Sample records for higher order loop

  1. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  2. Tensor Spectral Clustering for Partitioning Higher-order Network Structures.

    PubMed

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2015-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  3. Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    PubMed Central

    Benson, Austin R.; Gleich, David F.; Leskovec, Jure

    2016-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399

  4. Wilson loop's phase transition probed by non-local observable

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Yang, Shu-Zheng; Zu, Xiao-Tao

    2018-04-01

    In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.

  5. Uncertainty loops in travel-time tomography from nonlinear wave physics.

    PubMed

    Galetti, Erica; Curtis, Andrew; Meles, Giovanni Angelo; Baptie, Brian

    2015-04-10

    Estimating image uncertainty is fundamental to guiding the interpretation of geoscientific tomographic maps. We reveal novel uncertainty topologies (loops) which indicate that while the speeds of both low- and high-velocity anomalies may be well constrained, their locations tend to remain uncertain. The effect is widespread: loops dominate around a third of United Kingdom Love wave tomographic uncertainties, changing the nature of interpretation of the observed anomalies. Loops exist due to 2nd and higher order aspects of wave physics; hence, although such structures must exist in many tomographic studies in the physical sciences and medicine, they are unobservable using standard linearized methods. Higher order methods might fruitfully be adopted.

  6. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, Joseph I.; Hurd, William J.

    1990-01-01

    The design of digital phase locked loops (DPLL) using estimation theory concepts in the selection of a loop filter is presented. The key concept, that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor, is discussed. The estimator provides recursive estimates of phase, frequency, and higher-order derivatives, and the predictor compensates for the transport lag inherent in the loop.

  7. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  8. The Adler D-function for N = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Kazantsev, A. E.; Stepanyantz, K. V.

    2018-01-01

    We calculate the Adler D-function for N = 1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N = 1 SQCD is found in this scheme to the order O (αs2). The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.

  9. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yue; Xu, Ke; Jiang, Weilin

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  10. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  11. Loop vertex expansion for higher-order interactions

    NASA Astrophysics Data System (ADS)

    Rivasseau, Vincent

    2018-05-01

    This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

  12. Heavy quark form factors at two loops

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.

    2018-05-01

    We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.

  13. Near- and far-field investigation of dark and bright higher order resonances in square loop elements at mid-infrared wavelengths.

    PubMed

    Tucker, Eric; D'Archangel, Jeffrey; Boreman, Glenn

    2017-03-06

    Three different size gold square loop structures were fabricated as arrays on ZnS over a ground plane and designed to have absorptive fundamental, second order, and third order resonances at a wavelength of 10.6 µm and 60° off-normal. The angular dependent far-field spectral absorptivity was investigated over the mid-infrared for each size loop array. It was found that the second order modes were dark at normal incidence, but became excited at off-normal incidence, which is consistent with previous work for similar geometry structures. Furthermore, near-field measurements and simulations at a wavelength of 10.6 µm and 60° off-normal showed that the second order mode (quadrupolar) of the medium size loop yielded a near-field response similar in magnitude to the fundamental mode (dipolar) of the small size loop, which can be important for sensing related applications where both strong near-field enhancement and more uniform or less localized field is beneficial.

  14. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE PAGES

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    2018-02-01

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  15. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  16. Higher Rank ABJM Wilson Loops from Matrix Models

    NASA Astrophysics Data System (ADS)

    Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo

    2017-01-01

    We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.

  17. Universality hypothesis breakdown at one-loop order

    NASA Astrophysics Data System (ADS)

    Carvalho, P. R. S.

    2018-05-01

    We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.

  18. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  19. A High-Order, Time Invariant, Linearized Model for Application to HHCIAFCS Interaction Studies

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2003-01-01

    This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time invariant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The results also show that the vibration response to maneuvers must be considered during the HHC design process, which leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using conventional control system analyses.

  20. Speed-Accuracy Trade-Off in Skilled Typewriting: Decomposing the Contributions of Hierarchical Control Loops

    ERIC Educational Resources Information Center

    Yamaguchi, Motonori; Crump, Matthew J. C.; Logan, Gordon D.

    2013-01-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer-…

  1. ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan

    2018-03-01

    I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.

  2. Connected, disconnected and strange quark contributions to HVP

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Relefors, Johan

    2016-11-01

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of -1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  3. Designing Estimator/Predictor Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1988-01-01

    Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.

