studies reviewed here) applied a wide range of methodologies (e.g. the static or dynamic method, different exposure times), making it challenging to compare across taxa. We measured the Critical Thermal Maximum (CTmax) of Atlantic herring (Clupea harengus) and European seabass (Dicentrarchus labrax) larvae using the dynamic method (ramping assay) and assessed the effect of warming rate (0.5 to 9°C h-1) and acclimation temperature. The larvae of herring had a lower CTmax (lowest and highest values among 222 individual larvae, 13.1–27.0°C) than seabass (lowest and highest values among 90 individual larvae, 24.2–34.3°C). At faster rates of warming, larval CTmax significantly increased in herring, whereas no effect was observed in seabass. Higher acclimation temperatures led to higher CTmax in herring larvae (2.7 ± 0.9°C increase) with increases more pronounced at lower warming rates. Pre-trials testing the effects of warming rate are recommended. Our results for these two temperate marine fishes suggest using a warming rate of 3–6°C h-1: CTmax is highest in trials of relatively short duration, as has been suggested for larger fish. Additionally, time-dependent thermal tolerance was observed in herring larvae, where a difference of up to 8°C was observed in the upper thermal limit between a 0.5- or 24-h exposure to temperatures >18°C. The present study constitutes a first step towards a standard protocol for measuring thermal tolerance in larval fish. PMID:28749960

  18. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    NASA Astrophysics Data System (ADS)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this difference was not observed until the last three stages of germination. The stage of germination also influenced the levels of these polyamines. The concentrations of Cad and Put detected at the CS stage were 50 and 18 fold respectively, relative to the initial concentrations found at the DS stage. Spd levels in seeds under stress temperatures also increased, but to a lesser extent compared to Cad and Put. Differences in Spd concentrations between temperatures were observed only at the CS stage. Agm concentrations were higher at 25 than at 10°C at SRP and CS. Spm concentrations of seeds germinated at 25°C remained higher during the first four stages of development but at the end of germination, seeds at 10°C had higher quantities of Spm. In the cotyledons, Polyamines tended to decline with stages of germination, regardless of the temperature. However, Agm levels increased in the cotyledons of soybean seeds. Maximum dry weight and seedling growth was found at RHV, SRP, and CS. Maximum levels of Cad and Put were also found during these stages. Spd increased with both temperatures from DS to Ra-10, thereafter, Spd levels in seeds at 10°C continued increasing while seeds at 25°C declined. High and low stress germination temperatures caused significant changes in polyamine concentrations, reduced germination and seedling growth of soybean seeds.

  19. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  20. Thermal implications of metamorphism in greenstone belts and the hot asthenosphere-thick continental lithoshere paradox

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1986-01-01

    From considerations of secular cooling of the Earth and the slow decay of radiogenic heat sources in the Earth with time, the conclusion that global heat loss must have been higher in the Archean than at present seems inescapable. The mechanism by which this additional heat was lost and the implications of higher heat low for crustal temperatures are fundamental unknowns in our current understanding of Archean tectonics and geological processes. Higher heat loss implies that the average global geothermal gradient was higher in the Archean than at present, and the restriction of ultramafic komatiites to the Archean and other considerations suggests that the average temperature of the mantle was several hundred degrees hotter during the Archean than today. In contrast, there is little petrologic evidence that the conditions of metamorphism or crustal thickness (including maximum crustal thickness under mountains) were different in archean continental crust from the Phanerozoic record. Additionally, Archean ages have recently been determined for inclusions in diamonds from Cretaceous kimeberlites in South Africa, indicating temperatures of 900 to 1300 at depths of 150 to 215 km (45 to 65 kbar) in the Archean mantle, again implying relatively low geothermal gradients at least locally in the Archean. The thermal implications of metamorphism are examined, with special reference to greenstone belts, and a new thermal model of the continental lithosphere is suggested which is consistent with thick continental lithosphere and high asthenosphere temperatures in the Archean.

  1. Analysis of hydrogen plasma in MPCVD reactor

    NASA Astrophysics Data System (ADS)

    Shivkumar, Gayathri

    The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron temperature by about 70% and at 500 W and 30 Torr, the maximum gas temperature is seen to increase by 50%. The effect of susceptor position is studied and it is seen that the only condition favorable to growth would be to raise it by less than 25 mm from the initial reference position or to maintain it at the same level.

  2. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  3. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE PAGES

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; ...

    2017-11-20

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  4. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer

    USGS Publications Warehouse

    Barker, C.E.; Goldstein, R.H.

    1990-01-01

    The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors

  5. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; hide

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  6. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    PubMed

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  7. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  8. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    PubMed

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  9. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations.

