Sample records for higher methane selectivity

  1. Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community

    PubMed Central

    Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Van Ranst, Eric

    2013-01-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population. PMID:24038691

  2. Termites facilitate methane oxidation and shape the methanotrophic community.

    PubMed

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  3. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  4. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  5. More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets.

    PubMed

    Paganoni, B; Rose, G; Macleay, C; Jones, C; Brown, D J; Kearney, G; Ferguson, M; Thompson, A N

    2017-09-01

    The Australian sheep industry aims to increase the efficiency of sheep production by decreasing the amount of feed eaten by sheep. Also, feed intake is related to methane production, and more efficient (low residual feed intake) animals eat less than expected. So we tested the hypothesis that more efficient sheep produce less methane by investigating the genetic correlations between feed intake, residual feed intake, methane, carbon dioxide, and oxygen. Feed intake, methane, oxygen, and carbon dioxide were measured on Merino ewes at postweaning (1,866 at 223 d old), hogget (1,010 sheep at 607 d old), and adult ages (444 sheep at 1,080 d old). Sheep were fed a high-energy grower pellet ad libitum for 35 d. Individual feed intake was measured using automated feeders. Methane was measured using portable accumulation chambers up to 3 times during this feed intake period. Heritabilities and phenotypic and genotypic correlations between traits were estimated using ASReml. Oxygen (range 0.10 to 0.20) and carbon dioxide (range 0.08 to 0.28) were generally more heritable than methane (range 0.11 to 0.14). Selecting to decrease feed intake or residual feed intake will decrease methane (genetic correlation [] range 0.76 to 0.90) and carbon dioxide ( range 0.65 to 0.96). Selecting to decrease intake ( range 0.64 to 0.78) and methane ( range 0.81 to 0.86) in sheep at postweaning age would also decrease intake and methane in hoggets and adults. Furthermore, selecting for lower residual feed intake ( = 0.75) and carbon dioxide ( = 0.90) in hoggets would also decrease these traits in adults. Similarly, selecting for higher oxygen ( = 0.69) in hoggets would also increase this trait in adults. Given these results, the hypothesis that making sheep more feed efficient will decrease their methane production can be accepted. In addition, carbon dioxide is a good indicator trait for feed intake because it has the highest heritability of the gas traits measured; is cheaper, faster, and easier to measure than feed intake and has strong phenotypic and genetic correlations with feed intake. Furthermore, selection for feed intake, feed efficiency, methane, and carbon dioxide can be done early in sheep at postweaning age or hoggets. This early selection reduces the generation interval for breeding, thereby increasing response to selection.

  6. Pretreatment of Cottage Cheese to Enhance Biogas Production

    PubMed Central

    Salgaonkar, Bhakti; Mutnuri, Srikanth

    2014-01-01

    This study evaluated the possibility of pretreating selected solid fraction of an anaerobic digester treating food waste to lower the hydraulic retention time and increase the methane production. The study investigated the effect of different pretreatments (thermal, chemical, thermochemical and enzymatic) for enhanced methane production from cottage cheese. The most effective pretreatments were thermal and enzymatic. Highest solubilisation of COD was observed in thermal pretreatment, followed by thermochemical. In single enzyme systems, lipase at low concentration gave significantly higher methane yield than for the experiments without enzyme additions. The highest lipase dosages decreased methane yield from cottage cheese. However, in case of protease enzyme an increase in concentration of the enzyme showed higher methane yield. In the case of mixed enzyme systems, pretreatment at 1 : 2 ratio of lipase : protease showed higher methane production in comparison with 1 : 1 and 2 : 1 ratios. Methane production potentials for different pretreatments were as follows: thermal 357 mL/g VS, chemical 293 mL/g VS, and thermochemical 441 mL/g VS. The average methane yield from single enzyme systems was 335 mL/g VS for lipase and 328 mL/g VS for protease. Methane potentials for mixed enzyme ratios were 330, 360, and 339 mL/g VS for 1 : 1, 1 : 2, and 2 : 1 lipase : protease, respectively. PMID:24995288

  7. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.

    PubMed

    Susilo, Robin; Alavi, Saman; Ripmeester, John A; Englezos, Peter

    2008-05-21

    Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.

  8. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  9. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  10. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.

    PubMed

    Hayes, B J; Donoghue, K A; Reich, C M; Mason, B A; Bird-Gardiner, T; Herd, R M; Arthur, P F

    2016-03-01

    Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging from 0.19 to 0.29. This suggests methane emissions could be reduced by selection. Given the high cost of measuring methane production from individual beef cattle, genomic selection is the most feasible approach to achieve this reduction in emissions. We derived genomic EBV (GEBV) for methane traits from a reference set of 747 Angus animals phenotyped for methane traits and genotyped for 630,000 SNP. The accuracy of GEBV was tested in a validation set of 273 Angus animals phenotyped for the same traits. Accuracies of GEBV ranged from 0.29 ± 0.06 for methane yield and 0.35 ± 0.06 for residual methane production. Selection on GEBV using the genomic prediction equations derived here could reduce emissions for Angus cattle by roughly 5% over 10 yr.

  11. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.

    2016-12-01

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.

  12. Process, including membrane separation, for separating hydrogen from hydrocarbons

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  13. Microwave-assisted direct synthesis of butene from high-selectivity methane

    NASA Astrophysics Data System (ADS)

    Lu, Yi-heng; Li, Kang; Lu, Yu-wei

    2017-12-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1-0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx-MoOy/SiO2 are used as the catalyst, the methane-hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0-3.0 wt%.

  14. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy

    PubMed Central

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.

    2016-01-01

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point. PMID:27941857

  15. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy.

    PubMed

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A

    2016-12-12

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and A L /A S value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in A L /A S values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.

  16. Stress and Dilatancy Relation of Methane Hydrate Bearing Sand with Various Fines Content

    NASA Astrophysics Data System (ADS)

    Hyodo, M.

    2016-12-01

    This study presents an experimental and numerical study on the shear behaviour of methane hydrate bearing sand with variable confining pressures and methane hydrate saturations. A representative grading curve of Nankai Trough is selected as the grain size distribution of host sand to artificially produce the methane hydrate bearing sand. A shear strength estimation equation for methane hydrate bearing sand from test results is established. A simple constitutive model has been proposed to predict the stress-strain response of methane hydrate bearing sand based on a few well-known relationships. Experimental results indicate that the inclination of stress-dilatancy curve becomes steeper with a rise in methane hydrate saturation. A revised stress-dilatancy equation has been integrated with this simple model to consider the variance in the inclination of stress-dilatancy curve. The mean stress Pcr at critical state when the peak stress ratio reduces to the residual stress ratio increases with the level of methane hydrate saturation. The dilatancy parameter a tends to increase with the methane hydrate saturation. The shear deformability parameter A exhibits a decreasing tendency with the rise in methane hydrate saturation at each confining pressure. This model is capable of reasonably predicting the strength and stiffness enhancement and the dilation behaviour as methane hydrate saturation increases. The volumetric variation from contraction to expansion of MH bearing sand at a lower confining pressure and only pure volumetric contraction a higher confining pressure can be represented by this simple model.

  17. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    PubMed Central

    van Winden, Julia F.; Reichart, Gert-Jan; McNamara, Niall P.; Benthien, Albert; Damsté, Jaap S. Sinninghe.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs. PMID:22768100

  18. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol.

    PubMed

    Grundner, Sebastian; Markovits, Monica A C; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A; Hensen, Emiel J M; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.

  19. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    DOE PAGES

    Grundner, Sebastian; Markovits, Monica A. C.; Li, Guanna; ...

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. In conclusion, the similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towardsmore » methanol, in both the enzyme system and copper-exchanged mordenite.« less

  20. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  1. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme

    PubMed Central

    Zhang, Junshe; Haribal, Vasudev; Li, Fanxing

    2017-01-01

    We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171

  2. Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.

    PubMed

    Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R

    2012-11-01

    Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Inoculum selection influences the biochemical methane potential of agro-industrial substrates

    PubMed Central

    De Vrieze, Jo; Raport, Linde; Willems, Bernard; Verbrugge, Silke; Volcke, Eveline; Meers, Erik; Angenent, Largus T; Boon, Nico

    2015-01-01

    Obtaining a reliable estimation of the methane potential of organic waste streams in anaerobic digestion, for which a biochemical methane potential (BMP) test is often used, is of high importance. Standardization of this BMP test is required to ensure inter-laboratory repeatability and accuracy of the BMP results. Therefore, guidelines were set out; yet, these do not provide sufficient information concerning origin of and the microbial community in the test inoculum. Here, the specific contribution of the methanogenic community on the BMP test results was evaluated. The biomethane potential of four different substrates (molasses, bio-refinery waste, liquid manure and high-rate activated sludge) was determined by means of four different inocula from full-scale anaerobic digestion plants. A significant effect of the selected inoculum on the BMP result was observed for two out of four substrates. This inoculum effect could be attributed to the abundance of methanogens and a potential inhibiting effect in the inoculum itself, demonstrating the importance of inoculum selection for BMP testing. We recommend the application of granular sludge as an inoculum, because of its higher methanogenic abundance and activity, and protection from bulk solutions, compared with other inocula. PMID:25756301

  4. Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1998-01-01

    The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896

  5. Microwave-assisted direct synthesis of butene from high-selectivity methane

    PubMed Central

    Li, Kang; Lu, Yu-wei

    2017-01-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx–MoOy/SiO2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%. PMID:29308261

  6. Catalytic aromatization of methane.

    PubMed

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  7. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling and Design Optimization of Multifunctional Membrane Reactors for Direct Methane Aromatization

    PubMed Central

    Fouty, Nicholas J.; Carrasco, Juan C.; Lima, Fernando V.

    2017-01-01

    Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m2·atm1/4) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor models and designs for natural gas utilization and other chemical reaction systems. PMID:28850068

  9. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  10. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  11. Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply.

    PubMed

    Krümpel, Johannes Hagen; Illi, Lukas; Lemmer, Andreas

    2018-03-01

    As a consequence of a growing share of solar and wind power, recent research on biogas production highlighted a need for demand-orientated, flexible gas production to provide grid services and enable a decentralized stabilization of the electricity infrastructure. Two-staged anaerobic digestion is particularly suitable for shifting the methane production into times of higher demand due to the spatio-temporal separation of hydrolysis and methanogenesis. To provide a basis for predicting gas production in an anaerobic filter, kinetic parameters of gas production have been determined experimentally in this study. A new methodology is used, enabling their determination during continuous operation. An order in methane production rate could be established by comparing the half lives of methane production. The order was beginning with the fastest: acetic acid>ethanol>butyric acid>iso-butyric acid>valeric acid>propionic acid>1,2propanediol>lactic acid. However, the mixture of a natural hydrolysate from the acidification tank appeared to produce methane faster than all single components tested.

  12. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects.

    PubMed

    Schwach, Pierre; Pan, Xiulian; Bao, Xinhe

    2017-07-12

    The quest for an efficient process to convert methane efficiently to fuels and high value-added chemicals such as olefins and aromatics is motivated by their increasing demands and recently discovered large reserves and resources of methane. Direct conversion to these chemicals can be realized either oxidatively via oxidative coupling of methane (OCM) or nonoxidatively via methane dehydroaromatization (MDA), which have been under intensive investigation for decades. While industrial applications are still limited by their low yield (selectivity) and stability issues, innovations in new catalysts and concepts are needed. The newly emerging strategy using iron single sites to catalyze methane conversion to olefins, aromatics, and hydrogen (MTOAH) attracted much attention when it was reported. Because the challenge lies in controlled dehydrogenation of the highly stable CH 4 and selective C-C coupling, we focus mainly on the fundamentals of C-H activation and analyze the reaction pathways toward selective routes of OCM, MDA, and MTOAH. With this, we intend to provide some insights into their reaction mechanisms and implications for future development of highly selective catalysts for direct conversion of methane to high value-added chemicals.

  13. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking

    DOE PAGES

    Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.; ...

    2018-05-28

    The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less

  14. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-enabled Catalytic Conversion by Site Blocking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.

    The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less

  15. Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion.

    PubMed

    Nielsen, H B; Heiske, S

    2011-01-01

    In the present study we tested four macroalgae species--harvested in Denmark--for their suitability of bioconversion to methane. In batch experiments (53 degrees C) methane yields varied from 132 ml g volatile solids(-1) (VS) for Gracillaria vermiculophylla, 152 mi gVS(-1) for Ulva lactuca, 166 ml g VS(-1) for Chaetomorpha linum and 340 ml g VS(-1) for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5-2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during 'green tides' in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.

  16. Mobile Methane Monitoring Surveys of the Pinedale Anticline Development in the Upper Green River Basin of Wyoming

    NASA Astrophysics Data System (ADS)

    Field, R. A.; Soltis, J.; Murphy, S. M.; Montague, D. C.

    2013-12-01

    Methane emissions from the oil and gas sector have become part of a wider debate of the magnitude of climate change impacts from different fossil fuels. This debate is contentious, as a wide range of estimates of development area leakage rates have been postulated. Here we present the results of mobile monitoring performed in the Pinedale Anticline, WY (PAPA) development. A 4-hour circuit upwind, downwind and within the development was designed to determine methane distributions relative to background concentrations. The circuit was repeated thirty-two times to assess the influence of meteorology and emission sources upon measured values. Figure 1 is a composite of methane data for the project. This pilot project enabled identification of areas and emission sources for subsequent plume quantification studies planned for 2014. Here we present the finding of the circuits through mapping and site comparisons. Along with the methane measurements, mobile ozone and oxides of nitrogen observations were also performed, thereby facilitating a better understanding of the phenomenon of wintertime ground level ozone. Building upon surveys from 2012, we also carried out canister measurements of VOC at selected sites to demonstrate the importance of relating methane and selected VOC concentrations when identifying variations in the contributions of emission sources to ambient measurements. While methane and C2 to C5 alkanes elevations are widespread and highly correlated, those of higher molecular weight VOC, in particular benzene, toluene and xylene isomers, show the importance of emission sources other than wet gas leakage. We discuss the utility of 3D visualization of methane data for illustrating the distribution of leakage relative to emission sources. The influence of emission sources and meteorology upon the data is explored through a comparative analysis of the circuit data. This assessment sets the foundation for planned plume quantification. Finally we compare the mobile data with 1-minute data from the Wyoming DEQ site at Boulder, WY, to determine how well the site represents conditions in the surrounding area. Effective policy decisions require better coupling of air quality measurements and emission inventories. We outline an approach that links regulatory network site data with mobile monitoring and plume quantification that should reduce uncertainty for determining the magnitude of methane emissions from oil and gas sources. Pinedale Anticline methane concentrations for mobile monitoring circuits 2/12/2013 to 3/8/2013

  17. Understanding trends in C-H bond activation in heterogeneous catalysis.

    PubMed

    Latimer, Allegra A; Kulkarni, Ambarish R; Aljama, Hassan; Montoya, Joseph H; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K

    2017-02-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  18. Understanding trends in C–H bond activation in heterogeneous catalysis

    DOE PAGES

    Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; ...

    2016-10-10

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed1. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C–H activation barriers using a single universalmore » descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Lastly, our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.« less

  19. Understanding trends in C-H bond activation in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; Montoya, Joseph H.; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K.

    2017-02-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  20. Atmospheric Modeling of Mars Methane Plumes

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Allen, M.; Lee, S.

    2010-10-01

    We present two complementary methods for isolating and modeling surface source releases of methane in the martian atmosphere. From recent observations, there is strong evidence that periodic releases of methane occur from discrete surface locations, although the exact location and mechanism of release is still unknown. Numerical model simulations with the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) have been applied to the ground-based observations of atmospheric methane by Mumma et al., (2009). MarsWRF simulations reproduce the natural behavior of trace gas plumes in the martian atmosphere, and reveal the development of the plume over time. These results provide constraints on the timing and location of release of the methane plume. Additional detections of methane have been accumulated by the Planetary Fourier Spectrometer (PFS) on board Mars Express. For orbital observations, which generally have higher frequency and resolution, an alternate approach to source isolation has been developed. Drawing from the concept of natural selection within biology, we apply an evolutionary computational model to this problem of isolating source locations. Using genetic algorithms that `reward’ best-fit matches between observations and GCM plume simulations (also from MarsWRF) over many generations, we find that we can potentially isolate source locations to within tens of km, which is within the roving capabilities of future Mars rovers. Together, these methods present viable numerical approaches to restricting the timing, duration and size of methane release events, and can be used for other trace gas plumes on Mars as well as elsewhere in the solar system.

  1. Bacterial overgrowth and methane production in children with encopresis.

    PubMed

    Leiby, Alycia; Mehta, Devendra; Gopalareddy, Vani; Jackson-Walker, Susan; Horvath, Karoly

    2010-05-01

    To assess the prevalence of small intestinal bacterial overgrowth (SIBO) and methane production in children with encopresis. Radiographic fecal impaction (FI) scores were assessed in children with secondary, retentive encopresis and compared with the breath test results. Breath tests with hypoosmotic lactulose solution were performed in both the study patients (n = 50) and gastrointestinal control subjects (n = 39) groups. The FI scores were significantly higher in the patients with encopresis who were methane producers (P < .01). SIBO was diagnosed in 21 of 50 (42%) patients with encopresis and 9 of 39 (23%) of control subjects (P = .06). Methane was produced in 56% of the patients with encopresis versus 23.1% of the control subjects in the gastrointestinal group (P < .01). Fasting methane level was elevated in 48% versus 10.3 %, respectively (P < .01). Children with FI and encopresis had a higher prevalence of SIBO, elevated basal methane levels, and higher methane production. Methane production was associated with more severe colonic impaction. Further study is needed to determine whether methane production is a primary or secondary factor in the pathogenesis of SIBO and encopresis.

  2. The Mars Methane Analogue Mission (M3): Results of the 2011 Field Deployment

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Whyte, L.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Haddad, E.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Samson, C.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2012-03-01

    The M3 mission simulated a rover mission to Mars to search for sources of methane. The 2011 campaign found that methane plumes from serpentinite are very localized and target selection based on imagery is preferred over direct methane detection.

  3. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    NASA Astrophysics Data System (ADS)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  4. [Effect of moisture content on anaerobic methanization of municipal solid waste].

    PubMed

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore

    2009-03-15

    Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.

  5. Methane distribution and transportation in Lake Chaohu: a shallow eutrophic lake in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shen, Q.

    2016-12-01

    Global warming and eutrophication are two world widely concerned environmental problems. Methane is the second important greenhouse gas, and lake has been proven as a quite important natural source of methane emission. More methane may emit from eutrophic lake due to the higher organic matter deposition in the lake sediment. Lake Chaohu is a large and shallow eutrophic lake in eastern China (N31°25' 31°43', E117°16' 117°05'), with an area of 770 km2 and a mean depth of 2.7 m. To examine methane distribution and transportation in this eutrophic lake, field study across different seasons was carried out with 20 study sites in the lake. Samples from the different water and sediment depth was collected using headspace bottle, and methane content was measured by gas chromatography using a flame ionization detector. The potential methane production in the sediment was examined by an indoor incubation experiment. Methane flux from sediment to the overlying water was calculated by Fick's law, and methane emission from surface to the air was calculated at the same time. The results indicates that more methane accumulated in the water of northwestern bay in this lake, and higher methane release rates was also found at this area. Methane increases gradually with depth in the top 10 cm in sediment cores, then it almost keeps at constant state in the deeper sediment. In the sediment from northwestern bay, more methane content and the higher potential methane production was found compared to the sediment from the east area of this lake.

  6. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.

    PubMed

    Kamke, Janine; Kittelmann, Sandra; Soni, Priya; Li, Yang; Tavendale, Michael; Ganesh, Siva; Janssen, Peter H; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2016-10-19

    Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen is strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep. Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings. Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.

  7. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

    DOE PAGES

    Kamke, Janine; Kittelmann, Sandra; Soni, Priya; ...

    2016-10-19

    Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen ismore » strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep. Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings. Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.« less

  8. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamke, Janine; Kittelmann, Sandra; Soni, Priya

    Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen ismore » strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep. Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings. Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.« less

  9. Subtropical freshwater storages: a major source of nitrous oxide and methane?

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Yuan, Zhiguo

    2013-04-01

    Studies of greenhouse gas cycling in subtropical water bodies, particularly in the Southern Hemisphere, are very limited. This represents an important gap in our understanding of global emissions as the higher temperatures experienced in the subtropics will likely accelerate greenhouse gas production and consumption. Critical to understanding the net impact of these accelerated rates are detailed studies of representative systems within this region. In this paper we present a model artificial freshwater storage: Gold Creek Dam in South East Queensland, Australia. Freshwater storages are commonplace for drinking water and irrigation purposes in Australia as unpredictable rainfall patterns make river and ground water sources unreliable. Over 85 % of Australian rivers are modified with weirs and dams providing permanent inundation of previously terrestrial environments. The higher temperatures experienced at these latitudes drive thermal stratification of these systems as well as rapidly deoxygenate bottom waters. High organic matter availability in the sediment zone as well as the anoxic overlying water provide ideal conditions for reduced products (including methane and ammonia) from microbial processing to be formed and diffuse into bottom waters. A mid-water metalimnion is generally associated with large gradients in dissolved oxygen availability and reduced metabolites undergo oxidation prior to their emission from water surface. An intensive field study was undertaken to improve understanding of production and transformation rates of methane and nitrous oxide from the sediments, through the water column and to the atmosphere. Sediment nutrient (ammonia, nitrite/nitrate and filterable reactive phosphorus) and greenhouse gas (methane and nitrous oxide) porewater samples were collected at selected sites. To determine the magnitude of the benthic sediment contribution of methane and nitrous oxide to the water column sediment incubations were conducted in the laboratory. To determine the likely atmospheric flux from this water body surface floating chambers were used to collect gas. Results showed maximum methane concentrations in the sediment porewaters and deeper water column, both anoxic environments. However, nitrous oxide had highest concentrations at the oxycline zone of the water column. Sediment incubations showed clear methane efflux demonstrating the sediments to be a consistent source of methane. Sediments were either a source or sink of nitrous oxide depending on overlying dissolved oxygen concentration. Floating chamber incubations clearly demonstrated Gold Creek Dam was a source of both methane and nitrous oxide with methane an order of magnitude higher expressed as CO2 equivalents. Diffusive atmospheric fluxes of methane ranged from 20 to 450 mg m-2 d-1 and were comparable to tropical reservoirs rather than temperate reservoirs (LOUIS et al., 2000). Results are likely to be globally relevant as an increasing number of large dams are being constructed to meet growing water demand and under a warming climate process occurring in subtropical systems can give insights into future changes likely to occur in temperate systems.

  10. A review of oxygen removal from oxygen-bearing coal-mine methane.

    PubMed

    Zhao, Peiyu; Zhang, Guojie; Sun, Yinghui; Xu, Ying

    2017-06-01

    In this article, a comparison will be made concerning the advantages and disadvantages of five kinds of coal mine methane (CMM) deoxygenation method, including pressure swing adsorption, combustion, membrane separation, non-metallic reduction, and cryogenic distillation. Pressure swing adsorption has a wide range of application and strong production capacity. To achieve this goal, adsorbent must have high selectivity, adsorption capacity, and adequate adsorption/desorption kinetics, remain stable after several adsorption/desorption cycles, and possess good thermal and mechanical stabilities. Catalytic combustion deoxygenation is a high-temperature exothermic redox chemical reaction, which releases large amounts of thermal energy. So, the stable and accurate control of the temperature is not easy. Meanwhile partial methane is lost. The key of catalytic combustion deoxygenation lies in the development of high-efficiency catalyst. Membrane separation has advantages of high separation efficiency and low energy consumption. However, there are many obstacles, including higher costs. Membrane materials have the requirements of both high permeability and high selectivity. The development of new membrane materials is a key for membrane separation. Cryogenic distillation has many excellence advantages, such as high purity production and high recovery. However, the energy consumption increases with decreasing CH 4 concentrations in feed gas. Moreover, there are many types of operational security problems. And that several kinds of deoxygenation techniques mentioned above have an economic value just for oxygen-bearing CMM with methane content above 30%. Moreover, all the above methods are not applicable to deoxygenation of low concentration CMM. Non-metallic reduction method cannot only realize cyclic utilization of deoxidizer but also have no impurity gases generation. It also has a relatively low cost and low loss rate of methane, and the oxygen is removed thoroughly. In particular, the non-metallic reduction method has good development prospects for low concentration oxygen-bearing CMM. This article also points out the direction of future development of coal mine methane deoxygenation.

  11. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    NASA Astrophysics Data System (ADS)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  12. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization.

    PubMed

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco

    2018-02-15

    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Direct multitrait selection realizes the highest genetic response for ratio traits.

    PubMed

    Zetouni, L; Henryon, M; Kargo, M; Lassen, J

    2017-05-01

    For a number of traits the phenotype considered to be the goal trait is a combination of 2 or more traits, like methane (CH) emission (CH/kg of milk). Direct selection on CH4 emission defined as a ratio is problematic, because it is uncertain whether the improvement comes from an improvement in milk yield, a decrease in CH emission or both. The goal was to test different strategies on selecting for 2 antagonistic traits- improving milk yield while decreasing methane emissions. The hypothesis was that to maximize genetic gain for a ratio trait, the best approach is to select directly for the component traits rather than using a ratio trait or a trait where 1 trait is corrected for the other as the selection criteria. Stochastic simulation was used to mimic a dairy cattle population. Three scenarios were tested, which differed in selection criteria but all selecting for increased milk yield: 1) selection based on a multitrait approach using the correlation structure between the 2 traits, 2) the ratio of methane to milk and 3) gross methane phenotypically corrected for milk. Four correlation sets were tested in all scenarios, to access robustness of the results. An average genetic gain of 66 kg of milk per yr was obtained in all scenarios, but scenario 1 had the best response for decreased methane emissions, with a genetic gain of 24.8 l/yr, while scenarios 2 and 3 had genetic gains of 27.1 and 27.3 kg/yr. The results found were persistent across correlation sets. These results confirm the hypothesis that to obtain the highest genetic gain a multitrait selection is a better approach than selecting for the ratio directly. The results are exemplified for a methane and milk scenario but can be generalized to other situations where combined traits need to be improved.

  14. Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets

    PubMed Central

    Auffret, Marc D.; Stewart, Robert; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; Wallace, Robert J.; Freeman, Tom C.; Snelling, Timothy J.; Watson, Mick; Roehe, Rainer

    2018-01-01

    Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH4), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH4 emissions and methanogens were the microbial populations most closely correlated with CH4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH4, but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH4. Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH4 emissions across diverse production systems and environments. PMID:29375511

  15. Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets.

    PubMed

    Auffret, Marc D; Stewart, Robert; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; Wallace, Robert J; Freeman, Tom C; Snelling, Timothy J; Watson, Mick; Roehe, Rainer

    2017-01-01

    Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH 4 ), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH 4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH 4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH 4 emissions and methanogens were the microbial populations most closely correlated with CH 4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH 4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH 4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH 4 , but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH 4 . Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH 4 emissions across diverse production systems and environments.

  16. Printable enzyme-embedded materials for methane to methanol conversion

    DOE PAGES

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...

    2016-06-15

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  17. Printable enzyme-embedded materials for methane to methanol conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less

  18. Printable enzyme-embedded materials for methane to methanol conversion

    PubMed Central

    Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.

    2016-01-01

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270

  19. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    PubMed

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  20. Effect of Ultrasonic Pretreatment on Biomethane Potential of Two-Phase Olive Mill Solid Waste: Kinetic Approach and Process Performance

    PubMed Central

    Rincón, B.; Bujalance, L.; Fermoso, F. G.; Martín, A.

    2014-01-01

    The effect of ultrasound (US) pretreatment on two-phase olive mil solid waste (OMSW) composition and subsequent anaerobic biodegradation was evaluated by chemical oxygen demand solubilization and biochemical methane potential (BMP) tests. OMSW was ultrasonically pretreated at a power of 200 W and frequency of 24 kHz for time periods of 20, 40, 60, 90, 120, and 180 minutes, corresponding to specific energies of 11367, 21121, 34072, 51284, 68557, and 106003 kJ/kg total solids, respectively. In order to evaluate the US pretreatment, a low, medium, and high exposure time, that is, 20, 90, and 180 min, were selected for BMP tests. Methane yields of 311 ± 15, 393 ± 14, and 370 ± 20 mL CH4/g VSadded (VS: volatile solids) were obtained for 20, 90, and 180 minutes, respectively, while the untreated OMSW gave 373 ± 4 mL CH4/g VSadded. From a kinetic point of view, the BMP tests showed a first exponential stage and a second sigmoidal stage. In the first stage, the kinetic constant obtained for US pretreated OMSW at 20 minutes was 46% higher than those achieved for the pretreated OMSW at 90 and 180 minutes and 48% higher than that for untreated OMSW. The maximum methane production rate achieved was 12% higher than that obtained for untreated OMSW. PMID:25197705

  1. Slaughterhouse by-products treatment using anaerobic digestion.

    PubMed

    Moukazis, Ioannis; Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    The objective of the present study is to evaluate the use of animal by-products (ABP) as substrates for anaerobic digestion, aiming at methane production. Specifically, four ABP of Category 2 and 3, namely (i) stomach and rumen, (ii) stomach contents, (iii) breasts and reproductive organs and (iv) bladders and intestines with their contents, were selected. The methane potential of each ABP was initially determined, while the feasibility of anaerobic co-digestion of ABP with two agroindustrial waste, i.e. orange peels and olive leaves was also studied. To this purpose, Biochemical Methane Potential (BMP), as well as semi-continuous assays were respectively conducted. In the latter, the effect of the variation in the organic loading rate (OLR) on methane production was investigated. Results obtained from BMP assays showed that the samples containing breasts and reproductive organs, bladders and intestine, and stomach and rumen, had higher methane potentials of 815, 787 and 759 mLCH 4,STP /gVS, respectively. Moreover, according to the results of the semi-continuous assays, maximum methane yields between 253 and 727mLCH 4 /gVS fed were obtained at an OLR of 0.8gVS/L/d. The only case in which methanogenesis inhibition phenomena, due to increased ammonia concentrations, were observed, was the assay being fed with a mixture of breasts and reproductive organs and orange peels, at the highest OLR. This inhibition phenomenon was attributed to an inappropriate C/N ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Transient studies of low temperature catalysts for methane conversion. Final report, [September 1992--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, E.E.

    1996-09-30

    The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to studymore » the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.« less

  3. Dense ceramic membranes for converting methane to syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, U.; Dusek, J.T.; Picciolo, J.J.

    1995-07-01

    Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion,more » selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.« less

  4. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  5. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment.

    PubMed

    Li, Qian; Xu, Manjuan; Wang, Gaojun; Chen, Rong; Qiao, Wei; Wang, Xiaochang

    2018-02-01

    Batch experiments were conducted using biochar (BC) to promote stable and efficient methane production from thermophilic co-digestion of food waste (FW) and waste activated sludge (WAS) at feedstock/seed sludge (F/S) ratios of 0.25, 0.75, 1.5, 2.25, and 3. The results showed that the presence of BC dramatically shortened the lag time of methane production and increased the methane production rate with increased organic loading. The higher buffer capacity and large specific surface area of BC promoted microorganism growth and adaption to VFAs accumulation. Additionally, the electron exchange in syntrophic oxidation of butyrate and acetate as intermediate products was significantly facilitated by BC possibly due to the selective succession of bacteria and methanogens which may have participated in direct interspecies electron transfer, in contrast with the control group with low-efficient electron ferried between syntrophic oxidizers and methanogens using hydrogen as the electron carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    PubMed Central

    Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome. PMID:26891056

  7. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.

  8. Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite

    DOE PAGES

    Zhao, Zhi -Jian; Kulkarni, Ambarish; Vilella, Laia; ...

    2016-05-02

    Selective oxidation of methane to methanol is one of the most difficult chemical processes to perform. A potential group of catalysts to achieve CH 4 partial oxidation are Cu-exchanged zeolites mimicking the active structure of the enzyme methane monooxygenase. However, the details of this conversion, including the structure of the active site, are still under debate. In this contribution, periodic density functional theory (DFT) methods were employed to explore the molecular features of the selective oxidation of methane to methanol catalyzed by Cu-exchanged mordenite (Cu-MOR). We focused on two types of previously suggested active species, CuOCu and CuOOCu. Our calculationsmore » indicate that the formation of CuOCu is more feasible than that of CuOOCu. In addition, a much lower C–H dissociation barrier is located on the former active site, indicating that C–H bond activation is easily achieved with CuOCu. We calculated the energy barriers of all elementary steps for the entire process, including catalyst activation, CH 4 activation, and CH 3OH desorption. Finally, our calculations are in agreement with experimental observations and present the first theoretical study examining the entire process of selective oxidation of methane to methanol.« less

  9. SPaMOB eat atmospheric methane in Antarctica

    NASA Astrophysics Data System (ADS)

    Lau, C. Y. M.; Edwards, C. R.; Onstott, T. C.

    2016-12-01

    The diverse and endemic soil microorganisms that have adapted to the hostile environments in Antarctica are facing challenges due to climate change. The seasonally thawed active layer would exhibit greater daily and/or seasonal temperature variations and different soil moisture regimes, which would cause compositional shifts in these microbial communities. Our preliminary data reveal that Antarctic cryosols from the Taylor Dry Valley are capable of oxidizing methane at atmospheric concentration ( 2 ppmv) at significantly higher rates than the acidic mineral cryosols from the Canadian High Arctic (N 79°) [The ISME J (2015) 9: 1880-1891]. Understanding of this understudied behavior for these active layer cryosols is important for determining the potential methane feedback responses in the Antarctic region. We therefore investigate the biodiversity and genome-wide adaptation of the responsible Southern Polar atmospheric methane-oxidizing bacteria (SPaMOB) in these cryosols. Methane consumption at atmospheric concentration at 4 and 10°C was monitored over a period of four weeks. Two cryosol samples that oxidized methane at both temperatures were selected for molecular analyses. PCR-cloning and sequencing of pmoA (particulate methane monooxygenase beta subunit), the marker gene of methane oxidation, revealed that the SPaMOB in alkaline Antarctic cryosols are closely related to Upland Soil Cluster γ (USCγ), whereas the high Canadian Arctic cryosols contain predominantly USCa-like phylotypes. Four metagenomic libraries were prepared from total DNA and sequenced (2x100bp, Illumina). Quality-filtered reads (avg. 20 M reads per library) were de novo assembled and annotated. A 42.8 kb-long contig containing the pmoCBAcluster was successfully assembled. The pmoA gene is closely related to our USCγ clone sequences. In addition to pmo genes, the presence of genes for conversion of methanol to formaldehyde, production of formate and eventually CO2 indicates SPaMOB's ability of complete methane oxidation. Carbon assimilation pathway is suggested by the presence of genes involved in serine synthesis, serine cycle and tricarboxylic acid cycle. This study provides the first genetic basis for a possible role of Antarctica as a current and future methane sink.

  10. Selective anaerobic oxidation of methane enables direct synthesis of methanol.

    PubMed

    Sushkevich, Vitaly L; Palagin, Dennis; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2017-05-05

    Direct functionalization of methane in natural gas remains a key challenge. We present a direct stepwise method for converting methane into methanol with high selectivity (~97%) over a copper-containing zeolite, based on partial oxidation with water. The activation in helium at 673 kelvin (K), followed by consecutive catalyst exposures to 7 bars of methane and then water at 473 K, consistently produced 0.204 mole of CH 3 OH per mole of copper in zeolite. Isotopic labeling confirmed water as the source of oxygen to regenerate the zeolite active centers and renders methanol desorption energetically favorable. On the basis of in situ x-ray absorption spectroscopy, infrared spectroscopy, and density functional theory calculations, we propose a mechanism involving methane oxidation at Cu II oxide active centers, followed by Cu I reoxidation by water with concurrent formation of hydrogen. Copyright © 2017, American Association for the Advancement of Science.

  11. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less

  12. Relationship between selection for feed efficiency and methane production

    USDA-ARS?s Scientific Manuscript database

    Enteric methane is a product of fermentation in the gastro-intestinal tract of ruminants. A group of archaea bacteria collectively called “methanogens” are responsible for the synthesis of methane. In ruminants, the methanogens grow in the reticulum-rumen complex and in the cecum. Most of the met...

  13. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    PubMed

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Multiband infrared inversion for low-concentration methane monitoring in a confined dust-polluted atmosphere.

    PubMed

    Wang, Wenzheng; Wang, Yanming; Song, Wujun; Li, Xueqin

    2017-03-20

    A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.

  15. Quantifying Industrial Methane Emissions from Space with the GHGSat-D Satellite

    NASA Astrophysics Data System (ADS)

    Germain, S.; Durak, B.; Gains, D.; Jervis, D.; McKeever, J.; Sloan, J. J.

    2017-12-01

    In June 2016, GHGSat, Inc. launched GHGSat-D, or "Claire", the world's first satellite capable of measuring greenhouse gas emissions from targeted industrial facilities around the world. The high-level objective of this mission is to demonstrate that a single measurement approach can quantify methane emission rates from selected industrial sources with greater precision, higher frequency, and lower cost than ground-based alternatives, across a wide range of industries. Providing industrial operators and regulators with frequent, cost-effective emission measurements can help identify super-emitters and monitor the progress of mitigation efforts. The GHGSat measurement platform is a 15 kg satellite that measures methane column densities using a novel wide-angle imaging Fabry-Perot spectrometer tuned to the 1600-1700 nm SWIR band. During each measurement sequence, a series of closely overlapping 2D images are taken so that each ground location samples a portion of the SWIR band with 0.1 nm spectral resolution. The data processing algorithm is able to co-register each image and, by comparison with a detailed forward model, perform a retrieval on each of the <50 m GSD over the entire 12 x 12 km2 field of view. Methane emission rates are then estimated using a dispersion model coupled with locally measured wind fields. We will present the economic rationale for satellite-based sensing of methane from industrial sources, introduce the GHGSat measurement concept, report on recent measurement results obtained by Claire, and describe performance upgrades planned for future missions.

  16. The rumen microbial metagenome associated with high methane production in cattle.

    PubMed

    Wallace, R John; Rooke, John A; McKain, Nest; Duthie, Carol-Anne; Hyslop, Jimmy J; Ross, David W; Waterhouse, Anthony; Watson, Mick; Roehe, Rainer

    2015-10-23

    Methane represents 16 % of total anthropogenic greenhouse gas emissions. It has been estimated that ruminant livestock produce ca. 29 % of this methane. As individual animals produce consistently different quantities of methane, understanding the basis for these differences may lead to new opportunities for mitigating ruminal methane emissions. Metagenomics is a powerful new tool for understanding the composition and function of complex microbial communities. Here we have applied metagenomics to the rumen microbial community to identify differences in the microbiota and metagenome that lead to high- and low-methane-emitting cattle phenotypes. Four pairs of beef cattle were selected for extreme high and low methane emissions from 72 animals, matched for breed (Aberdeen-Angus or Limousin cross) and diet (high or medium concentrate). Community analysis was carried out by qPCR of 16S and 18S rRNA genes and by alignment of Illumina HiSeq reads to the GREENGENES database. Total genomic reads were aligned to the KEGG genes databasefor functional analysis. Deep sequencing produced on average 11.3 Gb per sample. 16S rRNA gene abundances indicated that archaea, predominantly Methanobrevibacter, were 2.5× more numerous (P = 0.026) in high emitters, whereas among bacteria Proteobacteria, predominantly Succinivibrionaceae, were 4-fold less abundant (2.7 vs. 11.2 %; P = 0.002). KEGG analysis revealed that archaeal genes leading directly or indirectly to methane production were 2.7-fold more abundant in high emitters. Genes less abundant in high emitters included acetate kinase, electron transport complex proteins RnfC and RnfD and glucose-6-phosphate isomerase. Sequence data were assembled de novo and over 1.5 million proteins were annotated on the subsequent metagenome scaffolds. Less than half of the predicted genes matched matched a domain within Pfam. Amongst 2774 identified proteins of the 20 KEGG orthologues that correlated with methane emissions, only 16 showed 100 % identity with a publicly available protein sequence. The abundance of archaeal genes in ruminal digesta correlated strongly with differing methane emissions from individual animals, a finding useful for genetic screening purposes. Lower emissions were accompanied by higher Succinovibrionaceae abundance and changes in acetate and hydrogen production leading to less methanogenesis, as similarly postulated for Australian macropods. Large numbers of predicted protein sequences differed between high- and low-methane-emitting cattle. Ninety-nine percent were unknown, indicating a fertile area for future exploitation.