  4. Higher-order looping and nuclear organization of antigen receptor loci facilitate targeted RAG cleavage and regulated rearrangement in recombination centers

    PubMed Central

    Chaumeil, Julie; Micsinai, Mariann; Ntziachristos, Panagiotis; Deriano, Ludovic; Wang, Joy M-H; Ji, Yanhong; Nora, Elphege P.; Rodesch, Matthew J.; Jeddeloh, Jeffrey A.; Aifantis, Iannis; Kluger, Yuval; Schatz, David G.; Skok, Jane A.

    2013-01-01

    SUMMARY V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigen. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3’ end of individual antigen receptor loci poised for rearrangement, however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here we show that mono-allelic looping out of the 3’ end of Tcra, coupled with transcription and increased chromatin/nuclear accessibility, are linked to focal RAG binding and ATM-mediated regulated mono-allelic cleavage on looped out 3’ regions. Our data identify higher order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability. PMID:23416051

  5. Coexistence of ΘI I-loop-current order with checkerboard d -wave CDW/PDW order in a hot-spot model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann

    2016-03-01

    We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.

  6. The QCD form factor of heavy quarks at NNLO

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.

    2009-07-01

    We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.

  7. Asymptotic One-Point Functions in Gauge-String Duality with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2017-12-29

    We take the first step in extending the integrability approach to one-point functions in AdS/dCFT to higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point functions of SU(2) operators in the defect version of N=4 supersymmetric Yang-Mills theory, dual to the D5-D3 probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The asymptotic formula correctly encodes the information about the one-loop correction to the one-point functions of nonprotected operators once dressed by a simple flux-dependent factor, as we demonstrate by an explicit computation involving a novel object denoted as an amputated matrix product state. Furthermore, when applied to the Berenstein-Maldacena-Nastase vacuum state, the asymptotic formula gives a result for the one-point function which in a certain double-scaling limit agrees with that obtained in the dual string theory up to wrapping order.

  8. Higher order relativistic galaxy number counts: dominating terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Jeppe TrØst; Durrer, Ruth, E-mail: Jeppe.Trost@nbi.dk, E-mail: Ruth.Durrer@unige.ch

    2017-03-01

    We review the number counts to second order concentrating on the terms which dominate on sub horizon scales. We re-derive the result for these terms and compare it with the different versions found in the literature. We generalize our derivation to higher order terms, especially the third order number counts which are needed to compute the 1-loop contribution to the power spectrum.

  9. Possible higher order phase transition in large-N gauge theory at finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less

  10. Top-quark loops and the muon anomalous magnetic moment

    DOE PAGES

    Czarnecki, Andrzej; Marciano, William J.

    2017-12-07

    The current status of electroweak radiative corrections to the muon anomalous magnetic moment is discussed. Asymptotic expansions for some important electroweak two-loop top quark triangle diagrams are illustrated and extended to higher order. Results are compared with the more general integral representation solution for generic fermion triangle loops coupled to pseudoscalar and scalar bosons of arbitrary mass. Furthermore, excellent agreement is found for a broader than expected range of mass parameters.

  11. Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.; Win, M. Z.

    1991-01-01

    The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design.

  12. Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model

    NASA Astrophysics Data System (ADS)

    Chu, Kit-fai; Huang, Peng-hui; Liu, Hui

    2018-05-01

    The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.

  13. Control of polymer network topology in semi-batch systems

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  14. Getting in (and out of) the loop: regulating higher order telomere structures.

    PubMed

    Luke-Glaser, Sarah; Poschke, Heiko; Luke, Brian

    2012-01-01

    The DNA at the ends of linear chromosomes (the telomere) folds back onto itself and forms an intramolecular lariat-like structure. Although the telomere loop has been implicated in the protection of chromosome ends from nuclease-mediated resection and unscheduled DNA repair activities, it potentially poses an obstacle to the DNA replication machinery during S-phase. Therefore, the coordinated regulation of telomere loop formation, maintenance, and resolution is required in order to establish a balance between protecting the chromosome ends and promoting their duplication prior to cell division. Until recently, the only factor known to influence telomere looping in human cells was TRF2, a component of the shelterin complex. Recent work in yeast and mouse cells has uncovered additional regulatory factors that affect the loop structure at telomeres. In the following "perspective" we outline what is known about telomere looping and highlight the latest results regarding the regulation of this chromosome end structure. We speculate about how the manipulation of the telomere loop may have therapeutic implications in terms of diseases associated with telomere dysfunction and uncontrolled proliferation.