    PubMed

    Kleypas, Joan A; Thompson, Diane M; Castruccio, Frederic S; Curchitser, Enrique N; Pinsky, Malin; Watson, James R

    2016-11-01

    Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone. © 2016 John Wiley & Sons Ltd.

  10. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing

    PubMed Central

    Wright, Caradee Y.; Street, Renée A.; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N.; Mathee, Angela

    2017-01-01

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2–4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed ‘realfeel’ temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of ‘stuffiness’ and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat–health impact warning categories of ‘caution’ and ‘extreme caution’. PMID:28067816

  11. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing.

    PubMed

    Wright, Caradee Y; Street, Renée A; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N; Mathee, Angela

    2017-01-06

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2-4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed 'realfeel' temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of 'stuffiness' and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat-health impact warning categories of 'caution' and 'extreme caution'.

  12. Modeling maximum daily temperature using a varying coefficient regression model

    Treesearch

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  13. A method for safety testing of radiofrequency/microwave-emitting devices using MRI.

    PubMed

    Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M

    2015-11-01

    Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.

  14. A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI

    PubMed Central

    Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.

    2015-01-01

    Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724

  15. On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan

    2017-12-01

    Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).

  16. Calculation of change in brain temperatures due to exposure to a mobile phone

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.

    1999-10-01

    In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  18. Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Bremer, Ulisses Franz; de Souza, Sergio Florêncio; Simões, Jefferson Cardia

    2017-07-01

    This paper describes the changes in the annual maximum snowlines of a selected set of mountain glaciers at the southern end of the Cordillera Blanca between 1984 and 2015 using satellite images. Furthermore, we analysed the existing glacier records in the Cordillera Blanca since the last glacial maximum to understand the evolution of glaciers in this region over a few centuries. There was a rise in the snowline altitude of glaciers in this region since the late 1990s with a few small glacier advances. Historical to the present El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) records were also analysed to understand whether there was a teleconnection between the glacier fluctuations in the region and the phase changes of ENSO and PDO. We also assessed the variations in three important climatic parameters that influence the glacier retreat—temperature, precipitation, and relative humidity—over a few decades. We calculated the anomalies as well as the seasonal changes in these variables since the mid-twentieth century. There was an increase in temperature during this period, and the decrease in precipitation was not so prominent compared with the temperature rise. There was an exceptionally higher increase in relative humidity since the early 2000s, which is relatively higher than that expected due to the observed rate of warming, and this increase in humidity is believed to be the reason behind the unprecedented rise in the snowline altitudes since the beginning of the twenty-first century.

  19. Human-biometeorological assessment of increasing summertime extreme heat events in Shanghai, China during 1973-2015

    NASA Astrophysics Data System (ADS)

    Kong, Qinqin; Ge, Quansheng; Xi, Jianchao; Zheng, Jingyun

    2017-11-01

    Summertime extreme heat events, defined by the Universal Thermal Climate Index (UTCI), have shown increasing trends in Shanghai from 1973 to 2015. There is a clear shift to higher temperatures for the daily maximum UTCI values, and the number of days with daily maximum UTCI exceeding 38 °C significantly increased by 4.34 days/10a. An upward trend of 3.67 days/10a was detected for the number of hot days which also displays an abrupt increase around 1998. Both the frequency and total duration of heat waves have significantly increased by 0.77 times/10a and 3.51 days/10a respectively. Their inter-decadal variations indicate a three-part division of the study period showing more and more heat waves and longer total duration, which are 1.0 times/a and 4.13 days/a for 1973-1987, 1.71 times/a and 7.64 days/a for 1988-2001, and 3.57 times/a and 16.0 days/a for 2002-2015. In addition to that are more occurrences of long-lasting heat waves. Compared with the UTCI, air temperature-based definitions have indicated substantially higher increases in extreme heat events, especially for hot nights. The relatively low humidity and strong wind speeds in the twenty-first century are considered to be responsible for this difference. Our study provides a more in-depth case to monitor extreme heat events under the combining effects of air temperature, humidity, wind speeds, total cloud cover, etc. and can support studies over other regions.

  20. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure andmore » the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.« less

  1. On the Relative Importance of Convection and Temperature on the Behavior of the Ionosphere in North American during January 6-12, 1997

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Buonsanto, M. J.; Reinisch, B. W.; Holt, J.; Fennelly, J. A.; Scali, J. L.; Comfort, R. H.; Germany, G. A.; Spann, J.; Brittnacher, M.