  17. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; ...

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumptionmore » of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO₂ reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH₄ flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.« less

  18. Biochemical methane potential of two-phase olive mill solid waste: influence of thermal pretreatment on the process kinetics.

    PubMed

    Rincón, B; Bujalance, L; Fermoso, F G; Martín, A; Borja, R

    2013-07-01

    The effect of thermal pretreatment on two-phase olive mill solid waste was evaluated by chemical oxygen demand solubilisation and biochemical methane potential (BMP) tests. Temperatures of 100, 120, 160 and 180°C were applied during 60, 120 and 180 min for each temperature studied. The highest chemical oxygen demand solubilisation after pretreatment (42%) was found for 120 and 180°C during 180 min in both cases. These two conditions were selected for the BMP tests. BMP tests showed two different stages: a first exponential stage and a sigmoidal zone after a lag period. No influence of the pretreatment was observed on the kinetic constant of the first-stage. Clear difference was observed in the maximum methane production rate of the second stage, 76.8 mL CH4/(g VS day) was achieved after pretreatment at 180°C (180 min), value 22% and 40% higher than that obtained for the untreated and pretreated OMSW at 120°C, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Low-temperature conversion of methane to methanol on CeO x/Cu 2O catalysts: Water controlled activation of the C–H Bond

    DOE PAGES

    Zuo, Zhijun; Ramírez, Pedro J.; Senanayake, Sanjaya D.; ...

    2016-10-10

    Here, an inverse CeO 2/Cu 2O/Cu(111) catalyst is able to activate methane at room temperature producing C, CH x fragments and CO x species on the oxide surface. The addition of water to the system leads to a drastic change in the selectivity of methane activation yielding only adsorbed CH x fragments. At a temperature of 450 K, in the presence of water, a CH 4 → CH 3OH catalytic transformation occurs with a high selectivity. OH groups formed by the dissociation of water saturate the catalyst surface, removing sites that could decompose CH x fragments, and generating centers onmore » which methane can directly interact to yield methanol.« less

  20. Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement.

    PubMed

    Zou, Lianpei; Ma, Chaonan; Liu, Jianyong; Li, Mingfei; Ye, Min; Qian, Guangren

    2016-12-01

    Anaerobic batch tests were performed to investigate the methane production enhancement and solid transformation rates from food waste (FW) by high voltage pulse discharge (HVPD) pretreatment. The total cumulative methane production with HVPD pretreatment was 134% higher than that of the control. The final volatile solids transformation rates of FW with and without HVPD pretreatment were 54.3% and 32.3%, respectively. Comparison study on HVPD pretreatment with acid, alkali and ultrasonic pretreatments showed that the methane production and COD removal rates of FW pretreated with HVPD were more than 100% higher than the control, but only about 50% higher can be obtained with other pretreatments. HVPD pretreatment could be a promising pretreatment method in the application of energy recovery from FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    PubMed

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea.

    PubMed

    Sutherland, Alastair D; Varela, Joao C

    2014-01-23

    The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems.

  3. Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea

    PubMed Central

    2014-01-01

    Background The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Conclusions Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems. PMID:24456825

  4. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA

    DOE PAGES

    Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten

    2017-03-27

    1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less

  5. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten

    1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less

  6. Catalytic conversion of methane to methanol using Cu-zeolites.

    PubMed

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  7. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    PubMed

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  8. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  9. Consumption of methane by soils.

    PubMed

    Dueñas, C; Fernández, M C; Carretero, J; Pérez, M; Liger, E

    1994-05-01

    Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.

  10. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2015-02-01

    The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Results of coalbed-methane drilling, Meadowfill Landfill, Harrison County, West Virginia: Chapter G.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Fedorko, Nick; Grady, William C.; Eble, Cortland F.; Schuller, William A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Methane contents of desorbed gas from coal samples in the Meadowfill Landfill study area ranged from 14.87 to 98.73 percent (corrected for air contamination) for the Harlem coal bed and Clarion coal zone, respectively. Proportions of methane to the sum of the higher molecular weight hydrocarbons ranged from about 40 to 340 as the desorbed gas contained only a small percentage of higher weight hydrocarbons. Coalbed methane from the Upper Kittanning upper split and the Upper Kittanning coal beds is thermogenic in origin with isotopic composition of carbon (carbon 13, 13C) in methane (expressed as δ13C in units of parts per thousand (per mil) relative to the Vienna Peedee belemnite (VPDB) standard) ranging from -46.6 to -48.7 per mil. Coalbed methane from the Brush Creek and Upper Freeport coal beds and the Clarion coal zone contains some biogenic methane with δ13C values ranging from -51.05 to -51.56 per mil.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  13. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within the wetland.

  14. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  15. Determination of the Zone Endangered by Methane Explosion in Goaf with Caving of Longwalls Ventilated on "Y" System

    NASA Astrophysics Data System (ADS)

    Brodny, Jarosław; Tutak, Magdalena

    2016-12-01

    One of the most dangerous and most commonly present risks in hard coal mines is methane hazard. During exploitation by longwall system with caving, methane is emitted to mine heading from the mined coal and coal left in a pile. A large amount of methane also flows from neighboring seams through cracks and fissures formed in rock mass. In a case of accumulation of explosive methane concentration in goaf zone and with appropriate oxygen concentration and occurrence of initials (e.g. spark or endogenous fire), it may come to the explosion of this gas. In the paper there are presented results of numerical analysis of mixture of air and methane streams flow through the real heading system of a mine, characterized by high methane hazard. The aim of the studies was to analyze the ventilation system of considered heading system and determination of braking zones in goaf zone, in which dangerous and explosive concertation of methane can occur with sufficient oxygen concentration equal to at least 12%. Determination of position of these zones is necessary for the selection of appropriate parameters of the ventilation system to ensure safety of the crew. Analysis of the scale of methane hazard allows to select such a ventilation system of exploitation and neighboring headings that ensures chemical composition of mining atmosphere required by regulation, and required efficiency of methane drainage. The obtained results clearly show that numerical methods, combined with the results of tests in real conditions can be successfully used for the analysis of variants of processes related to ventilation of underground mining, and also in the analysis of emergency states.

  16. Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition.

    PubMed

    Rodriguez-Chiang, Lourdes; Llorca, Jordi; Dahl, Olli

    2016-10-01

    The methane potential and biodegradability of different ratios of acetate and lignin-rich effluents from a neutral sulfite semi-chemical (NSSC) pulp mill were investigated. Results showed ultimate methane yields up to 333±5mLCH4/gCOD when only acetate-rich substrate was added and subsequently lower methane potentials of 192±4mLCH4/gCOD when the lignin fraction was increased. The presence of lignin showed a linear decay in methane production, resulting in a 41% decrease in methane when the lignin-rich feed had a 30% increase. A negative linear correlation between lignin content and biodegradability was also observed. Furthermore, the effect of hydrotalcite (HT) addition was evaluated and showed increase in methane potential of up to 8%, a faster production rate and higher soluble lignin removal (7-12% higher). Chemical oxygen demand (COD) removal efficiencies between 64 and 83% were obtained for all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  18. Composition of methane-oxidizing bacterial communities as a function of nutrient loading in the Florida everglades.

    PubMed

    Chauhan, Ashvini; Pathak, Ashish; Ogram, Andrew

    2012-10-01

    Agricultural runoff of phosphorus (P) in the northern Florida Everglades has resulted in several ecosystem level changes, including shifts in the microbial ecology of carbon cycling, with significantly higher methane being produced in the nutrient-enriched soils. Little is, however, known of the structure and activities of methane-oxidizing bacteria (MOB) in these environments. To address this, 0 to 10 cm plant-associated soil cores were collected from nutrient-impacted (F1), transition (F4), and unimpacted (U3) areas, sectioned in 2-cm increments, and methane oxidation rates were measured. F1 soils consumed approximately two-fold higher methane than U3 soils; additionally, most probable numbers of methanotrophs were 4-log higher in F1 than U3 soils. Metabolically active MOB containing pmoA sequences were characterized by stable-isotope probing using 10 % (v/v) (13)CH(4). pmoA sequences, encoding the alpha subunit of methane monooxygenase and related to type I methanotrophs, were identified from both impacted and unimpacted soils. Additionally, impacted soils also harbored type II methanotrophs, which have been shown to exhibit preferences for high methane concentrations. Additionally, across all soils, novel pmoA-type sequences were also detected, indicating presence of MOB specific to the Everglades. Multivariate statistical analyses confirmed that eutrophic soils consisted of metabolically distinct MOB community that is likely driven by nutrient enrichment. This study enhances our understanding on the biological fate of methane being produced in productive wetland soils of the Florida Everglades and how nutrient-enrichment affects the composition of methanotroph bacterial communities.

  19. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca; Colturato, L.F.; Font, X.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSWmore » under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.« less

  20. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    PubMed

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Nitrogen removal from natural gas using two types of membranes

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  2. Baseline assessment of groundwater quality in Pike County, Pennsylvania, 2015

    USGS Publications Warehouse

    Senior, Lisa A.; Cravotta, Charles A.

    2017-12-29

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, which have the potential for natural gas development, underlie Pike County and neighboring counties in northeastern Pennsylvania. In 2015, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, conducted a study that expanded on a previous more limited 2012 study to assess baseline shallow groundwater quality in bedrock aquifers in Pike County prior to possible extensive shale-gas development. Seventy-nine water wells ranging in depths from 80 to 610 feet were sampled during June through September 2015 to provide data on the presence of methane and other aspects of existing groundwater quality in the various bedrock geologic units throughout the county, including concentrations of inorganic constituents commonly present at low values in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. All groundwater samples collected in 2015 were analyzed for bacteria, dissolved and total major ions, nutrients, selected dissolved and total inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane. Additionally, samples from 20 wells distributed throughout the county were analyzed for selected man-made volatile organic compounds, and samples from 13 wells where waters had detectable gross alpha activity were analyzed for radium-226 on the basis of relatively elevated gross alpha-particle activity.Results of the 2015 study show that groundwater quality generally met most drinking-water standards for constituents and properties included in analyses, but groundwater samples from some wells had one or more constituents or properties, including arsenic, iron, manganese, pH, bacteria, sodium, chloride, sulfate, total dissolved solids, and radon-222, that did not meet (commonly termed failed or exceeded) primary or secondary maximum contaminant levels (MCLs) or Health Advisories (HA) for drinking water. Except for iron, dissolved and total concentrations of major ions and most trace constituents generally were similar. Only 1 of 79 well-water samples had any constituent that exceeded a MCL, with an arsenic concentration of about 30 micrograms per liter (µg/L) that was higher than the MCL of 10 µg/L. However, total arsenic concentrations were higher than the HA of 2 µg/L in samples from another 12 of 79 wells (about 15 percent). Secondary maximum contaminant levels (SMCLs) were exceeded most frequently by pH and concentrations of iron and manganese. The pH was outside of the SMCL range of 6.5–8.5 in samples from 24 of 79 wells (30 percent), ranging from 5.5 to 9.2; more samples had pH values less than 6.5 than had pH values greater than 8.5. Total iron concentrations typically were much greater than dissolved iron concentrations, indicating substantial presence of iron in particulate phase, and exceeded the SMCL of 300 µg/L more often [35 of 79 samples (44 percent)] than dissolved iron concentrations [samples from 8 of 79 wells (10 percent)]. Total manganese concentrations exceeded the SMCL of 50 µg/L in samples from 31 of 79 wells (39 percent) and the HA of 300 µg/L in samples from 13 of 79 wells (about 16 percent). A few (1–2) samples had concentrations of sodium, chloride, sulfate, or TDS higher than the SMCLs of 60, 250, 250, and 500 mg/L, respectively. However, dissolved sodium concentrations were higher than the HA of 20 mg/L in samples from 15 of 79 wells (nearly 20 percent). Total coliform bacteria were detected in samples from 25 of 79 wells (32 percent) but Escherichia coli were not detected in any sample. Radon-222 activities ranged from 11 to 5,100 picocuries per liter (pCi/L), with a median of 1,440 pCi/L, and exceeded the proposed and the alternate proposed drinking-water standards of 300 and 4,000 pCi/L, respectively, in samples from 60 of 79 wells (75 percent) and in samples from 2 of 79 wells (3 percent), respectively.Groundwater samples from all wells were analyzed for dissolved methane by one contract laboratory that determined water from 19 of the 79 wells (24 percent) had concentrations of methane greater than the reporting level of 0.010 milligrams per liter (mg/L) with a maximum methane concentration of 2.5 mg/L. Methane concentrations in 18 replicate samples submitted to a second laboratory for dissolved gas and isotopic analysis generally were higher by as much as a factor of 2.7 from those determined by the first laboratory, indicating potential bias related to combined sampling and analytical methods, and therefore, caution needs to be used when comparing methane results determined by different methods. The isotopic composition of methane in 9 of 10 samples with sufficient dissolved methane (about 0.3 mg/L) for isotopic analysis is consistent with values reported for methane of microbial origin produced through carbon dioxide reduction; an isotopic shift in 1 or 2 samples may indicate subsequent methane oxidation. The low concentrations of ethane relative to methane in these samples further indicate that the methane may be of microbial origin. Groundwater samples with relatively elevated methane concentrations (near or greater than 0.3 mg/L) also had chemical compositions that differed in some respects from groundwater with relatively low methane concentrations (less than 0.3 mg/L) by having higher pH (greater than 8) and higher concentrations of sodium, lithium, boron, fluoride, arsenic, and bromide and chloride/bromide ratios indicative of mixing with a small amount of brine of probable natural occurrence.The spatial distribution of groundwater compositions differs by topographic setting and lithology and generally shows that (1) relatively dilute, slightly acidic, oxygenated, calcium-carbonate type waters tend to occur in the uplands underlain by the undivided Poplar Gap and Packerton members of the Catskill Formation in southwestern Pike County; (2) waters of near neutral pH with the highest amounts of hardness (calcium and magnesium) generally occur in areas of intermediate altitudes underlain by other members of the Catskill Formation; and (3) waters with pH values greater than 8, low oxygen concentrations, and the highest arsenic, sodium, lithium, bromide, and methane concentrations can be present in deep wells in uplands but most frequently occur in stream valleys, especially at low altitudes (less than about 1,200 feet above North American Vertical Datum of 1988) where groundwater may be discharging regionally, such as to the Delaware River in northern and eastern Pike County. Thus, the baseline assessment of groundwater quality in Pike County prior to gas-well development shows that shallow (less than about 1,000 feet deep) groundwater generally meets primary drinking-water standards for inorganic constituents but varies spatially, with methane and some constituents present in high concentrations in brine (and connate waters from gas and oil reservoirs) present at low to moderate concentrations in some parts of Pike County.

  3. Microbial diversity and dynamics during methane production from municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less

  4. Enhanced Soluble Protein and Biochemical Methane Potential of Apple Biowaste by Different Pretreatment

    NASA Astrophysics Data System (ADS)

    Tulun, Şevket; Bilgin, Melayib

    2018-01-01

    The purpose of this research is to evaluate the anaerobic digestion of apple pomace waste in terms of pretreatment. In this study, the main pretreatment strategies for apple pomace include: ultrasound (35 and 53 kHz), thermal and chemical (pH 5 and 10). For each pretreatment method four different temperatures are selected as 25, 40, 50, and 60 °C, and operation times are selected as 5th, 15th, 30th, and 45th minutes. The effects on pretreatment were investigated by measuring changes in the soluble protein concentrations of pretreated wastes and the enhanced anaerobic digestion was investigated by using the biochemical methane potential (BMP) assay. The soluble proteins of ultrasonic (35 kHz at 60 °C, 45th min), ultrasonic (53 kHz at 60 °C, 45th min), chemical (pH 5 at 60 °C, 5th min), chemical (pH 10 at 60 °C, 30th min) and thermal chemical (40 °C, 15th min) pretreatment apple pomace were 74.3, 75.6, 48.7, 85.5 and 58.6% higher, respectively. The results indicated that apple pomace treated with 53 kHz at 60 °C, 45th min had the highest biogas yield of 1519 mL CH4/g VSS.day after anaerobic digestion, which was on average 40.9% higher than raw pomace.

  5. Enhanced Soluble Protein and Biochemical Methane Potential of Apple Biowaste by Different Pretreatment

    NASA Astrophysics Data System (ADS)

    Tulun, Şevket; Bilgin, Melayib

    2018-05-01

    The purpose of this research is to evaluate the anaerobic digestion of apple pomace waste in terms of pretreatment. In this study, the main pretreatment strategies for apple pomace include: ultrasound (35 and 53 kHz), thermal and chemical (pH 5 and 10). For each pretreatment method four different temperatures are selected as 25, 40, 50, and 60 °C, and operation times are selected as 5th, 15th, 30th, and 45th minutes. The effects on pretreatment were investigated by measuring changes in the soluble protein concentrations of pretreated wastes and the enhanced anaerobic digestion was investigated by using the biochemical methane potential (BMP) assay. The soluble proteins of ultrasonic (35 kHz at 60 °C, 45th min), ultrasonic (53 kHz at 60 °C, 45th min), chemical (pH 5 at 60 °C, 5th min), chemical (pH 10 at 60 °C, 30th min) and thermal chemical (40 °C, 15th min) pretreatment apple pomace were 74.3, 75.6, 48.7, 85.5 and 58.6% higher, respectively. The results indicated that apple pomace treated with 53 kHz at 60 °C, 45th min had the highest biogas yield of 1519 mL CH4/g VSS.day after anaerobic digestion, which was on average 40.9% higher than raw pomace.

  6. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.

    PubMed

    Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R

    2016-10-01

    Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, R.D.

    An apparatus is described for reducing hydrocarbon fuel requirements for haber ammonia synthesis by the supply of selected gases to the second reformer of such system, comprising a first cylindrical conduit, a second smaller coaxial cylinder inside of the first conduit, forming a first annular space therebetween, the downstream end of said second conduit closed, and a plurality of circumferentially-spaced orifices in the wall of said conduit upstream of the closed end. Means are provided to supply air at selected pressure p1, temperature and flow rate to the first annular space, means to supply at least methane at a pressuremore » p2 greater than p1, to said second conduit, so that the concentration of methane in the air will be less than the lower explosive limit, and means to shield the jets of gas from the orifices in the second conduit , as they flow radially outwardly across the annular space. Means are also provided for adding steam in selected ratio with the methane prior to flow into the second conduit, whereby air, methane and steam are mixed together prior to flow into the second haber reformer.« less

  8. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs.

    PubMed

    Schilder, Jos; van Hardenbroek, Maarten; Bodelier, Paul; Kirilova, Emiliya P; Leuenberger, Markus; Lotter, André F; Heiri, Oliver

    2017-06-28

    Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ 13 C values) of particulate organic matter, Chironomidae and Daphnia spp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ 13 C measurements of chironomid and Daphnia remains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availability. This, in turn, influenced the relevance of methane-derived carbon in the diet of aquatic invertebrates. Our results show that, contrary to expectations, methane-derived relative to photosynthetically produced organic carbon became more relevant for at least some invertebrates during periods with higher nutrient availability for algal growth, indicating a proportionally higher use of methane-derived carbon in the lake's food web during peak eutrophication phases. Contributions of methane-derived carbon to the diet of the investigated invertebrates are estimated to have ranged from 0-11% during the phase with the lowest nutrient availability to 13-20% during the peak eutrophication phase. © 2017 The Author(s).

  9. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH 4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH 4 and CH 4 +

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE 0) for the formation of methylium, CH 3 +, from methane, CH 4, as AE 0 (CH 3 +/CH 4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV lasermore » PFI-PI spectra obtained for the parent CH 4 + ion and the fragment CH 3 + ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE 0 (CH 3 +/CH 4) threshold ensues because of higher PFI detection efficiency for fragment CH 3 + than for parent CH 4 +. This, in turn, is a consequence of the underlying high- n Rydberg dissociation mechanism for the dissociative photoionization of CH 4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH 4. The present highly accurate 0 K dissociative ionization threshold for CH 4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D 0 (H-CH 3) = 432.463 ± 0.027 kJ/mol and D 0(H-CH 3 +) = 164.701 ± 0.038 kJ/mol.« less

  10. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH 4): Determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH 4 and CH 4 +

    DOE PAGES

    Chang, Yih -Chung; Xiong, Bo; Bross, David H.; ...

    2017-03-27

    Here, we report on the successful implementation of a high-resolution vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection method for the study of unimolecular dissociation of quantum-state- or energy-selected molecular ions. As a test case, we have determined the 0 K appearance energy (AE 0) for the formation of methylium, CH 3 +, from methane, CH 4, as AE 0 (CH 3 +/CH 4) = 14.32271 ± 0.00013 eV. This value has a significantly smaller error limit, but is otherwise consistent with previous laboratory and/or synchrotron-based studies of this dissociative photoionization onset. Furthermore, the sum of the VUV lasermore » PFI-PI spectra obtained for the parent CH 4 + ion and the fragment CH 3 + ions of methane is found to agree with the earlier VUV pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of methane, providing unambiguous validation of the previous interpretation that the sharp VUV-PFI-PE step observed at the AE 0 (CH 3 +/CH 4) threshold ensues because of higher PFI detection efficiency for fragment CH 3 + than for parent CH 4 +. This, in turn, is a consequence of the underlying high- n Rydberg dissociation mechanism for the dissociative photoionization of CH 4, which was proposed in previous synchrotron-based VUV-PFI-PE and VUV-PFI-PEPICO studies of CH 4. The present highly accurate 0 K dissociative ionization threshold for CH 4 can be utilized to derive accurate values for the bond dissociation energies of methane and methane cation. For methane, the straightforward application of sequential thermochemistry via the positive ion cycle leads to some ambiguity because of two competing VUV-PFI-PE literature values for the ionization energy of methyl radical. The ambiguity is successfully resolved by applying the Active Thermochemical Tables (ATcT) approach, resulting in D 0 (H-CH 3) = 432.463 ± 0.027 kJ/mol and D 0(H-CH 3 +) = 164.701 ± 0.038 kJ/mol.« less

  11. 30 CFR 27.23 - Automatic warning device.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.23... function automatically at a methane content of the mine atmosphere between 1.0 to 1.5 volume percent and at all higher concentrations of methane. (c) It is recommended that the automatic warning device be...

  12. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm

    NASA Astrophysics Data System (ADS)

    Sajid, M. B.; Javed, T.; Farooq, A.

    2015-04-01

    The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.

  13. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework.

    PubMed

    Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A

    2017-08-02

    Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

  14. Satellite-derived methane hotspot emission estimates using a fast data-driven method

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Schneising, Oliver; Reuter, Maximilian; Heymann, Jens; Krautwurst, Sven; Bovensmann, Heinrich; Burrows, John P.; Boesch, Hartmut; Parker, Robert J.; Somkuti, Peter; Detmers, Rob G.; Hasekamp, Otto P.; Aben, Ilse; Butz, André; Frankenberg, Christian; Turner, Alexander J.

    2017-05-01

    Methane is an important atmospheric greenhouse gas and an adequate understanding of its emission sources is needed for climate change assessments, predictions, and the development and verification of emission mitigation strategies. Satellite retrievals of near-surface-sensitive column-averaged dry-air mole fractions of atmospheric methane, i.e. XCH4, can be used to quantify methane emissions. Maps of time-averaged satellite-derived XCH4 show regionally elevated methane over several methane source regions. In order to obtain methane emissions of these source regions we use a simple and fast data-driven method to estimate annual methane emissions and corresponding 1σ uncertainties directly from maps of annually averaged satellite XCH4. From theoretical considerations we expect that our method tends to underestimate emissions. When applying our method to high-resolution atmospheric methane simulations, we typically find agreement within the uncertainty range of our method (often 100 %) but also find that our method tends to underestimate emissions by typically about 40 %. To what extent these findings are model dependent needs to be assessed. We apply our method to an ensemble of satellite XCH4 data products consisting of two products from SCIAMACHY/ENVISAT and two products from TANSO-FTS/GOSAT covering the time period 2003-2014. We obtain annual emissions of four source areas: Four Corners in the south-western USA, the southern part of Central Valley, California, Azerbaijan, and Turkmenistan. We find that our estimated emissions are in good agreement with independently derived estimates for Four Corners and Azerbaijan. For the Central Valley and Turkmenistan our estimated annual emissions are higher compared to the EDGAR v4.2 anthropogenic emission inventory. For Turkmenistan we find on average about 50 % higher emissions with our annual emission uncertainty estimates overlapping with the EDGAR emissions. For the region around Bakersfield in the Central Valley we find a factor of 5-8 higher emissions compared to EDGAR, albeit with large uncertainty. Major methane emission sources in this region are oil/gas and livestock. Our findings corroborate recently published studies based on aircraft and satellite measurements and new bottom-up estimates reporting significantly underestimated methane emissions of oil/gas and/or livestock in this area in EDGAR.

  15. The Atmospheres of Directly Imaged Planets: Where Has All the Methane Gone?

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Zahnle, Kevin

    2014-01-01

    Methane and ammonia both first appear at lower effective temperatures in brown dwarf atmospheres than equilibrium chemistry models would suggest. This has traditionally been understood as a consequence of vertical mixing timescales being shorter than chemical equilibration timescales in brown dwarf photospheres. Indeed the eddy diffusivity, a variable accounting for the vigor of vertical mixing, has become a standard part of the description of brown dwarf atmosphere models, along with Teff and log g. While some models have suggested that methane is less favored at lower gravity, the almost complete absence of methane in the atmospheres of directly imaged planets, such as those orbiting HR 8799, even at effective temperatures where methane is readily apparent in brown dwarf spectra, has been puzzling. To better understand the paucity of methane in low gravity atmospheres we have revisited the problem of methane chemistry and mixing. We employed a 1-D atmospheric chemistry code augmented with an updated and complete network of the chemical reactions that link CO to CH4. We find the methane abundance at altitudes at or above the effective photosphere is a strong function of surface gravity because higher g shifts the p-T structure to higher pressures (i.e., a given optical depth is proportional to p/g, a relation mitigated somewhat by pressure broadening). Thus quenching in more massive brown dwarfs occurs at a lower temperature and higher pressure, both favoring CH4. We predict that in the lowest mass young giant planets, methane will appear very late, at effective temperatures as low as 600 K rather than the 1200 K seen among field brown dwarfs. This methane deficiency has important implications for the interpretation of spectra as well as methane-based planetary companion searches, such as the NICI survey. The GPI and SPHERE surveys will test these ideas and probe atmospheric chemistry and composition in an entire new range of parameter space. A caveat is that these calculations presume that the C to O ratio is comfortably less than one; the behavior is quite different if C and O are equally abundant, and of course CH4 is always present if C exceeds O.

  16. Inhibition of methane consumption in forest soils by monoterpenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, J.A.; Knowles, R.

    1998-04-01

    Selected monoterpenes were tested for their ability to inhibit atmospheric methane consumption by three forest soils from different vegetation types and by the cultured methanotrophic strain, Methylosinus trichosporium OB3b. Subsurface soil from coniferous (Pinus banksiana), deciduous (Populus tremuloides), and mixed hardwood (Tsuga canadensis and Prunus pensylvanica) stands was used under field-moist and slurry conditions. Most of the hydrocarbon monoterpenes tested significantly inhibited methane consumption by soils at environmentally relevant levels, with ({minus})-{alpha}-pinene being the most effective. With the exception of {beta}-myrcene, monoterpenes also strongly inhibited methane oxidation by Methylosinus trichosporium OB3b. Carbon dioxide production was stimulated in all of themore » soils by the monoterpenes tested. In one case, methane production was stimulated by ({minus})-{alpha}-pinene in an intact, aerobic core. Oxide and alcohol monoterpenoids stimulated methane production. Thus, monoterpenes appear to be potentially important regulators of methane consumption and carbon metabolism in forest soils.« less

  17. Toward estimation of origin of methane at ancient seeps — Carbon isotopes of seep carbonates, lipid biomarkers, and adsorbed gas

    NASA Astrophysics Data System (ADS)

    Miyajima, Yusuke; Watanabe, Yumiko; Ijiri, Akira; Goto, Akiko; Jenkins, Robert; Hasegawa, Takashi; Sakai, Saburo; Matsumoto, Ryo

    2017-04-01

    Methane is generated mainly by microbial or thermal degradation of organic matter, and the origin of methane can be estimated based on its stable carbon isotopic signature. Seafloor seepages of methane-charged fluids have been a major source of methane to the ocean, and knowing the origin of methane at the methane seeps can provide valuable insights into the subsurface fluid circulation and biogeochemical processes. Methane seeps in the geological past are archived as authigenic methane-derived carbonate rocks, which precipitate via an alkalinity increase facilitated by microbially mediated anaerobic oxidation of methane. Here we attempted to estimate origins of methane at ancient seeps, based on several proxies preserved within the seep carbonates. We examined methane-seep carbonate rocks in the Japan Sea region, collected from lower Miocene to middle Pleistocene sediments at 11 sites on land, and also carbonate nodules collected from the seafloor off Joetsu, where thermogenic methane is seeping. Carbon isotopic compositions of the carbonates and lipid biomarkers of methane-oxidizing archaea within them were analyzed. In order to directly know original isotopic signatures of methane, we also attempted to extract adsorbed methane through acid dissolution of the powdered carbonates. Early-diagenetic carbonate phases show various δ13C values between -64.7 and -4.7‰ vs. VPDB, suggesting either biogenic or thermogenic, or both origins of methane. A lipid biomarker pentamethylicosane (PMI) extracted from the ancient carbonates has δ13C values mostly lower than -100‰ , whereas that from the modern methane-derived carbonate nodule has a higher value (-80‰ ). The δ13C values of the seeping methane (-36‰ ) and PMI in the modern Joetsu seep carbonate shows an offset of -44‰ . If this carbon isotope offset was similar at the ancient seeps, the δ13C values of PMI indicate that methane at ancient seeps in the Japan Sea region was biogenic in origin, with δ13C values lower than -50‰ . Acid dissolution of the Miocene to Pliocene carbonates released methane with δ13C values mostly around or higher than -50‰ , which conflicts with the estimation based on biomarkers. Moreover, the Pleistocene and modern samples released only trace amounts of methane. It is thus highly possible that the extracted methane was mostly adsorbed on the carbonates within zones of thermogenic generation of hydrocarbons during burial. In conclusion, we can roughly estimate origins of methane at ancient seeps based on δ13C values of carbonates and biomarkers. However, in order to directly analyze methane contained in ancient seepage fluids, exploration of gas or fluid inclusions trapped within carbonate crystals is necessary.

  18. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities.

    PubMed

    Zhang, Tingting; Wang, Xiaowei; Zhou, Jiti; Zhang, Yu

    2018-03-01

    Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N 2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O 2 content synthesized more PHB, which had a wider optimal CH 4 :O 2 range and produced a high PHB content (48.7%) even though in the presence of N 2 . In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities. Copyright © 2017. Published by Elsevier B.V.

  19. Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations.

    PubMed

    van der Ha, David; Vanwonterghem, Inka; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2013-03-01

    Due to the increasing atmospheric concentration of the greenhouse gas methane, more knowledge is needed on the management of methanotrophic communities. While most studies have focused on the characteristics of the methane-oxidizing bacteria (MOB), less is known about their interactions with the associated heterotrophs. Interpretative tools based on denaturing gradient gel electrophoresis allowed to evaluate the influence of copper-an important enzymatic regulator for MOB-on the activity and composition of the bacterial community. Over 30 days, enrichments with 0.1, 1.0 and 10 μM Cu(2+) respectively, showed comparable methane oxidation activities. The different copper concentrations did not create major shifts in the methanotrophic communities, as a Methylomonas sp. was able to establish dominance at all different copper concentrations by switching between both known methane monooxygenases. The associated heterotrophic communities showed continuous shifts, but over time all cultures evolved to a comparable composition, independent of the copper concentration. This indicates that the MOB selected for certain heterotrophs, possibly fulfilling vital processes such as removal of toxic compounds. The presence of a large heterotrophic food web indirectly depending on methane as sole carbon and energy source was confirmed by a clone library wherein MOB only formed a minority of the identified species.

  20. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B.K.; Campbell, K.D.

    Methane oxidative coupling studies were carried out in an atmospheric quartz reactor at temperatures between 700 and 800/degree/C. New catalysts prepared and studied included doped alkaline earth catalysts, lanthanide oxides, and proprietary catalysts. Neodymium oxide, Nd/sub 2/O/sub 3/, was found to be as active and selective as samarium oxide, Sm/sub 2/O/sub 3/, in contrast to literature reports. Proprietary Union Carbide catalysts (UCC-S:1) showed initial methane conversions and C/sub 2/ selectivities comparable to literature catalysts. Atypically low carbon dioxide to carbon monoxide ratios (typically ten times lower than those seen in the literature or other catalysts tested) and high ethylene tomore » ethane ratios (3 to 6 compared to typical literature ratios below 1) were obtained. These results are interesting because ethylene is more valuable than ethane and carbon monoxide is more valuable than carbon dioxide. With these UCC-S:1 catalysts, rapid deactivation was coupled with an observed shift in product ratios toward those more typical in the literature. Initial cases for process conceptualization studies were selected. The Comparison Case will consist of the conversion sequence from methane to synthesis gas to methanol to olefins to liquid hydrocarbon fuels. Case 1 will consist of the conversion of methane to ethylene and ethane. Case 2 will be the direct conversion of methane to C/sub 2/'s followed by conversion to liquid hydrocarbon fuels. 7 figs., 18 tabs.« less

  2. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    PubMed

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Oxygen storage properties of La 1-xSr xFeO 3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    DOE PAGES

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  4. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    USGS Publications Warehouse

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic concentrations were higher than the Health Advisory level of 2 µg/L in 27 of 89 samples (30 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 µg/L in 9 of 89 samples (10 percent). The pH ranged from 5.4 to 9.3 and did not meet the SMCL range of greater than 6.5 to less than 8.5 in 27 samples (30 percent); 22 samples had pH values less than 6.5, and 5 samples had pH values greater than 8.5. Total coliform bacteria were detected in 22 of 89 samples (25 percent); Escherichia coli were detected in only 2 of those 22 samples. Radon-222 activities ranged from 25 to 7,400 picocuries per liter (pCi/L), with a median of 2,120 pCi/L, and exceeded the proposed drinking-water standard of 300 pCi/L in 86 of 89 samples (97 percent); radon-222 activities were higher than the alternative proposed standard of 4,000 pCi/L in 12 of 89 samples (13.5 percent).Water from 8 of the 89 wells (9 percent) had concentrations of methane greater than the reporting level of 0.24 milligrams per liter (mg/L) with the detectable methane concentrations ranging from 0.74 to 9.6 mg/L. Of 16 replicate samples submitted to another laboratory with a lower reporting level of 0.0002 mg/L, 15 samples had detectable methane concentrations that ranged from 0.0011 to 9.7 mg/L. Of these 15 samples, low levels of ethane (0.00032 to 0.0017 mg/L) were detected in 6 of 7 samples with methane concentrations greater than 0.75 mg/L. The isotopic composition of methane in 6 of 8 samples with sufficient dissolved methane (about 1 mg/L) for isotopic analysis is consistent with a predominantly thermogenic methane source (sample carbon isotopic ratio δ13CCH4 values ranging from -56.36 to -45.97 parts per thousand (‰) and hydrogen isotopic ratio δDCH4 values ranging from -233.1 to -141.1 ‰). However, the low levels of ethane relative to methane indicate that the methane may be of microbial origin and subsequently underwent oxidation. Isotopic compositions indicated a possibly mixed thermogenic and microbial source (carbon dioxide reduction process) for the methane in 1 of the 8 samples (δ13CCH4 of -63.72 and δDCH4 of -192.3 ‰) and potential oxidation of microbial and (or) thermogenic methane in the remaining sample (δ13CCH4 of -46.56 and δDCH4 of -79.7 ‰).Groundwater samples with relatively elevated methane concentrations (near or greater than 1 mg/L) had a chemical composition that differed in some respects (pH, selected major ions, and inorganic trace constituents) from groundwater with relatively low methane concentrations (less than 0.75 mg/L). The seven well-water samples with the highest methane concentrations (from about 1 to 9.6 mg/L) also had among the highest pH values (8.1 to 9.3, respectively) and the highest concentrations of sodium, lithium, boron, fluoride, arsenic, and bromide. Relatively elevated concentrations of some other constituents, such as barium, strontium, and chloride, commonly were present in, but not limited to, those well-water samples with elevated methane.Groundwater samples with the highest methane concentrations had chloride/bromide ratios that indicate mixing with a small amount of brine (0.02 percent or less, by volume) similar in composition to that reported for gas and oil well brines in Pennsylvania. Most other samples with low methane concentrations (less than about 1 mg/L) had chloride/bromide ratios that indicate predominantly man-made sources of chloride, such as road salt, septic systems, and (or) animal waste. Although naturally occurring brines may originate from deeper parts of the aquifer system, the man-made sources are likely to affect shallow groundwater.Geochemical modeling showed that the water chemistry of samples with elevated pH, sodium, lithium, bromide, and alkalinity could result from dissolution of calcite (calcium carbonate) combined with cation exchange and mixing with a small amount of brine. Through cation exchange reactions (which are equivalent to processes in a water softener) calcium ions released by calcite dissolution are exchanged for sodium ions on clay minerals. The spatial distribution of groundwater compositions generally shows that (1) relatively dilute, slightly acidic, oxygenated, calcium-carbonate type waters tend to occur in the uplands along the western border of Wayne County; (2) waters of near neutral pH with the highest amounts of hardness (calcium and magnesium) generally occur in areas of intermediate altitudes; and (3) waters with pH values greater than 8, low oxygen concentrations, and the highest arsenic, sodium, lithium, bromide, and methane concentrations can occur in deep wells in uplands but most frequently occur in stream valleys, especially at low elevations (less than about 1,200 ft above North American Vertical Datum of 1988) where groundwater may be discharging regionally, such as to the Delaware River. Thus, the baseline assessment of groundwater quality in Wayne County prior to gas-well development shows that shallow (less than about 1,000 ft deep) groundwater is generally of good quality, but methane and some constituents present in high concentrations in brine (and produced waters from gas and oil wells) may be present at low to moderate concentrations in some parts of Wayne County.

  5. Methane production by anaerobic digestion of water hyacinth (Eichhornia crassipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klass, D.L.; Ghosh, S.

    1980-01-01

    Water hyacinth under conventional high-rate digestion conditions exhibited higher methane yields and energy recovery efficiencies when grown in sewage-fed lagoons as compared to the corresponding values obtained with water hyacinth grown in a fresh-water pond. Mesophilic digestion provided the highest feed energy recovered in the product gas as methane while thermophilic digestion, when operated at sufficiently high loading rates and reduced detention times, gave the highest specific methane production rates. Methane yields, volatile solids reduction, and energy recovery as methane for the sewage-grown water hyacinth were in the same range as those observed for other biomass substrates when digested undermore » similar conditions.« less

  6. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation.

    PubMed

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O; Liu, Jie

    2017-02-23

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.

  7. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    PubMed Central

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie

    2017-01-01

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C. PMID:28230100

  8. Method for generating methane from a carbonaceous feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Seth W.; Urgun-Demirtas, Meltem; Shen, Yanwen

    The present invention provides a method for generating methane from a carbonaceous feedstock with simultaneous in situ sequestration of carbon dioxide to afford a biogas comprising at least 85 percent by volume methane, the method comprising anaerobically incubating a particulate additive in contact with a carbonaceous feedstock in a neutral or alkaline aqueous culture medium containing a culture of methanogenic consortia and collecting methane generated therefrom. The additive comprises at least one material selected from a biochar, an ash produced by gasification or combustion of a carbonaceous material, a black carbon soil, and a Terra Preta soil.

  9. Small spatial variability in methane emission measured from a wet patterned boreal bog

    NASA Astrophysics Data System (ADS)

    Korrensalo, Aino; Männistö, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina

    2018-03-01

    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from -309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.

  10. Oxidative coupling of methane over a Sr-promoted La{sub 2}O{sub 3} catalyst supported on a low surface area porous catalyst carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Uphade, B.S.; Mulla, S.A.R.