  15. Simplified formula for mean cycle-slip time of phase-locked loops with steady-state phase error.

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1972-01-01

    Previous work shows that the mean time from lock to a slipped cycle of a phase-locked loop is given by a certain double integral. Accurate numerical evaluation of this formula for the second-order loop is extremely vexing because the difference between exponentially large quantities is involved. The presented article demonstrates a method in which a much-reduced precision program can be used to obtain the mean first-cycle slip time for a loop of arbitrary degree tracking at a specified SNR and steady-state phase error. It also presents a simple approximate formula that is asymptotically tight at higher loop SNR.

  16. Efficient numerical evaluation of Feynman integrals

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Wang, Jian; Yan, Qi-Shu; Zhao, Xiaoran

    2016-03-01

    Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multi-loop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top quark mass. Supported by the Natural Science Foundation of China (11305179 11475180), Youth Innovation Promotion Association, CAS, IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors, Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y4KF061CJ1), Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA-EXC 1098)

  17. A Computer Model of a Phase Lock Loop

    NASA Technical Reports Server (NTRS)

    Shelton, Ralph Paul

    1973-01-01

    A computer model is reported of a PLL (phase-lock loop), preceded by a bandpass filter, which is valid when the bandwidth of the bandpass filter is of the same order of magnitude as the natural frequency of the PLL. New results for the PLL natural frequency equal to the bandpass filter bandwidth are presented for a second order PLL operating with carrier plus noise as the input. However, it is shown that extensions to higher order loops, and to the case of a modulated carrier are straightforward. The new results presented give the cycle skipping rate of the PLL as a function of the input carrier to noise ratio when the PLL natural frequency is equal to the bandpass filter bandwidth. Preliminary results showing the variation of the output noise power and cycle skipping rates of the PLL as a function of the loop damping ratio for the PLL natural frequency equal to the bandpass filter bandwidth are also included.

  18. Higher rank ABJM Wilson loops from matrix models

    DOE PAGES

    Cookmeyer, Jonathan; Liu, James T.; Pando Zayas, Leopoldo A.

    2016-11-21

    We compute the vacuum expectation values of 1/6 supersymmetric Wilson loops in higher dimensional representations of the gauge group in ABJM theory. We then present results for the m-symmetric and m-antisymmetric representations by exploiting standard matrix model techniques. At leading order, in the saddle point approximation, our expressions reproduce holographic results from both D6 and D2 branes corresponding to the antisymmetric and symmetric representations, respectively. We also compute 1/N corrections to the leading saddle point results.

  19. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  20. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  1. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1986-01-01

    An approach to the design of digital phase locked loops (DPLLs), using estimation theory concepts in the selection of a loop filter, is presented. The key concept is that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The estimator provides recursive estimates of phase, frequency, and higher order derivatives, while the predictor compensates for the transport lag inherent in the loop. This decomposition results in a straightforward loop filter design procedure, enabling use of techniques from optimal and sub-optimal estimation theory. A design example for a particular choice of estimator is presented, followed by analysis of the associated bandwidth, gain margin, and steady state errors caused by unmodeled dynamics. This approach is under consideration for the design of the Deep Space Network (DSN) Advanced Receiver Carrier DPLL.

  2. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  3. Analysis of TMT primary mirror control-structure interaction

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.

    2008-07-01

    The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.

  4. Quantum properties of supersymmetric theories regularized by higher covariant derivatives

    NASA Astrophysics Data System (ADS)

    Stepanyantz, Konstantin

    2018-02-01

    We investigate quantum corrections in \\mathscr{N} = 1 non-Abelian supersymmetric gauge theories, regularized by higher covariant derivatives. In particular, by the help of the Slavnov-Taylor identities we prove that the vertices with two ghost legs and one leg of the quantum gauge superfield are finite in all orders. This non-renormalization theorem is confirmed by an explicit one-loop calculation. By the help of this theorem we rewrite the exact NSVZ β-function in the form of the relation between the β-function and the anomalous dimensions of the matter superfields, of the quantum gauge superfield, and of the Faddeev-Popov ghosts. Such a relation has simple qualitative interpretation and allows suggesting a prescription producing the NSVZ scheme in all loops for the theories regularized by higher derivatives. This prescription is verified by the explicit three-loop calculation for the terms quartic in the Yukawa couplings.

  5. Analysis of Smart Composite Structures Including Debonding

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1997-01-01

    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite laminates with pre-existing debonding. Significant changes in the modes shapes and reductions in the control authority result due to partially debonded actuators. An experimental investigation addresses practical issues, such as circuit design and implementation, associated with piezoelectric sensing and actuation of composite laminates. Composite specimens with piezoelectric transducers were designed, constructed and tested to validate the higher order theory. These specimens were tested with various stacking sequences, debonding lengths and gains for both open and closed loop cases. Frequency changes of 15% and damping on the order of more than 20% of critical damping, via closed loop control, was achieved. Correlation with the higher order theory is very good. Debonding is shown to adversely affect the open and closed loop frequencies, damping ratios, settling time and control authority.