    1999-01-01

    Measurements from a network of digisondes and an incoherent scatter radar In Eastern North American For January 6-12, 1997 have been compared with the Field Line Interhemispheric Plasma (FLIP) model which now includes the effects of electric field convective. With the exception of Bermuda, the model reproduces the daytime electron density very well most of the time. As is typical behavior for winter solar minimum on magnetically undisturbed nights, the measurements at Millstone Hill show high electron temperatures before midnight followed by a rapid decay, which is accompanied by a pronounced density enhancement in the early morning hours. The FLIP model reproduces the nighttime density enhancement well, provided the model is constrained to follow the topside electron temperature and the flux tube is full. Similar density enhancements are seen at Goose Bay, Wallops Island and Bermuda. However, the peak height variation and auroral images indicate the density enhancements at Goose Bay are most likely due to particle precipitation. Contrary to previously published work we find that the nighttime density variation at Millstone Hill is driven by the temperature behavior and not the other way around. Thus, in both the data and model, the overall nighttime density is lowered and the enhancement does not occur if the temperature remains high all night. Our calculations show that convections of plasma from higher magnetic latitudes does not cause the observed density maximum but it may enhance the density maximum if over-full flux tubes are convected over the station. On the other had, convection of flux tubes with high temperatures and depleted densities may prevent the density maximum from occurring. Despite the success in modeling the nighttime density enhancements, there remain two unresolved problems. First, the measured density decays much faster than the modeled density near sunset at Millstone Hill and Goose Bay though not at lower latitude stations. Second, we cannot fully explain the large temperatures before midnight nor the sudden decay near midnight.

  2. On the location of the maximum homogeneous crystal nucleation temperature

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.

  3. Developing a diagnostic tool for measuring maximum effective temperature within high pressure electrodeless discharges

    NASA Astrophysics Data System (ADS)

    Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme

    2016-09-01

    Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.

  4. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua

    2016-12-01

    Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.

  5. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  6. Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Martínez-Torres, P.; Quintana, P.; Alvarado-Gil, Juan Jose

    2010-05-01

    Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.

  7. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  8. Nitrogen removal from wastewater by a catalytic oxidation method.

    PubMed

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  9. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp; Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027; Huang, P.-C.

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x}more » interfacial layer.« less

  10. Temperature-Induced Remodeling of the Photosynthetic Machinery Tunes Photosynthesis in the Thermophilic Alga Cyanidioschyzon merolae1

    PubMed Central

    Nikolova, Denitsa; Weber, Dieter; Scholz, Martin

    2017-01-01

    The thermophilic alga C. merolae thrives in extreme environments (low pH and temperature between 40°C and 56°C). In this study, we investigated the acclimation process of the alga to a colder temperature (25°C). A long-term cell growth experiment revealed an extensive remodeling of the photosynthetic apparatus in the first 250 h of acclimation, which was followed by cell growth to an even higher density than the control (grown at 42°C) cell density. Once the cells were shifted to the lower temperature, the proteins of the light-harvesting antenna were greatly down-regulated and the phycobilisome composition was altered. The amount of PSI and PSII subunits was also decreased, but the chlorophyll to photosystems ratio remained unchanged. The 25°C cells possessed a less efficient photon-to-oxygen conversion rate and require a 2.5 times higher light intensity to reach maximum photosynthetic efficiency. With respect to chlorophyll, however, the photosynthetic oxygen evolution rate of the 25°C culture was 2 times higher than the control. Quantitative proteomics revealed that acclimation requires, besides remodeling of the photosynthetic apparatus, also adjustment of the machinery for protein folding, degradation, and homeostasis. In summary, these remodeling processes tuned photosynthesis according to the demands placed on the system and revealed the capability of C. merolae to grow under a broad range of temperatures. PMID:28270628

  11. Late Eocene to early Oligocene quantitative paleotemperature record: Evidence from continental halite fluid inclusions

    PubMed Central

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene–Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  12. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  13. Phonons on fcc (100), (110), and (111) surfaces using Lennard-Jones potentials. II. Temperature dependence of surface phonons studied with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Sibener, S. J.

    In this paper we present temperature dependent studies of the surface phonon dispersion relations for fcc (100), (110), and (111) faces using molecular dynamics (MD) simulations and Lennard-Jones potentials. This study was conducted in order to investigate how anharmonic potential terms influence the dynamical properties of the surface. This was accomplished by examining the temperature dependence of the Q-resolved phonon spectral density function. All phonon frequencies were found to decrease linearly in T as the temperature was increased, while at low temperatures the phonon linewidths increased linearly with T. At higher temperatures, some of the phonon linewidths changed from having a linear to a quadratic dependence on T. The temperature at which this T to T2 change occurs is surface dependent and occurs at the lowest temperature on the (110) surface. The T2 dependence arises from the increasing importance of higher-order phonon-phonon scattering terms. The phonons which exhibit T2 dependence tend to be modes which propagate perpendicularly or nearly perpendicularly to the direction of maximum root-mean-squared displacement (RMSD). This is especially true for the linewidth of the S 1 mode at overlineX on the (110) surface where, at T ≈ 15-23% of the melting temperature, the RMSD perpendicular to the atomic rows become larger than the RMSD normal to the surface. Our results indicate that the dynamics on the (110) surface may be significantly influenced by anharmonic potential terms at temperatures as low as 15% of the melting temperature.