    1997-09-01

    Oxidative coupling of methane (OCM) to higher hydrocarbons over Sr-promoted La{sub 2}O{sub 3} supported on commercial low surface area porous catalyst carriers at 800 and 850 C and a space velocity of 102,000 cm{sup 3}/g{center_dot}h has been thoroughly investigated. Effects of support, catalyst particle size, linear gas velocity, Sr/La ratio, CH{sub 4}/O{sub 2} ratio in the feed, and catalyst dilution by inert solid particles on the conversion, yield, or selectivity and product ratios (C{sub 2}H{sub 4}/C{sub 2}H{sub 6} and CO/CO{sub 2}) in the OCM process have been studied. The catalysts have been characterized for their basicity, acidity, and oxygen chemisorptionmore » by the TPD of CO{sub 2}, ammonia, and oxygen, respectively, from 50 to 950 C and also characterized for their surface area. The supported catalysts showed better performance than the unsupported one. The best OCM results (obtained over Sr-La{sub 2}O{sub 3}/SA-5205 with a Sr/La ratio of 0.3 at a space velocity of 102,000 cm{sup 3}/g{center_dot}h) are 30.1% CH{sub 4} conversion with 65.6% selectivity for C{sub 2+} (or 19.7% C{sub 2+}-yield) at 850 C (CH{sub 4}/O{sub 2} = 16.0). The basicity is strongly influenced by the Sr/La ratio; the supported catalysts showed the best performance for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence on the OCM process. However, the influence of linear gas velocity and particle size is found to be small; it results mainly from the temperature gradient in the catalyst. The catalyst dilution has beneficial effects for achieving a higher C{sub 2}H{sub 4}/C{sub 2}H{sub 6} ratio and also for reducing the hazardous nature of the OCM process because of the coupling of the exothermic oxidative conversion reactions and the endothermic thermal cracking reactions and also due to the increased heat transfer area.« less

  11. The seasonal evolution of fruit, vegetable and yard wastes by mono, co and tri-digestion at Hyderabad, Sindh Pakistan.

    PubMed

    Korai, Muhammad Safar; Mahar, Rasool Bux; Uqaili, Muhammad Aslam

    2018-01-01

    The contribution of biowastes in municipal solid waste (MSW) is increasing day by day and being dumped in open atmosphere along with other wastes in every city of Pakistan. This study was formulated to evaluate the feasibility of biowastes such as fruit, vegetable and yard wastes of different seasons individual and mixing at different ratios to optimize methane production at Hyderabad Sindh, Pakistan. Batch digestion of selected samples was conducted for 40 days under mesophilic condition. Methane yield of individual fruit, vegetable and yard wastes (FrVYW) of summer and winter season was obtained in the range of 0.36-0.40 L/g VS and 0.39-0.44 L/g VS added respectively. The results of co-digestion of FrVYW of summer and winter season were observed in the range of 0.42-0.45 L/g VS added and 0.46 to 0.54 L/g VS added respectively. The results of tri-digestion of FrVYW of summer and winter season were achieved in the range of 0.46-0.53 L/g VS added and 0.56-0.62 L/g VS added respectively. Findings of study showed that methane production potential of tri-digestions were highest than all of others and that of co-digestion were higher than mono-digestion of FrVYW. Overall results of study concluded that tri-digestion of FrVYW at the equal blending ratio reported highest methane potential. Therefore, the study recommended that tri-digestion of FrVYW at equal mixing ratio is an optimal ratio for anaerobic digestion process to yield maximum methane production from FrVYW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions.

    PubMed

    Yang, Ziyi; Wang, Wen; Zhang, Shuyu; Ma, Zonghu; Anwar, Naveed; Liu, Guangqing; Zhang, Ruihong

    2017-04-01

    The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMY org and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.

  13. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    NASA Astrophysics Data System (ADS)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost same for all models.

  14. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in some major gas production regions. The simulated methane concentrations will be compared with the GOSAT satellite data to explore whether our built inventory could potentially improve the prediction of regional methane concentrations in the atmosphere.

  15. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1

    PubMed Central

    Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki

    1990-01-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719

  16. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With itsmore » high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.« less

  17. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing

    NASA Astrophysics Data System (ADS)

    Etminan, M.; Myhre, G.; Highwood, E. J.; Shine, K. P.

    2016-12-01

    New calculations of the radiative forcing (RF) are presented for the three main well-mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane's RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750-2011 RF is about 25% higher (increasing from 0.48 W m-2 to 0.61 W m-2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750-2011 CO2 RF is within 1% of IPCC's value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario.

  18. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    PubMed

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  19. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill.

    PubMed

    Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki

    2017-01-01

    Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m 2 areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (p<0.01) positive correlation with R 2 =0.7109 and y=0.1544 x. This correlation equation was used to describe spatial distribution of methane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm -2 d -1 higher than 38.3gm -2 d -1 from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    PubMed

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.

    PubMed

    Costa, J C; Gonçalves, P R; Nobre, A; Alves, M M

    2012-06-01

    Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Activated carbon enhanced anaerobic digestion of food waste - Laboratory-scale and Pilot-scale operation.

    PubMed

    Zhang, Le; Zhang, Jingxin; Loh, Kai-Chee

    2018-05-01

    Effects of activated carbon (AC) supplementation on anaerobic digestion (AD) of food waste were elucidated in lab- and pilot-scales. Lab-scale AD was performed in 1 L and 8 L digesters, while pilot-scale AD was conducted in a 1000 L digester. Based on the optimal dose of 15 g AC per working volume derived from the 1 L digester, for the same AC dosage in the 8 L digester, an improved operation stability coupled with a higher methane yield was achieved even when digesters without AC supplementation failed after 59 days due to accumulation of substantial organic intermediates. At the same time, color removal from the liquid phase of the digestate was dramatically enhanced and the particle size of the digestate solids was increased by 53% through AC supplementation after running for 59 days. Pyrosequencing of 16S rRNA gene showed the abundance of predominant phyla Firmicutes, Elusimicrobia and Proteobacteria selectively enhanced by 1.7-fold, 2.9-fold and 2.1-fold, respectively. Pilot-scale digester without AC gave an average methane yield of 0.466 L⋅(gVS) -1 ⋅d -1 at a composition of 53-61% v/v methane. With AC augmentation, an increase of 41% in methane yield was achieved in the 1000 L digester under optimal organic loading rate (1.6 g VS FW ·L -1 ·d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A Densified Liquid Methane Delivery System for the Altair Ascent Stage

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Johnson, Wesley L.; Smudde, Todd D.; Femminineo, Mark F.; Schnell, Andrew R.

    2010-01-01

    The Altair Lunar Lander is currently carrying options for both cryogenic and hypergolic ascent stage propulsion modules. The cryogenic option uses liquid methane and liquid oxygen to propel Altair from the lunar surface back to rendezvous with the Orion command module. Recent studies have determined that the liquid methane should be densified by subcooling it to 93 K in order to prevent over-pressurization of the propellant tanks during the 210 day stay on the lunar surface. A trade study has been conducted to determine the preferred method of producing; loading, and maintaining the subcooled, densified liquid methane onboard Altair from a ground operations perspective. The trade study took into account the limitations in mass for the launch vehicle and the mobile launch platform as well as the historical reliability of various components and their thermal efficiencies. Several unique problems were encountered, namely delivering a small amount of a cryogenic propellant to a flight tank that is positioned over 350 ft above the launch pad as well as generating the desired delivery temperature of the methane at 93 K which is only 2.3 K above the methane triple point of 90.7 K. Over 20 methods of subcooled liquid methane production and delivery along with the associated system architectures were investigated to determine the best solutions to the problem. The top four cryogenic processing solutions were selected for further evaluation and detailed thermal modeling. This paper describes the results of the preliminary trade analysis of the 20 plus methane densification methods considered. The results of the detailed analysis will be briefed to the Altair Project Office and their propulsion team as well as the Ground Operations Project Office before the down-select is made between cryogenic and hypergolic ascent stages in August 2010.

  4. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations.

    PubMed

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-11-01

    The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The conversion of community-derived wastes to methane in a high-rate digester. La conversion des dechets solides municipaux en methane dans un digesteur a rendement eleve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Punwani, D.V.

    1988-01-01

    The Institute of Gas Technology (IGT) has been operating a 4.5-m/sup 3/, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida, since January 1984. This digester development work is part of a larger effort that provides effective community waste treatment and disposal options while recovering a valuable methane resources from these wastes. Excellent conversions to methane have been obtained in the digester during 4 years of uninterrupted operation. Data were collected on wastes from experimental municipal wastewater treatment applications, that is, water hyacinths were harvested from secondary wastewater treatment channels and combined with sludgemore » from primary clarifiers to maximize potential methane recoveries in the digester; wastes from agricultural operations, that is, sorghum was selected as a candidate because it represents both a potential energy crop, as well as a waste resource if only portions of the plant are converted after grain production; and wastes from municipal waste collection. Municipal solids waste (MSW) from a commercial resource recovery center was selected. 3 refs., 4 figs., 5 tabs.« less

  6. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation.

    PubMed

    Durmic, Zoey; Moate, Peter J; Eckard, Richard; Revell, Dean K; Williams, Richard; Vercoe, Philip E

    2014-04-01

    Ruminants produce large quantities of methane in their rumen as a by-product of microbial digestion of feed. Antibiotics are added to ruminant feed to reduce wasteful production of methane; however, this practice has some downsides. A search for safer and natural feed additives with anti-methanogenic properties is under way. The objective of this research was to examine selected feed additives, plant essential oils and plant extracts for their anti-methanogenic potential in the rumen using an in vitro batch fermentation system. A significant reduction (P < 0.05) in methane production was observed with nine feed additives (up to 40% reduction), all eight essential oils (up to 75% reduction) and two plant extracts (14% reduction) when compared to their respective controls. Amongst these, only an algal meal high in docosahexaenoic acid, preparations of Nannochloropsis oculata, calcareous marine algae, yeast metabolites and two tannins did not inhibit microbial gas and volatile acid production. The current study identified some potent dietary ingredients or plant compounds that can assist in developing novel feed additives for methane mitigation from the rumen. © 2013 Society of Chemical Industry.

  7. Formation and retention of methane in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  8. Formation and retention of methane in coal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  9. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  10. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE PAGES

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin; ...

    2018-04-03

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  11. Raman studies of methane-ethane hydrate metastability.

    PubMed

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  12. Exhaled methane concentration profiles during exercise on an ergometer

    PubMed Central

    Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A

    2016-01-01

    Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807

  13. High-Frequency Measurements of Tree Methane Fluxes Indicate a Primary Souce Inside Tree Tissue

    NASA Astrophysics Data System (ADS)

    Brewer, P.; Megonigal, P.

    2017-12-01

    Methane emissions from the boles and shoots of living upland trees is a recent discovery with significant implications for methane budgets. Forest soil methane uptake is the greatest terrestrial methane sink, but studies have shown this may be partially for fully offset by tree methane sources. However, our ability to quantify the tree source has been hampered because the ultimate biological source(s) of methane is unclear. We measured methane fluxes from two species of living tree boles in an Eastern North American deciduous forest over 100 consecutive days. Our two hour sampling intervals allowed us to characterize diurnal patterns and seasonal dynamics. We observed wide intraspecific differences in average flux rates and diurnal dynamics, even between adjacent individuals. This and other properties of the fluxes indicates the primary methane source is likely within the tree tissues, not in soil or groundwater. Emissions of methane from trees offset approximately 10% of soil uptake on average, but at times tree fluxes were much higher. Preliminary analyses indicate the highest rates are related to tree life history, tree growth, temperature, ground-water depth, and soil moisture.

  14. Methane distribution and oxidation around the Lena Delta in summer 2013

    NASA Astrophysics Data System (ADS)

    Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje

    2017-11-01

    The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L-1 for riverine water (salinity (S) < 5), 19 nmol L-1 for mixed water (5 < S < 20) and 28 nmol L-1 for polar water (S > 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L-1 d-1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d-1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.

  15. Aging well: methanotrophic potential and community structure along a paddy soil chronosequence of 2000 years.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Frenzel, Peter

    2010-05-01

    Given that rice paddies are anthropogenic methane sources and the inevitable need to increase rice production to sustain human population growth, it is pertinent to identify the effects of long term agriculture on the selection of methanotrophs. Methanotrophs play a crucial role in mitigating methane emission from rice paddies. Therefore, we analyzed the methanotroph community along a chronosequence of paddy soils from China covering recently reclaimed sites to paddies under permanent agriculture since 2000 years (Cheng et al., 2009; doi:10.1016/j.geoderma.2009.03.016). Maximum potential methane oxidation rate (PMOR) increased monotonically with age. Our results also showed that long-term agriculture imposes a selection pressure on different groups of methanotrophs. In contrast to younger soils, type Ib methanotrophs were observed to multiply in correspondence with increasing PMOR in ancient soils, while other groups showed a relatively stable community composition as revealed by pmoA-based fingerprints (T-RFLP) and quantitative PCR. Cloning and sequencing the pmoA (a key gene in methane oxidation), the soils were found to harbour known and putative methanotrophs, ammonium-oxidizing bacteria, and interestingly, sequences affiliated to Crenothrix, a methane oxidizer with an unusual pmoA (Stoecker et al., 2006; doi:10.1073/pnas.0506361103). In summary, long-term agriculture shapes the community and allows for an elevated level of potential methane oxidation.

  16. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time.

    PubMed

    Kim, Dong-Jin; Lee, Jonghak

    2012-01-01

    Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.

  17. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  18. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  19. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  20. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  1. 40 CFR 98.366 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... type). (11) Methane conversion factor used for each MMS component. (12) Average ambient temperature used to select each methane conversion factor. (13) N2O emissions (results of Equation JJ-13). (14) N... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.366 Data reporting requirements. (a) In...

  2. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  3. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    PubMed Central

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 ± 0.06, 1.0 ± 0.13 and 0.4 ± 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation. PMID:24920064

  4. Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production.

    PubMed

    Capson-Tojo, Gabriel; Rouez, Maxime; Crest, Marion; Trably, Eric; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-11-01

    Dry anaerobic digestion is a promising option for food waste treatment and valorization. However, accumulation of ammonia and volatile fatty acids often occurs, leading to inefficient processes and digestion failure. Co-digestion with cardboard may be a solution to overcome this problem. The effect of the initial substrate to inoculum ratio (0.25 to 1gVS·gVS -1 ) and the initial total solids contents (20-30%) on the kinetics and performance of dry food waste mono-digestion and co-digestion with cardboard was investigated in batch tests. All the conditions produced methane efficiently (71-93% of the biochemical methane potential). However, due to lack of methanogenic activity, volatile fatty acids accumulated at the beginning of the digestion and lag phases in the methane production were observed. At increasing substrate to inoculum ratios, the initial acid accumulation was more pronounced and lower cumulative methane yields were obtained. Higher amounts of soluble organic matter remained undegraded at higher substrate loads. Although causing slightly longer lag phases, high initial total solids contents did not jeopardize the methane yields. Cardboard addition reduced acid accumulation and the decline in the yields at increasing substrate loads. However, cardboard addition also caused higher concentrations of propionic acid, which appeared as the most last acid to be degraded. Nevertheless, dry co-digestion of food waste and cardboard in urban areas is demonstrated asan interesting feasible valorization option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas.

    PubMed

    Hamzehlouia, Sepehr; Jaffer, Shaffiq A; Chaouki, Jamal

    2018-06-12

    Natural gas is a robust and environmentally friendlier alternative to oil resources for energy and chemicals production. However, gas is distributed globally within shales and hydrates, which are generally remote and difficult reserves to produce. The accessibility, transportation, and distribution, therefore, bring major capital costs. With today's low and foreseen low price of natural gas, conversion of natural gas to higher value-added chemicals is highly sought by industry. Dry reforming of methane (DRM) is a technology pathway to convert two critical greenhouse gas components, CH 4 and CO 2 , to syngas, a commodity chemical feedstock. To date, the challenges of carbon deposition on the catalyst and evolution of secondary gas-phase products have prevented the commercial application of the DRM process. The recent exponential growth of renewable electricity resources, wind and solar power, provides a major opportunity to activate reactions by harnessing low-cost carbon-free energy via microwave-heating. This study takes advantage of differences in dielectric properties of materials to enable selective heating by microwave to create a large thermal gradient between a catalyst surface and the gas phase. Consequently, the reaction kinetics at the higher temperature catalyst surface are promoted while the reactions of lower temperature secondary gas-phase are reduced.

  6. CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column

    NASA Astrophysics Data System (ADS)

    puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.

    2018-03-01

    Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.

  7. Methane Emissions From Western Siberian Wetlands: Heterogeneity and Sensitivity to Climate Change

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Lettenmaier, D. P.; Podest, E.; McDonald, K. C.; Sathulur, K.; Bowling, L. C.; Friborg, T.

    2007-12-01

    Prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for prediction of wetland methane emissions at regional scales, we have coupled the Variable Infiltration Capacity macroscale hydrological model (VIC) with the Biosphere-Energy-Transfer- Hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on topographic wetness index. Using landcover classifications derived from L-band satellite synthetic aperture radar imagery, we simulated methane emissions for the Chaya River basin in western Siberia, an area that includes the Bakchar Bog, for a retrospective baseline period of 1980-1999, and evaluated their sensitivity to increases in temperature of 0-5 °C and increases in precipitation of 0-15%. The interactions of temperature and precipitation, through their effects on the water table depth, play an important role in determining methane emissions from these wetlands. The balance between these effects varies spatially, and their net effect depends in part on sub- grid topographic heterogeneity. Higher temperatures alone increase methane production in saturated areas, but cause those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raises water tables and expands the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation, to represent the climate conditions likely in western Siberia at the end of this century, results in roughly a doubling of annual methane emissions. This work was carried out at the University of Washington, at Purdue University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  8. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    PubMed

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.

  9. Biomimetic methane oxidation

    NASA Astrophysics Data System (ADS)

    Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.

    1992-06-01

    Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.

  10. Gas distribution equipment in hydrogen service - Phase II

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Huang, H. D.

    1980-01-01

    The hydrogen permeability of three different types of commercially available natural gas polyethylene pipes was determined. Ring tensile tests were conducted on permeability-exposed and as-received samples. Hydrogen-methane leakage experiments were also performed. The results show no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow (through leaks) on the distribution of blends of hydrogen and methane. The data collected show that the polyethylene pipe is 4 to 6 times more permeable to hydrogen than to methane.

  11. Mapping Pluto Methane Ice

    NASA Image and Video Library

    2015-09-24

    The Ralph/LEISA infrared spectrometer on NASA's New Horizons spacecraft mapped compositions across Pluto's surface as it flew past the planet on July 14, 2015. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors, and lower abundances shown in black. Data have only been received so far for the left half of Pluto's disk. At right, the methane map is merged with higher-resolution images from the spacecraft's Long Range Reconnaissance Imager (LORRI). http://photojournal.jpl.nasa.gov/catalog/PIA19953

  12. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improvement of methane production from waste paper by pretreatment with rumen fluid.

    PubMed

    Baba, Yasunori; Tada, Chika; Fukuda, Yasuhiro; Nakai, Yutaka

    2013-01-01

    Cellulose hydrolysis is the rate-limiting step in anaerobic digestion. In the present study, waste paper was used as a model of cellulosic biomass and was pretreated with rumen fluid prior to methane production. To achieve a high methane yield, the reaction time of the pretreatment was examined. Waste paper was soaked with rumen fluid for 6 and 24h at 37 °C. Various volatile fatty acids, especially acetate, were produced by the pretreatment. Semicontinuous methane production was carried out over a 20-day period. The best daily methane yield was obtained by the 6-h pretreatment. The amount was 2.6 times higher than that of untreated paper, which resulted in 73.4% of the theoretical methane yield. During methane production, the cellulose, hemicellulose and lignin degradabilities were improved by the pretreatment. Pretreatment by rumen fluid is therefore a powerful method to accelerate the methane yield from a cellulosic biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Ruminant Methane δ (13C/12C) - Values: Relation to Atmospheric Methane

    NASA Astrophysics Data System (ADS)

    Rust, Fleet

    1981-03-01

    The δ (13C/12C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C3 or C4, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average δ (13C/12C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose δ (13C/12C) is similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.

  15. Biogeochemistry of dissolved methane and hydrogen in basement fluids of the sediment-buried Juan de Fuca Ridge flank at Boreholes (CORKs) 1301A, 1362A and 1362B: methane isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lin, H.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S.; Rappe, M. S.

    2013-12-01

    The ocean crust is the largest aquifer system on Earth. Within the sediment-buried 3.5 Myr basaltic crust of the eastern Juan de Fuca Ridge (JFR) flank, the circulating basement fluids have moderate temperature (~65°C) and potentially harbor a substantial subseafloor biosphere. With dissolved oxygen and nitrate exhausted, sulfate may serve as the major electron acceptor in this environment. This study aims to evaluate the availability and the biogeochemistry of two important electron donors, methane and hydrogen, for the subseafloor biosphere. Basement fluids were collected via stainless steel and ethylene-tetrafluoroethylene fluoropolymer (ETFE) fluid delivery lines associated with Integrated Ocean Drilling Program (IODP) Circulation Obviation Retrofit Kits (CORKs) that extend from basement depths to outlet ports at the seafloor. Three CORKs were visited; 1301A, 1362A and 1362B lie within 200 to 500 m of each other, and their fluid intakes lie at ~30, ~60, and ~50 m below the sediment-basement interface (mbs), respectively. In addition, CORK 1362A contains a second intake at a deep (~200 mbs) horizon. The basement fluids from the three CORKs contained significantly higher concentrations of methane (1.5-13μM) and hydrogen (0.05-1.1 μM) than in bottom seawater (0.002 and 0.0004, respectively), indicating that prevalence and availability of both methane and hydrogen as electron donors for the subseafloor biosphere. Thermodynamic calculations show that sulfate reduction coupled with either methane or hydrogen oxidation is energy yielding in the oceanic basement. The δ13C values of methane ranged from -43×1‰ to -58×0.3‰; the δ2H values of methane in CORKs 1301A, 1362A and 1362B fluids were 57×5‰, -262×2‰, -209×2‰, respectively. The isotopic compositions suggest that methane in the basement fluid is of biogenic origin. Interestingly, the δ2H value of methane in the CORK 1301A fluids is far more positive than that in other marine environments investigated so far (Martens et al., 1999; Kessler et al., 2006; Kessler et al., 2008). The positive δ2H value of methane is best explained by partial microbial oxidation of biogenic methane, which has an initial isotopic composition similar to that from CORK 1362A and 1362B borehole fluid. High-throughput sequencing of the small subunit ribosomal RNA gene indicates the presence of methanogenic Euryarchaeota (e.g. Methanobacteria) in each of the borehole fluid samples described here. On average, fluid samples from boreholes 1362A and 1362B possessed a relatively higher abundance of known methanogens compared to borehole 1301A, consistent with higher methane concentration in 1362A and 1362B relative to 1301A fluids. Methane-oxidizing bacterial lineages from the phyla Proteobacteria and Verrucomicrobia were also detected; however, these groups were less abundant relative to the putative methane-producing groups. In conclusion, our study shows that methane and hydrogen are available electron donors and that methane is produced and potentially consumed by microorganisms in the oceanic basement. The data presented will guide incubation experiments using basement fluid in order to better understand the methane production/utilization processes within the oceanic basement.

  16. Microbial fuel cells: Running on gas

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong Jason

    2017-06-01

    Methane is an abundant energy source that is used for power generation in thermal power plants via combustion, but direct conversion to electricity in fuel cells remains challenging. Now, a microbial fuel cell is demonstrated to efficiently convert methane directly to current by careful selection of a consortium of microorganisms.

  17. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barriermore » for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.« less

  18. LIDAR technology for measuring trace gases on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart

    2017-11-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a greenhouse gas and called for a mission to measure CO2, CO and CH4. Methane has absorptions in the mid-infrared (3.3 um) and the near infrared (1.65 um). The 3.3 um spectral region is ideal for planetary (Mars) Methane monitoring, but unfortunately is not suitable for earth monitoring since the Methane absorption lines are severely interfered with by water. The near infra-red overtones of Methane at 1.65 um are relatively free of interference from other atmospheric species and are suitable for Earth observations. The methane instrument uses Optical Parametric Generation (OPG) along with sensitive detectors to achieve the necessary sensitivity. Our instrument generates and detects tunable laser signals in the 3.3 or 1.65 um spectral regions with different detectors in order to measure methane on Earth or Mars. For Mars, the main interest in methane is its importance as a biogenic marker.

  19. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    PubMed

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    DOE PAGES

    Zhang, Xiao; Li, Xueqian; Zhang, Du; ...

    2017-02-23

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildlymore » illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. As a result, the reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350°C.« less

  1. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Li, Xueqian; Zhang, Du

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildlymore » illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. As a result, the reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350°C.« less

  2. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC

    DOE PAGES

    Paudel, Rajendra; Mahowald, Natalie M.; Hess, Peter G. M.; ...

    2016-03-10

    An understanding of potential factors controlling methane emissions from natural wetlands is important to accurately project future atmospheric methane concentrations. Here, we examine the relative contributions of climatic and environmental factors, such as precipitation, temperature, atmospheric CO 2 concentration, nitrogen deposition, wetland inundation extent, and land-use and land-cover change, on changes in wetland methane emissions from preindustrial to present day (i.e., 1850-2005). We apply a mechanistic methane biogeochemical model integrated in the Community Land Model version 4.5 (CLM4.5), the land component of the Community Earth System Model. The methane model explicitly simulates methane production, oxidation, ebullition, transport through aerenchyma ofmore » plants, and aqueous and gaseous diffusion. We conduct a suite of model simulations from 1850 to 2005, with all changes in environmental factors included, and sensitivity studies isolating each factor. Globally, we estimate that preindustrial methane emissions were higher by 10% than present-day emissions from natural wetlands, with emissions changes from preindustrial to the present of +15%, -41%, and -11% for the high latitudes, temperate regions, and tropics, respectively. The most important change is due to the estimated change in wetland extent, due to the conversion of wetland areas to drylands by humans. This effect alone leads to higher preindustrial global methane fluxes by 33% relative to the present, with the largest change in temperate regions (+80%). These increases were partially offset by lower preindustrial emissions due to lower CO 2 levels (10%), shifts in precipitation (7%), lower nitrogen deposition (3%), and changes in land-use and land-cover (2%). Cooler temperatures in the preindustrial regions resulted in our simulations in an increase in global methane emissions of 6% relative to present day. Much of the sensitivity to these perturbations is mediated in the model by changes in methane substrate production and the areal extent of wetlands. The detrended interannual variability of high-latitude methane emissions is explained by the variation in substrate production and wetland inundation extent, whereas the tropical emission variability is explained by both of those variables and precipitation.« less

  4. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, Rajendra; Mahowald, Natalie M.; Hess, Peter G. M.

    An understanding of potential factors controlling methane emissions from natural wetlands is important to accurately project future atmospheric methane concentrations. Here, we examine the relative contributions of climatic and environmental factors, such as precipitation, temperature, atmospheric CO 2 concentration, nitrogen deposition, wetland inundation extent, and land-use and land-cover change, on changes in wetland methane emissions from preindustrial to present day (i.e., 1850-2005). We apply a mechanistic methane biogeochemical model integrated in the Community Land Model version 4.5 (CLM4.5), the land component of the Community Earth System Model. The methane model explicitly simulates methane production, oxidation, ebullition, transport through aerenchyma ofmore » plants, and aqueous and gaseous diffusion. We conduct a suite of model simulations from 1850 to 2005, with all changes in environmental factors included, and sensitivity studies isolating each factor. Globally, we estimate that preindustrial methane emissions were higher by 10% than present-day emissions from natural wetlands, with emissions changes from preindustrial to the present of +15%, -41%, and -11% for the high latitudes, temperate regions, and tropics, respectively. The most important change is due to the estimated change in wetland extent, due to the conversion of wetland areas to drylands by humans. This effect alone leads to higher preindustrial global methane fluxes by 33% relative to the present, with the largest change in temperate regions (+80%). These increases were partially offset by lower preindustrial emissions due to lower CO 2 levels (10%), shifts in precipitation (7%), lower nitrogen deposition (3%), and changes in land-use and land-cover (2%). Cooler temperatures in the preindustrial regions resulted in our simulations in an increase in global methane emissions of 6% relative to present day. Much of the sensitivity to these perturbations is mediated in the model by changes in methane substrate production and the areal extent of wetlands. The detrended interannual variability of high-latitude methane emissions is explained by the variation in substrate production and wetland inundation extent, whereas the tropical emission variability is explained by both of those variables and precipitation.« less

  5. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion

    PubMed Central

    Lawton, Thomas J.; Rosenzweig, Amy C.

    2017-01-01

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16–13 s−1, these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961

  6. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    PubMed

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-03

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.

  7. Understanding complete oxidation of methane on spinel oxides at a molecular level

    DOE PAGES

    Tao, Franklin Feng; Shan, Jun-jun; Nguyen, Luan; ...

    2015-08-04

    It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo 2O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. Finally, in situ studies of complete oxidation of methane on NiCo 2Omore » 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3O with a following dehydrogenation to -CH 2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.« less

  8. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  9. Free energy landscape of dissociative adsorption of methane on ideal and defected graphene from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Wlazło, M.; Majewski, J. A.

    2018-03-01

    We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process.

  10. The strength and rheology of methane clathrate hydrate

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.

    2003-01-01

    Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.

  11. Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems

    PubMed Central

    Liu, Dandan; Roca-Puigros, Marta; Geppert, Florian; Caizán-Juanarena, Leire; Na Ayudthaya, Susakul P.; Buisman, Cees; ter Heijne, Annemiek

    2018-01-01

    Methane-producing bioelectrochemical systems generate methane by using microorganisms to reduce carbon dioxide at the cathode with external electricity supply. This technology provides an innovative approach for renewable electricity conversion and storage. Two key factors that need further attention are production of methane at high rate, and stable performance under intermittent electricity supply. To study these key factors, we have used two electrode materials: granular activated carbon (GAC) and graphite granules (GG). Under galvanostatic control, the biocathodes achieved methane production rates of around 65 L CH4/m2catproj/d at 35 A/m2catproj, which is 3.8 times higher than reported so far. We also operated all biocathodes with intermittent current supply (time-ON/time-OFF: 4–2′, 3–3′, 2–4′). Current-to-methane efficiencies of all biocathodes were stable around 60% at 10 A/m2catproj and slightly decreased with increasing OFF time at 35 A/m2catproj, but original performance of all biocathodes was recovered soon after intermittent operation. Interestingly, the GAC biocathodes had a lower overpotential than the GG biocathodes, with methane generation occurring at −0.52 V vs. Ag/AgCl for GAC and at −0.92 V for GG at a current density of 10 A/m2catproj. 16S rRNA gene analysis showed that Methanobacterium was the dominant methanogen and that the GAC biocathodes experienced a higher abundance of proteobacteria than the GG biocathodes. Both cathode materials show promise for the practical application of methane-producing BESs. PMID:29946543

  12. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.

  13. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  14. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  15. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    PubMed

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  16. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  17. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.

    PubMed

    Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia

    2017-06-01

    Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.

  18. The cumulative methane production from dairy cattle slurry can be explained by its volatile solid, temperature and length of storage.

    PubMed

    Sawamoto, Takuji; Nakamura, Megumi; Nekomoto, Kenji; Hoshiba, Shinji; Minato, Keiko; Nakayama, Motoo; Osada, Takashi

    2016-06-01

    In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage. © 2015 Japanese Society of Animal Science.

  19. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle.

    PubMed

    Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F

    2016-04-01

    Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that selection for lower MPR may have undesired effect on animal productivity. On the other hand, MY and the RMPR were either not genetically correlated or weakly correlated with BWT, YWT, and FWT (-0.06 to 0.23) and body composition traits (-0.18 to 0.18). Therefore, selection for lower MY or RMPR would lead to lower MPR without impacting animal productivity. Where the use of a ratio trait (e.g., MY) is not desirable, selection on any of the forms of RMP would be an alternative.

  20. Transport Mechanism of Guest Methane in Water-Filled Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bui, Tai; Phan, Anh; Cole, David R.

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less

  1. Transport Mechanism of Guest Methane in Water-Filled Nanopores

    DOE PAGES

    Bui, Tai; Phan, Anh; Cole, David R.; ...

    2017-05-11

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less

  2. Mars methane rises and falls with the seasons

    NASA Astrophysics Data System (ADS)

    Hand, Eric

    2018-01-01

    On Earth, atmospheric methane is a prominent sign of life. On Mars, the story is more complicated. Trace detections of methane, alongside glimpses of larger spikes, have fueled debates about biological and nonbiological sources of the gas. Now, NASA scientists have announced a new twist in the tale: Methane regularly rises to a peak in late northern summer in a seasonal pattern. The swings are larger than can be explained by the planet's seasonal freeze-thaw cycles. The wiggles are a mystery within a larger mystery: claims of methane spikes an order of magnitude or two higher than the background. Some scientists say meteor showers could be responsible, by depositing carbonaceous material in the atmosphere that reacts to form methane. A close encounter on 24 January with debris from a comet could provide a chance to test the hypothesis.

  3. Swarm intelligence for multi-objective optimization of synthesis gas production

    NASA Astrophysics Data System (ADS)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  4. ENGINEERING AND ECONOMIC EVALUATION OF GAS RECOVERY AND UTILIZATION TECHNOLOGIES AT SELECTED U.S. MINES

    EPA Science Inventory

    Methane liberated in underground coal mines is a severe safety hazard to miners. It is also a major contributor to the build-up of greenhouse gases in the global atmosphere. This report presents an engineering and economic evaluation of several methane recovery and end-use techno...

  5. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as TOC minus methane and ethane according to the procedures specified. (i) Selection of sampling... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e... shall ensure the measurement of total organic regulated material or TOC (minus methane and ethane...

  6. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain).

    PubMed

    Nieto, P P; Hidalgo, D; Irusta, R; Kraut, D

    2012-01-01

    An inventory of agro-food industry organic waste streams with a high potential for biogas transformation was studied in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as the most viable ones: livestock, dairy and beverage. The potential for methane production from six wastes (beverage waste, BW; milled apple waste, MA; milk waste, MK; yogurt waste, YG; fats and oils from dairy wastewater treatment, F&O and cattle manure, CM) at five different substrate:inoculum ratios (0.25, 0.50, 0.75, 1.00 and 1.50) was evaluated in laboratory batch assays. Obtained methane yields ranged from 202-549 mL STP CH(4)·g VS waste(-1), and the methane content in biogas ranged from 58-76%. The ultimate practical biochemical methane potentials were slightly affected by the substrate:inoculum ratio. The estimation of the regional fluxes of waste and methane potentials suggests anaerobic digestion as a sustainable solution for the valorization of the organic wastes generated in this Region.

  7. QENS study of methane diffusion in Mo/H-ZSM-5 used for the methane dehydroaromatisation reaction

    NASA Astrophysics Data System (ADS)

    Silverwood, Ian P.; Arán, Miren Agote; González, Ines Lezcano; Kroner, Anna; Beale, Andrew M.

    2018-05-01

    There is commercial interest in understanding the deactivation of Mo loaded H-ZSM-5 catalyst by coke fouling during the methane dehydroaromatization reaction (MDA). The effect of coke on methane diffusion inside the zeolite pores was studied by quasielastic neutron scattering (QENS) measurements on Mo/H-ZSM-5 samples reacted with methane for 0, 7, 25 and 60 min. Catalytic activity of the samples followed by mass spectrometry indicate that the induction period in which Mo species are carburized lasts for ˜9 min; after this period the material shows selectivity to aromatics. Characterization by TGA and N2 physisorption suggest that practically no carbon is deposited during the induction period. The ˜2 wt % of coke formed after one hour of reaction has a negligible effect in the zeolite crystal structurebut a small effect on the micropore volume. The QENS studies show that the methane transport by jump diffusion is however not measurably affected by the accumulated coke in the samples.

  8. Enhanced methane generation during theromophilic co-digestion of confectionary waste and grease-trap fats and oils with municipal wastewater sludge.

    PubMed

    Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John

    2013-02-01

    Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.

  9. Theoretical Insights into Direct Methane to Methanol Conversion over Supported Dicopper Oxo Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.

    In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less

  10. Theoretical Insights into Direct Methane to Methanol Conversion over Supported Dicopper Oxo Nanoclusters

    DOE PAGES

    Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.; ...

    2018-04-08

    In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less

  11. Partial oxidation of methane by pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2014-09-01

    Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.

  12. Catalysts for conversion of methane to higher hydrocarbons

    DOEpatents

    Siriwardane, Ranjani V.

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  13. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  14. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  15. Kinetics of anaerobic degradation of screened dairy manure by upflow fixed bed digesters: effect of natural zeolite addition.

    PubMed

    Nikolaeva, S; Sánchez, E; Borja, R; Raposo, F; Colmenarejo, M F; Montalvo, S; Jiménez-Rodríguez, A M

    2009-02-01

    The effect of the hydraulic retention time (HRT) on the performance of two up-flow anaerobic fixed bed digesters (UFAFBDs) packed with waste tire rubber (D1) and waste tire rubber and zeolite (D2) as micro-organism immobilization supports was studied. It was found that a first-order kinetic model described well the experimental results obtained. The kinetic constants for COD, BOD5, total solids (TS) and volatile solids (VS) removal were determined to be higher in digester D2 than in digester D1 or control. Specifically, they were 0.28 +/- 0.01, 0.32 +/- 0.02, 0.16 +/- 0.01 and 0.24 +/- 0.01 d(- 1) respectively for D1 and 0.33 +/- 0.02, 0.40 +/- 0.02, 0.21 +/- 0.01 and 0.28 +/- 0.01 d(- 1) respectively for D2. This was significant at the 95% confidence level. In addition, the first-order model was also adequate for assessing the effect of the HRT on the removal efficiency and methane production. Maximum methane yield and the first-order constant for methane production were determined and the results obtained were comparable with those obtained by other authors but operating at higher HRTs. Maximum methane yields and the kinetic constant for methane production were 11.1% and 29.4% higher in digester D2 than in D1.

  16. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts.

    PubMed

    Bradley, Matthew J; Ananth, Ramagopal; Willauer, Heather D; Baldwin, Jeffrey W; Hardy, Dennis R; Williams, Frederick W

    2017-09-20

    Iron-based CO₂ catalysts have shown promise as a viable route to the production of olefins from CO₂ and H₂ gas. However, these catalysts can suffer from low conversion and high methane selectivity, as well as being particularly vulnerable to water produced during the reaction. In an effort to improve both the activity and durability of iron-based catalysts on an alumina support, copper (10-30%) has been added to the catalyst matrix. In this paper, the effects of copper addition on the catalyst activity and morphology are examined. The addition of 10% copper significantly increases the CO₂ conversion, and decreases methane and carbon monoxide selectivity, without significantly altering the crystallinity and structure of the catalyst itself. The FeCu/K catalysts form an inverse spinel crystal phase that is independent of copper content and a metallic phase that increases in abundance with copper loading (>10% Cu). At higher loadings, copper separates from the iron oxide phase and produces metallic copper as shown by SEM-EDS. An addition of copper appears to increase the rate of the Fischer-Tropsch reaction step, as shown by modeling of the chemical kinetics and the inter- and intra-particle transport of mass and energy.

  17. Methane on Mars: Measurements and Possible Origins

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.; Radeva, Yana L.; Kaufl, H. Ulrich; Tokunaga, Alan; Encrenaz, Therese; Hartogh, Paul

    2011-01-01

    The presence of abundant methane in Earth's atmosphere (1.6 parts per million) requires sources other than atmospheric chemistry. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released recently from the subsurface in localized areas, and is then rapidly destroyed [1,6]. Before 2000, searchers obtained sensitive upper limits for methane by averaging over much of Mars' dayside hemisphere, using data acquired by Marsorbiting spacecraft (Mariner 9) and Earth-based observatories (Kitt Peak National Observatory, Canada- France-Hawaii Telescope, Infrared Space Observatory). These negative findings suggested that methane should be searched at higher spatial resolution since the local abundance could be significantly larger at active sites. Since 2001, searches for methane have emphasized spatial mapping from terrestrial observatories and from Mars orbit (Mars Express).