  6. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.

    PubMed

    Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2012-03-01

    Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.

  7. Alterations in aerobic energy expenditure and neuromuscular function during a simulated cross-country skiathlon with the skating technique.

    PubMed

    Fabre, Nicolas; Mourot, Laurent; Zoppirolli, Chiara; Andersson, Erik; Willis, Sarah J; Holmberg, Hans-Christer

    2015-04-01

    Here, we tested the hypothesis that aerobic energy expenditure (AEE) is higher during a simulated 6-km (2 loops of 3-km each) "skiathlon" than during skating only on a treadmill and attempted to link any such increase to biomechanical and neuromuscular responses. Six elite male cross-country skiers performed two pre-testing time-trials (TT) to determine their best performances and to choose an appropriate submaximal speed for collection of physiological, biomechanical and neuromuscular data during two experimental sessions (exp). Each skier used, in randomized order, either the classical (CL) or skating technique (SK) for the first 3-km loop, followed by transition to the skating technique for the second 3-km loop. Respiratory parameters were recorded continuously. The EMG activity of the triceps brachii (TBr) and vastus lateralis (VLa) muscles during isometric contractions performed when the skiers were stationary (i.e., just before the first loop, during the transition, and after the second loop); their corresponding activity during dynamic contractions; and pole and plantar forces during the second loop were recorded. During the second 3-km of the TT, skating speed was significantly higher for the SK-SK than CL-SK. During this second loop, AEE was also higher (+1.5%) for CL-SKexp than SK-SKexp, in association with higher VLa EMG activity during both isometric and dynamic contractions, despite no differences in plantar or pole forces, poling times or cycle rates. Although the underlying mechanism remains unclear, during a skiathlon, the transition between the sections of classical skiing and skating alters skating performance (i.e., skiing speed), AEE and neuromuscular function. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Anderson, M. R.

    1985-01-01

    Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.

  9. Suppressing Transients In Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1993-01-01

    Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.

  10. Observational constraints on loop quantum cosmology.

    PubMed

    Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji

    2011-11-18

    In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background and other cosmological experiments, we place bounds on the quantum corrections.

  11. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Anderson, M. R.; Schmidt, D. K.

    1986-01-01

    In the case of approach and landing, it is universally accepted that the pilot uses more than one vehicle response, or output, to close his control loops. Therefore, to model this task, a multi-loop analysis technique is required. The analysis problem has been in obtaining reasonable analytic estimates of the describing functions representing the pilot's loop compensation. Once these pilot describing functions are obtained, appropriate performance and workload metrics must then be developed for the landing task. The optimal control approach provides a powerful technique for obtaining the necessary describing functions, once the appropriate task objective is defined in terms of a quadratic objective function. An approach is presented through the use of a simple, reasonable objective function and model-based metrics to evaluate loop performance and pilot workload. The results of an analysis of the LAHOS (Landing and Approach of Higher Order Systems) study performed by R.E. Smith is also presented.

  12. Comments on higher rank Wilson loops in N = 2∗

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U( N ) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigen-value distributions in various regimes of parameters ( N, λ , n, k) where λ is the 't Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previously known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.

  13. Unconventional minimal subtraction and Bogoliubov-Parasyuk-Hepp-Zimmermann method: Massive scalar theory and critical exponents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Paulo R. S.; Leite, Marcelo M.

    2013-09-15

    We introduce a simpler although unconventional minimal subtraction renormalization procedure in the case of a massive scalar λφ{sup 4} theory in Euclidean space using dimensional regularization. We show that this method is very similar to its counterpart in massless field theory. In particular, the choice of using the bare mass at higher perturbative order instead of employing its tree-level counterpart eliminates all tadpole insertions at that order. As an application, we compute diagrammatically the critical exponents η and ν at least up to two loops. We perform an explicit comparison with the Bogoliubov-Parasyuk-Hepp-Zimmermann (BPHZ) method at the same loop order,more » show that the proposed method requires fewer diagrams and establish a connection between the two approaches.« less

  14. Real-time fringe pattern demodulation with a second-order digital phase-locked loop.

    PubMed

    Gdeisat, M A; Burton, D R; Lalor, M J

    2000-10-10

    The use of a second-order digital phase-locked loop (DPLL) to demodulate fringe patterns is presented. The second-order DPLL has better tracking ability and more noise immunity than the first-order loop. Consequently, the second-order DPLL is capable of demodulating a wider range of fringe patterns than the first-order DPLL. A basic analysis of the first- and the second-order loops is given, and a performance comparison between the first- and the second-order DPLL's in analyzing fringe patterns is presented. The implementation of the second-order loop in real time on a commercial parallel image processing system is described. Fringe patterns are grabbed and processed, and the resultant phase maps are displayed concurrently.