  14. Impacts of Future Climate Change on Ukraine Transportation System

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures must be considered. Frequency of winter events that make road surface worse such as glaze-clear ice, frozen snow that had initially melted on a warm road surface, ice and snow slippery coats etc., are high enough, especially in the forest-steppe zone. In the Black Sea Lowland among winter events the frozen snow that had initially melted on a warm road surface is most commonly observed, that is connected with high occurrence of the thaws. Because of increase in frequency of shower precipitation in all cities wet road surface is observed most frequently, especially in May and June; it must be taken into account for construction of roads, too. Monthly mean wind speed shows that in Odesa and Kharkiv significant increase in average monthly and yearly wind speeds are observed, by 0,5-1 m/s in comparison with the period of 1961 to 1990. On the contrary, in Dnipropetrovsk, wind speed decreases by 0,7 m/s. Frequency distribution of maximum wind speed shows that high wind speeds are more frequent in the winter months.

  15. 40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...

  16. The automated analysis of clustering behaviour of piglets from thermal images in response to immune challenge by vaccination.

    PubMed

    Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L

    2018-01-01

    An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.

  17. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues

    NASA Astrophysics Data System (ADS)

    Kuanui, Pataporn; Chavanich, Suchana; Viyakarn, Voranop; Omori, Makoto; Lin, Chiahsin

    2015-06-01

    This study investigated the effects of temperature and salinity on growth, survival, and photosynthetic efficiency of three coral species, namely, Pocillopora damicornis, Acropora millepora and Platygyra sinensis of different ages (6 and 18 months old). The experimental corals were cultivated via sexual propagation. Colonies were exposed to 5 different temperatures (18, 23, 28, 33, and 38°C) and 5 different salinities (22, 27, 32, 37, and 42 psu). Results showed that temperature significantly affected photosynthetic efficiency (Fv/Fm) (p < 0.05) compared to salinity. The maximum quantum yield of corals decreased ranging from 5% to 100% when these corals were exposed to different temperatures and salinities. Temperature also significantly affected coral growth and survival. However, corals exposed to changes in salinity showed higher survivorship than those exposed to changes in temperature. Results in this study also showed that corals of different ages and of different species did not display the same physiological responses to changes in environmental conditions. Thus, the ability of corals to tolerate salinity and temperature stresses depends on several factors.

  18. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Chen, Yanhua; Jiang, Chuanhai

    2011-09-01

    In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ɛ-Cu precipitates on the dislocation movement. As massive ɛ-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.

  19. Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature.

    PubMed

    Bijur, Polly E; Shah, Purvi D; Esses, David

    2016-12-01

    The objective was to compare agreement between three non-invasive measures of temperature and rectal temperatures and to estimate the sensitivity and specificity of these measures to detect a rectal temperature of 38°C or higher. We conducted a study of the diagnostic accuracy of oral, tympanic membrane (TM) and temporal artery (TA) thermometry to measure fever in an urban emergency department (ED). Data were collected from adult patients who received rectal temperature measurement. Bland-Altman analysis was performed; sensitivity, specificity and 95% CIs were calculated. 987 patients were enrolled. 36% of the TM and TA readings differed by 0.5°C or more from rectal temperatures, 50% of oral temperatures. TM measures were most precise-the SD of the difference from rectal was 0.4°C TM, and 0.6°C for oral and TA (p<0.001). The sensitivities of a 38°C cutpoint on oral, TM and TA measures to detect a rectal temperature of 38°C or higher were: 37.0%, 68.3% and 71.1%, respectively (oral vs TM and TA p<0.001). The corresponding specificities were 99.4%, 98.2% and 92.3% (oral, TM and TA) with oral specificity significantly higher than the other two methods (p<0.01). TM and TA cutpoints of 37.5°C provided greater than 90% sensitivity to detect fever with specificity of 90% and 72%, respectively. None of the non-invasive methods met benchmarks for diagnostic accuracy using the criterion of 38°C to detect rectal temperature of 38°C. A TM cutpoint of 37.5°C provides maximum diagnostic accuracy of the three non-invasive measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish.

    PubMed

    Johnston, I A; Altringham, J D

    1985-09-01

    Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.

Top