  18. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  20. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Valero, David; Montes, Jesús A; Rico, José Luis; Rico, Carlos

    2016-02-01

    The biochemical methane potential test is the most commonly applied method to determine methane production from organic wastes. One of the parameters measured is the volume of biogas produced which can be determined manometrically by keeping the volume constant and measuring increases in pressure. In the present study, the effect of pressure accumulation in the headspace of the reactors has been studied. Triplicate batch trials employing cocoa shell, waste coffee grounds and dairy manure as substrates have been performed under two headspace pressure conditions. The results obtained in the study showed that headspace overpressures higher than 600mbar affected methane production for waste coffee grounds. On the contrary, headspace overpressures within a range of 600-1000mbar did not affect methane production for cocoa shell and dairy manure. With the analyses performed in the present work it has not been possible to determine the reasons for the lower methane yield value obtained for the waste coffee grounds under high headspace pressures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview

    USGS Publications Warehouse

    Pashin, J.C.

    1998-01-01

    Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compressional and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.

  3. Global Methane Budget 2000-2012 (V.1.0, issued June 2016 and V.1.1, issued December 2016)

    DOE Data Explorer

    Saunois, Marielle [University of Paris - Saclay, Gif-surYvette, France; Bousquet, Phillippe [University of Paris - Saclay, Gif-surYvette, France; Poulter, Ben [NASA Goddard Space Flight Center, Biospheric Science Laboratory, Greenbelt, MD (USA); Peregon, Anna [University of Paris - Saclay, Gif-surYvette, France; Ciais, Philippe [University of Paris - Saclay, Gif-surYvette, France

    2016-01-01

    After carbon dioxide (CO2), methane (CH4) is the second most important well-mixed greenhouse gas contributing to human-induced climate change. In a time-horizon of 100 years, CH4 has a Global Warming Potential (GWP-100) 28 times larger than CO2. The level of CH4 in the atmosphere is over 150% higher than pre-industrial times (cf. 1750), and it is responsible for 20% of the global warming produced by all well-mixed greenhouse gases. Methane is transformed into water vapor in the stratosphere. Methane also produces ozone in the troposphere, which is a pollutant with negative impacts on human health and ecosystems. The atmospheric life time of methane is 10 ± 2 years. [Copied from the Global Carbon Project, Global Methane Budget Highlights at http://www.globalcarbonproject.org/methanebudget/16/hl-compact.htm

  4. Ruminant methane delta(/sup 13/C//sup 12/C) values: relation to atmospheric methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rust, F.

    1981-03-06

    The delta(/sup 13/C//sup 12/C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C/sub 3/ or C/sub 4/, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average delta(/sup 13/C//sup 12/C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose delta(/sup 13/C//sup 12/C) ismore » similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.« less

  5. 2015-16 ENSO Drove Tropical Soil Moisture Dynamics and Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Johnson, R. F.; Allen, M. F.

    2017-12-01

    The El Niño/Southern Oscillation Event (ENSO) cycle drives large-scale climatic trends globally. Within the new world tropics, El Niño brings dryer weather than the counterpart La Niña. Atmospheric methane growth rates have shown extreme variability over the past three decades. One proposed driver is the proportion of tropical land surface saturated, affecting methane production or consumption. We measured methane flux bimonthly through the transition of 2015-16 ENSO. The date of measurement, across El Niño and La Niña within the typical "rainy" and "dry" seasons, to be the most significant driver of methane flux. Soil moisture varied across this time period, and regulated methane flux. During the strong El Niño, extreme dry soil conditions occurred in a typical "rainy" season month reducing soil moisture. Wetter than usual soil conditions appeared during the "rainy" season month of the moderate La Niña. The dry El Niño soils corresponded to greater methane consumption by tropical forest soils, and a reduced local atmospheric column methane concentration. Conversely, the wet La Niña soils had lower methane consumption and higher local atmospheric column methane concentrations. The ENSO cycle is a strong driver of tropical terrestrial and wetland soil moisture conditions, and can regulate global atmospheric methane dynamics.

  6. Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †

    PubMed Central

    King, Gary M.; Roslev, Peter; Skovgaard, Henrik

    1990-01-01

    Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299

  7. Carbon Dioxide Methanation for Human Exploration of Mars: A Look at Catalyst Longevity and Activity Using Supported Ruthenium

    NASA Technical Reports Server (NTRS)

    Petersen, Elspeth M.; Meier, Anne J.; Tessonnier, Jean-Philippe

    2018-01-01

    Overarching Purpose: To design a carbon dioxide methanation/Sabatier reaction catalyst able to withstand variable conditions including fluctuations in bed temperature and feed flow rates for 480 days of remote operation to produce seven tons of methane. Current Study Purpose: Examine supported Ruthenium as a carbon dioxide methanation catalyst to determine the effects support properties have on the active phase by studying activity and selectivity. Objective: The remote operation of the Mars ISRU (In Situ Resources Utilization) lander to produce rocket fuel prior to crew arrival on the planet to power an ascent vehicle. Constraints: Long-term operation (480 days); Variable conditions: Feed gas flow rates, Feed gas flow ratios, Reactor bed temperature.

  8. Is Optical Gas Imaging Effective for Detecting Fugitive Methane Emissions? - A Technological and Policy Perspective

    NASA Astrophysics Data System (ADS)

    Ravikumar, A. P.; Wang, J.; Brandt, A. R.

    2016-12-01

    Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak detection program, and show that OGI technology can be used as an approximate leak-quantification method to selectively target the biggest leaks. Finally, we also provide recommendations and best-practices guidelines for achieving expected methane mitigation.

  9. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

    PubMed

    Walter, K M; Zimov, S A; Chanton, J P; Verbyla, D; Chapin, F S

    2006-09-07

    Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.

  10. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  11. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    PubMed

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  12. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst

    PubMed Central

    Wang, Pengwei; Zhao, Guofeng; Wang, Yu; Lu, Yong

    2017-01-01

    Oxidative coupling of methane (OCM) is a promising method for the direct conversion of methane to ethene and ethane (C2 products). Among the catalysts reported previously, Mn2O3-Na2WO4/SiO2 showed the highest conversion and selectivity, but only at 800° to 900°C, which represents a substantial challenge for commercialization. We report a TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst by using Ti-MWW zeolite as TiO2 dopant as well as SiO2 support, enabling OCM with 26% conversion and 76% C2-C3 selectivity at 720°C because of MnTiO3 formation. MnTiO3 triggers the low-temperature Mn2+↔Mn3+ cycle for O2 activation while working synergistically with Na2WO4 to selectively convert methane to C2-C3. We also prepared a practical Mn2O3-TiO2-Na2WO4/SiO2 catalyst in a ball mill. This catalyst can be transformed in situ into MnTiO3-Na2WO4/SiO2, yielding 22% conversion and 62% selectivity at 650°C. Our results will stimulate attempts to understand more fully the chemistry of MnTiO3-governed low-temperature activity, which might lead to commercial exploitation of a low-temperature OCM process. PMID:28630917

  13. Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?

    NASA Astrophysics Data System (ADS)

    Blumenberg, Martin; Pape, Thomas; Seifert, Richard; Bohrmann, Gerhard; Schlömer, Stefan

    2018-04-01

    The geochemistry of seep gases is useful for an understanding of the local petroleum system. Here it was tested whether individual light hydrocarbons in seep gases are representatively entrapped in authigenic carbonates that formed near active seep sites. If applicable, it would be possible to extract geochemical information not only on the origin but also on the thermal maturity of the hydrocarbon source rocks from the gases entrapped in carbonates in the past. Respective data could be used for a better understanding of paleoenvironments and might directly serve as calibration point for, amongst others, petroleum system modeling. For this approach, (sub)-recent seep carbonates from the Black Sea (Paleodnjepr region and Batumi seep area), two sites of the Campeche Knoll region in the Gulf of Mexico, and the Venere mud volcano (Mediterranean Sea) were selected. These seep carbonates derive from sites for which geochemical data on the currently seeping gases exist. During treatment with phosphoric acid, methane and higher hydrocarbons were released from all carbonates, but in low concentrations. Compositional studies demonstrate that the ratio of methane to the sum of higher hydrocarbons (C1/(C2+C3)) is (partly strongly) positively biased in the entrapped gas fraction. δ13C values of C1 were determined for all samples and, for the samples from the Gulf of Mexico and the Mediterranean Sea, also of C2 and C3. The present dataset from six seep sites indicates that information on the seeped methane can be—although with a scatter of several permil—recorded in seep carbonate matrices, but other valuable information like the composition and δ13C of ethane and propane appears to be modified or lost during, for example, enclosure or at an early stage of diagenesis.

  14. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my

    2015-07-22

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by usingmore » Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.« less

  15. Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition.

    PubMed

    Wang, Wen; Xie, Li; Chen, Jinrong; Luo, Gang; Zhou, Qi

    2011-02-01

    Thermophilic anaerobic hydrogen and methane production by co-digestion of cassava stillage (CS) and excess sludge (ES) was investigated in this study. The improved hydrogen and subsequent methane production were observed by co-digestion of CS with certain amount of ES in batch experiments. Compared with one phase anaerobic digestion, two phase anaerobic digestion offered an attractive alternative with more abundant biogas production and energy yield, e.g., the total energy yield in two phase obtained at VS(CS)/VS(ES) of 3:1 was 25% higher than the value of one phase. Results from continuous experiments further demonstrated that VS(CS)/VS(ES) of 3:1 was optimal for hydrogen production with the highest hydrogen yield of 74 mL/gtotal VS added, the balanced nutrient condition with C/N ratio of 1.5 g carbohydrate-COD/gprotein-COD or 11.9 g C/gN might be the main reason for such enhancement. VS(CS)/VS(ES) of 3:1 was also optimal for continuous methane production considering the higher methane yield of 350 mL/gtotal VS added and the lower propionate concentration in the effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.

    PubMed

    Wang, Vincent C-C; Maji, Suman; Chen, Peter P-Y; Lee, Hung Kay; Yu, Steve S-F; Chan, Sunney I

    2017-07-12

    Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O 2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.

  17. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification†

    PubMed Central

    Wang, Zhe; Guo, Min; Baker, Gary A.; Stetter, Joseph R.; Lin, Lu; Mason, Andrew J.

    2017-01-01

    Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry. PMID:25093213

  18. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled. Collectively, our results provided evidence for the possible decoupling of AOM and SR under in situconditions. This decoupling appears to be widespread in methane-rich marine sediment, motivating a wide variety of future research endeavors.

  19. Vertical structure and horizontal variations in the cycling of methane in the sediment of Lake Onego, Russia

    NASA Astrophysics Data System (ADS)

    Thomas, Camille; Perga, Marie-Elodie; Frossard, Victor; Pasche, Natacha; Hofmann, Hilmar; Ariztegui, Daniel; Dubois, Nathalie; Belkina, Natalya; Lyautey, Emilie

    2017-04-01

    Lake Onego, the second largest lake in Europe, is a dystrophic, seasonally ice-covered lake in Karelia, Russia. Like most winter-covered lakes, its study has largely been limited to the summer period. However, it is well known that methane production is still ongoing in lake sediments during winter, potentially resulting in accumulation and major release upon thawing. Within the "Life Under The Ice" research project, our objectives were to assess winter contribution to the annual methane flux in Lake Onego, and to understand conditions and factors influencing methane cycling. During two on-ice field campaigns in March 2015 and 2016, sediment cores were retrieved at different sites of Petrozavodsk Bay, located in the north-western part of the lake. DNA and RNA were extracted from these cores to investigate the functional structure of microbial communities. Genes involved in methanogenesis, anaerobic and aerobic methane oxidations were quantified along with the concentrations and isotopic ratio of methane in the sediment pore water. Incubations, fingerprinting and sequencing of mcrA genes were also realized. Vertically, the sediment is structured in a deep anoxic zone (below 10 cm) where mcrA gene and transcript copies increased implying methanogenesis, a transitional zone (5-8 cm) hosting methanotrophic organisms (Cand. Methanoperedens) able to oxidize the diffusing methane anaerobically by coupling nitrate reduction (Haroon et al., 2013), and a shallower oxic zone where methanotrophs were detected (pmoA gene and transcripts) and where methane concentrations drop below detection limit. Sediment cores were also collected at three sites along a transect from the mouth of the river Shuya (the major inflow to the bay) to the open lake. Functional assemblage close to the river mouth had higher diversity and higher potential production rates and consumption of methane than further in the lake. However, the methane produced was almost completely consumed regardless of the sites, suggesting that this heterogeneity does not convey significant methane inputs to Lake Onego's water column during ice cover in winter. Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., … Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464), 567-70.

  20. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture.

    PubMed

    Salvador, Andreia F; Martins, Gilberto; Melle-Franco, Manuel; Serpa, Ricardo; Stams, Alfons J M; Cavaleiro, Ana J; Pereira, M Alcina; Alves, M Madalena

    2017-07-01

    Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of methanogens and on typical fatty acid-degrading syntrophic methanogenic coculture was evaluated. CNT affected methane production by methanogenic cultures, although acceleration was higher for hydrogenotrophic methanogens than for acetoclastic methanogens or syntrophic coculture. Interestingly, the initial methane production rate (IMPR) by Methanobacterium formicicum cultures increased 17 times with 5 g·L -1 CNT. Butyrate conversion to methane by Syntrophomonas wolfei and Methanospirillum hungatei was enhanced (∼1.5 times) in the presence of CNT (5 g·L -1 ), but indications of DIET were not obtained. Increasing CNT concentrations resulted in more negative redox potentials in the anaerobic microcosms. Remarkably, without a reducing agent but in the presence of CNT, the IMPR was higher than in incubations with reducing agent. No growth was observed without reducing agent and without CNT. This finding is important to re-frame discussions and re-interpret data on the role of conductive materials as mediators of DIET in anaerobic communities. It also opens new challenges to improve methane production in engineered methanogenic processes. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  2. NMR study of methane + ethane structure I hydrate decomposition.

    PubMed

    Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy

    2007-05-24

    The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.

  3. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microbial Community Analysis of a Methane-Producing Biocathode in a Bioelectrochemical System

    PubMed Central

    Van Eerten-Jansen, Mieke C. A. A.; Veldhoen, Anna B.; Plugge, Caroline M.; Stams, Alfons J. M.; Buisman, Cees J. N.

    2013-01-01

    A methane-producing biocathode that converts CO2 into methane was studied electrochemically and microbiologically. The biocathode produced methane at a maximum rate of 5.1 L CH4/m2 projected cathode per day (1.6 A/m2) at −0.7 V versus NHE cathode potential and 3.0 L CH4/m2 projected cathode per day (0.9 A/m2) at −0.6 V versus NHE cathode potential. The microbial community at the biocathode was dominated by three phylotypes of Archaea and six phylotypes of bacteria. The Archaeal phylotypes were most closely related to Methanobacterium palustre and Methanobacterium aarhusense. Besides methanogenic Archaea, bacteria seemed to be associated with methane production, producing hydrogen as an intermediate. Biomass density varied greatly with part of the carbon electrode covered with a dense biofilm, while only clusters of cells were found on other parts. Based on our results, we discuss how inoculum enrichment and changing operational conditions may help to increase biomass density and to select for microorganisms that produce methane. PMID:24187516

  5. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    PubMed

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  6. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-03-10

    Tobermolite was characterized as a bed material for methanotrophic biofiltration. A lab-scale biofilter packed with tobermolite was operated for different operation times under identical conditions. The three different runs showed similar acclimation patterns of methane oxidation, with methane removal efficiency increasing rapidly for the first few days and peaking within three weeks, after which the efficiency remained stable. The mean methane removal capacities ranged from 766gm(-3)d(-1) to 974gm(-3)d(-1) after acclimation. Pyrosequencing indicated that the methanotrophic proportion (methanotroph/bacteria) increased to 71-94% within three weeks. Type I methanotrophs Methylocaldum and Methylosarcina were dominant during the initial growth period, then Methylocaldum alone dominated the methanotrophic community. A community comparison showed that total bacterial and methanotrophic communities were temporally stable after the initial growth period. Quantitative PCR showed that methanotrophic density increased during the first 3-4 weeks, then remained stable over 120 days. Tobermolite can provide a special habitat for the selective growth of methanotrophs, resulting in rapid acclimation. Tobermolite also allows the microbial community and methanotrophic density to remain stable, resulting in stable methane biofiltration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Latitudinal variations in Titan's methane and haze from Cassini VIMS observations

    USGS Publications Warehouse

    Penteado, P.F.; Griffith, C.A.; Tomasko, M.G.; Engel, S.; See, C.; Doose, L.; Baines, K.H.; Brown, R.H.; Buratti, B.J.; Clark, R.; Nicholson, P.; Sotin, Christophe

    2010-01-01

    We analyze observations taken with Cassini's Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60??S and 40??N. The methane variation was measured primarily from its absorption band at 0.61 ??m, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan's 0.4-1.6 ??m spectra, which sample Titan's atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20??S and 10??S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60??S and 40??N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27??S and 19??N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan's visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ???10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations. ?? 2009 Elsevier Inc. All rights reserved.

  8. Evaluating methane inventories by isotopic analysis in the London region.

    PubMed

    Zazzeri, G; Lowry, D; Fisher, R E; France, J L; Lanoisellé, M; Grimmond, C S B; Nisbet, E G

    2017-07-07

    A thorough understanding of methane sources is necessary to accomplish methane reduction targets. Urban environments, where a large variety of methane sources coexist, are one of the most complex areas to investigate. Methane sources are characterised by specific δ 13 C-CH 4 signatures, so high precision stable isotope analysis of atmospheric methane can be used to give a better understanding of urban sources and their partition in a source mix. Diurnal measurements of methane and carbon dioxide mole fraction, and isotopic values at King's College London, enabled assessment of the isotopic signal of the source mix in central London. Surveys with a mobile measurement system in the London region were also carried out for detection of methane plumes at near ground level, in order to evaluate the spatial allocation of sources suggested by the inventories. The measured isotopic signal in central London (-45.7 ±0.5‰) was more than 2‰ higher than the isotopic value calculated using emission inventories and updated δ 13 C-CH 4 signatures. Besides, during the mobile surveys, many gas leaks were identified that are not included in the inventories. This suggests that a revision of the source distribution given by the emission inventories is needed.

  9. Hydrogen and methane gases are frequently detected in the stomach.

    PubMed

    Urita, Yoshihisa; Ishihara, Susumu; Akimoto, Tatsuo; Kato, Hiroto; Hara, Noriko; Honda, Yoshiko; Nagai, Yoko; Nakanishi, Kazushige; Shimada, Nagato; Sugimoto, Motonobu; Miki, Kazumasa

    2006-05-21

    To investigate the incidence of bacterial overgrowth in the stomach by using a new endoscopic method in which intragastric hydrogen and methane gases are collected and analyzed. Studies were performed in 490 consecutive patients undergoing esophagogastroscopy. At endoscopy, we intubated the stomach without inflation by air, and 20 mL of intragastric gas was collected through the biopsy channel using a 30 mL syringe. Intragastric hydrogen and methane concentrations were immediately measured by gaschromatography. H pylori infection was also determined by serology. Most of intragastric hydrogen and methane levels were less than 15 ppm (parts per million). The median hydrogen and methane values (interquartile range) were 3 (1-8) ppm and 2 (1-5) ppm, respectively. The high hydrogen and methane levels for indication of fermentation were decided if the patient had the values more than 90 percentile range in each sample. When a patient had a high level of hydrogen or methane in one or more samples, the patient was considered to have fermentation. The overall incidence of intragastric fermentation was 15.4% (73/473). Intragastric methane levels were higher in the postoperative group than in other groups. None of the mean hydrogen or methane values was related to H pylori infection. Hydrogen and methane gases are more frequently detected in the stomach than expected, regardless of the presence of abdominal symptoms. Previous gastric surgery influences on the growth of methane-producing bacteria in the fasting stomach.

  10. Estimation of methane flux from fish ponds of southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, K. H.; Hung, C. C.

    2016-02-01

    CH4 is one of the trace gases in the atmosphere, but it is an important greenhouse gas, with 15 times more effective than CO2 absorbing infrared radiation capability. To date, scientists generally consider that the methane production is mainly from livestock farming, such as pigs and cattle, but the source of methane emission from aquaculture ponds have been ignored. Due to overfishing in the ocean, aquaculture fishery in coastal zone has been increasing globally and the methane emission from those fish ponds has seldom been studied. To better evaluate the emission of methane from fish ponds, we measured methane concentrations in both atmosphere and fish ponds of the southwestern Taiwan from March to September in 2015. Besides an extremely high flux (829 mmol/m2/d), the fluxes of methane in different fish ponds ranged from 19 to 725 μmol/m2/d, which is lower than the global mean value of lakes (2.7 mmol/m2/d). The low methane fluxes during sampling period may be due to non-harvest season, because when the harvest season comes, the higher trophic status will appear, and there will be more organic matter supply for methanogenesis. Currently, we have no idea where the extremely high methane flux comes from. We will try to measure C-isotopes to understand the sources of highest methane fluxes. Overall, the preliminary results provide substantive evidence that methane emission from aquaculture ponds could be an important source and it needs long-term investigations.

  11. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change. © 2015 John Wiley & Sons Ltd.

  12. A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study

    NASA Astrophysics Data System (ADS)

    Mondal, Sukanta; Goswami, Tamal; Jana, Gourhari; Misra, Anirban; Chattaraj, Pratim Kumar

    2018-01-01

    In this letter, a possible reason behind selective host-guest organization in the initial stage of sI methane hydrate nucleation is provided, through density functional theory based calculations. In doing so, we have connected earlier experimental and theoretical observations on the structure and energetics of sI methane hydrate to our findings. Geometry and relative stability of small (H2O)5 and (H2O)6 clusters, presence of CH4 guest, integrity and cavity radius of (H2O)20 and (H2O)24, as well as the weak van der Waals type of forces, particularly dispersion interaction, are major factors responsible for initial formation of methane encapsulated dodecahedron cavity over tetrakaidecahedron.

  13. Methane transport and emissions from soil as affected by water table and vascular plants.

    PubMed

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  14. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.

    2010-01-01

    Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.

  15. Hypotheses for Near-Surface Exchange of Methane on Mars.

    PubMed

    Hu, Renyu; Bloom, A Anthony; Gao, Peter; Miller, Charles E; Yung, Yuk L

    2016-07-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol(-1) to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere. Mars-Methane-Astrobiology-Regolith. Astrobiology 16, 539-550.

  16. Methane oxidation at a surface-sealed boreal landfill.

    PubMed

    Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka

    2009-07-01

    Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.

  17. Subarctic Lake Sediment Microbial Community Contributions to Methane Emission Patterns

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Varner, R. K.; Parks, D.; Wik, M.; Neumann, R.; Johnson, J. E.; Singleton, C. M.; Woodcroft, B. J.; Tollerson, R., II; Owusu-Dommey, A.; Binder, M.; Freitas, N. L.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2017-12-01

    Northern post-glacial lakes have recently been identified as a significant and increasing source of carbon to the atmosphere, largely through ebullition (bubbling) of microbially produced methane from the sediments. Ebullitive methane flux has been shown to correlate significantly with sediment surface temperatures, suggesting that solar radiation is the primary driver of methane emissions from these lakes. However, the slope of this relationship (i.e., the extent to which increasing temperature increases ebullitive methane emissions) differs spatially, both within and among lakes. As microbes are responsible for both methane generation and removal in lakes, we hypothesized that microbial communities—previously uncharacterized in post-glacial lake sediments—could be contributing to spatiotemporal differences in methane emission responses to temperature. We compared methane emission data with sediment microbial (metagenomic and amplicon), isotopic, and geochemical characterizations across two post-glacial lakes in Northern Sweden. With increasing temperatures, the increase in methane emissions was greater in lake middles (deeper water) than lake edges (shallower water), consistent with higher abundances of methanogens in sediments from lake middles than edges, along with significant differences in microbial community composition between these regions. Using sparse partial least squares statistical modeling, microbial abundances (including the abundances of methane-cycling microorganisms and of reconstructed population genomes, e.g., from Planctomycetes, Thermoplasmatales, and Candidate Phylum Aminicenantes) were better predictors of porewater methane concentrations than abiotic variables. These results suggest that, although temperature controls methane emissions, microbial community composition and function may drive the rate and magnitude of this temperature response in subarctic post-glacial lakes.

  18. Hypotheses for a Near-Surface Reservoir of Methane and Its Release on Mars

    NASA Astrophysics Data System (ADS)

    Hu, R.; Bloom, A. A.; Gao, P.; Miller, C. E.; Yung, Y. L.

    2015-12-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the Martian environment and its potential for life, as the current theories do not entail any active source or sink of methane. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses as an attempt to explain the apparent variability of the atmospheric methane abundance. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol-1 to explain the magnitude of the methane spikes, higher than laboratory measurements. The second scenario is that microorganisms exist and convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption. The third scenario is that deep subsurface aquifers sealed by ice or clathrate produce bursts of methane as a result of freezing and thawing of the permafrost, as the terrestrial arctic tundra. Continued monitoring of methane by Curiosity will test the existence of the near-surface reservoir and its exchange with the atmosphere.

  19. The phase transformation of methane caused by pressure change during its rising from seepage, revealed by video observation and acoustic reflection data

    NASA Astrophysics Data System (ADS)

    Aoyama, D.; Aoyama, C.

    2014-12-01

    The plume comes out to the surface of the water, and methane is released for low water temperature and low temperature in the Arctic Ocean by the atmosphere. Methane released by the atmosphere is combined with oxygen and becomes carbon dioxide and the water, and the greenhouse effect is higher in 20 times than carbon dioxide. If quantity of the methane plume is quantified, I may estimate the quantity of existing methane underground and can estimate the scale of methane melting into it in seawater. The methane plume solved in seawater is one element of the carbon cycle. It is important that I elucidate this element in thinking about the carbon cycle of the wide sense. However, there is not the report that I showed quantitatively how much methane melts into it in seawater a year from the methane plume. Therefore, in this article, I identified an aspect of gush methane as it by the sound data with the fishfinder and by a gush picture of the methane plume. With that in mind, I quantified the quantity of the methane plume. As a result, the following things became clear. The methane hydrate grain to gush out from a gush mouth is a solid at the bottom of the sea direct top. In this sea area, methane of 7.7*104m3 per unit area gushes out. In addition, the sea area where 6.3*106m3 gushed out existed.

  20. Dissolved methane in groundwater, Upper Delaware River Basin, Pennsylvania and New York, 2007-12

    USGS Publications Warehouse

    Kappel, William M.

    2013-01-01

    The prospect of natural gas development from the Marcellus and Utica Shales has raised concerns about freshwater aquifers being vulnerable to contamination. Well owners are asking questions about subsurface methane, such as, “Does my well water have methane and is it safe to drink the water?” and “Is my well system at risk of an explosion hazard associated with a combustible gas like methane in groundwater?” This newfound awareness of methane contamination of water wells by stray gas migration is based upon studies such as Molofsky and others (2011) who document the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus Shale gas-development activities, although pre-development groundwater samples were not available for comparison. A compilation of dissolved methane concentrations in groundwater for New York State was published by Kappel and Nystrom (2012). Recent work documenting the occurrence and distribution of methane in groundwater was completed in southern Sullivan County, Pennsylvania (Sloto, 2013). Additional work is ongoing with respect to monitoring for stray gases in groundwater (Jackson and others, 2013). These studies and their results indicate the importance of collecting baseline or pre-development data. While such data are being collected in some areas, published data on methane in groundwater are sparse in the Upper Delaware River Basin of Pennsylvania, New York, and New Jersey. To manage drinking-water resources in areas of gas-well drilling and hydraulic fracturing in the Upper Delaware River Basin, the natural occurrence of methane in the tri-state aquifers needs to be documented. The purpose of this report is to present data on dissolved methane concentrations in the groundwater in the Upper Delaware River Basin. The scope is restricted to data for Pennsylvania and New York, no U.S. Geological Survey (USGS) methane analyses are presently available for northwestern New Jersey.

  1. Ebullitive methane emissions from oxygenated wetland streams

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  2. Electrohydrolysis pretreatment for enhanced methane production from lignocellulose waste pulp and paper mill sludge and its kinetics.

    PubMed

    Veluchamy, C; Raju, V Wilson; Kalamdhad, Ajay S

    2018-03-01

    A novel electrohydrolysis pretreatment enhances methane production from lignocellulose material during anaerobic digestion. A biochemical methane potential assay was carried out to determine the effect of direct current and the efficacy of electrohydrolysis pretreatment on biogas production. Methane yield was increased by 13.8%, to 301 ± 3 mL CH 4 /g VS, when lignocellulosic waste was pretreated with electrohydrolysis. A net energy gain of 13,224 kJ was realized after electrohydrolysis pretreatment, which was 1.51 times higher than reported for thermal pretreatment. In addition, two kinetic models were used, including the modified Gompertz model to reproduce the experimental data. These finding support the potential for increased methane recovery from lignocellulosic waste using electrohydrolysis as a pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Methane in the lunar exosphere: Implications for solar wind carbon escape

    NASA Astrophysics Data System (ADS)

    Hodges, R. Richard

    2016-07-01

    A positive identification of methane in the lunar exosphere has been made in data from the neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Like argon-40, methane is adsorbed on the lunar surface during nighttime. However, higher activation energies for methane delay its desorption at sunrise by about an hour local time, creating a postsunrise bulge with peak concentration of approximately 400-450 molecules cm-3 at a reference altitude of 12 km, which is just above the highest topographic feature on the Moon. The rate of escape of carbon as methane derived from the LADEE data is estimated to be in the range 1.5-4.5 × 1021 s-1. A lower bound for solar carbon escape derived separately from Apollo sample analyses is 3.4 × 1021 s-1.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance andmore » destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.« less

  5. 40 CFR 63.1304 - Testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1304 Testing requirements... shall be: (i) Zero air (less than 10 ppm of hydrocarbon in air); and (ii) A mixture of methane and air... calibrated at a higher methane concentration (up to 2,000 ppm) than the leak definition concentration for a...

  6. 40 CFR 63.1304 - Testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1304 Testing requirements... shall be: (i) Zero air (less than 10 ppm of hydrocarbon in air); and (ii) A mixture of methane and air... calibrated at a higher methane concentration (up to 2,000 ppm) than the leak definition concentration for a...

  7. 40 CFR 63.1304 - Testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1304 Testing requirements... shall be: (i) Zero air (less than 10 ppm of hydrocarbon in air); and (ii) A mixture of methane and air... calibrated at a higher methane concentration (up to 2,000 ppm) than the leak definition concentration for a...

  8. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    PubMed

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Kinetics of oxygen atom formation during the oxidation of methane behind shock waves

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1974-01-01

    An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.

  10. Influence of trace substances on methanation catalysts used in dynamic biogas upgrading.

    PubMed

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo; Rooney, David

    2015-02-01

    The aim of this work was to study the possible deactivation effects of biogas trace ammonia concentrations on methanation catalysts. It was found that small amounts of ammonia led to a slight decrease in the catalyst activity. A decrease in the catalyst deactivation by carbon formation was also observed, with ammonia absorbed on the active catalyst sites. This was via a suppression of the carbon formation and deposition on the catalyst, since it requires a higher number of active sites than for the methanation of carbon oxides. From the paper findings, no special pretreatment for ammonia removal from the biogas fed to a methanation process is required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production.

  12. Rising methane emissions from northern wetlands associated with sea ice decline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less

  13. Rising methane emissions from northern wetlands associated with sea ice decline.

    PubMed

    Parmentier, Frans-Jan W; Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J; Zhuang, Qianlai; Christensen, Torben R; McGuire, A David

    2015-09-16

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH 4  yr -1 higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  14. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    PubMed

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Molecular insights into the heterogeneous crystal growth of si methane hydrate.

    PubMed

    Vatamanu, Jenel; Kusalik, Peter G

    2006-08-17

    In this paper we report a successful molecular simulation study exploring the heterogeneous crystal growth of sI methane hydrate along its [001] crystallographic face. The molecular modeling of the crystal growth of methane hydrate has proven in the past to be very challenging, and a reasonable framework to overcome the difficulties related to the simulation of such systems is presented. Both the microscopic mechanisms of heterogeneous crystal growth as well as interfacial properties of methane hydrate are probed. In the presence of the appropriate crystal template, a strong tendency for water molecules to organize into cages around methane at the growing interface is observed; the interface also demonstrates a strong affinity for methane molecules. The maximum growth rate measured for a hydrate crystal is about 4 times higher than the value previously determined for ice I in a similar framework (Gulam Razul, M. S.; Hendry, J. G.; Kusalik, P. G. J. Chem. Phys. 2005, 123, 204722).

  16. Rising methane emissions from northern wetlands associated with sea ice decline

    DOE PAGES

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao; ...

    2015-09-10

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less

  17. Rising methane emissions from northern wetlands associated with sea ice decline

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David

    2015-01-01

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  18. Co-digestion of solid waste: Towards a simple model to predict methane production.

    PubMed

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Rising methane emissions from northern wetlands associated with sea ice decline

    PubMed Central

    Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David

    2015-01-01

    Abstract The Arctic is rapidly transitioning toward a seasonal sea ice‐free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process‐based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high‐latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice‐induced, autumn‐focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions. PMID:27667870

  20. Effects of household detergent on anaerobic fermentation of kitchen wastewater from food waste disposer.

    PubMed

    Lee, K H; Park, K Y; Khanal, S K; Lee, J W

    2013-01-15

    This study examines the effects of household detergent on anaerobic methane fermentation of wastewater from food waste disposers (FWDs). Anaerobic toxicity assay (ATA) demonstrated that methane production substantially decreased at a higher detergent concentration. The Gompertz three-parameter model fitted well with the ATA results, and both the extent of methane production (M) and methane production rate (R(m)) obtained from the model were strongly affected by the concentration of the detergent. The 50% inhibitory concentration (IC(50)) of the detergent was 603 mg/L based on R(m). Results from fatty acid methyl esters (FAMEs) analysis of microbial culture revealed that deterioration of methane fermentation was attributed to impaired structure of anaerobic microbial membrane due to detergent. This study suggests that wastewater from FWD could be used for methane production, but it is necessary to reduce the concentration of detergent prior to anaerobic fermentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Fugitive greenhouse gas emissions from shale gas activities - a case study of Dish, TX

    NASA Astrophysics Data System (ADS)

    Khan, A.; Roscoe, B.; Lary, D.; Schaefer, D.; Tao, L.; Sun, K.; Brian, A.; DiGangi, J.; Miller, D. J.; Zondlo, M. A.

    2012-12-01

    We evaluate new findings on aerial (horizontal and vertical) mapping of methane emissions in the atmospheric boundary layer region to help study fugitive methane emissions from extraction, transmission, and storage of natural gas and oil in Dish, Texas. Dish is located in the Barnett Shale which has seen explosive development of hydraulic fracking activities in recent years. The aerial measurements were performed with a new laser-based methane sensor developed specifically for an unmanned aerial vehicle (UAV). The vertical cavity surface emitting laser (VCSEL) methane sensor, with a mass of 2.5 kg and a precision of < 20 ppbv methane at 1 Hz, was flown on the UT-Dallas ARC Payload Master electronic aircraft at two sites in Texas: one representative of urban emissions of the Dallas-Fort Worth area in Richardson, Texas and another in Dish, Texas, closer to gas and oil activities. Methane mixing ratios at Dish were ubiquitously in the 3.5 - 4 ppmv range which was 1.5 - 2 ppmv higher than methane levels immediately downwind of Dallas. During the flight measurements at Dish, narrow methane plumes exceeding 20 ppmv were frequently observed at altitudes from the surface to 130 m above the ground. Based on the wind speed at the sampling location, the horizontal widths of large methane plumes were of the order of 100 m. The locations of the large methane plumes were variable in space and time over a ~ 1 km2 area sampled from the UAV. Spatial mapping over larger scales (10 km) by ground-based measurements showed similar methane levels as the UAV measurements. To corroborate our measurements, alkane and other hydrocarbon mixing ratios from an on-site TCEQ environmental monitoring station were analyzed and correlated with methane measurements to fingerprint the methane source. We show that fugitive methane emissions at Dish are a significant cause of the large and ubiquitous methane levels on the 1-10 km scale.

  2. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.

    PubMed

    Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P

    2017-08-23

    Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  3. Controls on Methane Occurrences in Aquifers Overlying the Eagle Ford Shale Play, South Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo-Wilcox Aquifer (250-1200 m depth range) and Queen City-Sparta Aquifer (150-900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ 13 C methane (>-55‰) and δD methane (>-180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ 13 C methane and δD methane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs. © 2017, National Ground Water Association.

  4. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI contribution to global methane budgets.; In situ methane concentrations during transcontinental survey Fall 2010.

  5. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

    NASA Astrophysics Data System (ADS)

    Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  6. Bioactive fractions from the pasture legume Biserrula pelecinus L. have an anti-methanogenic effect against key rumen methanogens.

    PubMed

    Banik, Bidhyut K; Durmic, Zoey; Erskine, William; Revell, Clinton K; Vadhanabhuti, Joy; McSweeney, Christopher S; Padmanabha, Jagadish; Flematti, Gavin R; Algreiby, Azizah A; Vercoe, Philip E

    2016-06-01

    Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. The effect of heat treatment on the performance of the Ni/(Zr-Sm oxide) catalysts for carbon dioxide methanation

    NASA Astrophysics Data System (ADS)

    Takano, Hiroyuki; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji

    2011-07-01

    The active catalysts for methane formation from the gas mixture of CO 2 + 4H 2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO 2 prepared by calcination of aqueous ZrO 2 sol with Sm(NO 3) 3 and Ni(NO 3) 2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO 2, and the activity for methanation increased by an increase in inclusion of Sm 3+ ions substituting Zr 4+ ions in the tetragonal ZrO 2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.

  8. Comparison of alternate fuels for aircraft. [liquid hydrogen, liquid methane, and synthetic aviation kerosene

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1979-01-01

    Liquid hydrogen, liquid methane, and synthetic aviation kerosene were assessed as alternate fuels for aircraft in terms of cost, capital requirements, and energy resource utilization. Fuel transmission and airport storage and distribution facilities are considered. Environmental emissions and safety aspects of fuel selection are discussed and detailed descriptions of various fuel production and liquefaction processes are given. Technological deficiencies are identified.

  9. Physical and Mechanical Properties of Surface Sediments and methane hydrate-bearing sediments in the Shenhu area of South China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Shen, Z.; Jia, Y.

    2017-12-01

    Methane hydrates are superior energy resources and potential predisposing factors of geohazard. With the success in China's persistent exploitation of methane hydrates in the Shenhu area of South China Sea for 60 days, there is an increasing demand for detailed knowledge of sediment properties and hazard assessment in this area. In this paper, the physical and mechanical properties of both the surface sediments and methane hydrate-bearing sediments (MHBS) in the exploitation area, the Shenhu area of South China Sea, were investigated using laboratory geotechnical experiments, and triaxial tests were carried out on remolded sediment samples using a modified triaxial apparatus. The results show that sediments in this area are mainly silt with high moisture content, high plasticity, low permeability and low shear strength. The moisture content and permeability decrease while the shear strength increases with the increasing depth. The elastic modulus and peak strength of MHBS increase with the increasing effective confining pressure and higher hydrate saturation. The cohesion increases with higher hydrate saturation while the internal friction angle is barely affected by hydrate saturation. The obtained results demonstrate clearly that methane hydrates have significant impacts on the physical and mechanical properties of sediments and there is still a wide gap in knowledge about MHBS.

  10. Binary gaseous mixture and single component adsorption of methane and argon on exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Russell, Brice Adam

    Exfoliated graphite was used as a substrate for adsorption of argon and methane. Adsorption experiments were conducted for both equal parts mixtures of argon and methane and for each gas species independently. The purpose of this was to compare mixture adsorption to single component adsorption and to investigate theoretical predictions concerning the kinetics of adsorption made by Burde and Calbi.6 In particular, time to reach pressure equilibrium of a single dose at a constant temperature for the equal parts mixture was compared to time of adsorption for each species by itself. It was shown that mixture adsorption is a much more complex and time consuming process than single component adsorption and requires a much longer amount of time to reach equilibrium. Information about the composition evolution of the mixture during the times when pressure was going toward equilibrium was obtained using a quadrupole mass spectrometer. Evidence for initial higher rate of adsorption for the weaker binding energy species (argon) was found as well as overall composition change which clearly indicated a higher coverage of methane on the graphite sample by the time equilibration was reached. Effective specific surface area of graphite for both argon and methane was also determined using the Point-B method.2

  11. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production.