  15. On the loop approximation in nucleon QCD sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukarev, E. G., E-mail: drukarev@thd.pnpi.spb.ru; Ryskin, M. G.; Sadovnikova, V. A.

    There was a general belief that the nucleon QCD sum rules which include only the quark loops and thus contain only the condensates of dimension d = 3 and d = 4 have only a trivial solution. We demonstrate that there is also a nontrivial solution. We show that it can be treated as the lowest order approximation to the solution which includes the higher terms of the Operator Product Expansion. Inclusion of the radiative corrections improves the convergence of the series.

  16. Nonlinear identification of the total baroreflex arc: higher-order nonlinearity

    PubMed Central

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru

    2016-01-01

    The total baroreflex arc is the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP). The nonlinear dynamics of this system were recently characterized. First, Gaussian white noise CSP stimulation was employed in open-loop conditions in normotensive and hypertensive rats with sectioned vagal and aortic depressor nerves. Nonparametric system identification was then applied to measured CSP and AP to establish a second-order nonlinear Uryson model. The aim in this study was to assess the importance of higher-order nonlinear dynamics via development and evaluation of a third-order nonlinear model of the total arc using the same experimental data. Third-order Volterra and Uryson models were developed by employing nonparametric and parametric identification methods. The R2 values between the AP predicted by the best third-order Volterra model and measured AP in response to Gaussian white noise CSP not utilized in developing the model were 0.69 ± 0.03 and 0.70 ± 0.03 for normotensive and hypertensive rats, respectively. The analogous R2 values for the best third-order Uryson model were 0.71 ± 0.03 and 0.73 ± 0.03. These R2 values were not statistically different from the corresponding values for the previously established second-order Uryson model, which were both 0.71 ± 0.03 (P > 0.1). Furthermore, none of the third-order models predicted well-known nonlinear behaviors including thresholding and saturation better than the second-order Uryson model. Additional experiments suggested that the unexplained AP variance was partly due to higher brain center activity. In conclusion, the second-order Uryson model sufficed to represent the sympathetically mediated total arc under the employed experimental conditions. PMID:27629885

  17. Higgs boson mass in the standard model at two-loop order and beyond

    DOE PAGES

    Martin, Stephen P.; Robertson, David G.

    2014-10-01

    We calculate the mass of the Higgs boson in the standard model in terms of the underlying Lagrangian parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing the results is provided. The program also computes and minimizes the standard model effective potential in Landau gauge at 2-loop order with leading 3-loop corrections.

  18. A chicken intestinal ligated loop model to study the virulence of Clostridium perfringens isolates recovered from antibiotic-free chicken flocks.

    PubMed

    Parent, Eric; Archambault, Marie; Charlebois, Audrey; Bernier-Lachance, Jocelyn; Boulianne, Martine

    2017-04-01

    Necrotic enteritis (NE) is a major problem in antibiotic-free (ABF) chicken flocks and specific strains of Clostridium perfringens are known to induce NE. The objective of this study was to develop a chicken intestinal ligated loop model in order to compare the virulence of various C. perfringens strains recovered from consecutive ABF flocks with and without NE. Intestinal loops were surgically prepared in 10 anaesthetized specific-pathogen-free chickens and alternately inoculated with C. perfringens isolates or brain heart infusion (BHI) media. Histological lesion scoring was performed for each loop. All strains from NE-affected flocks induced histological lesions compatible with NE whereas inoculation of loops with a commensal C. perfringens strain or BHI did not. Among inoculated strains, CP0994 (netB-positive and cpb2-positive) and CP-2003-1256 (netB-positive) demonstrated mean histological lesion scores significantly higher (P < 0.01) than those obtained with a commensal strain or BHI whereas strain CP1073 (netB-negative and cpb2-positive) induced intestinal lesions without significantly higher scores. In loops where villi were colonized by Gram-positive rods, significantly higher (P < 0.01) mean histological lesion scores were observed. This result supports the hypothesis that colonization of the intestinal mucosa by C. perfringens is a critical step in the pathogenesis of NE. Finally, we demonstrated the importance of controlling virulent C. perfringens strains in ABF chicken flocks as a highly virulent strain can be present in consecutive flocks with NE and possibly affect multiple flocks.

  19. Fractional order PIλ controller synthesis for steam turbine speed governing systems.

    PubMed

    Chen, Kai; Tang, Rongnian; Li, Chuang; Lu, Junguo

    2018-06-01

    The current state of the art of fractional order stability theory is hardly to build connection between the time domain analysis and frequency domain synthesis. The existing tuning methodologies for fractional order PI λ D μ are not always satisfy the given gain crossover frequency and phase margin simultaneously. To overcome the drawbacks in the existing synthesis of fractional order controller, the synthesis of optimal fractional order PI λ controller for higher-order process is proposed. According to the specified phase margin, the corresponding upper boundary of gain crossover frequency and stability surface in parameter space are obtained. Sweeping the order parameter over λ∈(0,2), the complete set of stabilizing controller which guarantees both pre-specifying phase frequency characteristic can be collected. Whereafter, the optimal fractional order PI λ controller is applied to the speed governing systems of steam turbine generation units. The numerical simulation and hardware-in-the-loop simulation demonstrate the effectiveness and satisfactory closed-loop performance of obtained fractional order PI λ controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Carbon-free hydrogen production from low rank coal

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  1. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices.

    PubMed

    Bocan, Kara N; Mickle, Marlin H; Sejdic, Ervin

    2017-01-01

    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.

  2. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices

    PubMed Central

    Bocan, Kara N.; Mickle, Marlin H.

    2017-01-01

    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology. PMID:29018637

  3. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  4. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  5. Towards a bootstrap approach to higher orders of epsilon expansion

    NASA Astrophysics Data System (ADS)

    Dey, Parijat; Kaviraj, Apratim

    2018-02-01

    We employ a hybrid approach in determining the anomalous dimension and OPE coefficient of higher spin operators in the Wilson-Fisher theory. First we do a large spin analysis for CFT data where we use results obtained from the usual and the Mellin bootstrap and also from Feynman diagram literature. This gives new predictions at O( ɛ 4) and O( ɛ 5) for anomalous dimensions and OPE coefficients, and also provides a cross-check for the results from Mellin bootstrap. These higher orders get contributions from all higher spin operators in the crossed channel. We also use the bootstrap in Mellin space method for ϕ 3 in d = 6 - ɛ CFT where we calculate general higher spin OPE data. We demonstrate a higher loop order calculation in this approach by summing over contributions from higher spin operators of the crossed channel in the same spirit as before.

  6. Computation of NLO processes involving heavy quarks using Loop-Tree Duality

    NASA Astrophysics Data System (ADS)

    Driencourt-Mangin, Félix

    2017-03-01

    We present a new method to compute higher-order corrections to physical cross-sections, at Next-to-Leading Order and beyond. This method, based on the Loop Tree Duality, leads to locally integrable expressions in four dimensions. By introducing a physically motivated momentum mapping between the momenta involved in the real and the virtual contributions, infrared singularities naturally cancel at integrand level, without the need to introduce subtraction counter-terms. Ultraviolet singularities are dealt with by using dual representations of suitable counter-terms, with some subtleties regarding the self-energy contributions. As an example, we apply this method to compute the 1 → 2 decay rate in the context of a scalar toy model with massive particles.

  7. Analysis of a first order phase locked loop in the presence of Gaussian noise

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1977-01-01

    A first-order digital phase locked loop is analyzed by application of a Markov chain model. Steady state loop error probabilities, phase standard deviation, and mean loop transient times are determined for various input signal to noise ratios. Results for direct loop simulation are presented for comparison.

  8. Visualization of chromatin domains created by the gypsy insulator of Drosophila.

    PubMed

    Byrd, Keith; Corces, Victor G

    2003-08-18

    Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.

  9. Speed-accuracy trade-off in skilled typewriting: decomposing the contributions of hierarchical control loops.

    PubMed

    Yamaguchi, Motonori; Crump, Matthew J C; Logan, Gordon D

    2013-06-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer- and inner-loop processes to the control of speed and accuracy in typewriting. Experiments 1 and 2 involved discontinuous typing of single words, and Experiments 3 and 4 involved continuous typing of paragraphs. Across experiments, typists were able to trade speed for accuracy but were unable to type at rates faster than 100 ms/keystroke, implying limits to the flexibility of the underlying processes. The analyses of the component latencies and errors indicated that the majority of the trade-offs were due to inner-loop processing. The contribution of outer-loop processing to the trade-offs was small, but it resulted in large costs in error rate. Implications for strategic control of automatic processes are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  10. Comments on higher rank Wilson loops in N$$ \\mathcal{N} $$ = 2∗

    DOE PAGES

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U(N) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigenvalue distributions in various regimes of parameters (N, λ, n, k) where λ is the ’t Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previouslymore » known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.« less

  11. A proposal of a local modified QCD

    NASA Astrophysics Data System (ADS)

    Cabo Montes de Oca, A.