    PubMed

    Dos Santos Ferreira, Janaína; Volschan, Isaac; Cammarota, Magali Christe

    2018-05-23

    Anaerobic co-digestion of sewage sludge and glycerol from the biodiesel industry was evaluated in three experimental stages. In the first step, the addition of higher proportions of crude glycerol (5-20% v/v) to the sludge was evaluated, and the results showed a marked decrease in pH and inhibition of methane production. In the second step, co-digestion of sludge with either a lower proportion (1% v/v) of crude glycerol or glycerol pretreated to remove salinity resulted in volatile acid accumulation and low methane production. The accumulation of volatile acids due to the rapid degradation of glycerol in the mixture was more detrimental to methanogenesis than the salinity of the crude glycerol. In the third step, much lower amounts of crude glycerol were added to the sludge (0.3, 0.5, 0.7% v/v), resulting in buffering of the reaction medium and higher methane production than in the control (pure sludge). The best condition for co-digestion was with the addition of 0.5% (v/v) crude glycerol to the sewage sludge, which equals 0.6 g glycerol/g volatile solids applied. Under this condition, the specific methane production (mL CH 4 /g volatile solids applied) was 1.7 times higher than in the control.

  12. Computer simulations of adsorption and diffusion for binary mixtures of methane and hydrogen in titanosilicates.

    PubMed

    Mitchell, Martha C; Gallo, Marco; Nenoff, Tina M

    2004-07-22

    Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.

  13. Computer simulations of adsorption and diffusion for binary mixtures of methane and hydrogen in titanosilicates

    NASA Astrophysics Data System (ADS)

    Mitchell, Martha C.; Gallo, Marco; Nenoff, Tina M.

    2004-07-01

    Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.

  14. Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell.

    PubMed

    Moreira, João M L; Candiani, Giovano

    2016-08-01

    This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m(-2) d(-1), respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s(-1). The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year(-1) ton(-1). This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.

  15. Hypotheses for Near-Surface Exchange of Methane on Mars

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Bloom, A. Anthony; Gao, Peter; Miller, Charles E.; Yung, Yuk L.

    2016-07-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol-1 to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere.

  16. Distribution and Emission of Methane in Nakdong Estuary

    NASA Astrophysics Data System (ADS)

    Ryu, J.; An, S.

    2014-12-01

    Despite a small area, coastal areas contribute most to the oceanic methane flux. A wide range of methane fluxes have been reported in the coastal areas, but limited data were presented for Korean coastal areas. The air and surface water was sampled in Nakdong Estuary where the barrage had been constructed, and methane concentrations were measured using Gas Chromatography. To see the influence of the barrage, surface water was sampled outside and inside the barrage respectively. In the expectation that methane distribution would be different depending on the tides, surface water outside the barrage was collected at high and low tide respectively. Headspace technique and Membrane Inlet Mass Spectrometry were also used. The average atmospheric concentration (1.82ppm) was lower than the global average concentration expected from the IPCC scenario. The concentrations of water inside the barrage (average 173nM) were similar to those measured in other rivers but in the lower side. The average concentrations outside the barrage (52nM at high tide, 85nM at low tide) were lower than those measured in other coastal areas, but of the same order of magnitude as the European tidal estuaries. Methane concentrations in Nakdong estuary were higher than the methane concentration equilibrated with the atmosphere. The spatial variability of methane concentration in Nakdong estuary seems to be the result of the fresh (high methane) and sea (low methane) water mixing. Meanwhile large tidal flat area in Nakdong estuary should play a major role in methane dynamics and methane flux measurements during sediment incubation were conducted to evaluate the immersion/emersion cycle and photosynthesis by MPB (micro phyto benthos) effect.

  17. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  18. Modeling Modern Methane Emissions from Natural Wetlands. 2; Interannual Variations 1982-1993

    NASA Technical Reports Server (NTRS)

    Walter, Bernadette P.; Heimann, Martin; Mattews, Elaine; Hansen, James E. (Technical Monitor)

    2001-01-01

    A global run of a process-based methane model [Walter et al., this issue] is performed using high-frequency atmospheric forcing fields from ECMWF reanalyses of the period from 1982 to 1993. We calculate global annual methane emissions to be 260 Tg/ yr. 25% of methane emissions originate from wetlands north of 30 deg. N. Only 60% of the produced methane is emitted, while the rest is re-oxidized. A comparison of zonal integrals of simulated global wetland emissions and results obtained by an inverse modeling approach shows good agreement. In a test with data from two wetlands, the seasonality of simulated and observed methane emissions agrees well. The effects of sub-grid scale variations in model parameters and input data are examined. Modeled methane emissions show high regional, seasonal and interannual variability. Seasonal cycles of methane emissions are dominated by temperature in high latitude wetlands, and by changes in the water table in tropical wetlands. Sensitivity tests show that +/- 1 C changes in temperature lead to +/- 20 % changes in methane emissions from wetlands. Uniform changes of +/- 20% in precipitation alter methane emissions by about +/- 18%. Limitations in the model are analyzed. Simulated interannual variations in methane emissions from wetlands are compared to observed atmospheric growth rate anomalies. Our model simulation results suggest that contributions from other sources than wetlands and/or the sinks are more important in the tropics than north-of 30 deg. N. In higher northern latitudes, it seems that a large part, of the observed interannual variations can be explained by variations in wetland emissions. Our results also suggest that reduced wetland emissions played an important role in the observed negative methane growth rate anomaly in 1992.

  19. Biogas and methane yield in response to co- and separate digestion of biomass wastes.

    PubMed

    Adelard, Laetitia; Poulsen, Tjalfe G; Rakotoniaina, Volana

    2015-01-01

    The impact of co-digestion as opposed to separate digestion, on biogas and methane yield (apparent synergetic effects) was investigated for three biomass materials (pig manure, cow manure and food waste) under mesophilic conditions over a 36 day period. In addition to the three biomass materials (digested separately), 13 biomass mixtures (co-digested) were used. Two approaches for modelling biogas and methane yield during co-digestion, based on volatile solids concentration and ultimate gas and methane potentials, were evaluated. The dependency of apparent synergetic effects on digestion time and biomass mixture composition was further assessed using measured cumulative biogas and methane yields and specific biogas and methane generation rates. Results indicated that it is possible, based on known volatile solids concentration and ultimate biogas or methane yields for a set of biomass materials digested separately, to accurately estimate gas yields for biomass mixtures made from these materials using calibrated models. For the biomass materials considered here, modelling indicated that the addition of pig manure is the main cause of synergetic effects. Co-digestion generally resulted in improved ultimate biogas and methane yields compared to separate digestion. Biogas and methane production was furthermore significantly higher early (0-7 days) and to some degree also late (above 20 days) in the digestion process during co-digestion. © The Author(s) 2014.

  20. Fabrication and application of mesoporous TiO2 film coated on Al wire by sol-gel method with EISA

    NASA Astrophysics Data System (ADS)

    Zhao, Linkang; Lu, Jianjun

    2017-04-01

    Mesoporous TiO2 film on Al wire was fabricated by sol-gel method with evaporation induced self assembly (EISA) process using F127 as templating agent in the mixed solution of ethanol and Tetra-n-butyl Titanate. The Ni/TiO2 film catalyst supported on Al wire was prepared by impregnation and the catalytic performance on methanation was carried out in a titanium alloy micro-reactor tube. It was shown that anatase mesoporous TiO2 film was prepared in this conditions (1 g F127,calcined at 400 °C and aged for 24 h), which has specific surface area of 127 m2 g-1 and narrow pore size distribution of 5.3 nm. Low calcined temperature (300 °C) cannot transfer film to anatase and decompose F127 completely. Ni/TiO2 film on Al wire catalyst was proved to be active in CO methanation reaction. And the CO conversion reaches 99% and CH4 selectivity close is to 80% when the reaction temperature is higher 360 °C.

  1. Molecular mechanism of hydrocarbons binding to the metal–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    The adsorption and diffusivity of methane, ethane, n-butane, n-hexane and cyclohexane in a metal organic framework (MOF) with the organic linker tetrakis[4-(carboxyphenyl)oxamethyl]methane, the metal salt, Zn2+, and organic pillar, 4,4’-bipyridin was studied using molecular dynamics simulations. For the n-alkanes, the longer the chain, the lower the free energy of adsorption, which was attributed to a greater number of contacts between the alkane and MOF. Cyclohexane had a slightly higher adsorption free energy than n-hexane. Furthermore, for cyclo- and n-hexane, there were no significant differences in adsorption free energies between systems with low to moderate loadings. The diffusivity of the n-alkanesmore » was found to strongly depend on chain length with slower diffusion for longer chains. Cyclohexane had no effective diffusion, suggesting that the selectivity the MOF has towards n-hexane over cyclohexane is the result of kinetics instead of energetics. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  2. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.

    PubMed

    Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N

    2015-03-01

    Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.

  3. Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale

    NASA Astrophysics Data System (ADS)

    Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

    2013-11-01

    Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

  4. Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng

    Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidicmore » NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less

  5. Direct Imaging of Shale Gas Leaks Using Passive Thermal Infrared Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Marcotte, F.; Chamberland, M.; Morton, V.; Gagnon, M. A.

    2017-12-01

    Natural gas is an energy resource in great demand worldwide. There are many types of gas fields including shale formations which are common especially in the St-Lawrence Valley (Qc). Regardless of its origin, methane (CH4) is the major component of natural gas. Methane gas is odorless, colorless and highly flammable. It is also an important greenhouse gas. Therefore, dealing efficiently with methane emanations and/or leaks is an important and challenging issue for both safety and environmental considerations. In this regard, passive remote sensing represents an interesting approach since it allows characterization of large areas from a safe location. The high propensity of methane contributing to global warming is mainly because it is a highly infrared-active molecule. For this reason, thermal infrared remote sensing represents one of the best approaches for methane investigations. In order to illustrate the potential of passive thermal infrared hyperspectral imaging for research on natural gas, imaging was carried out on a shale gas leak that unexpectedly happen during a geological survey near Hospital Enfant-Jésus (Québec City) in December 2014. Methane was selectively identified in the scene by its unique infrared signature. The estimated gas column density near the leak source was on the order of 65 000 ppm×m. It was estimated that the methane content in the shale gas is on the order of 6-7 %, which is in good agreement with previous geological surveys carried out in this area. Such leaks represent a very serious situation because such a methane concentration lies within the methane lower/upper explosion limits (LEL-UEL, 5-15 %). The results show how this novel technique could be used for research work dealing with methane gas.

  6. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux.

  7. Evidence of sulfate-dependent anaerobic methane oxidation ...

    EPA Pesticide Factsheets

    The rapid development of unconventional gas resources has been accompanied by an increase in public awareness regarding the potential effects of drilling operations on drinking water sources. Incidents have been reported involving blowouts (e.g., Converse County, WY; Lawrence Township, PA; Aliso Canyon, CA) and home/property explosions (e.g., Bainbridge Township, OH; Dimock, PA; Huerfano County, CO) caused by methane migration in the subsurface within areas of natural gas development. We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Results show persistent secondary water quality impacts related to the biodegradation of methane. We identify four distinct characteristics of groundwater methane attenuation in the Poison Canyon aquifer: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher-molecular-weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. We also show that the biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic,

  8. Temperature and hydrology affect methane emissions from Prairie Pothole Wetlands

    USGS Publications Warehouse

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2016-01-01

    The Prairie Pothole Region (PPR) in central North America consists of millions of depressional wetlands that each have considerable potential to emit methane (CH4). Changes in temperature and hydrology in the PPR from climate change may affect methane fluxes from these wetlands. To assess the potential effects of changes in climate on methane emissions, we examined the relationships between flux rates and temperature or water depth using six years of bi-weekly flux measurements during the snow-free period from six temporarily ponded and six permanently ponded wetlands in North Dakota, USA. Methane flux rates were among the highest reported for freshwater wetlands, and had considerable spatial and temporal variation. Methane flux rates increased with increasing temperature and water depth, and were especially high when conditions were warmer and wetter than average (163 ± 28 mg CH4 m−2 h−1) compared to warmer and drier (37 ± 7 mg CH4 m−2 h−1). Methane emission rates from permanent wetlands were less sensitive to changes in temperature and water depth compared to temporary wetlands, likely due to higher sulfate concentrations in permanent wetlands. While the predicted increase in temperature with climate change will likely increase methane emission rates from PPR wetlands, drier conditions could moderate these increases.

  9. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.

    PubMed

    Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas

    2018-01-01

    In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 40 CFR 63.1304 - Testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1304 Testing... shall be: (i) Zero air (less than 10 ppm of hydrocarbon in air); and (ii) A mixture of methane and air... calibrated at a higher methane concentration (up to 2,000 ppm) than the leak definition concentration for a...

  11. 40 CFR 63.1304 - Testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1304 Testing... shall be: (i) Zero air (less than 10 ppm of hydrocarbon in air); and (ii) A mixture of methane and air... calibrated at a higher methane concentration (up to 2,000 ppm) than the leak definition concentration for a...

  12. A VCSEL based system for on-site monitoring of low level methane emission

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Hodgkinson, J.; Gillard, R. G.; Riley, R. J.; Tatam, R. P.

    2011-03-01

    Continuous monitoring of methane emissions has assumed greater significance in the recent past due to increasing focus on global warming issues. Many industries have also identified the need for ppm level methane measurement as a means of gaining carbon credits. Conventional instruments based on NDIR spectroscopy are unable to offer the high selectivity and sensitivity required for such measurements. Here we discuss the development of a robust VCSEL based system for accurate low level measurements of methane. A possible area of application is the measurement of residual methane whilst monitoring the output of flare stacks and exhaust gases from methane combustion engines. The system employs a Wavelength Modulation Spectroscopy (WMS) scheme with second harmonic detection at 1651 nm. Optimum modulation frequency and ramp rates were chosen to maintain high resolution and fast response times which are vital for the intended application. Advanced data processing techniques were used to achieve long term sensitivity of the order of 10-5 in absorbance. The system is immune to cross interference from other gases and its inherent design features makes it ideal for large scale commercial production. The instrument maintains its calibration and offers a completely automated continuous monitoring solution for remote on site deployment.

  13. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Orcutt, Beth N.; Joye, Samantha B.; Kleindienst, Sara; Knittel, Katrin; Ramette, Alban; Reitz, Anja; Samarkin, Vladimir; Treude, Tina; Boetius, Antje

    2010-11-01

    Gulf of Mexico cold seeps characterized by variable compositions and magnitudes of hydrocarbon seepage were sampled in order to investigate the effects of natural oils, methane, and non-methane hydrocarbons on microbial activity, diversity, and distribution in seafloor sediments. Though some sediments were characterized by relatively high quantities of oil, which may be toxic to some microorganisms, high rates of sulfate reduction (SR, 27.9±14.7 mmol m-2 d-1), anaerobic oxidation of methane (AOM, 16.2±6.7 mmol m-2 d-1), and acetate oxidation (2.74±0.76 mmol m-2 d-1) were observed in radiotracer measurements. In many instances, the SR rate was higher than the AOM rate, indicating that non-methane hydrocarbons fueled SR. Analysis of 16S rRNA gene clone libraries revealed phylogenetically diverse communities that were dominated by phylotypes of sulfate-reducing bacteria (SRB) and anaerobic methanotrophs of the ANME-1 and ANME-2 varieties. Another group of archaea form a Gulf of Mexico-specific clade (GOM ARC2) that may be important in brine-influenced, oil-impacted sediments from deeper water. Additionally, species grouping within the uncultivated Deltaproteobacteria clades SEEP-SRB3 and -SRB4, as well as relatives of Desulfobacterium anilini, were observed in relatively higher abundance in the oil-impacted sediments, suggesting that these groups of SRB may be involved in or influenced by degradation of higher hydrocarbons or petroleum byproducts.

  14. Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

    DOE PAGES

    Zhang, Yang; Kidder, Michelle; Ruther, Rose E.; ...

    2016-08-16

    In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less

  15. Variability of methane fluxes over high latitude permafrost wetlands

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Hartmann, Jörg; Larmanou, Eric; Sachs, Torsten

    2013-04-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmospheric methane concentrations. However, direct measurements of methane fluxes in permafrost regions are sparse, very localized, inhomogeneously distributed in space, and thus difficult to use for accurate model representation of regional to global methane contributions from the Arctic. We aim to contribute to reducing uncertainty and improve spatial coverage and spatial representativeness of flux estimates by using airborne eddy covariance measurements across large areas. The research aircraft POLAR 5 was equipped with a turbulence nose boom and a fast response methane analyzer and served as the platform for measurements of methane emissions. The measuring campaign was carried out from 28 June to 10 July 2012 across the entire North Slope of Alaska and the Mackenzie Delta in Canada. The supplemented simulations from the Weather Research and Forecasting (WRF) model exploring the dynamics of the atmospheric boundary layer were used to analyze high methane concentrations occasionally observed within the boundary layer with a distinct drop to background level above. Strong regional differences were detected over both investigated areas showing the non-uniform distribution of methane sources. In order to cover the whole turbulent spectrum and at the same time to resolve methane fluxes on a regional scale, different integration paths were analyzed and validated through spectral analysis. Methane emissions measured over the Mackenzie Delta were higher and generally more variable in space, especially in the outer Delta with known geogenic methane seepage. On the North Slope, methane fluxes were larger in the western part than in the central and eastern parts. The obtained results are essential for the advanced, scale dependent quantification of methane emissions. Our contribution will present an overview of the experiment as well as preliminary results from more than 52 flight hours over high latitude permafrost wetlands.

  16. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    NASA Astrophysics Data System (ADS)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that exceeded simultaneous oxidation of atmospheric methane in shallow, aerobic soils.

  17. Improving the methane yield of maize straw: Focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide.

    PubMed

    Zhao, Xiaoling; Luo, Kai; Zhang, Yue; Zheng, Zehui; Cai, Yafan; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    In order to improve the methane yield, the alkaline and biological pretreatments on anaerobic digestion (AD) were investigated. Three treatments were tested: NaOH, biological (enzyme and fungi), and combined NaOH with biological. The maximum reducing sugar concentrations were obtained using Enzyme T (2.20 mg/mL) on the 6th day. The methane yield of NaOH + Enzyme A was 300.85 mL/g TS, 20.24% higher than the control. Methane yield obtained from Enzyme (T + A) and Enzyme T pretreatments were 277.03 and 273.75 mL/g TS, respectively, which were as effective as 1% NaOH (276.16 mL/g TS) in boosting methane production, and are environmentally friendly and inexpensive biological substitutes. Fungal pretreatment inhibited methane fermentation of maize straw, 15.68% was reduced by T + A compared with the control. The simultaneous reduction of DM, cellulose and hemicellulose achieved high methane yields. This study provides important guidance for the application of enzymes to AD from lignocellulosic agricultural waste. Copyright © 2017. Published by Elsevier Ltd.

  18. Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan.

    PubMed

    Hegde, Ullas; Chang, Tsan-Chang; Yang, Shang-Shyng

    2003-09-01

    To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.

  19. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  20. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate

    USGS Publications Warehouse

    Loftin, Keith A.; Henny, Cynthia; Adams, Craig D.; Surampali, Rao; Mormile, Melanie R.

    2005-01-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  1. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanna, Muna, E-mail: muna.albanna@gju.edu.j; Warith, Mostafa; Fernandes, Leta

    2010-02-15

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH{sub 4}) oxidation process were examined. The investigation was performed on compost experiments incubated with CH{sub 4} and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH{sub 4} oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs themore » V{sub max} value was 35.0 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1}. This value was reduced to 19.1 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1} when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH{sub 4} in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.« less

  2. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate.

    PubMed

    Loftin, Keith A; Henny, Cynthia; Adams, Craig D; Surampali, Rao; Mormile, Melanie R

    2005-04-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  3. Freshwater bacteria release methane as a byproduct of phosphorus acquisition.

    PubMed

    Yao, Mengyin; Henny, Cynthia; Maresca, Julia A

    2016-09-30

    Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, or demethylation of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is chronically P-starved and methane-rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methylphosphonate and release methane, and that this activity is repressed by phosphate. We further demonstrate that expression of phnJ, which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater environments. These experiments link methylphosphonate degradation and methane production with gene expression and phosphate availability in freshwater organisms, and suggest that some of the excess methane in the Lake Matano surface water, and in other methane-rich lakes, may be produced by P-starved bacteria. Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently, methane release from small organic molecules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also contribute to methane release from lakes, and that phosphate can repress this activity. Since lakes are typically phosphorus-limited, some methane release in these environments may be a byproduct of phosphorus metabolism, rather than carbon or energy metabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of anoxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may also need to be included in these models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Increased CO2 selectivity of asphalt-derived porous carbon through introduction of water into pore space

    NASA Astrophysics Data System (ADS)

    Jalilov, Almaz S.; Li, Yilun; Kittrell, Carter; Tour, James M.

    2017-12-01

    The development of inexpensive porous solid sorbents, such as porous carbons, that can selectively capture carbon dioxide (CO2) from natural gas wells is essential to reduce emission of CO2 to the atmosphere. However, at higher pressures, the selectivity for CO2 over that for methane (CH4) remains poor. Here we show that H2O can be imbibed within asphalt-derived porous carbon, with a surface area of 4,200 m2 g-1, to generate a hydrated powder material. While maintaining a high CO2 uptake capacity of 48 mmol g-1 (211 wt%), the molar selectivity for CO2 over CH4 increases to >200:1 and the H2O remains within the pores on repeated cycling. To mimic realistic natural gas wells, we used a 90% CH4 and 10% CO2 gas mixture and showed selective CO2 separation at 20 bar. Furthermore, in situ vibrational spectroscopy reveals the formation of an ordered matrix within the pores consisting of gas hydrates.

  5. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia.

    PubMed

    Currell, Matthew; Banfield, Dominic; Cartwright, Ian; Cendón, Dioni I

    2017-05-01

    Recent expansion of shale and coal seam gas production worldwide has increased the need for geochemical studies in aquifers near gas deposits, to determine processes impacting groundwater quality and better understand the origins and behavior of dissolved hydrocarbons. We determined dissolved methane concentrations (n = 36) and δ 13 C and δ 2 H values (n = 31) in methane and groundwater from the 46,000-km 2 Gippsland Basin in southeast Australia. The basin contains important water supply aquifers and is a potential target for future unconventional gas development. Dissolved methane concentrations ranged from 0.0035 to 30 mg/L (median = 8.3 mg/L) and were significantly higher in the deep Lower Tertiary Aquifer (median = 19 mg/L) than the shallower Upper Tertiary Aquifer (median = 3.45 mg/L). Groundwater δ 13 C DIC values ranged from -26.4 to -0.4 ‰ and were generally higher in groundwater with high methane concentrations (mean δ 13 C DIC  = -9.5 ‰ for samples with >3 mg/L CH 4 vs. -16.2 ‰ in all others), which is consistent with bacterial methanogenesis. Methane had δ 13 C CH4 values of -97.5 to -31.8 ‰ and δ 2 H CH4 values of -391 to -204 ‰ that were also consistent with bacterial methane, excluding one site with δ 13 C CH4 values of -31.8 to -37.9 ‰, where methane may have been thermogenic. Methane from different regions and aquifers had distinctive stable isotope values, indicating differences in the substrate and/or methanogenesis mechanism. Methane in the Upper Tertiary Aquifer in Central Gippsland had lower δ 13 C CH4 (-83.7 to -97.5 ‰) and δ 2 H CH4 (-236 to -391 ‰) values than in the deeper Lower Tertiary Aquifer (δ 13 C CH4  = -45.8 to -66.2 ‰ and δ 2 H CH4  = -204 to -311 ‰). The particularly low δ 13 C CH4 values in the former group may indicate methanogenesis at least partly through carbonate reduction. In deeper groundwater, isotopic values were more consistent with acetate fermentation. Not all methane at a given depth and location is interpreted as being necessarily produced in situ. We propose that high dissolved sulphate concentrations in combination with high methane concentrations can indicate gas resulting from contamination and/or rapid migration as opposed to in situ bacterial production or long-term migration. Isotopes of methane and dissolved inorganic carbon (DIC) serve as further lines of evidence to distinguish methane sources. The study demonstrates the value of isotopic characterisation of groundwater including dissolved gases in basins containing hydrocarbons.

  6. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOEpatents

    Wang, Yong , Liu; Wei, [Richland, WA

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  7. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    PubMed

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  8. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  9. Overview of California's Efforts to Understand and Reduce Methane Sources

    NASA Astrophysics Data System (ADS)

    Croes, B. E.; Chen, Y.; Duren, R. M.; Falk, M.; Franco, G.; Herner, J.; Ingram, W.; Kuwayama, T.; McCarthy, R.; Scheehle, E.; Vijayan, A.

    2016-12-01

    Methane is an important short-lived climate pollutant (SLCP) and also has significant health implications as a tropospheric ozone precursor. As part of a comprehensive effort to reduce greenhouse gas (GHG) emissions overall by 40% from 1990 levels by 2030, California has proposed an SLCP Strategy that includes a 40% reduction of methane emissions from 2013 levels by 2030, with goals to reduce oil and gas related emissions and capture methane emissions from dairy operations and organic waste. A recent analysis of satellite data found a large methane "hot spot" over the Central Valley in California, likely the second largest over the entire U.S. In light of this finding, the California legislature passed Assembly Bill 1496 in 2015, which requires the California Air Resources Board (CARB) to undertake measurements to understand the sources of methane hot spots, evaluate life-cycle emissions from natural gas imported into California, and update relevant policies and programs. There is growing evidence in the recent scientific literature suggesting that a small fraction of methane sources within a category emit disproportionately higher emissions than their counterparts, usually referred to as "super emitters". As such, controlling these sources may provide a lower cost opportunity for methane reductions needed to meet near- and long-term climate goals. In order to achieve a comprehensive understanding of sources contributing to "hot spots", CARB, the California Energy Commission, and NASA's Jet Propulsion Laboratory are implementing a large-scale statewide methane survey using a tiered monitoring and measurement program, which will include airborne and ground-level measurements of the various regions and source sectors in the State. This presentation will discuss research and program implementation efforts to evaluate and mitigate methane super emitters and hot spots. These efforts are expected to improve our understanding of methane emission source distributions, improve the estimate of the overall magnitude of anthropogenic methane emissions in California, and inform and improve the effectiveness of methane reduction policies and programs.

  10. Oxidative coupling of methane over supported La{sub 2}O{sub 3} and La-promoted MgO catalysts: Influence of catalyst-support interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.

    1997-06-01

    Methane-to-C{sub 2}-hydrocarbon conversion activity and selectivity (or yield) of MgO and La-promoted MgO catalysts in the oxidative coupling of methane and strong basicity of the catalysts are decreased appreciably when these catalysts are deposited on commonly used commercial low surface area porous catalyst carriers containing Al{sub 2}O{sub 3}, SiO{sub 2}, SiC, or ZrO{sub 2} + HfO{sub 2} as the main components. The decrease in the strong basicity and catalytic activity/selectivity or yield is mostly due to strong chemical interactions between the active catalyst component (viz., MgO and La{sub 2}O{sub 3}) and the reactive components of the catalyst support (viz., Al{submore » 2}O{sub 3} and SiO{sub 2}), resulting in the formation of catalytically inactive binary metal oxides on the support surface. However, the influence of support on the activity/selectivity of La{sub 2}O{sub 3} is relatively very small, and also the chemical interactions of La{sub 2}O{sub 3} with the supports (except that containing a high concentration of SiO{sub 2}) are almost absent. The catalyst-support interactions are thus found to be strongly dependent upon the nature (chemical composition) of both catalyst and support. For developing better supported catalysts for the oxidative coupling of methane, supported La{sub 2}O{sub 3} with some promoters shows high promise.« less

  11. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

    PubMed Central

    Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin

    2017-01-01

    Objective The effects of lactic acid bacteria (LAB) and cellulase enzyme on fermentation quality, microorganism population, chemical composition and in vitro gas production of sorghum silages were studied. Methods Commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), local selected strain Lactobacillus casei (L. casei) TH 14 and Acremonium cellulase (AC) were used as additives in sorghum silage preparation. Results Prior to ensiling Sorghum contained 104 LAB and 106 cfu/g fresh matter coliform bacteria. The chemical compositions of sorghum was 26.6% dry matter (DM), 5.2% crude protein (CP), and 69.7% DM for neutral detergent fiber. At 30 days of fermentation after ensiling, the LAB counts increased to a dominant population; the coliform bacteria and molds decreased to below detectable level. All sorghum silages were good quality with a low pH (<3.5) and high lactic acid content (>66.9 g/kg DM). When silage was inoculated with TH14, the pH value was significantly (p<0.05) lower and the CP content significantly (p<0.05) higher compared to control, CH and AC-treatments. The ratio of in vitro methane production to total gas production and DM in TH 14 and TH 14+AC treatments were significantly (p<0.05) reduced compared with other treatments while in vitro dry matter digestibility and gas production did not differ among treatments. Conclusion The results confirmed that L. casei TH14 could improve sorghum silage fermentation, inhibit protein degradation and decrease methane production. PMID:28728399

  12. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    PubMed Central

    Timmers, Peer HA; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons JM; Plugge, Caroline M

    2016-01-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  13. Dissolved methane occurrences in aquifers in the footprint of Texas shale plays and their controls

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Mickler, P. J.; Larson, T.; Darvari, R.; Smyth, R. C.

    2015-12-01

    Many constituents typically associated with oil and gas production, such as methane and higher-order hydrocarbons, exist naturally in shallow groundwater. Recent studies of aquifers in the footprint of several gas plays across the US have showed that (1) dissolved thermogenic methane may or may not be present in the shallow subsurface and (2) shallow thermogenic methane could be naturally occurring and emplaced through mostly vertical migration over geologic time and is not necessarily a consequence of gas production from a gas play. A total of 800+ water wells have been sampled across the state of Texas to characterize shallow methane in fresh-water aquifers overlying shale plays and other tight formations (Barnett, Eagle Ford, Haynesville shale areas as well as in the Delaware Basin of West Texas). Analytical results suggest that dissolved methane is not widespread in shallow groundwater and that, when present at concentration greater than 10 mg/L, is often of natural but thermogenic or mixed origin according to the isotopic signature and to the presence of other light hydrocarbons.

  14. Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements.

    PubMed

    Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-06-01

    The effect of aerobic pretreatment and fly ash addition on the production of methane from mixed sludge is studied. Three assays with pretreated and not pretreated mixed sludge in the presence of fly ash (concentrations of 0, 10, 25, 50, 250 and 500mg/L) were run at mesophilic condition. It was found that the combined use of aerobic pretreatment and fly ash addition increases methane production up to 70% when the fly ash concentrations were lower than 50mg/L, while concentrations higher than 250mg/L cause up to 11% decrease of methane production. For the anaerobic treatment of mixed sludge without pretreatment, the fly ash improved methane generation at all the concentrations studied, with a maximum of 56%. The removal of volatile solids does not show an improvement compared to the separate use of an aerobic pre-treatment and fly ash addition. Therefore, the combined use of the aerobic pre-treatment and fly ash addition improves only the production of methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biogas by semi-continuous anaerobic digestion of food waste.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Wang, Zhenbin; Tan, Tianwei; Qin, Peiyong

    2015-04-01

    The semi-continuous anaerobic digestion of food waste was investigated in 1-L and 20-L continuously stirred tank reactors (CSTRs), to identify the optimum operation condition and the methane production of the semi-continuous anaerobic process. Results from a 1-L digester indicated that the optimum organic loading rate (OLR) for semi-continuous digestion is 8 g VS/L/day. The corresponding methane yield and chemical oxygen demand (COD) reduction were 385 mL/g VS and 80.2 %, respectively. Anaerobic digestion was inhibited at high OLRs (12 and 16 g VS/L/day), due to volatile fatty acid (VFA) accumulation. Results from a 20-L digester indicated that a higher methane yield of 423 mL/g VS was obtained at this larger scale. The analysis showed that the methane production at the optimum OLR fitted well with the determined kinetics equation. An obvious decrease on the methane content was observed at the initial of digestion. The increased metabolization of microbes and the activity decrease of methanogen caused by VFA accumulation explained the lower methane content at the initial of digestion.

  16. Reverse Methanogenesis and Respiration in Methanotrophic Archaea

    PubMed Central

    Koehorst, Jasper J.; Jetten, Mike S. M.; Stams, Alfons J. M.

    2017-01-01

    Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types. PMID:28154498

  17. Secondary migration and leakage of methane from a major tight-gas system

    NASA Astrophysics Data System (ADS)

    Wood, James M.; Sanei, Hamed

    2016-11-01

    Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere.

  18. Secondary migration and leakage of methane from a major tight-gas system

    PubMed Central

    Wood, James M.; Sanei, Hamed

    2016-01-01

    Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere. PMID:27874012

  19. Study of the genetics and regulation of methane oxidation. Progress report, first year, August 1, 1980-July 31, 1981. [Methylobacterium ethanolicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The plasmids present in M. ethanolicum have been characterized as to size, relatedness, and curing rate. Auxotrophs have been isolated and are being tested for the ability of several plasmids to promote mobilization of these markers. A cloning vector has been identified which can be used not only to clone the genes of interest but to isolate mutants in these genes and place a selectable marker on each of the plasmids. Isolation of a series of methane and methanol mutants, determination of which of the plasmids carries the mtn gene(s), and identification of methane-specific proteins on two-dimensonal O'Farrell gels shouldmore » all be completed shortly. In addition, the cloning of the methane genes and development of a genetic system should be well underway. A more detailed appraisal of future experiments is presented in the accompanying renewal proposal. (ERB)« less

  20. Renewable Biochemical Methane Potential through Anaerobic Co-digestion from Selective Feed Stocks

    NASA Astrophysics Data System (ADS)

    Thara, K.; Navis Karthika, Ignatius; Dheenadayalan, M. S., Dr

    2017-08-01

    Biochemical Methane Potential (BMP) analysis provides a measure of the anaerobic biodegradability of a given substrate. BMP test is also used to evaluate the potential biogas (methane) production between various Co-digestion substrates. This test is also used to determine the amount of organic carbon in a given material that can be an aerobically converted to methane-Biogas. Studies were carried out for the production of biogas from the leather solid waste. Co-digestion (simultaneous digestion of two or more substrates) studies were carried out in batch reactor using the fleshing (a solid waste generated during the processing of raw hides or skins into finished leather) along with the fruit and vegetable waste at mesophilic condition 35° C). The anaerobic methanogenic seed sludge prepared separately followed by standard BMP test, which was used as the seed inoculums. Recent research on this topic is reviewed in this current paper.

  1. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  2. Stable carbon isotopic signature of methane from high-emitting wetland sites in discontinuous permafrost landscape

    NASA Astrophysics Data System (ADS)

    Marushchak, Maija; Liimatainen, Maarit; Lind, Saara; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    The rising methane concentration in the atmosphere during the past years has been associated with a concurrent change in the carbon isotopic signature: The atmospheric methane is getting more and more depleted in the heavy carbon isotope. The decreasing 13C/12C ratio indicates an increasing contribution of methane from biogenic sources, most importantly wetlands and inland waters, whose global emissions are still poorly constrained. From the climate change perspective, arctic and subarctic wetlands are particularly interesting due to the strong warming and permafrost thaw predicted for these regions that will cause changes in the methane dynamics. Coupling methane flux inventories with determination of the stable isotopic signature can provide useful information about the pathways of methane production, consumption and transport in these ecosystems. Here, we present data on the emissions and carbon isotopic composition of methane from subarctic tundra wetlands at the Seida study site, Northeast European Russia. In this landscape, underlain by discontinuous permafrost, waterlogged fens represent sites of high carbon turnover and high methane release. Despite they cover less than 15% of the region, their methane emissions comprise 98% of the regional mean (± SD) release of 6.7 (± 1.8) g CH4 m-2 y-1 (Marushchak et al. 2016). The methane emission from the studied fens was clearly depleted in 13C compared to the pore water methane. The bulk mean δ13CH4 (± SD) over the growing season was -68.2 (± 2.0) ‰ which is similar to the relatively few values previously reported from tundra wetlands. We explain the depleted methane emissions by the high importance of passive transport via aerenchymous plants, a process that discriminates against the heavier isotopes. This idea is supported by the strong positive correlation observed between the methane emission and the vascular leaf area index (LAI), and the inverse relationship between the δ13CH4 of emitted methane and LAI. The latter cannot be explained by greater dominance of acetoclastic methanogenesis on densely vegetated sites, since this would lead to the opposite: more enriched methane with higher LAI. While the spatial variability of methane emission was related to the differences in the vascular plant cover, the seasonal dynamics followed closely the local temperatures. Height of the water table level was an unimportant regulator of methane emissions in these fens, where floating peat surface follows the water table fluctuations. This implies that these fens have high potential for increased methane release in the future warmer climate, due to enhanced microbial methane production and vascular plant growth.

  3. Methane Bubble Flame Tower--A Spectacularly Engaging Way to Teach Density

    ERIC Educational Resources Information Center

    Sandoval, Christopher

    2012-01-01

    This article presents a demonstration using methane bubble flame tower that offers a fun and relatively cheap way of demonstrating what happens when there is a density difference. Teachers can do this as a predict-observe-explain demonstration after the students have learned about density to extend their learning and get into some higher order…

  4. Evidence of Sulfate-Dependent Anaerobic Methane Oxidation within an Area Impacted by Coalbed Methane-Related Gas Migration

    NASA Astrophysics Data System (ADS)

    Wolfe, A. L.; Wikin, R. T.

    2017-12-01

    We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.

  5. Contributions of available substrates and activities of trophic microbial community to methanogenesis in vegetative and reproductive rice rhizospheric soil.

    PubMed

    Chawanakul, Sansanee; Chaiprasert, Pawinee; Towprayoon, Sirintornthep; Tanticharoen, Morakot

    2009-01-01

    Potential of methane production and trophic microbial activities at rhizospheric soil during rice cv. Supanbunri 1 cultivation were determined by laboratory anaerobic diluents vials. The methane production was higher from rhizospheric than non-rhizospheric soil, with the noticeable peaks during reproductive phase (RP) than vegetative phase (VP). Glucose, ethanol and acetate were the dominant available substrates found in rhizospheric soil during methane production at both phases. The predominance activities of trophic microbial consortium in methanogenesis, namely fermentative bacteria (FB), acetogenic bacteria (AGB), acetate utilizing bacteria (AB) and acetoclastic methanogens (AM) were also determined. At RP, these microbial groups were enhanced in the higher of methane production than VP. This correlates with our finding that methane production was greater at the rhizospheric soil with the noticeable peaks during RP (1,150 +/- 60 nmol g dw(-1) d(-1)) compared with VP (510 +/- 30 nmol g dw(-1) d(-1)). The high number of AM showed the abundant (1.1x10(4) cell g dw(-1)) with its high activity at RP, compared to the less activity with AM number at VP (9.8x10(2) cell g dw(-1)). Levels of AM are low in the total microbial population, being less than 1% of AB. These evidences revealed that the microbial consortium of these two phases were different.

  6. Molecular simulation investigation into the performance of Cu-BTC metal-organic frameworks for carbon dioxide-methane separations.

    PubMed

    Gutiérrez-Sevillano, Juan José; Caro-Pérez, Alejandro; Dubbeldam, David; Calero, Sofía

    2011-12-07

    We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compositions. From the single component isotherms, mixture adsorption is predicted using the ideal adsorbed solution theory. These predictions are in very good agreement with our computed mixture isotherms and with previously reported data. Adsorption and diffusion selectivities and preferential sitings are also discussed with the aim to provide new molecular level information for all studied systems.

  7. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    PubMed

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  8. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico

    2014-08-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.

  10. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert

    2014-01-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  11. Bottom-simulating reflector dynamics at Arctic thermogenic gas provinces: An example from Vestnesa Ridge, offshore west Svalbard

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Vadakkepuliyambatta, S.; Hong, W.-L.; Mienert, J.; Bünz, S.; Chand, S.; Greinert, J.

    2017-06-01

    The Vestnesa Ridge comprises a >100 km long sediment drift located between the western continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep water (>1000 m) gas hydrate and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system. Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and measured gas compositions results in an unusual underestimation of the observed bottom-simulating reflector (BSR) depth. The BSR is up to 60 m deeper than predicted for pure methane and measured gas compositions with >99% methane. Models for measured gas compositions with >4% higher-order hydrocarbons result in a better BSR approximation. However, the BSR remains >20 m deeper than predicted in a region without active seepage. A BSR deeper than predicted is primarily explained by unaccounted spatial variations in the geothermal gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates containing higher-order hydrocarbons form at greater depths and higher temperatures and contribute with larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant upward revision (up to 50% in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates.

  12. Impact of reduced water consumption on sulfide and methane production in rising main sewers.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Bustamante, Heriberto; Yuan, Zhiguo

    2015-05-01

    Reduced water consumption (RWC), for water conservation purposes, is expected to change the wastewater composition and flow conditions in sewer networks and affect the in-sewer transformation processes. In this study, the impact of reduced water consumption on sulfide and methane production in rising main sewers was investigated. Two lab-scale rising main sewer systems fed with wastewater of different strength and flow rates were operated to mimic sewers under normal and RWC conditions (water consumption reduced by 40%). Sulfide concentration under the RWC condition increased by 0.7-8.0 mg-S/L, depending on the time of a day. Batch test results showed that the RWC did not change the sulfate-reducing activity of sewer biofilms, the increased sulfide production being mainly due to longer hydraulic retention time (HRT). pH in the RWC system was about 0.2 units lower than that in the normal system, indicating that more sulfide would be in molecular form under the RWC condition, which would result in increased sulfide emission to the atmosphere as confirmed by the model simulation. Model based analysis showed that the cost for chemical dosage for sulfide mitigation would increase significantly per unit volume of sewage, although the total cost would decrease due to a lower sewage flow. The dissolved methane concentration under the RWC condition was over two times higher than that under the normal flow condition and the total methane discharge was about 1.5 times higher, which would potentially result in higher greenhouse gas emissions. Batch tests showed that the methanogenic activity of sewer biofilms increased under the RWC condition, which along with the longer HRT, led to increased methane production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  14. A fluoride-sensing receptor based on 2,2'-bis(indolyl)methane by dual-function of colorimetry and fluorescence.

    PubMed

    Wei, Wei; Shao, Shi Jun; Guo, Yong

    2015-10-05

    A compound based on 2,2'-bis(indolyl)methane containing nitro group was studied as a new anion receptor. It could recognize selectively F(-) by an increasing fluorescence signal and a visible color change from colorless to blue. The introduction of nitro group induced the spectral dual-function related to the deprotonation of N-H protons. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia.

    PubMed

    Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk

    2016-08-01

    Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    PubMed

    Nguyen, Anh Duc; Hwang, In Yeub; Lee, Ok Kyung; Kim, Donghyuk; Kalyuzhnaya, Marina G; Mariyana, Rina; Hadiyati, Susila; Kim, Min Sik; Lee, Eun Yeol

    2018-04-16

    Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.p, harboring the 2,3-BDO synthesis gene cluster (budABC) from Klebsiella pneumoniae, accumulated 2,3-BDO in methane-fed shake flask cultures with a titer of 35.66 mg/L. Expression of the most efficient gene cluster was optimized using selection of promoters, translation initiation rates (TIR), and the combination of 2,3-BDO synthesis genes from different sources. A higher 2,3-BDO titer of 57.7 mg/L was measured in the 20Z/pNBM-Re strain with budA of K. pneumoniae and budB of Bacillus subtilis under the control of the Tac promoter. The genome-scale metabolic network reconstruction of M. alcaliphilum 20Z enabled in silico gene knockout predictions using an evolutionary programming method to couple growth and 2,3-BDO production. The ldh, ack, and mdh genes in M. alcaliphilum 20Z were identified as potential knockout targets. Pursuing these targets, a triple-mutant strain ∆ldh ∆ack ∆mdh was constructed, resulting in a further increase of the 2,3-BDO titer to 68.8 mg/L. The productivity of this optimized strain was then tested in a fed-batch stirred tank bioreactor, where final product concentrations of up to 86.2 mg/L with a yield of 0.0318 g-(2,3-BDO) /g-CH 4 were obtained under O 2 -limited conditions. This study first demonstrates the strategy of in silico simulation-guided metabolic engineering and represents a proof-of-concept for the production of value-added compounds using systematic approaches from engineered methanotrophs. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Linking Microbial and Biogeochemical Studies: Biological Controls of Methane Release from an Acidic Natural Wetland in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Biddle, J. F.; Turich, C.; Brantley, S.; Bruns, M.

    2002-12-01

    Wetlands produce between 55 and 150 Tg of methane per year, or ~70% of all natural methane, and 20% of total methane (natural and anthropogenic). Understanding inputs to the global methane cycle depends on integrated in situ study of the sources and sinks of methane, as well as the rate and magnitude of methane production and consumption. Bear Meadows Natural Area in central Pennsylvania (N 40° 43.796' W 077° 45.310; 554 m elevation) contains an acidic, methane-producing, peaty bog with vegetation that is typical of wetlands at higher latitudes. In this four year study conducted within a cross-disciplinary training course offered by the NSF-IGERT Biogeochemical Research Initiative in Education (BRIE) program at Penn State University, graduate students applied a combination of geochemical and microbiological techniques to explore microbial diversity and activity in Bear Meadows sediments. The methane flux at the peat:water interface was highly variable, from 0.01 to over 3000 umol/m2/min in both sphagnum and sedge vegetation. The methane released from the bog had a carbon isotopic composition of -60 %o, typical of biogenic methane. Analysis of peat pore waters showed that the most methane was produced 30 cm below the peat:water interface, with a broad peak of methane in pore waters from 20-40 cm. At 21 cm below the peat:water interface, profiles of Archaeal 16S-23S ribosomal RNA spacer regions revealed the presence of populations having 92% similarity to 16S rRNA sequences of Methanoculleus marisnigri. Phospholipid fatty acids (PLFA) and compound specific isotope analysis revealed other biological controls on the methane cycle. PLFAs typical of methanotrophic bacteria were also present within peat cores from 20-30 cm below the water interface. The depleted carbon isotopic composition of these biomarkers (C16:1 and C18:1 fatty acids) was - 31.4 %o and - 33.8%o, indicative of methane oxidation. The presence of biomarkers of methane oxidizing bacteria within the zone of methane production may indicate that there is temporal or spatial heterogeneity in oxygen concentration within the peat. This interdisciplinary approach helped define specific ecological niches where novel methanogens and methane oxidizers may be active in a typical northern wetland. Through BRIE, on-going studies of the Bear Meadows wetland will focus on detecting other potentially novel aerobic and anaerobic microbes, and determining the biological influence on methane release to the atmosphere.

  18. Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils.

    PubMed

    Hidalgo, Dolores; Martín-Marroquín, Jesús M

    2014-09-01

    This work aims at selecting a suitable strategy to improve the performance of the anaerobic digestion of residues generated in the treatment of waste vegetable oils (WVO). Biochemical methane potential (BMP) assays were conducted at 35 °C to evaluate the effects of substrate mix ratio between a mixture of WVO residues (M) and pig manure (PM) co-digesting by using different inocula. Inoculum from an industrial digester fed with organic waste from hotels, restaurants and catering leftovers (HORECA) showed higher methanogenic activity (55.5 mLCH4 gVS(-1) d(-1)) than municipal wastewater treatment plant (mWWTP) inoculum (42.6 mL CH4 gVS(-1) d(-1)). Furthermore, the results showed that the resistance to WVO residues toxicity was higher for the HORECA sludge than for the mWWTP sludge. HORECA inoculum produced more biogas in all the assays. Moreover, the resulting biogas was of better quality, containing an average of 71.1% (SD = 1.6) methane compared to an average of 69.5% (SD = 1.2) methane for test with mWWTP sludge. The maximum degradation rate occurred at the higher PM mix ratio (M/PM:1/3), reaching 26.7 ± 4.3 mLCH4 gVS(-1) d(-1) for mWWTP inoculum, versus 42.0 ± 1,5 mLCH4 gVS(-1) d(-1) achieved for HORECA inoculum. A high reduction of volatile solids (between 70% and 81%) was obtained with both inocula at all M/PM ratios assayed (1/0, 1/3, 1/1 and 3/1 v/v) but, bearing in mind the operation of a full-scale anaerobic plant, the optimal scenario assayed corresponds to the ratio M/PM: 1/3 v/v where shorter lag periods will make it possible to operate at lower hydraulic retention times. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    PubMed Central

    Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang

    2014-01-01

    The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753

  20. Catalytic generation of methane at 60-100 °C and 0.1-300 MPa from source rocks containing kerogen Types I, II, and III

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Schimmelmann, Arndt; Mastalerz, Maria; Lahann, Richard W.; Sauer, Peter E.; Drobniak, Agnieszka; Strąpoć, Dariusz; Mango, Frank D.

    2018-06-01

    Low temperature (60 and 100 °C) and long-term (6 months to 5 years) heating of pre-evacuated and sterilized shales and coals containing kerogen Types I (Mahogany Shale), II (Mowry Shale and New Albany Shale), and III (Springfield Coal and Wilcox Lignite) with low initial maturities (vitrinite reflectance Ro 0.39-0.62%) demonstrates that catalytically generated hydrocarbons may explain the occurrence of some non-biogenic natural gas accumulations where insufficient thermal maturity contradicts the conventional thermal cracking paradigm. Extrapolation of the observed rate of catalytic methanogenesis in the laboratory suggests that significant amounts of sedimentary organic carbon can be converted to relatively dry natural gas over tens of thousands of years in sedimentary basins at temperatures as low as 60 °C. Our laboratory experiments utilized source rock (shale and coal) chips sealed in gold and Pyrex® glass tubes in the presence of hydrogen-isotopically contrasting waters. Parallel heating experiments applied hydrostatic pressures from 0.1 to 300 MPa. Control experiments constrained the influence of pre-existing and residual methane in closed pores of rock chips that was unrelated to newly generated methane. This study's experimental methane yields at 60 and 100 °C are 5-11 orders of magnitude higher than the theoretically predicted yields from kinetic models of thermogenic methane generation, which strongly suggests a contribution of catalytic methanogenesis. Higher temperature, longer heating time, and lower hydrostatic pressure enhanced catalytic methanogenesis. No clear relationships were observed between kerogen type or total organic carbon content and methane yields via catalysis. Catalytic methanogenesis was strongest in Mowry Shale where methane yields at 60 °C amounted to ∼2.5 μmol per gram of organic carbon after one year of hydrous heating at ambient pressure. In stark contrast to the earlier findings of hydrogen isotopic exchange between water and thermogenic methane in hydrous pyrolysis experiments above 300 °C, the hydrogen isotopic composition of added water exerted limited influence on the δ2H value of methane generated catalytically at low temperatures. We hypothesize that the catalytic sites responsible for methanogenesis are located in hydrophobic microenvironments with limited access to water. The δ13CCH4 values of methane generated catalytically at 60-100 °C range from ∼-57.6 to -41.4‰ and are thus similar to typical thermogenic methane (δ13CCH4 >-50‰) and microbially generated methane (<-55‰). Future studies need to evaluate the possibility that clumped isotope characteristics of catalytically generated methane can diagnose the low-temperature regime of catalytic methanogenesis. Furthermore, testing of freshly cored anoxic rocks is needed to determine whether the use of archived, oxygen-exposed rocks in geochemical maturation/catalysis studies introduces artifacts in experimental hydrocarbon yields.

  1. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system.

    PubMed

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter

    2014-07-01

    Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Methane emission by adult ostriches (Struthio camelus).

    PubMed

    Frei, Samuel; Dittmann, Marie T; Reutlinger, Christoph; Ortmann, Sylvia; Hatt, Jean-Michel; Kreuzer, Michael; Clauss, Marcus

    2015-02-01

    Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports, however, claimed a very low methane emission from ostriches, which would be clearly different from mammals. If this could be confirmed, ostrich meat would represent a very attractive alternative to ruminant-and generally mammalian-meat by representing a particularly low-emission agricultural form of production. We individually measured, by chamber respirometry, the amount of oxygen consumed as well as carbon dioxide and methane emitted from six adult ostriches (body mass 108.3±8.3 kg) during a 24-hour period when fed a pelleted lucerne diet. While oxygen consumption was in the range of values previously reported for ostriches, supporting the validity of our experimental setup, methane production was, at 17.5±3.2 L d(-1), much higher than previously reported for this species, and was of the magnitude expected for similar-sized, nonruminant mammalian herbivores. These results suggest that methane emission is similar between ostriches and nonruminant mammalian herbivores and that the environmental burden of these animals is comparable. The findings furthermore indicate that it appears justified to use currently available scaling equations for methane production of nonruminant mammals in paleo-reconstructions of methane production of herbivorous dinosaurs. Copyright © 2014. Published by Elsevier Inc.

  4. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    PubMed

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  6. In vitro methane and gas production with inocula from cows and goats fed an identical diet.

    PubMed

    Mengistu, Genet; Hendriks, Wouter H; Pellikaan, Wilbert F

    2018-03-01

    Fermentative capacity among ruminants can differ depending on the type of ruminant species and the substrate fermented. The aim was to compare in vitro cow and goat rumen inocula in terms of methane (CH 4 ) and gas production (GP), fermentation kinetics and 72 h volatile fatty acids (VFA) production using the browse species Acacia etbaica, Capparis tomentosa, Dichrostachys cinerea, Rhus natalensis, freeze-dried maize silage and grass silage, and a concentrate as substrates. Total GP, CH 4 and VFA were higher (P ≤ 0.008) in goat inoculum than cows across substrates. The half-time for asymptotic GP was lower (P < 0.0001) in phase 1 and higher (P < 0.012) in phase 2, and the maximum rate of GP was higher (P < 0.0001) in phase 1 and phase 3 (P < 0.0001) in goats compared to cows. Methane production and as a percentage of total GP was higher (P < 0.0001) and the half-time tended (P = 0.059) to be at a later time for goats compared to cows. Goat inoculum showed higher fermentative activity with a concomitant higher CH 4 production compared to cows. This difference highlights the ability of goats to better utilise browse species and other roughage types. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Optimization of enhanced coal-bed methane recovery using numerical simulation

    NASA Astrophysics Data System (ADS)

    Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.

    2015-02-01

    Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.

  8. Effectiveness of selective catalytic reduction systems on reducing gaseous emissions from an engine using diesel and biodiesel blends.

    PubMed

    Borillo, Guilherme C; Tadano, Yara S; Godoi, Ana F L; Santana, Simone S M; Weronka, Fernando M; Penteado Neto, Renato A; Rempel, Dennis; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Potgieter, Johannes H; Godoi, Ricardo H M

    2015-03-03

    The aim of this investigation was to quantify organic and inorganic gas emissions from a four-cylinder diesel engine equipped with a urea selective catalytic reduction (SCR) system. Using a bench dynamometer, the emissions from the following mixtures were evaluated using a Fourier transform infrared (FTIR) spectrometer: low-sulfur diesel (LSD), ultralow-sulfur diesel (ULSD), and a blend of 20% soybean biodiesel and 80% ULSD (B20). For all studied fuels, the use of the SCR system yielded statistically significant (p < 0.05) lower NOx emissions. In the case of the LSD and ULSD fuels, the SCR system also significantly reduced emissions of compounds with high photochemical ozone creation potential, such as formaldehyde. However, for all tested fuels, the SCR system produced significantly (p < 0.05) higher emissions of N2O. In the case of LSD, the NH3 emissions were elevated, and in the case of ULSD and B20 fuels, the non-methane hydrocarbon (NMHC) and total hydrocarbon of diesel (HCD) emissions were significantly higher.

  9. Drinking water treatment sludge as an effective additive for biogas production from food waste; kinetic evaluation and biomethane potential test.

    PubMed

    Ebrahimi-Nik, Mohammadali; Heidari, Ava; Ramezani Azghandi, Shamim; Asadi Mohammadi, Fatemeh; Younesi, Habibollah

    2018-07-01

    The effect of drinking water treatment sludge (DWTS) as a mixture additive, on biogas and methane production from food waste was studied. Mesophilic anaerobic digestion of food waste with 5 concentrations of DWTS (0, 2, 6, 12, and 18 ppm) was carried out. It was found that DWTS can significantly enhance biogas and methane yield. The highest biogas (671 Nml/g VS) as well as methane yield (522 Nml/g VS) was observed when 6 mg/kg DWTS was added. This is equal to 65 and 58 percent increase in comparison with the control digester. The calculated lag time for methane was found to be in between 3.3 and 4.7 days. The DWTS also reduced the lag phase and retention time. The biogas experimental data was fitted with the modified Gompertz and the first-order kinetic models with R 2 higher than 0.994 and 0.949, respectively. The ratio of the experimental biogas production to the theoretical biogas production (ɛ) for control sample was 0.53 while for other samples containing additive were higher than 0.78. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion.

    PubMed

    Neumann, Patricio; González, Zenón; Vidal, Gladys

    2017-06-01

    The influence of sequential ultrasound and low-temperature (55°C) thermal pretreatment on sewage sludge solubilization, enzyme activity and anaerobic digestion was assessed. The pretreatment led to significant increases of 427-1030% and 230-674% in the soluble concentrations of carbohydrates and proteins, respectively, and 1.6-4.3 times higher enzymatic activities in the soluble phase of the sludge. Optimal conditions for chemical oxygen demand solubilization were determined at 59.3kg/L total solids (TS) concentration, 30,500kJ/kg TS specific energy and 13h thermal treatment time using response surface methodology. The methane yield after pretreatment increased up to 50% compared with the raw sewage sludge, whereas the maximum methane production rate was 1.3-1.8 times higher. An energy assessment showed that the increased methane yield compensated for energy consumption only under conditions where 500kJ/kg TS specific energy was used for ultrasound, with up to 24% higher electricity recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium.

    PubMed

    Carrillo-Reyes, Julian; Buitrón, Germán

    2016-12-01

    A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of liquid hot water pre-treatment on sugarcane press mud methane yield.

    PubMed

    López González, Lisbet Mailin; Pereda Reyes, Ileana; Dewulf, Jo; Budde, Jörn; Heiermann, Monika; Vervaeren, Han

    2014-10-01

    Sugarcane press mud was pretreated by liquid hot water (LHW) at different temperatures (140-210 °C) and pre-treatment times (5-20 min) in order to assess the effects on the chemical oxygen demand (COD) solubilisation, inhibitors formation and methane yield. The experimental results showed that a high degree of biomass solubilisation was possible using LHW. Higher methane yields were obtained at lower severities (log(Ro) = 2.17-2.77) with (i) mild temperatures (140-150 °C) and long contact times (12.5 min, 20 min) or (ii) mild temperatures (175 °C) with short contact time (2 min). The highest increase in methane yield (up to 63%) compared to the untreated press mud was found at 150 °C for 20 min. At temperatures of 200 °C and 210 °C, low methane efficiency was attributed to the possible formation of refractory compounds through the Maillard reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production.

    PubMed

    Kim, Jaai; Kim, Hakchan; Baek, Gahyun; Lee, Changsoo

    2017-02-01

    Proper management of spent coffee grounds has become a challenging problem as the production of this waste residue has increased rapidly worldwide. This study investigated the feasibility of the anaerobic co-digestion of spent coffee ground with various organic wastes, i.e., food waste, Ulva, waste activated sludge, and whey, for biomethanation. The effect of co-digestion was evaluated for each tested co-substrate in batch biochemical methane potential tests by varying the substrate mixing ratio. Co-digestion with waste activated sludge had an apparent negative effect on both the yield and production rate of methane. Meanwhile, the other co-substrates enhanced the reaction rate while maintaining methane production at a comparable or higher level to that of the mono-digestion of spent coffee ground. The reaction rate increased with the proportion of co-substrates without a significant loss in methanation potential. These results suggest the potential to reduce the reaction time and thus the reactor capacity without compromising methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Lawson, C. R.; Jenkins, D. M.; Ridley, C. J. T.; Haynes, D. J.

    2017-12-01

    The effect of ionizing radiation on solid methane has previously been an area of interest in the astrophysics community. In the late 1980s this interest was further boosted by the possibility of using solid methane as a moderating medium in spallation neutron sources. Here we present test results of solid methane moderators commissioned at the ISIS neutron source, and compare them with a model based on the theory of thermal explosion. Good agreement between the moderator test data and our model suggests that the process of radiolysis defect recombination happens at two different temperature ranges: the ;lower temperature; recombination process occurs at around 20 K, with the ;higher temperature; process taking place between 50 and 60 K. We discuss consequences of this mechanism for the designing and operation of solid methane moderators used in advanced neutron sources. We also discuss the possible role of radiolysis defect recombination processes in cryo-volcanism on comets, and suggest an application based on this phenomenon.

  15. Cation-exchanged zeolites for the selective oxidation of methane to methanol

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira; ...

    2017-10-19

    Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less

  16. Cation-exchanged zeolites for the selective oxidation of methane to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira

    Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less

  17. Microbial mats in the Black Sea that anaerobically oxidise methane

    NASA Astrophysics Data System (ADS)

    Nauhaus, K.; Knittel, K.; Krüger, M.; Boetius, A.; Michaelis, W.; Widdel, F.

    2003-04-01

    Reef-forming microbial mats were recovered from methane seeps in anoxic waters of the northwestern Black Sea (BS) shelf. The microbial mats consist mainly of archaea (ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). Laboratory incubations with homogenized subsamples of the mats revealed their ability for the anaerobic oxidation of methane (AOM). The phylogentic relationship of the sulfate reducing partner is the same as in the AOM consortia studied in sediment samples from a methane hydrate area (Hydrate Ridge (HR), Oregon, USA (1,2)). The archaeal partner however belongs to a different cluster than in the HR samples (ANME-2). Methane oxidation is coupled to sulfate reduction in a 1:1 stoichiometry. Elevated methane partial pressures (0.1 to 1.1 MPa) increased the sulfate reduction rates in the Black Sea samples only two-fold in contrast to 5-fold in HR samples. The optimal temperature for the BS samples is between 10 and 25^oC. In both samples AOM was not taking place if typical inhibitors for sulfate-reduction or methanogenesis were added, thus indicating a syntrophic relationship between the partner organisms. The intermediate that is exchanged between the methane oxidizing archaea and the sulfate-reducing bacterium is still unknown. Additions of the possible intermediates (Acetate, Formate, Hydrogen) did not result in higher sulfate reduction rates in the absence of methane. (1) Boetius, A. et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 407: 623--626 (2) Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4 (5): 296--305

  18. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.

    PubMed

    Loulergue, Laetitia; Schilt, Adrian; Spahni, Renato; Masson-Delmotte, Valérie; Blunier, Thomas; Lemieux, Bénédicte; Barnola, Jean-Marc; Raynaud, Dominique; Stocker, Thomas F; Chappellaz, Jérôme

    2008-05-15

    Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.

  19. Hydrologic controls of methane dynamics in a karst subterranean estuary

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Ganju, N. K.; Lowell, N. S.; Roth, E.; Lapham, L.

    2017-12-01

    Subterranean estuaries extend into carbonate landmasses where abundant cave networks influence the hydrology and biogeochemistry of the coastal aquifer environment. Enhanced density stratification between meteoric freshwater and saline groundwater facilitates the development of sharp salinity and redox gradients associated with the production and consumption of methane, a potent greenhouse gas. These processes impact methane-dynamics in the coastal zone and provide nutritive resources for the cave-adapted estuarine food web in this oligotrophic habitat. These observations were based on sampling in discrete time periods, leaving questions about the effects of temporally dynamic hydrology on the production, consumption and transport of methane. In this study, we evaluated hydro-biogeochemical controls of methane dynamics in a subterranean estuary to quantify the magnitude of the methane sink in the coastal karst platform of the Yucatan Peninsula, Mexico. We deployed osmotically-driven sampling devices (OsmoSamplers) in flooded cave passages to document temporal variability in methane concentrations and δ13C values, as well as major ions in the groundwater. Water level, current velocities, water and air temperatures, and precipitation were also monitored. Using these records, we built an integrated model to provide a first-order calculation on methane consumption rates for the coastal aquifer. The year-long water chemistry record reveals higher source concentrations of methane in the dry season (5849 ± 1198 nM) than in the wet season (4265 ± 778 nM) with depleted δ13C values (-65.4 ± 2.1 ‰) throughout the year. Our analyses suggest the methane sink potential and ecosystem function are significantly affected by precipitation induced hydrological changes within the tropical subterranean karst estuary.

  20. Fine-Scale Community Structure Analysis of ANME in Nyegga Sediments with High and Low Methane Flux

    PubMed Central

    Roalkvam, Irene; Dahle, Håkon; Chen, Yifeng; Jørgensen, Steffen Leth; Haflidason, Haflidi; Steen, Ida Helene

    2012-01-01

    To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance, and diversity of anaerobic methanotrophs (ANME), we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. These data were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A down core stratification and high relative abundance of ANME were observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low methane horizons to ANME-1 dominance in horizons near the sulfate-methane transition zone. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through operational taxonomical units (OTU) clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free-living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The observation of specific ANME-2a/b OTUs at each location could reflect that organisms within this clade are adapted to different geochemical settings, perhaps due to differences in methane affinity. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments. PMID:22715336

  1. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.

    PubMed

    Guyader, J; Eugène, M; Nozière, P; Morgavi, D P; Doreau, M; Martin, C

    2014-11-01

    A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance-covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=-30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

  2. Correlating Well-Pad Characteristics and Methane Emissions in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Lu, J.; Caulton, D.; Lane, H.; Stanton, L. G.; Zondlo, M. A.

    2015-12-01

    Methane leaks from petrochemical activity are significant contributors to the total amount of methane in the atmosphere. While natural gas has been praised as a cleaner source of fuel than coal, methane's potent global-warming potential could pose barriers in reducing greenhouse gas footprints if significant leaks are observed from the natural gas supply chain. A field campaign spanning two and a half weeks was undertaken in July 2015 to quantify the levels of methane emitted from sites of petrochemical activity in the Marcellus Shale. Additional campaigns are expected in late 2015 and early 2016. Measurements of methane and carbon dioxide were taken downwind of known well sites using open-path laser spectroscopy mounted to the roof of the mobile platform. Approximately 250 well sites were visited, covering over 2000 miles on the road. The majority of the well pads were in southwestern Pennsylvania, but the compiled database includes wells in West Virginia and northeastern Pennsylvania. The data set consists of a variety of operators and equipment types spread over several counties. Correlating well pad characteristics with emission levels may provide useful insight into predicting which well pads are likely to be large emitters. Using the inverse Gaussian plume model and meteorology data from the NOAA Ready archive, the emissions from each transect were calculated. Preliminary results were examined with respect to two easily identifiable variables: the number of wells at each well pad and the operator. Higher emissions were not correlated with increased number of wells, despite the fact that additional infrastructure may provide additional leak pathways. In fact, the emission levels for pads with only a singular well, which accounted for nearly 70% of the wells analyzed thus far, had a range of 0 to 9 grams of methane per second. Sites with two or more wells tended to be concentrated on the lower end of the distribution. Higher emissions were also distributed roughtly equally among the 10 operators in the data subset. Continued analyses of methane emission rates will provide further insight into Marcellus Shale.

  3. Using Methane Absorption to Probe Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  4. A new tracer experiment to estimate the methane emissions from a dairy cow shed using sulfur hexafluoride (SF6)

    NASA Astrophysics Data System (ADS)

    Marik, Thomas; Levin, Ingeborg

    1996-09-01

    Methane emission from livestock and agricultural wastes contribute globally more than 30% to the anthropogenic atmospheric methane source. Estimates of this number have been derived from respiration chamber experiments. We determined methane emission rates from a tracer experiment in a modern cow shed hosting 43 dairy cows in their accustomed environment. During a 24-hour period the concentrations of CH4, CO2, and SF6, a trace gas which has been released at a constant rate into the stable air, have been measured. The ratio between SF6 release rate and measured SF6 concentration was then used to estimate the ventilation rate of the stable air during the course of the experiment. The respective ratio between CH4 or CO2 and SF6 concentration together with the known SF6 release rate allows us to calculate the CH4 (and CO2) emissions in the stable. From our experiment we derive a total daily mean CH4 emission of 441 LSTP per cow (9 cows nonlactating), which is about 15% higher than previous estimates for German cows with comparable milk production obtained during respiration chamber experiments. The higher emission in our stable experiment is attributed to the contribution of CH4 release from about 50 m3 of liquid manure present in the cow shed in underground channels. Also, considering measurements we made directly on a liquid manure tank, we obtained an estimate of the total CH4 production from manure: The normalized contribution of methane from manure amounts to 12-30% of the direct methane release of a dairy cow during rumination. The total CH4 release per dairy cow, including manure, is 521-530 LSTP CH4 per day.

  5. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  6. Electronic Structure of the [Cu 3 (μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogiatzis, Konstantinos D.; Li, Guanna; Hensen, Emiel J. M.

    Identifying Cu-exchanged zeolites able to activate C–H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu 3(μ-O) 3] 2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu 3(μ-O) 3] 2+ site using multiconfigurational wave-function-based methods and densitymore » functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C–H activation of methane by [Cu 3(μ-O) 3] 2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.« less

  7. Electronic Structure of the [Cu 3 (μ-O) 3] 2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

    DOE PAGES

    Vogiatzis, Konstantinos D.; Li, Guanna; Hensen, Emiel J. M.; ...

    2017-09-28

    Identifying Cu-exchanged zeolites able to activate C–H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu 3(μ-O) 3] 2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, namely, the oxidation state of Cu ions and the reactive character of the oxygen centers, are not yet fully understood. In this study, we performed a detailed analysis of the electronic structure of the [Cu 3(μ-O) 3] 2+ site using multiconfigurational wave-function-based methods and densitymore » functional theory. The calculations reveal that all Cu sites in the cluster are predominantly present in the Cu(II) formal oxidation state with a minor contribution from Cu(III), whereas two out of three oxygen anions possess a radical character. These electronic properties, along with the high accessibility of the out-of-plane oxygen center, make this oxygen the preferred site for the homolytic C–H activation of methane by [Cu 3(μ-O) 3] 2+. These new insights aid in the construction of a theoretical framework for the design of novel catalysts for oxyfunctionalization of natural gas and suggest further spectroscopic examination.« less

  8. Physical and chemical characterization of Devonian gas shale. Quarterly status report, October 1-December 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinski, R.E.; Nance, S.W.

    On shale samples from the WV-6 (Monongalia County, West Virginia) well, mean total gas yield was 80.4 ft/sup 3//ton. Mean hydrocarbon gas yield was 5.7 ft/sup 3//ton, 7% of total yield. Methane was the major hydrocarbon component and carbon dioxide the major nonhydrocarbon component. Oil yield was negligible. Clay minerals and organic matter were the dominant phases of the shale. Illite averages 76% of the total clay mineral content. This is detrital illite. Permeation of methane, parallel to the bedding direction for select samples from WV-5 (Mason County, West Virginia) well ranges from 10/sup -4/ to 10/sup -12/ darcys. Themore » permeability of these shales is affected by orgaic carbon content, density, particle orientation, depositional facies, etc. Preliminary studies of Devonian shale methane sorption rates suggest that these rates may be affected by shale porosity, as well as absorption and adsorption processes. An experimental system was designed to effectively simulate sorption of methane at natural reservoir conditions. The bulk density and color of select shales from Illinois, Appalachian and Michigan Basins suggest a general trend of decreasing density with increasing organic content. Black and grayish black shales have organic contents which normally exceed 1.0 wt %. Medium dark gray and gray shales generally have organic contents less than 1.0 wt %.« less

  9. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  10. Miniaturized Near Infrared Heterodyne Spectroradiometer for Monitoring CO2, CH4 and CO in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimchuk, A., Sr.; Rodin, A.; Nadezhdinskiy, A.; Churbanov, D.; Spiridonov, M.

    2014-12-01

    The paper describes the concept of a compact, lightweight heterodyne NIR spectro-radiometer suitable for atmospheric sounding with solar occultations, and the first measurement of CO2 and CH4 absorption near 1.60mm and 1.65 mm with spectral resolution l/dl ~ 5*107. Highly stabilized DFB laser was used as local oscillator, while single model quartz fiber Y-coupler served as a diplexer. Radiation mixed in the single mode fiber was detected by quadratic detector using p-i-n diode within the bandpass of ~10 MHz. Wavelength coverage of spectral measurement was provided by sweeping local oscillator frequency in the range 1,1 см-1. With the exposure time of 10 min, the absorption spectrum of the atmosphere over Moscow has been recorded with S/N ~ 300. We retrieved methane vertical profile using Tikhonov method of smooth functional, which takes into account a priori information about first guess profile. The reference to model methane profile means that the regularization procedure always selects a priorivalues unless the measurements contradict this assumption.The retrieved methane profile demonstrates higher abundances in the lower scale height compared to the assumed model profile, well expected in the megalopolis center. The retrievals sensitivity is limited by 10 ppb, with the exception of the lower part of the profile where the tendency to lower values is revealed. Thus the methane abundance variations may be evaluated with relative accuracy better than 1%, which fits the requirements of greenhouse gas monitoring. The retrievals sensitivity of CO2 is about 1-2 ppm. CO2 observations was also used to estimate stratoshere wind by doppler shift of absorption line. Due to higher spectral resolution, lower sensitivity to atmospheric temperatures and other external factors, compared to heterodyne measurements in the thermal IR spectral range, the described technique provides accuracy comparable with much more complicated high resolution measurements now used in TCCON stations. Relative simplicity of the proposed scheme opens a perspective to employ it for high resolution spectroscopy in various applications. In particular, it may allow solar occultation observations of CO2, CО, CH4, H2S, C2H4 and other gases from spacecraft, airborne or ground-based platforms.

  11. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

    PubMed Central

    Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther

    2015-01-01

    The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163

  12. [Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

    PubMed

    Belova, S É; Oshkin, I Iu; Glagolev, M V; Lapshina, E D; Maksiutov, Sh Sh; Dedysh, S N

    2013-01-01

    Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.

  13. Self-Referenced Fiber Optic System For Remote Methane Detection

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1989-10-01

    The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.

  14. Occurrence of methane in groundwater of south-central New York State, 2012-systematic evaluation of a glaciated region by hydrogeologic setting

    USGS Publications Warehouse

    Heisig, Paul M.; Scott, Tia-Marie

    2013-01-01

    A survey of methane in groundwater was undertaken to document methane occurrence on the basis hydrogeologic setting within a glaciated 1,810-square-mile area of south-central New York along the Pennsylvania border. Sixty-six wells were sampled during the summer of 2012. All wells were at least 1 mile from any known gas well (active, exploratory, or abandoned). Results indicate strong positive and negative associations between hydrogeologic settings and methane occurrence. The hydrogeologic setting classes are based on topographic position (valley and upland), confinement or non-confinement of groundwater by glacial deposits, well completion in fractured bedrock or sand and gravel, and hydrogeologic subcategories. Only domestic wells and similar purposed supply wells with well-construction and log information were selected for classification. Field water-quality characteristics (pH, specific conductance, dissolved oxygen, and temperature) were measured at each well, and samples were collected and analyzed for dissolved gases, including methane and short-chain hydrocarbons. Carbon and hydrogen isotopic ratios of methane were measured in 21 samples that had at least 0.3 milligram per liter (mg/L) of methane. Results of sampling indicate that occurrence of methane in groundwater of the region is common—greater than or equal to 0.001 mg/L in 78 percent of the groundwater samples. Concentrations of methane ranged over five orders of magnitude. Methane concentrations at which monitoring or mitigation are indicated (greater than or equal to 10 mg/L) were measured in 15 percent of the samples. Methane concentrations greater than 0.1 mg/L were associated with specific hydrogeologic settings. Wells completed in bedrock within valleys and under confined groundwater conditions were most closely associated with the highest methane concentrations. Fifty-seven percent of valley wells had greater than or equal to 0.1 mg/L of methane, whereas only 10 percent of upland wells equaled or exceeded that concentration. Isotopic signatures differed between these groups as well. Methane in valley wells was predominantly thermogenic in origin, likely as a result of close vertical proximity to underlying methane-bearing saline groundwater and brine and possibly as a result of enhanced bedrock fracture permeability beneath valleys that provides an avenue for upward gas migration. Isotopic signatures of methane from four upland well samples indicated a microbial origin (carbon-dioxide reduction) with one sample possibly altered by microbial methane oxidation. Water samples from wells in a valley setting that indicate a mix of thermogenic and microbial methane reflect the close proximity of regional groundwater flow and underlying saline water and brine in valley areas. The microbial methane is likely produced by bacteria that utilize carbon dioxide or formational organic matter in highly reducing environments within the subregional groundwater flow system. This characterization of groundwater methane shows the importance of subsurface information (hydrogeology, well construction) in understanding methane occurrence and provides an initial conceptual framework that can be utilized in investigation of stray gas in south-central New York.

  15. Electrical resistivity of fluid methane multiply shock compressed to 147 GPa

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Gao; Liu, Fu-Sheng; Liu, Qi-Jun; Wang, Wen-Peng

    2018-01-01

    Shock wave experiments were carried out to measure the electrical resistivity of fluid methane. The pressure range of 89-147 GPa and the temperature range from 1800 to 2600 K were achieved with a two-stage light-gas gun. We obtained a minimum electrical resistivity value of 4.5 × 10-2 Ω cm at pressure and temperature of 147 GPa and 2600 K, which is two orders of magnitude higher than that of hydrogen under similar conditions. The data are interpreted in terms of a continuous transition from insulator to semiconductor state. One possibility reason is chemical decomposition of methane in the shock compression process. Along density and temperature increase with Hugoniot pressure, dissociation of fluid methane increases continuously to form a H2-rich fluid.

  16. Background levels of methane in Mars’ atmosphere show strong seasonal variations

    NASA Astrophysics Data System (ADS)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Moores, John E.; Flesch, Gregory J.; Malespin, Charles; McKay, Christopher P.; Martinez, German; Smith, Christina L.; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H.; Trainer, Melissa G.; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J.; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V.; House, Christopher H.; Pavlov, Alexander; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Pearson, John C.; Keymeulen, Didier; Christensen, Lance E.; Schwenzer, Susanne P.; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C. R.; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D.; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M.; Lemmon, Mark; Crisp, Joy; Sander, Stanley P.; Zurek, Richard W.; Vasavada, Ashwin R.

    2018-06-01

    Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

  17. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is a waste of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduce the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (i) recover hydrogen from the excess methane produced by the S/E process, (ii) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (iii) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. The goals of a research program on recovery of hydrogen from methane are (in descending priority order): 1) Study the kinetics of pyrolysis to arrive at a pyrolysis reactor design that produces high yields in a confined volume at the lowest possible operating temperature; 2) Study the kinetics of carbon burnoff to determine whether high yields can be obtained in a confined volume at acceptable operating temperatures; and 3) Investigate catalytic techniques for depositing carbon as a fine soot which can be physically separated from the reactor. In the JPL program, we have made significant measurements in regard to goal 1, cursory measurements in regard to goal 2, and would plan to pursue goal 3 if additional resources are secured.

  19. Methane anomalies in the oxygenated upper waters of the central Baltic Sea associated with zooplankton abundance

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Wäge, Janine; Morholz, Volker; Rehder, Gregor; Wasmund, Norbert; Gräwe, Ulf; Labrenz, Matthias; Loick-Wilde, Natalie

    2017-04-01

    Apart from the sediment as the dominant source of methane in the aquatic realm the process of methane production in well-oxygenated waters has received considerable attention during the last years. The paradox of methane accumulation in these relatively shallow waters, commonly termed as "oceanic methane paradox", has been sporadically observed in lakes as well as in marine ecosystems like the Gulf of Mexico, the Black Sea, the Baltic Sea, Arctic waters or above the continental shelf off the coast of Spain and Africa. Even if this phenomenon has been described in the literature over the last decades, the potential sources of shallow methane accumulation are still controversially discussed. We report on methane enrichments that were observed during summer in the upper water column of the Gotland Basin, central Baltic Sea. In the eastern part of the basin methane concentrations just below the thermocline (in about 30 m water depth) varied between 15 and 77 nM, in contrast to the western part of the basin where no methane enrichments could be detected. Stable carbon isotope ratios of methane (delta 13C-CH4 of -67.6‰) clearly indicated its in situ biogenic origin. This is supported by clonal sequences from the depth with high methane concentrations in the eastern Gotland Basin, which cluster with the clade Methanomicrobiacea, a family of methanogenic Archaea. Hydroacoustic observation in combination with plankton net tows displayed a seston enrichment (size >100 micro meter) in a layer between 30-50 m depth. The dominant species in the phytoplankton, Dinophysis norvegica, was concentrated at 10-20 m depth, and showed higher concentrations in the eastern Gotland Basin in comparison with the western part of the basin. In contrast to the western Gotland Basin, the zooplankton community in the eastern part was dominated by the copepod species Temora longicornis. Laboratory incubations of a T. longicornis dominated seston fraction (>100 micro meter) sampled in the depth of the subthermocline methane anomaly showed a clear correlation between seston concentration (i.e. abundance of copepods) and methane production rates.