    2012-06-01

    A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.

  12. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster

    PubMed Central

    Tsai, Yu-Cheng; Cooke, Nancy E.; Liebhaber, Stephen A.

    2016-01-01

    Abstract The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR ‘loops’ over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed ‘hCS chromatin hub’. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  13. Outline for a theory of intelligence

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1991-01-01

    Intelligence is defined as that which produces successful behavior. Intelligence is assumed to result from natural selection. A model is proposed that integrates knowledge from research in both natural and artificial systems. The model consists of a hierarchical system architecture wherein: (1) control bandwidth decreases about an order of magnitude at each higher level, (2) perceptual resolution of spatial and temporal patterns contracts about an order-of-magnitude at each higher level, (3) goals expand in scope and planning horizons expand in space and time about an order-of-magnitude at each higher level, and (4) models of the world and memories of events expand their range in space and time by about an order-of-magnitude at each higher level. At each level, functional modules perform behavior generation (task decomposition planning and execution), world modeling, sensory processing, and value judgment. Sensory feedback control loops are closed at every level.

  14. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE PAGES

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    2018-02-15

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  15. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  16. Worldline approach to helicity flip in plane waves

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Torgrimsson, Greger

    2016-04-01

    We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarization effects.

  17. Effect of closed-loop order processing on the time to initial antimicrobial therapy.

    PubMed

    Panosh, Nicole; Rew, Richardd; Sharpe, Michelle

    2012-08-15

    The results of a study comparing the average time to initiation of i.v. antimicrobial therapy with closed-versus open-loop order entry and processing are reported. A retrospective cohort study was performed to compare order-to-administration times for initial doses of i.v. antimicrobials before and after a closed-loop order-processing system including computerized prescriber order entry (CPOE) was implemented at a large medical center. A total of 741 i.v. antimicrobial administrations to adult patients during designated five-month preimplementation and postimplementation study periods were assessed. Drug-use reports generated by the pharmacy database were used to identify order-entry times, and medication administration records were reviewed to determine times of i.v. antimicrobial administration. The mean ± S.D. order-to-administration times before and after the implementation of the CPOE system and closed-loop order processing were 3.18 ± 2.60 and 2.00 ± 1.89 hours, respectively, a reduction of 1.18 hours (p < 0.0001). Closed-loop order processing was associated with significant reductions in the average time to initiation of i.v. therapy in all patient care areas evaluated (cardiology, general medicine, and oncology). The study results suggest that CPOE-based closed-loop order processing can play an important role in achieving compliance with current practice guidelines calling for increased efforts to ensure the prompt initiation of i.v. antimicrobials for severe infections (e.g., sepsis, meningitis). Implementation of a closed-loop order-processing system resulted in a significant decrease in order-to-administration times for i.v. antimicrobial therapy.

  18. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.

    PubMed

    Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis

    2018-03-01

    Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.

  19. The two and three-loop matter bispectrum in perturbation theories

    NASA Astrophysics Data System (ADS)

    Lazanu, Andrei; Liguori, Michele

    2018-04-01

    We evaluate for the first time the dark matter bispectrum of large-scale structure at two loops in the Standard Perturbation Theory and at three loops in the Renormalised Perturbation Theory (MPTBREEZE formalism), removing in each case the leading divergences in the integrals in order to make them infrared-safe. We show that the Standard Perturbation Theory at two loops can be employed to model the matter bispectrum further into the quasi-nonlinear regime compared to the one loop, up to kmax ~ 0.1 h/Mpc at z = 0, but without reaching a high level of accuracy. In the case of the MPTBREEZE method, we show that its bispectra decay at smaller and smaller scales with increasing loop order, but with smaller improvements decreases with loop order. At three loops, this model predicts the bispectrum accurately up to scales kmax ~ 0.17 h/Mpc at z = 0 and kmax ~ 0.24 h/Mpc at z = 1.