  20. Rainfall, Plant Communities and Methane Fluxes in the Ka`au Crater Wetland, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Grand, M.; Gaidos, E.

    2003-12-01

    Tropical wetlands constitute a major source of methane, an atmospheric greenhouse gas. Net methane emission in freshwater settings is the result of organic matter decomposition under anaerobic conditions modulated by aerobic methane oxidation and is thus also an indicator of wetland ecosystem processes. This study is monitoring the methane flux from the Ka`au crater wetland on the island of Oahu (Hawaii) and correlating it with environmental parameters such as precipitation and sunlight. We are obtaining precipitation, Photosynthetic Active Radiation (PAR), and water table level data with data loggers and are correlating these data with static chamber methane flux measurements and measurements of soil methane production potential. Additionally, our research is studying the effects of changes in vegetation type, i.e., of the invasive strawberry guava tree (Psidium Cattleianum) on the wetland methane emissions. Changes in soil chemistry and in the transport of gases by roots that accompany such vegetation change are a potential driver of methane flux modifications that have not been previously examined. Strawberry guava forms dense mats of surface roots that may change soil gas exchange and prolific fruiting may raise the soil organic content. We collected soil samples along a 30 meter transect that extends through two vegetation patterns; the strawberry guava canopy and the sedge meadow (Cladium Leptostachyum). Samples were incubated for 24 hours to estimate their methane generation potential. Our preliminary results show that methane generation potential is greater under the strawberry guava canopy. However, 2 of the 15 samples collected in the sedge meadow section of the transect did not match this pattern. Soil organic carbon content is slightly higher in the strawberry guava than in the sedge. We recorded a 90% decrease in methane generation potential in sedge meadow soils during a dry period relative to a wet period 2 months earlier. We propose that this change reflects a difference in the relative activity of microorganisms in the oxic and anoxic parts of the soil column. We will use environmental molecular technique to compare the microbial community component responsible for the production of methane in the different wetland soils.

  1. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations. [1] Turtle et al. 2009, GRL; 2011, Science; [2] Soderblom et al. 2014, DPS; [3] Barnes et al. 2013 Planet. Sci

  2. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay.

    PubMed

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-06-08

    Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production.

  3. Baseline Geochemistry of Natural Occurring Methane and Saline Groundwater in an Area of Unconventional Shale Gas Development Through Time

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Darrah, T.; Warner, N. R.; Whyte, C. J.; Moore, M. T.; Millot, R.; Kloppmann, W.; Jackson, R. B.; Vengosh, A.

    2017-12-01

    Naturally occurring methane is nearly ubiquitous in most sedimentary basins and delineating the effects of anthropogenic contamination sources from geogenic sources is a major challenge for evaluating the impact of unconventional shale gas development on water quality. This study employs a broadly integrated study of various geochemical techniques to investigate the geochemical variations of groundwater and surface water before, during, and after hydraulic fracturing.This approache combines inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87Sr/86Sr), boron (δ11B), lithium (δ7Li), and carbon (δ13C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ13C-CH4, δ13C-C2H6), tritium (3H), and noble gas elemental and isotopic composition (He, Ne, Ar) to apportion natural and anthropogenic sources of natural gas and salt contaminants both before and after drilling. Methane above 1 ccSTP/L in groundwater samples awas strongly associated with elevated salinity (chloride >50 mg/L).The geochemical and isotopic analysis indicate saline groundwater originated via naturally occurring processes, presumably from the migration of deeper methane-rich brines that have interacted extensively with coal lithologies. The chemistry and gas compostion of both saline and fresh groundwater wells did not change following the installation of nearby shale-gas wells.The results of this study emphasize the value of baseline characterization of water quality in areas of fossil fuel exploration. Overall this study presents a comprehensive geochemical framework that can be used as a template for assessing the sources of elevated hydrocarbons and salts to water resources in areas potentially impacted by oil and gas development.

  4. Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland

    PubMed Central

    Bhullar, Gurbir S.; Edwards, Peter J.; Olde Venterink, Harry

    2014-01-01

    Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups – based on life form or productivity of the habitat – upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal. Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions. PMID:24586894

  5. Methane production, oxidation and emission in United Kingdom peatlands and the effect of anions from acid rain

    NASA Astrophysics Data System (ADS)

    Watson, Andrea

    The production, oxidation and emission of methane in UK peatlands was investigated. The main field study site was Ellergower Moss, Dumfriesshire where the peat was characterised by hollows (water-filled depressions) and hummocks (raised vegetative areas). The pathways of carbon flow in peat under hummocks and hollows were determined and compared on a seasonal basis. Methane emissions were significantly greater from hollows than hummocks (0.88 mols and 0.07 mols CH4 m-2 y-1 respectively). Methane emission rates varied seasonally e.g. for hollows were 0.04 mmols CH4 m-2 d-1 for January and 2.3 mmols CH4 m-2 d-1 for June. Methane emissions were modulated by biological methane oxidation by 0% of methane produced in the winter months, increasing during spring until 97% of methane produced was oxidised in the summer months. Both methane oxidation and methanogenesis were strongly temperature dependant with Q10 values of 2.2 and 16, respectively. Rates of methane oxidation potential (MOP) were greatest between 4-8 cm depths below the level of the water table, and were located above the most active zone of methanogenesis (8-16 cm depths below the water table levels). This enabled vertically diffusing methane to be utilised by methanotrophic bacteria, providing a very efficient filter for methane. Methanogenesis was limited by hydrogen availability in the peat, but not by acetate, suggesting that methane was produced by hydrogenophilic methanogenic bacteria (MB), rather than acetate utilising MB. Acid rain pollutants were found to significantly affect carbon flow, with sulphate deposition causing a seasonal inhibition in methanogenesis. Carbon flow predominated through sulphate reduction in the winter and spring months (sulphate reduction to methane production ratio was 1008 and 189, for hummocks and hollows respectively) when sulphate was freely available and when temperatures were low. During the summer when temperatures increased and sulphate became limited carbon flow through methanogenesis predominated (sulphate reduction to methane production ratio 0.39 and 0.07, for hummocks and hollows respectively). The examination of two other peatlands-Great Dun Fell and Caithness which received higher and lower sulphate loadings than Ellergower respectively, did not show a consistent effect of sulphate inhibition on methanogenesis. The methane oxidation kinetics were used in a mathematical model to examine the effect of plant roots on increasing the vertical transport rate of methane out, and oxygen into the peat, by gas phase transport through the roots. (Abstract shortened by UMI.)

  6. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, L.; Paudel, R.; Hess, P. G. M.

    Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less

  8. Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations

    DOE PAGES

    Meng, L.; Paudel, R.; Hess, P. G. M.; ...

    2015-07-03

    Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less

  9. Ground truthing for methane hotspots at Railroad Valley, NV - application to Mars

    NASA Astrophysics Data System (ADS)

    Detweiler, A. M.; Kelley, C. A.; Bebout, B.; McKay, C. P.; DeMarines, J.; Yates, E. L.; Iraci, L. T.

    2011-12-01

    During the 2010 Greenhouse gas Observing SATellite (GOSAT) calibration and validation campaign at Railroad Valley (RRV) playa, NV, unexpected methane and carbon dioxide fluctuations were observed at the dry lakebed. Possible sources included the presence of natural gas (thermogenic methane) from oil deposits in the surrounding playa, and/or methane production from microbial activity (biogenic) in the subsurface of the playa. In the summer of 2011, measurements were undertaken to identify potential methane sources at RRV. The biogenicity of the methane was determined based on δ13C values and methane/ethane ratios. Soil gas samples and sediments were collected at different sites in the playa and surrounding areas. The soils of the playa consist of a surface crust layer (upper ~ 10 cm) grading to a dense clay below about 25 cm. Soil gas from the playa, sampled at about 20 and 80 cm depths, reflected atmospheric methane concentrations, ranging from 2 to 2.4 ppm, suggesting that no methane was produced within the playa. Natural springs on the northeast and western border of the playa, detected as methane hotspots from a flyover by the Sensor Integrated Environmental Remote Research Aircraft (SIERRA), were also sampled. Bubbles in these springs had methane concentrations that ranged from 69 to 84% by volume. In addition, ethane was detected at very low concentrations, giving methane/ethane ratios in excess of 100,000, indicating biogenic methane in the springs. Soils and sediments collected at the playa and spring sites were incubated in vials over a period of ~23 days. Methane production was observed in the spring sites (avg. 228.6 ± 49.1 nmol/g/d at Kate Springs), but was not evident for the playa sites. The incubation data, therefore, corroborated in situ methane concentration measurements. Particulate organic carbon (POC) was low for all sites samples (0.05-0.38%), with the exception of Kate Springs, which had a much higher POC concentration of 3.4 ± 0.7%. Temperature and relative humidity sensors were placed in the playa at 5, 20, and 30 cm below the surface. Since the relative humidity neared 100% (down to 20 cm below the surface), high enough to support microbial life, the observed absence of methane production in the playa itself is likely due to the low POC content, compared to other methane-producing environments. The spatial distribution of methane in combination with the spectral reflectance at the RRV dry lakebed makes it a good Mars analog. The ground truthing and satellite calibration work accomplished at RRV is a good exercise in preparation to identifying the origins of methane observed in the atmosphere of Mars during the upcoming 2012 Mars Science Laboratory and 2016 ExoMars Trace Gas Orbiter missions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  11. Formation of Copper Catalysts for CO 2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy

    DOE PAGES

    Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...

    2016-04-04

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less

  12. Effect of potassium promoter on cobalt nano-catalysts for fischer-tropsch reaction

    NASA Astrophysics Data System (ADS)

    Ali, Sardar; Mohd Zabidi, Noor Asmawati; Subbarao, Duvvuri

    2012-09-01

    In the present work effect of potassium on cobalt nano-catalysts for Fischer-Tropsch reaction has been presented. The catalysts were prepared using a wet impregnation method and promoted with potassium. Samples were characterized by nitrogen adsorption, H2-TPR, and TEM. The Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor 220 δC, 1 atm, H2/CO = 2 and a velocity (SV) =12 L/g.h. for 5 h. Addition of potassium into Co/CNTs decreased the average size of cobalt nanoparticles and the catalyst reducibility. Potassium-promoted Co catalyst resulted in appreciable increase in the selectivity of C5+ hydrocarbons and suppressed methane formation. The 0.06%KCo/CNTs catalyst enhanced the C5+ hydrocarbons selectivity by a factor of 23.5% and reduced the methane selectivity by a factor of 39.6%

  13. Methane Leak Rates from Natural Gas Wells in Norther California

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Yoon, S.; Chen, Y.; Falk, M.; Kuwayama, T.; Croes, B. E.; Herner, J.; Vijayan, A.

    2017-12-01

    Methane is a potent greenhouse gas (GHG) and is the second most prevalent GHG emitted in California from human activities. As part of a comprehensive effort to reduce GHG emissions and meet the statewide climate goals, California has proposed a Short Lived Climate Pollutant (SLCP) Strategy that includes a 40% reduction of methane emissions from 2013 levels by 2030, with goals to reduce oil and gas related emissions and capture methane emissions from dairy operations and organic waste. There is growing evidence in the recent scientific literature suggesting that methane emissions can come from every stage of the oil and gas supply chain. During oil and gas production operations, studies reported that a small number of oil and gas wells made up a large fraction of total methane emissions from the wells. In such a fat-tail distribution, the mean methane leak rate from wells is orders of magnitude larger than the median, which indicates the presence of super emitter sources. However, since the super emitters are often positioned as outliers in a fat-tail distribution and do not always behave consistently, measuring their leak rates is challenging, but critical to quantify their impacts and identify potential mitigation opportunities. This presentation will discuss of methane leak rates measured from natural gas wells in Northern California for different well operations: active, idle, and plugged. The leak rates demonstrated fat-tail distributions, and the mean leak rates for each well operation status were an order of magnitude higher than the median leak rates. It was also observed that roughly 20% of wells contributed more than 80% of methane emissions. Further data collection is needed with a larger number of samples to better understand the relationship between the leak rates and well operation status. Such measurements could help improve the estimate of methane emissions from natural gas wells and inform methane reduction policies and programs in California.

  14. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    PubMed

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  15. In search of thermogenic methane in groundwater in the Netherlands, with emphasis on the location of a historic gas well blowout

    NASA Astrophysics Data System (ADS)

    Schout, G.; Griffioen, J.; Hassanizadeh, S. M.; Hartog, N.

    2017-12-01

    Similar to the US, the Netherlands has a long history of oil & gas production, with around 2500 onshore hydrocarbon wells drilled since the late 1930s. While conventional reserves are diminishing, a governmental moratorium was put in place on shale gas exploration and production until 2023, in part due to concerns about its effects on groundwater quality. To investigate the industry's historic and potential future impact on groundwater quality in the country, a study was carried out to assess i) baseline methane concentrations and origin ii) the natural connectivity of deeper gas-bearing layers with the shallower groundwater systems. Through datamining, a dataset consisting of 12,200 groundwater analyses with methane concentrations was assembled. Furthermore, 25 additional samples were collected at targeted locations and analysed for dissolved gas molecular and isotopic composition. Methane concentrations are positively skewed with median, mean and maximum concentrations of 0.28, 2.17 and 120 mg/L, respectively. No correlation between methane concentrations and distance to hydrocarbon wells or faults is observed. In general, concentrations cannot be readily explained by factors such as the depth, geographic location, host formation and depositional environment. Thermogenic methane was first encountered at several hundred meters depth, below thick successions of marine Paleogene and Neogene clays that are present throughout the country and impede vertical flow. All methane encountered above these formations was found to be biogenic in origin, with one notable exception - a sample taken at the site of a catastrophic gas well blowout that occurred in 1965 near the village of Sleen. Combined, these findings suggest that thermogenic methane does not naturally occur in Dutch shallow groundwater and its presence can be used as an indicator of anthropogenic gas leakage. The unique Sleen blowout site was selected for a detailed investigation of the long-term effects of uncontrolled gas leakage on groundwater chemistry. Methane concentrations up to 45 mg/L were observed and the distribution pattern suggests on-going leakage, 50 years after the events. Results also show that anaerobic oxidation of methane plays a major role in controlling the spread of dissolved methane.

  16. Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Dai, G. H.; Yan, Q. J.; Wang, Y.; Liu, Q. S.

    1991-08-01

    Magnesium oxides intentionally doped with lithium (with a maximum Li content of 40 tool%) for use as catalysts for oxidative coupling of methane were characterized by means of positron annihilation. The positron lifetime spectra, which could be reasonably well interpreted within the framework of the well-known trapping model, depend on the amount of Li doping of the MgO suggesting that positrons are trapped at dispersed small Li 2CO 3 precipitates. Very similar dependencies on lithium doping of the C 2 selectivity and the positron trapping rate ϰ imply an intimate relationship between the concentration of [Li] 0-centers (also referred to as [Li +O -] centers) and the selective activity of Li/MgO during catalytic reactions.

  17. Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction.

    PubMed

    Li, Siwei; Xu, Yao; Chen, Yifu; Li, Weizhen; Lin, Lili; Li, Mengzhu; Deng, Yuchen; Wang, Xiaoping; Ge, Binghui; Yang, Ce; Yao, Siyu; Xie, Jinglin; Li, Yongwang; Liu, Xi; Ma, Ding

    2017-08-28

    A one-step ligand-free method based on an adsorption-precipitation process was developed to fabricate iridium/cerium oxide (Ir/CeO 2 ) nanocatalysts. Ir species demonstrated a strong metal-support interaction (SMSI) with the CeO 2 substrate. The chemical state of Ir could be finely tuned by altering the loading of the metal. In the carbon dioxide (CO 2 ) hydrogenation reaction it was shown that the chemical state of Ir species-induced by a SMSI-has a major impact on the reaction selectivity. Direct evidence is provided indicating that a single-site catalyst is not a prerequisite for inhibition of methanation and sole production of carbon monoxide (CO) in CO 2 hydrogenation. Instead, modulation of the chemical state of metal species by a strong metal-support interaction is more important for regulation of the observed selectivity (metallic Ir particles select for methane while partially oxidized Ir species select for CO production). The study provides insight into heterogeneous catalysts at nano, sub-nano, and atomic scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of CO and CO2 showed a higher CO and CO2 adsorption (for temperatures ranging from room temperature to 600°C) on BSCF compared to the SFC membrane. CO2 reforming reactions on BSCF and SFC dense membranes in a membrane reactor showed higher methane conversion and H2/CO ratio on BSCF than SFC in the presence of the Pt/CeZrO2 catalyst. This high conversion and H2/CO ratio could be ascribed to higher CO, CO2, and H2 adsorption on BSCF than SFC, resulting in higher steam and CO2 reforming on the BSCF. The Pt-Ni/CeZrO2 catalyst exhibits promising performance for hydrogen production. Platinum enhances the reducibility of Ni/Al2O 3 and Ni/CeZrO2 catalysts resulting in improved catalysts for H2 production at moderate temperatures. TPR and Raman studies show an alloy formation in the Pt-Ni/Al2O3 catalyst. Further work is required to study the interaction between Pt and Ni in the bimetallic Pt-Ni/CeZrO2 and Pt-Ni/Al2O3 catalysts. Although the Pt-Ni/Al2O3 catalyst shows high methane conversion in the presence of the BSCF membrane at 800°C, the activity of this catalyst is low at 600°C. Pt-Ni/CeZrO2 bimetallic catalyst demonstrates superior performance compared to Pt-Ni/Al2O3 catalyst at 600°C. The thinner BSCF membrane (2.2 mm) demonstrates a higher methane conversion and H2:CO ratio than the thicker BSCF membrane (2.6 mm) because membrane oxygen flux is inversely proportional to thickness. Varying the pH of the precursor solution during membrane preparation has no significant effect on the oxygen flux or the reaction. The CH 4:CO2 feed ratio significantly affects the hydrogen production over the BSCF membrane. Altering the CH4:CO2 ratio has a direct impact on the oxygen flux, which in turn can influence the reaction pathway. These studies suggest that the Pt-Ni/CeZrO2 catalyst might be suitable for low-temperature hydrocarbon conversion reactions over thin BSCF ceramic membranes. Most importantly, the BSCF membrane can reduce the apparent activation energy of the CO2 reforming reaction by changing the reaction pathway to include more steam reforming.

  19. A Compact, Low Resource Instrument to Measure Atmospheric Methane and Carbon Dioxide From Orbit

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot; Davis, Michael; Varner, Ruth; Basu, Sourish; Bruhwiler, Lori; Luspay-Kuti, Adrienn; Mandt, Kathy; Roming, Pete; Soto, Alejandro; Tapley, Mark

    2017-04-01

    Methane is the second most important radiatively active trace gas forcing anthropogenic climate change. Methane has ˜28 times more warming potential than carbon dioxide on a 100-year time horizon, and the background atmospheric concentration of methane has increased by more than 150% compared to pre-industrial levels. The increase in methane abundance is driven by a combination of direct human activity, such as fossil fuel extraction and agriculture, and natural feedback processes that respond to human-induced climate change, such as increased wetland production. Accurate accounting of the exchange between the atmosphere and the natural and anthropogenic methane reservoirs is necessary to predict how methane concentration will increase going forward, how that increase will modulate the natural methane cycle, and how effective policy decisions might be at mitigating methane-induced climate change. Monitoring and quantifying methane source intensity and spatial-temporal variability has proven challenging; there are unresolved and scientifically significant discrepancies between flux estimates based on limited surface measurements (the so-called "bottom-up" method) and the values derived from limited, remotely-sensed estimates from orbit and modeling (the so-called "top-down" method). A major source of the discrepancy between bottom-up and top-down estimates is likely a result of insufficient accuracy and resolution of space-based instrumentation. Methane releases, especially anthropogenic sources, are often at kilometer-scale (or less), whereas past remote sensing instruments have at least an order of magnitude greater footprint areas. Natural sources may be larger in areal extent, but the enhancement over background levels can be just a few percent, which demands high spectral resolution and signal-to-noise ratios from monitoring instrumentation. In response to the need for higher performance space-based methane monitoring, we have developed a novel, compact, low-resource instrument that meets the accuracy and spatial resolution challenges demanded by methane exchange processes. The baseline instrument uses reflected sunlight 0.7591-0.7646 μm and 1.6058-1.6761 μm, permitting individual spectral identification of CH4, O2, CO2 and H2O. By combining spectral information, the complicating effects of aerosol and clouds can be reduced. A spectral resolving power of R˜20,000 is achieved by utilizing a novel matching off-axis parabolic (OAP) mirror system to send a collimated beam to an Echelle grating, which then picks off the high orders of interest and sends them back to one of the OAPs for final focus. A beamsplitter before the focus separates the near-visible O2 signal from the ˜1.6 μm CH4, CO2, and H2O signals, creating two separate imaging channels. A high-heritage H1RG detector is used in both channels. The instrument images a 0.03°× 5° field-of-view, with a point-source resolution of 0.03°. These specifications produce a 33 km wide instantaneous image at the nominal altitude of 380 km, with 200 m point-source resolution. Higher altitudes yield increased instantaneous coverage at the cost of wider point-source resolution. The 200 m pixels can be averaged to produce higher signal-to-noise while still maintaining km-scale resolution. The entire instrument consumes 55 W with a mass of 20 kg and total volume of 0.07 m3. Thus, the instrument provides performance similar to or better than existing hardware in a much smaller package. The small resource footprint provides the opportunity to fly as payload on one or multiple small satellite payloads or on the International Space Station.

  20. Forest strata drive spatial structure of bacterial and archaeal communities and microbial methane cycling in neotropical bromeliad wetlands

    NASA Astrophysics Data System (ADS)

    Martinson, Guntars; Brandt, Franziska; Conrad, Ralf

    2016-04-01

    Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata, and their constrained environmental characteristics shape the spatial structure of archaeal and bacterial communities and microbial methane cycling in neotropical bromeliad wetlands.

  1. Geologic Significance of Newly Discovered Methane Seeps on the Northern US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Ruppel, C. D.; Kodis, M.; Lobecker, E.; Malik, M.

    2013-12-01

    Analysis of multibeam water column backscatter data collected by NOAA Ship Okeanos Explorer in 2011, 2012, and 2013 has revealed the presence of several hundred methane gas plumes on the US Atlantic margin between Cape Hatteras and Cape Cod (see abstract by Kodis et al., 'US Atlantic Margin Methane Plumes Identified From Water Column Backscatter Data Acquired by NOAA Ship Okeanos Explorer'). Acoustic imagery indicates that these vertically elongate methane plumes extend hundreds of meters above the seafloor and are often deflected by ocean currents. Visual and acoustic observation of the base of select plumes by the NOAA remotely operated vehicle (ROV) Deep Discoverer in 2013 confirmed that they are generated by emission of gas bubbles at seafloor seeps. Prior to this discovery, the only observed cold seeps on the central and northern extents of the US Atlantic margin were at shallow water depths in Baltimore Canyon, and no deepwater (>1000 m) seeps were known to exist. The new seeps are observed at depths ranging from 100 m on the Nantucket Shelf to 1400 m in the vicinity of Norfolk, Baltimore, and Veatch Canyons. The seeps occur in isolation as well as in clusters, and particularly high seep concentrations are observed in the upper portions of Hudson Canyon. Along-margin seep distribution is not uniform and higher overall seep concentrations are observed north of Veatch Canyon and south of Wilmington Canyon, with substantially fewer seep occurrences on the intervening part of the Mid-Atlantic Bight. Lithology (e.g., coarse-grained vs. fine-grained sediment), underlying geology, and shelf-slope morphology appear to be correlated with the spatial distribution of cold seeps along the margin. Numerous shallow water (~500 m) seep locations are roughly coincident with seafloor pockmark features identified by D. Brothers (personal communication) and are proximal to the upslope extent of the gas hydrate stability zone (GHSZ). Multiple deepwater seep locations are identified within the GHSZ, but do not yet appear to be associated with salt diapirism or any other geological phenomena with the capacity to drive active methane expulsion at the seafloor. Repeat acoustic and video surveys at an ~500 m2 seep field south of Nantucket Island demonstrated that some seeps are characterized by continuous gas emission, whereas other proximal seeps exhibit episodic gas emission with a temporal variability on the order of hours to days. While significant ephemerality of methane emission at the scale of individual plumes has been verified, ROV imagery of massive, but isolated, patches of authigenic carbonate and well-developed chemosynthetic communities suggest that emission of methane at the scale of the seep field has been persistent over hundreds to thousands of years.

  2. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  3. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  4. Application of parasound data for sediment study on methane seep site at Simeulue basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiguna, Taufan, E-mail: taufan.wiguna@bppt.go.id; Ardhyastuti, Sri

    2015-09-30

    The Parasound data presents sea depth and sub-bottom profiler. In terms of geological terminology, parasound data represents significant recent surface sedimentary structures that valuable for the selection of subsequent sampling site such as sampling at methane seep site. Therefore, Parasound is used to detailing methane seep at surface sediment following seismic data interpretation. In this study, parasound is used to focus observe area especially for sediment study on methane seep site. The Parasound systems works both as narrow beam sounder use high frequency and as sediment echosounder use low frequency. Parasound acquisition applies parametric effect. It produces additional frequency bymore » nonlinear acoustic interaction of finite amplitude waves. Parasound transducers have 128 elements on 1 m2 and need transmission power up to 70 kW. The results of this study are discovered large seep carbonate with porous surface which means there are gas expulsions passing through that rock.« less

  5. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  6. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, R.L.

    1995-12-31

    The United States has vast natural gas reserves which could contribute significantly to our energy security if economical technologies for conversion to liquid fuels and chemicals were developed. Many of these reserves are small scale or in remote locations and of little value unless they can be transported to consumers. Transportation is economically performed via pipeline, but this route is usually unavailable in remote locations. Another option is to convert the methane in the gas to liquid hydrocarbons, such as methanol, which can easily and economically be transported by truck. Therefore, the conversion of methane to liquid hydrocarbons has themore » potential to decrease our dependence upon oil imports by opening new markets for natural gas and increasing its use in the transportation and chemical sectors of the economy. In this project, we are attempting to develop, and explore new catalysts capable of direct oxidation of methane to methanol. The specific objectives of this work are discussed.« less

  7. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows.

    PubMed

    Reynolds, C K; Humphries, D J; Kirton, P; Kindermann, M; Duval, S; Steinberg, W

    2014-01-01

    The objective was to measure effects of 3-nitrooxypropanol (3 NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and N metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3 NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and N balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3 NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3 NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3 NP. Similarly, the decrease in N digestibility at the higher dose of the product was associated with a decrease in body N balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3 NP. Twice-daily rumen dosing of 3 NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    PubMed

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in detail, and the conclusions are correlated to surface properties and catalysis.

  9. Breath Methane Levels Are Increased Among Patients with Diverticulosis.

    PubMed

    Yazici, Cemal; Arslan, Deniz Cagil; Abraham, Rana; Cushing, Kelly; Keshavarzian, Ali; Mutlu, Ece A

    2016-09-01

    Diverticulosis and its complications are important healthcare problems in the USA and throughout the Western world. While mechanisms as to how diverticulosis occurs have partially been explored, few studies examined the relationship between colonic gases such as methane and diverticulosis in humans. This study aimed to demonstrate a significant relationship between methanogenic Archaea and development of diverticulosis. Subjects who consecutively underwent hydrogen breath test at Rush University Medical Center between 2003 and 2010 were identified retrospectively through a database. Medical records were reviewed for presence of a colonoscopy report. Two hundred and sixty-four subjects were identified who had both a breath methane level measurement and a colonoscopy result. Additional demographic and clinical data were obtained with chart review. Mean breath methane levels were higher in subjects with diverticulosis compared to those without diverticulosis (7.89 vs. 4.94 ppm, p = 0.04). Methane producers (defined as those with baseline fasting breath methane level >5 ppm) were more frequent among subjects with diverticulosis compared to those without diverticulosis (50.9 vs. 34 %, p = 0.0025). When adjusted for confounders, breath methane levels and age were the two independent predictors of diverticulosis on colonoscopy with logistic regression modeling. Methanogenesis is associated with the presence of diverticulosis. Further studies are needed to confirm our findings and prospectively evaluate a possible etiological role of methanogenesis and methanogenic archaea in diverticulosis.

  10. Coal-bed methane potential in Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campen, E.

    1991-06-01

    Montana's coal resources are the second largest of the US, with coal underlying approximately 35% of the state. These resources are estimated at 478 billion tons. Associated coal-bed methane resources are estimated to be 14 tcf. The coals of Montana range from Jurassic to early Tertiary in age and from lignite to low-volatile bituminous in rank. Thickness, rank, maceral composition, and proximate and ultimate analyses all vary vertically and laterally. The state contains eight major coal resource areas. A large percentage of Montana's coal consists of the Paleocene Fort Union lignites of eastern Montana, generally considered of too low amore » rank to contain significant methane resources. Most of the state's other coal deposits are higher in rank and contain many recorded methane shows. During Cretaceous and Tertiary times, regressive-transgressive cycles resulted in numerous coal-bearing sequences. Major marine regressions allowed the formation of large peat swamps followed by transgressions which covered the swamps with impervious marine shales, preventing the already forming methane from escaping. About 75% of Montana's coal is less than 1,000 ft below the ground's surface, making it ideal for methane production. Associated water appears to be fresh, eliminating environmental problems. Pipelines are near to most of the major coal deposits. Exploration for coal-bed methane in Montana is still in its infancy but at this time shows commercial promise.« less

  11. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de; Gebert, Julia; Groengroeft, Alexander

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation andmore » corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.« less

  12. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    PubMed

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.

    2014-01-01

    A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load and the uncertainty in calculated loads both decreased with lower streamflow conditions and finer-resolution sampling in June and November, the higher loads during May could indicate seasonal variability in base flow. This is consistent with flowmeter measurements indicating that there was less inflow occurring at lower streamflow conditions during June and November.

  14. Transport processes in intertidal sand flats

    NASA Astrophysics Data System (ADS)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  15. Modeling the Formation of Hydrate-Filled Veins in Fine-Grained Sediments from in Situ Microbial Methane

    NASA Astrophysics Data System (ADS)

    Malinverno, A.; Cook, A.; Daigle, H.

    2016-12-01

    Continental margin sediments are dominantly fine-grained silt and clay, and methane hydrates in these sediments are often found in semi-vertical veins and fractures. In several instances, these hydrate veins occupy discrete depth intervals that are a few tens of meters thick and are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the gas hydrate stability zone (GHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. To investigate the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, compaction, solute diffusion, and microbial methane generation. Microbial methane generation depends on the amount of metabolizable organic carbon deposited at the seafloor, whose progressive degradation produces methane beneath the sulfate reduction zone. If the amount of organic carbon entering the methanogenic zone is kept constant in time, we found that the computed amounts of hydrate formed in discrete intervals within the GHSZ are well below those estimated from observations. On the other hand, if the deposition of organic carbon is higher in a given time interval, methane generation during burial is more intense in the corresponding sediment interval, resulting in enhanced hydrate formation. With variations in organic carbon deposition comparable to those generally observed in continental margins, our model was able to reproduce the methane hydrate contents that were estimated from drilling. These results support the suggestion that in situ microbial generation associated with transient organic carbon deposition is the source of methane that forms isolated intervals of hydrate-filled veins in fine-grained sediments.

  16. Modeling the Formation of Hydrate-Filled Veins in Fine-Grained Sediments from in Situ Microbial Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh

    Continental margin sediments are dominantly fine-grained silt and clay, and methane hydrates in these sediments are often found in semi-vertical veins and fractures. In several instances, these hydrate veins occupy discrete depth intervals that are a few tens of meters thick and are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the gas hydrate stability zone (GHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. To investigate the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, compaction,more » solute diffusion, and microbial methane generation. Microbial methane generation depends on the amount of metabolizable organic carbon deposited at the seafloor, whose progressive degradation produces methane beneath the sulfate reduction zone. If the amount of organic carbon entering the methanogenic zone is kept constant in time, we found that the computed amounts of hydrate formed in discrete intervals within the GHSZ are well below those estimated from observations. On the other hand, if the deposition of organic carbon is higher in a given time interval, methane generation during burial is more intense in the corresponding sediment interval, resulting in enhanced hydrate formation. With variations in organic carbon deposition comparable to those generally observed in continental margins, our model was able to reproduce the methane hydrate contents that were estimated from drilling. These results support the suggestion that in situ microbial generation associated with transient organic carbon deposition is the source of methane that forms isolated intervals of hydrate-filled veins in fine-grained sediments.« less

  17. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats

    PubMed Central

    Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.

    2014-01-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903

  18. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations.

  19. Chamber-Based Estimates of Methane Production in Coastal Estuarine Systems in Southern California

    NASA Astrophysics Data System (ADS)

    Brigham, B.; Lipson, D.; Lai, C.

    2008-12-01

    Wetland systems are believed to produce between 100 - 231 Tg CH4 yr-1 which is roughly 20% of global methane emissions. The uncertainty in methane emissions models stem from the lack of detailed information about methane gas production within regional wetland systems. The aim of this study is to report the range of methane fluxes observed along salinity gradients at two San Diego coastal wetland systems, the Tijuana Estuary (Tijuana River National Estuarine Research Reserve) and the Peñasquitos Lagoon (Torrey Pines State Park Reserve). Soil water samples are used to elucidate factors responsible for the observed variation in methane fluxes. Air samples were subsequently collected from the headspace of a static soil chamber and stored in pre- evacuated vials. Methane concentrations were analyzed within hours after collection by gas chromatography in the laboratory. The chemical and physical properties of the soil, including salinity, pH, redox potential and temperature are measured with a hand-held probe nearby soil collars. The biological properties of the soil, including dissolved organic carbon, nitrate, and ammonia levels are measured from soil water samples in the laboratory. We find that saline sites under direct tidal influence produced methane fluxes ranging from -3.10 to 9.10 (mean 2.18) mg CH4 m-2 day-1. We also find that brackish sites (0.6 to 3.2 ppt in salinity) with fresh water input from residential runoff at the Peñasquitos Lagoon produced methane fluxes ranging from 0.53 to 192.10 (mean 33.34) mg CH4 m-2 day-1. Sampling was done over the course of 5 weeks during August-September of 2008. We hypothesize that the contrasting methane fluxes found between the saline and the brackish sites is due primarily to the different salinity, and in turn sulfate levels found at the two sites. The reduction of sulfate to produce energy is more energetically favorable than the reduction of carbon dioxide to produce methane. Thus the presence of sulfate may act as a methanogensis inhibitor resulting in higher methane flux in low salinity conditions such as those found at the brackish sites.

  20. Methane fluxes and their controlling processes in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Rehder, G. J.; Fossing, H.; Lapham, L.; Endler, R.; Spiess, V.; Bruchert, V.; Nguyen, T.; Gülzow, W.; Schneider von Deimling, J.; Conley, D. J.; Jorgensen, B.

    2010-12-01

    The Baltic Sea is an ideal natural laboratory to study the methane cycle in the framework of diagenetic processes. With its brackish character and a gradient from nearly marine to almost limnic conditions, a strong permanent haline stratification leading to large vertical redox gradients in the water column, and a sedimentation history which resulted in the deposition of organic-rich young post-glacial sediments over older glacial and post-glacial strata with very low organic content, the Baltic allows to study the role of a variety of key parameters for early diagenetic processes including the methane cycle. Within the BONUS + Project “Baltic Gas”, a 3.5 week scientific expedition of RV Maria S. Merian in August 2010 was dedicated to study the methane cycle in the various basins of the Baltic Sea, with strong emphasis on the metabolic reactions of early diagenesis and the occurrence of shallow gas deposits. Various subbottom profiling systems were used to map the thickness and structure of organic-rich deposits and build the base for a detailed coring program for biogeochemical analysis, including methane, sulfur compounds, iron, and other compounds. Methane gradients in connection with the information of the areal extend of organic-rich deposits are used to estimate the diffusive flux from the sediments into the water column and the rate of methane oxidation, with changing importance of sulfate as oxidant along the salinity gradient. On selected key stations, rate measurements of methanogenic and methanotrophic reactions were executed. The methane distribution in the water column was comprehensively assessed, revealing amongst other findings a drastic increase in bottom water methane concentration between the post bloom summer situation and the situation in the winter of 2009, in connection to the occurrence of a benthic nepheloid layer. Air-sea flux measurements were executed along the ship’s track comprising all major basins of the Baltic. The talk gives an interdisciplinary overview of the first results of this research campaign.

  1. Biogeochemical and Molecular Signatures of Anaerobic Methane Oxidation in a Marine Sediment

    PubMed Central

    Thomsen, Trine R.; Finster, Kai; Ramsing, Niels B.

    2001-01-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802–805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin. PMID:11282617

  2. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.

    PubMed

    Thomsen, T R; Finster, K; Ramsing, N B

    2001-04-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802-805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.

  3. Co-Aromatization of Methane with Olefins: The Role of Inner Pore and External Surface Catalytic Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, Matthew M; He, Peng; Jarvis, Jack

    The co-aromatization of methane with olefins is investigated using Ag-Ga/HZSM-5 as the catalyst at 400 degrees C. The presence of methane has a pronounced effect on the product distribution in terms of increased average carbon number and substitution index and decreased aromatic carbon fraction compared with its N2 environment counterpart. The participation of methane during the co-aromatization over the Ag-Ga/HZSM-5 catalyst diminishes as the co-fed olefin feedstock molecule becomes larger, from 1-hexene to 1-octene and 1-decene, in diameter. The effect of suppressed methane participation with larger olefinic molecules is not as significant when Ag-Ga/HY is employed as the catalyst, whichmore » might be attributed to the larger pore size of HY that gives more room to hold olefin and methane molecules within the inner pores and reduces the diffusion limitation of olefin molecules. The effect of olefin feedstock on the methane participation during the co-aromatization over Ag-Ga/HZSM-5 is experimentally evidenced by 13C and 2D NMR. The incorporation of the methane carbon atoms into the phenyl ring of product molecules is reduced significantly with larger co-fed olefins, whereas its incorporation into the substitution groups of the formed aromatic molecules is not notably affected, suggesting that the methane participation in the phenyl ring formation might preferably occur within inner pores, while its incorporation into substitution groups may mainly take place on external catalytic sites. This hypothesis is well supported by the product selectivity obtained over Ag-Ga/HZSM-5 catalysts prepared using conventional ZSM-5, ZSM-5 with the external catalytic sites deactivated, nanosize ZSM-5, ZSM-5 with a micro/meso pore structure and ZSM-5 with the inner pores blocked, and further confirmed by the isotopic labeling studies.« less

  4. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.

    2011-12-01

    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10-12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m-2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the chambers and of the possible underestimation by the EC technique.

  5. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.

    2011-09-01

    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10-12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m-2 measured with chambers and EC respectively). The differences may be a result of the combined effect of overestimation with the chambers, the possible underestimation by the EC technique and of not having considered the daily course of the fluxes for the calculation of seasonal emissions from chambers.

  6. Evaluation of Methane Sources in Groundwater in Northeastern Pennsylvania

    PubMed Central

    Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K

    2013-01-01

    Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters—indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. PMID:23560830

  7. Methane and nitrous oxide (N{sub 2}O) emission characteristics from automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Noriyuki; Odaka, Matsuo

    Exhaust gases discharged from automobiles are noticed as one of the reasons for recent increase in atmospheric methane and nitrous oxide concentration, which have been considered as greenhouse gases. In order to make an accurate estimation of methane and nitrous oxide discharged from automobiles, measurement methods were experimentally developed and emissions were measured for different kinds of automobiles under various driving conditions. Then, the authors have tried to estimate the annual global emissions from automobiles using these measurement results and statistical data such as the number of automobiles, the total annual mileage, and the total annual fuel consumption, etc. Themore » emissions from passenger vehicles which have been estimated from the global number of automobiles were 477.263 t/year for methane and 313.472 t/year for nitrous oxide. These numbers are higher than what had been estimated.« less

  8. Methane production by anaerobic digestion of Bermuda grass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klass, D.L.; Ghosh, S.

    1979-01-01

    Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids( VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the yields increased up to 3.5 SCF/lb of VS added indicating that the nitrogen content of the grass examined was insufficient to sustain high-rate digestionmore » at the higher yield level. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated.« less

  9. A need for a standardization in anaerobic digestion experiments? Let's get some insight from meta-analysis and multivariate analysis.

    PubMed

    Lavergne, Céline; Jeison, David; Ortega, Valentina; Chamy, Rolando; Donoso-Bravo, Andrés

    2018-09-15

    An important variability in the experimental results in anaerobic digestion lab test has been reported. This study presents a meta-analysis coupled with multivariate analysis aiming to assess the impact of this experimental variability in batch and continuous operation at mesophilic and thermophilic anaerobic digestion of waste activated sludge. An analysis of variance showed that there was no significant difference between mesophilic and thermophilic conditions in both continuous and batch conditions. Concerning the operation mode, the values of methane yield were significantly higher in batch experiment than in continuous reactors. According to the PCA, for both cases, the methane yield is positive correlated to the temperature rises. Interestingly, in the batch experiments, the higher the volatile solids in the substrate was, the lowest was the methane production, which is correlated to experimental flaws when setting up those tests. In continuous mode, unlike the batch test, the methane yield is strongly (positively) correlated to the organic content of the substrate. Experimental standardization, above all, in batch conditions are urgently necessary or move to continuous experiments for reporting results. The modeling can also be a source of disturbance in batch test. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Feasibility tests for treating shampoo and hair colorant wastewaters using anaerobic processes.

    PubMed

    Ahammad, Shaikh Z; Yakubu, A; Dolfing, J; Mota, C; Graham, D W

    2012-01-01

    Wastes from the personal care product (PCP) industry are often high in biodegradable carbon, which makes them amenable to aerobic biological treatment, although process costs are usually high due to aeration inefficiencies, high electricity demand and production of large amounts of sludge. As such, anaerobic treatment technologies are being considered to lower net energy costs by reducing air use and increasing methane production. To assess the amenability of PCP wastes to anaerobic treatment, methane yields and rates were quantified in different anaerobic reactors treating typical PCP wastes, including wastes from shampoo and hair colorant products. Overall, shampoo wastes were more amenable to methanogenesis with almost double the methane yields compared with colour wastes. To assess relevant microbial guilds, qPCR was performed on reactor biomass samples. Methanosaetaceae abundances were always significantly higher than Methanosarcinaceae and Methanomicrobiales abundances (P < 0.05), and did not differ significantly between waste types. Although colour wastes were less amenable to anaerobic treatment than shampoo wastes, differences cannot be explained by relative microbial abundances and probably result from the presence of inhibiting compounds in hair colorants (e.g., oxidants) at higher levels. Results showed that anaerobic technologies have great potential for treating PCP wastes, but additional work is needed to establish the basis of elevated methane yields and inhibition, especially when colorant wastes are present.

  11. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The systemmore » was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.« less

  12. Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.

    PubMed

    Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi

    2018-07-01

    Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis.

    PubMed

    Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong

    2016-05-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    PubMed

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only overmore » the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.« less

  16. Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion.

    PubMed

    Wang, Yaya; Li, Guoxue; Chi, Menghao; Sun, Yanbo; Zhang, Jiaxing; Jiang, Shixu; Cui, Zongjun

    2018-02-01

    This study investigated the performance of co-digesting cucumber residues, corn stover, and pig manure at different ratios. Microbial community structure was analyzed to elucidate functional microorganism contributing to methane production during co-digestion. Results show that mixing cucumber residues with pig manure and corn stover could significantly improved methane yields 1.27-3.46 times higher than mono-feedstock. The methane yields decreased with the cucumber residues increasing when the pig manure ratio was fixed at 4 and 3, and was opposite at ratio 5. The optimal mixture ratio was T2 with the highest methane yield (305.4 mL/g VS) and co-digestion performance index (1.97). The main microbiological community in T2 was bacteria of Firmicutes (44.6%), Bacteroidetes (32.5%), Synergistetes (3.8%) and archaea of Methanosaeta (37.1%), Methanospirillum (18.2%). The mixture ratios changed the microbial community structures. The adding proportion of cucumber residues changed the community composition of the archaea, especially the proportion of Methanosaeta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment.

    PubMed

    Liew, Lo Niee; Shi, Jian; Li, Yebo

    2011-10-01

    Previous studies have shown that alkali pretreatment prior to anaerobic digestion (AD) can increase the digestibility of lignocellulosic biomass and methane yield. In order to simplify the process and reduce the capital cost, simultaneous alkali treatment and anaerobic digestion was evaluated for methane production from fallen leaves. The highest methane yield of 82 L/kg volatile solids (VS) was obtained at NaOH loading of 3.5% and substrate-to-inoculum (S/I) ratio of 4.1. The greatest enhancement in methane yield was achieved at S/I ratio of 6.2 with NaOH loading of 3.5% which was 24-fold higher than that of the control (without NaOH addition). Reactors at S/I ratio of 8.2 resulted in failure of the AD process. In addition, increasing the total solid (TS) content from 20% to 26% reduced biogas yield by 35% at S/I ratio of 6.2 and NaOH loading of 3.5%. Cellulose and hemicellulose degradation and methane yields are highly related. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Impact of cell design and operating conditions on the performances of SOFC fuelled with methane

    NASA Astrophysics Data System (ADS)

    Laurencin, J.; Lefebvre-Joud, F.; Delette, G.

    An in-house-model has been developed to study the thermal and electrochemical behaviour of a planar SOFC fed directly with methane and incorporated in a boiler. The usual Ni-YSZ cermet has been considered for the anode material. It has been found that methane reforming into hydrogen occurs only at the cell inlet in a limited depth within the anode. A sensitivity analysis has allowed establishing that anode thicknesses higher than ∼400-500 μm are required to achieve both the optimal methane conversion and electrochemical performances. The direct internal reforming (DIR) mechanisms and the impact of operating conditions on temperature gradients and SOFC electrical efficiencies have been investigated considering the anode supported cell configuration. It has been shown that the temperature gradient is minimised in the autothermal mode of cell operation. Thermal equilibrium in the stack has been found to be strongly dependent on radiative heat losses with the stack envelope. Electrochemical performance and cell temperature maps have been established as a function of methane flow rates and cell voltages.

  19. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    PubMed

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure.

    PubMed

    Xie, Ting; Yang, Qi; Winkler, Mari K H; Wang, Dongbo; Zhong, Yu; An, Hongxue; Chen, Fei; Yao, Fubin; Wang, Xiaolin; Wu, Jiawei; Li, Xiaoming

    2018-06-05

    Perchlorate bioreduction coupled to methane oxidation was successfully achieved without the addition of nitrate or nitrite in a membrane biofilm reactor (MBfR) inoculated with a mixture of freshwater sediments and anaerobic digester sludge as well as return activated sludge. The reactor was operated at different methane pressures (60, 40 and 20 Kpa) and influent perchlorate concentrations (1, 5 and 10 mg/L) to evaluate the biochemical process of perchlorate bioreduction coupled to methane oxidation. Perchlorate was completely reduced with a higher removal flux of 92.75 mg/m 2 ·d using methane as the sole carbon source and electron donor, other than hydrogen or other limiting organics. Quantitative real-time PCR showed that bacteria prevailed over archaea and the abundances of mcrA, pMMO, pcrA, and nirS genes were correlated with the influent perchlorate flux. High-throughput sequencing of 16S rRNA genes demonstrated that the functional community consisted of methanotrophs, methylotrophs, perchlorate-reducing bacteria, as well as various denitrifiers. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Preliminary appraisal of hydrogen and methane fuel in a Mach 2.7 supersonic transport

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.; Weber, R. J.; Civinskas, K. C.

    1972-01-01

    The higher heating value of hydrogen relative to JP fuel is estimated to reduce fuel weight by three fold and gross weight by 40 percent for comparable designed airplanes of equal payload and range. Engine design parameters were varied to determine the influence of lower noise goals on gross weight and direct operating cost. At current fuel prices, the DOC of a hydrogen airplane would be much higher than that of a JP airplane. A methane airplane could offer an 8.5-percent lower KOC than JP. But future shortages may escalate the prices of both JP and methane, whereas the price of hydrogen manufactured hydrolytically could be reduced from present levels. If in the future all three fuels are postulated to have equal costs per unit of energy, the DOC for hydrogen could be as much as 20 percent below that for JP on the reference 4000-nautical-mile mission. Longer ranges or lower noise requirements would improve the advantage of hydrogen.

  2. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    PubMed

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  3. Batch anaerobic digestion of synthetic military base food waste and cardboard mixtures.

    PubMed

    Asato, Caitlin M; Gonzalez-Estrella, Jorge; Jerke, Amber C; Bang, Sookie S; Stone, James J; Gilcrease, Patrick C

    2016-09-01

    Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Performance estimates for space shuttle vehicles using a hydrogen or a methane fueled turboramjet powered first stage

    NASA Technical Reports Server (NTRS)

    Knip, G., Jr.; Eisenberg, J. D.

    1972-01-01

    Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development cost, operating cost, and total cost. All of the vehicles place 22,680 kilograms of payload into a 500-kilometer orbit. The upper stage(s) uses hydrogen-oxygen rockets. The effect on payload fraction and vehicle inert weight of methane and methane-FLOX as a fuel-propellant combination for the three-stage vehicle is indicated. Compared with a rocket first stage for a two-stage shuttle, an airbreathing first stage results in a higher payload fraction and a lower operating cost, but a higher total cost. The effect on cost of program size and first-stage flyback is indicated. The addition of an expendable rocket second stage (three-stage vehicle) improves the payload fraction but is unattractive economically.

  5. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  6. Methane production by anaerobic digestion of Bermuda grass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klass, D.L.; Ghosh, S.

    1981-01-01

    Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids (VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the methane yields increased. This observation along with the compositional data compiled on the grass used in this work indicated that the nitrogen content ofmore » the unsupplemented grass was insufficient to sustain high-rate digestion at the higher yield level. However, as the C/N ratio was reduced by addition of ammonium chloride, the methane yield continually increased up to 3.5 SCF/lb added at the lowest C/N ratio examined (6.3) even after relatively high concentrations of ammonium nitrogen were measured in the effluent. It appears that the added nutrient had a stimulatory effect on methane production above the point where nitrogen was not limiting. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated. It was concluded from this work that Coastal Bermuda grass can be converted to high-methane gas under conventional anaerobic digestion conditions. The performance of the particular lot of grass studied was substantially improved by supplemental nitrogen additions. (Refs. 12).« less

  7. Adjusted Levenberg-Marquardt method application to methene retrieval from IASI/METOP spectra

    NASA Astrophysics Data System (ADS)

    Khamatnurova, Marina; Gribanov, Konstantin

    2016-04-01

    Levenberg-Marquardt method [1] with iteratively adjusted parameter and simultaneous evaluation of averaging kernels together with technique of parameters selection are developed and applied to the retrieval of methane vertical profiles in the atmosphere from IASI/METOP spectra. Retrieved methane vertical profiles are then used for calculation of total atmospheric column amount. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder,USA) [2] are taken as initial guess for retrieval algorithm. Surface temperature, temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval for each selected spectrum. Modified software package FIRE-ARMS [3] were used for numerical experiments. To adjust parameters and validate the method we used ECMWF MACC reanalysis data [4]. Methane columnar values retrieved from cloudless IASI spectra demonstrate good agreement with MACC columnar values. Comparison is performed for IASI spectra measured in May of 2012 over Western Siberia. Application of the method for current IASI/METOP measurements are discussed. 1.Ma C., Jiang L. Some Research on Levenberg-Marquardt Method for the Nonlinear Equations // Applied Mathematics and Computation. 2007. V.184. P. 1032-1040 2.http://www.esrl.noaa.gov/psdhttp://www.esrl.noaa.gov/psd 3.Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G.. A New Software Tool for Radiative Transfer Calculations and its application to IMG/ADEOS data // JQSRT.2001.V.68.№ 4. P. 435-451. 4.http://www.ecmwf.int/http://www.ecmwf.int

  8. Freezing and hungry? Hydrocarbon degrading microbial communities in Barents Sea sediments around Svalbard

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Straaten, Nontje

    2017-04-01

    The Polar Regions are characterised by varying temperatures and changing ice coverage, so most of the primary production take place in the warmer season. Consequently, sedimentation rates and nutrient input are low. The diversity and metabolic potentials of the microbial communities inhabiting these sediments in the Northern Barents Sea are largely unknown. Recent reports on natural methane seeps as well as the increase in hydrocarbon exploration activities in the Arctic initiated our studies on the potential of indigenous microbial communities to degrade methane and higher hydrocarbons under in situ pressure and temperature conditions. Furthermore, the subseafloor geochemistry in these areas was studied, together with important microbial groups, like methanotrophs, methanogens, metal and sulfate reducers, which may drive seafloor ecosystems in the Northern Barents Sea. Sediment samples were collected in several areas around Svalbard in the years 2013-2016 ranging from shallow (200m) areas on the Svalbard shelf to deep sea areas on the eastern Yermak Plateau (3200m water depths). Shelf sediments showed the highest organic carbon content which decreased with increasing depths. Iron and manganese as potential electron acceptors were found in the porewater especially in the top 50 cm of the cores, while sulfate was always present in substantial amounts in porewater samples down to the end of the up to two metre long cores. Concentrations of dissolved methane and carbon dioxide were low. The potential of the indigenous microorganisms to degrade methane and higher hydrocarbons as well as different oils under in situ temperatures and pressures was widespread in surface sediments. Degradation rates were higher under aerobic than under anaerobic conditions, and decreased with increasing sediment as well as water depths. Similar pattern were found for other metabolic processes, including sulfate, Fe and Mn reduction as well as carbon dioxide and methane production rates. Ongoing molecular biological analyses of original sediments and enrichment cultures indicate the presence of diverse and varying microbial communities.

  9. Impact of hydrology on methane flux patterns in a permafrost-affected floodplain in Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Kwon, Min Jung; Beulig, Felix; Kuesel, Kirsten; Wildner, Marcus; Heimann, Martin; Zimov, Nikita; Zimov, Sergei; Goeckede, Mathias

    2015-04-01

    A large fraction of organic carbon stored in Arctic permafrost soil is at risk to be decomposed and released to the atmosphere under climate change. Thawing of ice-rich permafrost will re-structure the surface topography, with potentially significant effects on hydrology: water table depth (WTD) of depressed areas will increase, while that of the surrounding area will decrease. Changes in hydrology will trigger modifications in soil and vegetation, e.g. soil temperature, vegetation and microbial community structure. All of these secondary effects will alter carbon cycle processes, with the magnitude and even sign of the net effect yet unknown. The objective of this study is to investigate effects of drainage on methane fluxes in a floodplain of the Kolyma River near Cherskii, Northeast Siberia. The study site is separated into two areas, one that has been drained since 2004, and a nearby reference site. Methane flux was measured for ~16 weeks during summer and early winter of 2013, and summer of 2014. In addition, to separate different methane emission pathways, plant-mediated methane transport (through aerenchyma) as well as the proportion of ebullition were measured in 2014. Vegetation and microbial community structures were investigated and compared. After a decade of drainage history that lowered WTD by about 20cm in the drained area, Eriophorum (cotton grass) that previously dominated have to a large part been replaced by Carex (tussock-forming sedge) and shrub species. While WTD primarily influenced the methane flux rate, this vegetation change indirectly altered the flux as well in a way that sites with Eriophorum emitted more methane. Concerning the microbial community structure, the relative abundance of methanogen and ratio of methanotrophs to methanogens were well correlated with methane flux rates, implying that the methane flux is highly influenced by microorganisms. As a consequence of these changes, in the drained area less amount of methane was produced in the first place due to less anaerobic condition, and subsequently most of it was oxidized while being transported to the atmosphere through diffusion. In fall, however, methane emission was higher in the drained site, potentially originating from stored methane during growing season or freshly produced methane in deep, relatively warmer soil layers. To summarize all effects of WTD, the drainage changed vegetation and microbial community structure, which in turn altered net methane emissions in growing season with significantly less amount of methane emission in drained site.

  10. Some seasonal characteristics in atmospheric methane concentration in the beginning of the XXI century

    NASA Astrophysics Data System (ADS)

    Vinogradova, Anna; Ginzburg, Alexander; Fedorova, Evgeniya

    2010-05-01

    Global average value of atmospheric methane concentrations have been increasing during the XX century, but this growth nearly stopped with the beginning of the 2000th. Such "stable" situation is the proper time for studying the seasonal cycle and extreme changes of air methane concentration. One of the most interesting periods for such investigations is autumn and winter 2006/07 [1] when a number of weather abnormalities (warm air temperature up to above 0°C, almost permanent cloudiness and absence of snow cover, and so on) in Moscow region created very specific conditions for air methane existence. Temporal variations in air methane concentration within the Moscow city have been studied using the data of observations at 12 stations of Moscow municipal environmental monitoring agency "Mosecomonitoring" in 2004-2008 [2]. It was found that near-surface air concentration of methane was much higher this time than few years before and after. The values of cold season methane concentrations in Moscow region have been compared with similar data measured in the North of Kola Peninsula (at WMO GAW station "Teriberka"), in the Sankt Petersburg region (the two stations of Roshydromet), in Finland and Hungary (the stations of NOAA GMD Carbon Cycle Sampling Network). Winter maxima (more or less) of methane concentrations were revealed almost each year at all these stations, but not everywhere they were simultaneous and as high as those had been found in Moscow. The reasons of winter 2006/07 high methane concentrations in Moscow and other regions of Northern Eurasia may be special weather conditions which could cause both decrease of air methane sinks and increase of methane emissions from natural and anthropogenic sources. Perhaps, the late growth of global atmospheric methane concentration after 2007 [3] was partly produced by those seasonal anomalies in the Northern Hemisphere. References: 1. E. Fedorova, A. Ginzburg, A. Vinogradova. Seasonal variations of atmospheric methane and hot winter 2006-2007 // Geophys. Res. Abstracts, 2007, Vol. 9, SRef-ID: 1607-7962/gra/EDU2007-A-06049. 2. A.A. Vinogradova, E.I. Fedorova, I.B. Belikov, et al. Temporal variations in carbon dioxide and methane concentrations under urban conditions // Izv., Atmospheric and Oceanic Physics, 2007, Vol. 43, No. 5, pp. 599-611. 3. Rigby M., Prinn R.G., Fraser P.J., et al. Renewed growth of atmospheric methane // Geophys. Res. Lett., 2008, Vol. 35. doi: 10,1029/2008GL036037

  11. Predicting the fate of methane emanating from the seafloor using a marine two-phase gas model in one dimension (M2PG1) - Example from a known Arctic methane seep site offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Jansson, Pär; Ferré, Benedicte

    2017-04-01

    Transport of methane in seawater occurs by diffusion and advection in the dissolved phase, and/or as free gas in form of bubbles. The fate of methane in bubbles emitted from the seafloor depends on both bubble size and ambient conditions. Larger bubbles can transport methane higher into the water column, potentially reaching the atmosphere and contributing to greenhouse gas concentrations and impacts. Single bubble or plume models have been used to predict the fate of bubble mediated methane gas emissions. Here, we present a new process based two-phase (free and dissolved) gas model in one dimension, which has the capability to dynamically couple water column properties such as temperature, salinity and dissolved gases with the free gas species contained in bubbles. The marine two-phase gas model in one dimension (M2PG1) uses a spectrum of bubbles and an Eulerian formulation, discretized on a finite-volume grid. It employs the most up-to-date equations for solubility and compressibility of the included gases, nitrogen, oxygen, carbon dioxide and methane. M2PG1 is an extension of PROBE (Omstedt, 2011), which facilitates atmospheric coupling and turbulence closures to realistically predict vertical mixing of all properties, including dissolved methane. This work presents the model's first application in an Arctic Ocean environment at the landward limit of the methane-hydrate stability zone west of Svalbard, where we observe substantial methane bubble release over longer time periods. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT. Omstedt, A. (2011). Guide to process based modeling of lakes and coastal seas: Springer.

  12. Quantification of Methane Gas Flux and Bubble Fate on the Eastern Siberian Arctic Shelf Utilizing Calibrated Split-beam Echosounder Data.

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.

    2016-12-01

    On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.

  13. Identifying Methane Sources with an Airborne Pulsed IPDA Lidar System Operating near 1.65 µm

    NASA Astrophysics Data System (ADS)

    Yerasi, A.; Bartholomew, J.; Tandy, W., Jr.; Emery, W. J.

    2016-12-01

    Methane is a powerful greenhouse gas that is predicted to play an important role in future global climate trends. It would therefore be beneficial to locate areas that produce methane in significant amounts so that these trends can be better understood. In this investigation, some initial performance test results of a lidar system called the Advanced Leak Detector Lidar - Natural Gas (ALDL-NG) are discussed. The feasibility of applying its fundamental principle of operation to methane source identification is also explored. The ALDL-NG was originally created by the Ball Aerospace & Technologies Corp. to reveal leaks emanating from pipelines that transport natural gas, which is primarily composed of methane. It operates in a pulsed integrated path differential absorption (IPDA) configuration and it is carried by a piloted, single-engine aircraft. In order to detect the presence of natural gas leaks, the laser wavelengths of its online and offline channels operate in the 1.65 µm region. The functionality of the ALDL-NG was tested during a recent field campaign in Colorado. It was determined that the ambient concentration of methane in the troposphere ( 1.8 ppm) could indeed be retrieved from ALDL-NG data with a lower-than-expected uncertainty ( 0.2 ppm). Furthermore, when the ALDL-NG scanned over areas that were presumed to be methane sources (feedlots, landfills, etc.), significantly higher concentrations of methane were retrieved. These results are intriguing because the ALDL-NG was not specifically designed to observe anything beyond natural gas pipelines. Nevertheless, they strongly indicate that utilizing an airborne pulsed IPDA lidar system operating near 1.65 µm may very well be a viable technique for identifying methane sources. Perhaps future lidar systems could build upon the heritage of the ALDL-NG and measure methane concentration with even better precision for a variety of scientific applications.

  14. Determination of biogas generation potential as a renewable energy source from supermarket wastes.

    PubMed

    Alkanok, Gizem; Demirel, Burak; Onay, Turgut T

    2014-01-01

    Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nitrous oxide and methane emissions during storage of dewatered digested sewage sludge.

    PubMed

    Willén, Agnes; Rodhe, Lena; Pell, Mikael; Jönsson, Håkan

    2016-12-15

    This study investigated the effect on greenhouse gas emissions during storage of digested sewage sludge by using a cover during storage or applying sanitisation measures such as thermophilic digestion or ammonia addition. In a pilot-scale storage facility, nitrous oxide and methane emissions were measured on average twice monthly for a year, using a closed chamber technique. The thermophilically digested sewage sludge (TC) had the highest cumulative emissions of nitrous oxide (1.30% of initial total N) followed by mesophilically digested sewage sludge stored without a cover (M) (0.34%) and mesophilically digested sewage sludge stored with a cover (MC) (0.19%). The mesophilically digested sewage sludge sanitised with ammonia and stored with a cover (MAC) showed negligible cumulative emissions of nitrous oxide. Emissions of methane were much lower from TC and MAC than from M and MC. These results indicate that sanitisation by ammonia treatment eliminates the production of nitrous oxide and reduces methane emissions from stored sewage sludge, and that thermophilic digestion has the potential to reduce the production of methane during storage compared with mesophilic digestion. The results also indicate a tendency for lower emissions of nitrous oxide and higher emissions of methane from covered sewage sludge compared with non-covered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Liquid Hydrocarbons on Titan's Surface? How Cassini ISS Observations Fit into the Story (So Far)

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; Dawson, D. D.; Fussner, S.; Hardegree-Ullman, E.; Ewen, A. S.; Perry, J.; Porco, C. C.; West, R. A.

    2005-01-01

    Titan is the only satellite in our Solar System with a substantial atmosphere, the origins and evolution of which are still not well understood. Its primary (greater than 90%) component is nitrogen, with a few percent methane and lesser amounts of other species. Methane and ethane are stable in the liquid state under the temperature and pressure conditions in Titan s lower atmosphere and at the surface; indeed, clouds, likely composed of methane, have been detected. Photochemical processes acting in the atmosphere convert methane into more complex hydrocarbons, creating Titan s haze and destroying methane over relatively short timescales. Therefore, it has been hypothesized that Titan s surface has reservoirs of liquid methane which serve to resupply the atmosphere. Early observations of Titan s surface revealed albedo patterns which have been interpreted as dark hydrocarbon liquids occupying topographically low regions between higher-standing exposures of bright, water-ice bedrock, although this is far from being the only explanation for the observed albedo contrast. Observations made by the Imaging Science Subsystem during Cassini's approach to Saturn and its first encounters with Titan show the bright and dark regions in greater detail but have yet to resolve the question of whether there are liquids on the surface.

  17. Anaerobic digestion of water hyacinth and sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.

    1986-01-01

    The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs.,more » 5 figs., 5 tabs.« less

  18. Using the properties of soil to speed up the start-up process, enhance process stability, and improve the methane content and yield of solid-state anaerobic digestion of alkaline-pretreated poplar processing residues.

    PubMed

    Yao, Yiqing; Luo, Yang; Li, Tian; Yang, Yingxue; Sheng, Hongmei; Virgo, Nolan; Xiang, Yun; Song, Yuan; Zhang, Hua; An, Lizhe

    2014-01-01

    Solid-state anaerobic digestion (SS-AD) was initially adopted for the treatment of municipal solid waste. Recently, SS-AD has been increasingly applied to treat lignocellulosic biomass, such as agricultural and forestry residues. However, studies on the SS-AD process are few. In this study, the process performance and methane yield from SS-AD of alkaline-pretreated poplar processing residues (PPRs) were investigated using the properties of soil, such as buffering capacity and nutritional requirements. The results showed that the lignocellulosic structures of the poplar sample were effectively changed by NaOH pretreatment, as indicated by scanning electron microscopy and Fourier transform infrared spectra analysis. The start-up was markedly hastened, and the process stability was enhanced. After NaOH pretreatment, the maximum methane yield (96.1 L/kg volatile solids (VS)) was obtained under a poplar processing residues-to-soil sample (P-to-S) ratio of 2.5:1, which was 29.9% and 36.1% higher than that of PPRs (74.0 L/kg VS) and that of experiments without NaOH pretreatment (70.6 L/kg VS), respectively. During steady state, the increase in the methane content of the experiment with a P-to-S ratio of 2.5:1 was 4.4 to 50.9% higher than that of the PPRs. Degradation of total solids and volatile solids ranged from 19.3 to 33.0% and from 34.9 to 45.9%, respectively. The maximum reductions of cellulose and hemicellulose were 52.6% and 42.9%, respectively, which were in accordance with the maximal methane yield. T 80 for the maximum methane yield for the experiments with NaOH pretreatment was 11.1% shorter than that for the PPRs. Pretreatment with NaOH and addition of soil led to a significant improvement in the process performance and the methane yield of SS-AD of PPRs. The changes in lignocellulosic structures induced by NaOH pretreatment led to an increase in methane yield. For the purpose of practical applications, SS-AD with soil addition is a convenient, economical, and practical technique.

  19. Methane oxidation in anoxic lake waters

    NASA Astrophysics Data System (ADS)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the presence of members of the Methylomirabiliaceae family (NC10 phylum), known to perform AOM with nitrite as terminal electron acceptor. Interestingly, albeit the similarly favorable conditions in both basins, the South Basin showed nearly two-fold higher CH4 oxidation rates, but the Methylomirabiliaceae abundance appeared to be much higher in the meromictic North Basin. Ongoing work will attempt to verify whether the apparent difference in the abundance of Methylomirabiliaceae is a permanent feature. We will further seek to determine the relative contribution of bacterial nitrite-dependent AOM to total methane oxidation, as well as the environmental controls that may explain the differential importance of Methylomirabiliaceae in the two connected lake basins.

  20. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  1. Bedrock, Borehole, and Water-Quality Characterization of a Methane-Producing Water Well in Wolfeboro, New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Walsh, Gregory J.; Flanagan, Sarah M.; Burruss, Robert A.

    2008-01-01

    In August 2004, a commercial drill rig was destroyed by ignition of an explosive gas released during the drilling of a domestic well in granitic bedrock in Tyngsborough, MA. This accident prompted the Massachusetts Department of Environmental Protection (MassDEP) to sample the well water for dissolved methane - a possible explosive fuel. Water samples collected from the Tyngsborough domestic well in 2004 by the MassDEP contained low levels of methane gas (Pierce and others, 2007). When the U.S. Geological Survey (USGS) sampled this well in 2006, there was no measurable amount of methane remaining in the well water (Pierce and others, 2007). Other deep water wells in nearby south-central New Hampshire have been determined to have high concentrations of naturally occurring methane (David Wunsch, New Hampshire State Geologist, 2004, written commun.). Studying additional wells in New England crystalline bedrock aquifers that produce methane may help to understand the origin of methane in crystalline bedrock. Domestic well NH-WRW-37 was chosen for this study because it is a relatively deep well completed in crystalline bedrock, it is not affected by known anthropogenic sources of methane, and it had the highest known natural methane concentration (15.5 mg/L, U.S. Geological Survey, 2007) measured in a study described by Robinson and others (2004). This well has been in use since it was drilled in 1997, and it was originally selected for study in 2000 as part of a 30 well network, major-aquifer study by the USGS' New England Coastal Basins (NECB) study unit of the National Water-Quality Assessment (NAWQA) Program. Dissolved methane in drinking water is not considered an ingestion health hazard, although the occurrence in ground water is a concern because, as a gas, its buildup in confined spaces can cause asphyxiation, fire, or explosion hazards (Mathes and White, 2006). Methane occurrence in the fractured crystalline bedrock is not widely reported or well understood. Borehole-geophysical surveys, bedrock outcrop observations, and water-quality analyses were used to define the geologic and hydrologic characteristics of NH-WRW-37. Collection of additional information on the hydraulic and geologic characteristics of the fractured bedrock and on water quality was initiated in an attempt to understand the setting where methane gas occurs in the bedrock ground water. The origin of dissolved methane in this and other wells in New Hampshire is the subject of ongoing investigations by the State of New Hampshire, the New Hampshire Geological Survey and the USGS.

  2. High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland

    NASA Astrophysics Data System (ADS)

    Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.

    2013-12-01

    Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (<1km2) within a narrow valley stretching between Russells Glacier and Søndre Strømfjord in southwestern Greenland, which are part of an ongoing study of a series of seven lakes. Commercially available, 150 mL, polyethylene Passive Diffusion Bags (PDB's) were deployed in July 2013 for five days at 0.5-meter depth intervals. PDB samples were compared to samples collected with a submersible, electric pump taken immediately before PBD deployment. Preliminary CH4 concentrations and carbon isotopes for one lake were obtained in the field using a Los Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.

  3. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay

    PubMed Central

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-days periods. There were no differences in milk or CH4 production between the contrasting pastures, probably because of the high herbage allowance that enabled selective grazing by cows. Abstract Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922

  4. Visible-light-driven methane formation from CO2 with a molecular iron catalyst.

    PubMed

    Rao, Heng; Schmidt, Luciana C; Bonin, Julien; Robert, Marc

    2017-08-03

    Converting CO 2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO 2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO 2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO 2 to CO known, can also catalyse the eight-electron reduction of CO 2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO 2 photoreduction reaction, but a two-pot procedure that first reduces CO 2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO 2 under mild conditions.

  5. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    NASA Astrophysics Data System (ADS)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  6. Sensitivity of Global Methane Bayesian Inversion to Surface Observation Data Sets and Chemical-Transport Model Resolution

    NASA Astrophysics Data System (ADS)

    Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.

    2017-12-01

    Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby increasing the information at that site. These different inversions—event-level and interpolated data, higher and lower resolutions—are compared using an ensemble of descriptive and comparative statistics. Analyzing the sensitivity of the inverse model leads to more accurate estimates of the methane source category uncertainty.

  7. Airborne Quantification of Methane Emissions in the San Francisco Bay Area of California

    NASA Astrophysics Data System (ADS)

    Guha, A.; Newman, S.; Martien, P. T.; Young, A.; Hilken, H.; Faloona, I. C.; Conley, S.

    2017-12-01

    The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate protection goal. The Air District maintains a regional GHG emissions inventory that includes emissions estimates and projections which influence the agency's programs and regulatory activities. The Air District is currently working to better characterize methane emissions in the GHG inventory through source-specific measurements, to resolve differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the bottom-up inventory. The Air District funded and participated in a study in Fall 2016 to quantify methane emissions from a variety of sources from an instrumented Mooney aircraft. This study included 40 hours of cylindrical vertical profile flights that combined methane and wind measurements to derive mass emission rates. Simultaneous measurements of ethane provided source-apportionment between fossil-based and biological methane sources. The facilities sampled included all five refineries in the region, five landfills, two dairy farms and three wastewater treatment plants. The calculated mass emission rates were compared to bottom-up rates generated by the Air District and to those from facility reports to the US EPA as part of the mandatory GHG reporting program. Carbon dioxide emission rates from refineries are found to be similar to bottom-up estimates for all sources, supporting the efficacy of the airborne measurement methodology. However, methane emission estimates from the airborne method showed significant differences for some source categories. For example, methane emission estimates based on airborne measurements were up to an order of magnitude higher for refineries, and up to five times higher for landfills compared to bottom-up methods, suggesting significant underestimation in the inventories and self-reported estimates. Future measurements over the same facilities will reveal if we have seasonal and process-dependent trends in emissions. This will provide a basis for rule making and for designing mitigation and control actions.

  8. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  9. Laboratory Investigation of Coal Deformation Behavior and Its Influence on Permeability Evolution During Methane Displacement by CO2

    NASA Astrophysics Data System (ADS)

    Fan, Jingjing; Feng, Ruimin; Wang, Jin; Wang, Yanbin

    2017-07-01

    Geological sequestration of CO2 in coal seams is of significant interest to both academia and industry. A thorough laboratory investigation of mechanical and flow behaviors is crucial for understanding the complex response of coalbeds to CO2 injection-enhanced coalbed methane recovery (CO2-ECBM) operation. In this work, systematic experiments were carried out on cylindrical coal core specimens under different uniform confining stresses. The coal deformation caused by variations in effective stress as well as the sorption-induced matrix swelling/shrinkage was monitored. The competitive gas sorption characteristics and permeability evolution during the process of methane displacement by CO2 were also investigated. The measured volumetric strain results indicate that sorption-induced strain is the dominant factor in the coal deformation. The relationship between the volumetric strain and the adsorbed gas volume has been revealed to be a linear function. Experimental results obtained under different stress conditions suggest that higher confining stress suppresses the increase in both volumetric strain and the adsorbed gas volume. Furthermore, both methane displacement and CO2 injection are reduced when applying higher confining stresses. In addition, the permeability enhancement is heavily suppressed at higher confining stress. At a certain confining stress, a characteristic "U-shaped" trend of permeability is presented as a function of decreasing pore pressure. This study contributes to the understanding of coal deformation and its impact on permeability evolution under uniformly stressed condition, which has practical significance for CO2 sequestration and CO2-ECBM operation in the Qinshui basin.

  10. Carbon Dioxide Electroreduction using a Silver-Zinc Alloy [CO 2 Electroreduction on a Ag-Zn Alloy

    DOE PAGES

    Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.; ...

    2017-02-20

    We report on CO 2 electroreduction activity and selectivity of a polycrystalline AgZn foil in aqueous bicarbonate electrolyte. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements show that the alloy foil was slightly enriched in zinc both at the surface and in the bulk, with a surface alloy composition of 61.3±5.4 at % zinc and with Ag 5Zn 8 as the most prominent bulk phase. AgZn is active for CO 2 reduction; CO is the main product, likely due to the weak CO binding energy of the surface, with methane and methanol emerging as minor products. Compared to puremore » silver and pure zinc foils, enhancements in activity and selectivity for methane and methanol are observed. A five-fold increase is observed in the combined partial current densities for methane and methanol at –1.43 V vs. the reversible hydrogen electrode (RHE), representing a four- to six-fold increase in faradaic efficiency. Here, such enhancements indicate the existence of a synergistic effect between silver and zinc at the surface of the alloy that contributes to the enhanced formation of further reduced products.« less

  11. Tracking Emissions of Methane Leaks from Abandoned Oil and Gas Wells in California

    NASA Astrophysics Data System (ADS)

    Lebel, E.; Lu, H.; Vielstädte, L.; Kang, M.; Jackson, R. B.

    2017-12-01

    Abandoned oil and gas wells can provide a substantial pathway for subterranean methane and other gases to be emitted to the atmosphere. However, abandoned wells are unaccounted for in greenhouse gas emissions inventories, primarily because monitoring these wells is not mandatory and quantitative data on leakage rates are rare. Here, we focus on California, which has a long history of oil and gas production, beginning from the 1860s, and currently ranks third in oil production by state. As a result, there are more than 100,000 abandoned wells across the state with yet unknown well integrity status. We tested and improved our static flux chamber design to minimize potential errors and designed new chambers with which we measured methane emissions from individual abandoned wells across California (both exposed and buried) and their surrounding soils. We characterized the respective gas source by measuring stable carbon isotopes of methane and the concentration of heavier hydrocarbons. So far, 6 out of 66 measured wells had a statistically significant methane flux >1mg/hr, with higher release rates linked to exposed and unplugged wells, rather than plugged and buried wells. Our results improve the current understanding of abandoned oil and gas wells as a methane emissions source and along with measurements in other parts of the United States can be used to scale up methane emission estimates to the national level, accounting for the millions of abandoned wells in the country.

  12. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records

    PubMed Central

    Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme

    2017-01-01

    Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial. PMID:28673973

  13. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records.

    PubMed

    Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme; Fischer, Hubertus

    2017-07-18

    Atmospheric methane (CH 4 ) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ 13 CH 4 and δD(CH 4 )] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH 4 ) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH 4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

  14. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme; Fischer, Hubertus

    2017-07-01

    Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

  15. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge

    2017-03-01

    Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.

  16. Electroreduction of carbon monoxide over a copper nanocube catalyst: Surface structure and pH dependence on selectivity

    DOE PAGES

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    2016-02-16

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  17. Effect of temperature on continuous dry fermentation of swine manure.

    PubMed

    Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai

    2016-07-15

    Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests.

    PubMed

    Strömberg, Sten; Nistor, Mihaela; Liu, Jing

    2014-11-01

    The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2(4) full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors' impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors' influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts for Methane-to-Methanol Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Ross; Nielsen, Robert J.; Goddard, William A.

    2014-11-11

    In the search for new organometallic catalysts for low-temperature selective conversion of CH4 to CH3OH, we apply quantum mechanical virtual screening to select the optimum combination of ligand and solvent on rhodium to achieve low barriers for CH4 activation and functionalization to recommend for experimental validation. Here, we considered Rh because its lower electronegativity compared with Pt and Pd may allow it to avoid poisoning by coordinating media. We report quantum mechanical predictions (including implicit and explicit solvation) of the mechanisms for RhIII(NN) and RhIII(NNF) complexes [where (NN) = bis(N-phenyl)benzylamidinate and (NNF) = bis(N-pentafluorophenyl)pentafluorobenzylamidinate] to catalytically activate and functionalize methanemore » using trifluoroacetic acid (TFAH) or water as a solvent. In particular, we designed the (NNF) ligand as a more electrophilic analogue to the (NN) ligand, and our results predict the lowest transition state barrier (ΔG‡ = 27.6 kcal/mol) for methane activation in TFAH from a pool of four different classes of ligands. To close the catalytic cycle, the functionalization of methylrhodium intermediates was also investigated, involving carbon–oxygen bond formation via SN2 attack by solvent, or SR2 attack by a vanadium oxo. Activation barriers for the functionalization of methylrhodium intermediates via nucleophilic attack are lower when the solvent is water, but CH4 activation barriers are higher. In addition, we have found a correlation between CH4 activation barriers and rhodium–methyl bond energies that allow us to predict the activation transition state energies for future ligands, as well.« less

  20. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

    PubMed Central

    Osborn, Stephen G.; Vengosh, Avner; Warner, Nathaniel R.; Jackson, Robert B.

    2011-01-01

    Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L-1 (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L-1 (P < 0.05; n = 34). Average δ13C-CH4 values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ13C-CH4 data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ2H-CH4 values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use. PMID:21555547

Top