  20. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    PubMed

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  1. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  2. Latest developments on the loop control system of AdOpt@TNG

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gaessler, Wolfgang; Cecconi, Massimo; Ragazzoni, Roberto; Puglisi, Alfio T.; De Bonis, Fulvio

    2004-10-01

    The Adaptive Optics System of the Galileo Telescope (AdOpt@TNG) is the only adaptive optics system mounted on a telescope which uses a pyramid wavefront snesor and it has already shown on sky its potentiality. Recently AdOpt@TNG has undergone deep changes at the level of its higher orders control system. The CCD and the Real Time Computer (RTC) have been substituted as a whole. Instead of the VME based RTC, due to its frequent breakdowns, a dual pentium processor PC with Real-Time-Linux has been chosen. The WFS CCD, that feeds the images to the RTC, was changed to an off-the-shelf camera system from SciMeasure with an EEV39 80x80 pixels as detector. While the APD based Tip/Tilt loop has shown the quality on the sky at the TNG site and the ability of TNG to take advantage of this quality, up to the diffraction limit, the High-Order system has been fully re-developed and the performance of the closed loop is under evaluation to offer the system with the best performance to the astronomical community.

  3. Maintenance of a functional higher order chromatin structure: The role of the nuclear matrix in normal and disease states

    PubMed Central

    Linnemann, Amelia K.; Krawetz, Stephen A.

    2010-01-01

    Summary The ordered packaging of DNA within the nucleus of somatic cells reflects a dynamic supportive structure that facilitates stable transcription interrupted by intermittent cycles of extreme condensation. This dynamic mode of packing and unpacking chromatin is intimately linked to the ability of the genome to specifically complex with both histones and non-histone proteins. Understanding the underlying mechanism that governs the formation of higher order chromatin structures is a key to understanding how local architecture modulates transcription. In part, the formation of these structures appears to be regulated through genomic looping that is dynamically mediated by attachment to the nuclear scaffold/matrix at S/MARs, i.e., Scaffold/Matrix Attachment Regions. Although the mechanism guiding the formation and use of these higher-ordered structures remains unknown, S/MARs continue to reveal a multitude of roles in development and the pathogenesis of disease. PMID:20948980

  4. Maintenance of a functional higher order chromatin structure: The role of the nuclear matrix in normal and disease states.

    PubMed

    Linnemann, Amelia K; Krawetz, Stephen A

    2009-01-01

    The ordered packaging of DNA within the nucleus of somatic cells reflects a dynamic supportive structure that facilitates stable transcription interrupted by intermittent cycles of extreme condensation. This dynamic mode of packing and unpacking chromatin is intimately linked to the ability of the genome to specifically complex with both histones and non-histone proteins. Understanding the underlying mechanism that governs the formation of higher order chromatin structures is a key to understanding how local architecture modulates transcription. In part, the formation of these structures appears to be regulated through genomic looping that is dynamically mediated by attachment to the nuclear scaffold/matrix at S/MARs, i.e., Scaffold/Matrix Attachment Regions. Although the mechanism guiding the formation and use of these higher-ordered structures remains unknown, S/MARs continue to reveal a multitude of roles in development and the pathogenesis of disease.

  5. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  6. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  7. Analysis of first and second order binary quantized digital phase-locked loops for ideal and white Gaussian noise inputs

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1980-01-01

    Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.

  8. Does one need the O({epsilon})- and O({epsilon}{sup 2})-terms of one-loop amplitudes in a next-to-next-to-leading order calculation ?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Stefan

    2011-10-01

    This article discusses the occurrence of one-loop amplitudes within a next-to-next-to-leading-order calculation. In a next-to-next-to-leading-order calculation, the one-loop amplitude enters squared and one would therefore naively expect that the O({epsilon})- and O({epsilon}{sup 2})-terms of the one-loop amplitudes are required. I show that the calculation of these terms can be avoided if a method is known, which computes the O({epsilon}{sup 0})-terms of the finite remainder function of the two-loop amplitude.

  9. Engineering sciences design. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1989-01-01

    The primary goal was to address specific needs in the design of an integrated system to grow higher plants in space. With the needs defined, the emphasis was placed on the design and fabrication of devices to meet these needs. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  10. Renormalization scheme dependence of high-order perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Xing-Gang

    2018-02-01

    Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.

  11. Steady state statistical correlations predict bistability in reaction motifs.

    PubMed

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  12. Adjunct Faculty Needs Assessment and Closing the Loop: A Comparative Study

    ERIC Educational Resources Information Center

    Washburn, Jeanne

    2017-01-01

    In order to remain competitive, higher education institutions must be prepared to acculturate adjunct faculty to their mission and instructional philosophy (Bojarczyk, 2008). They must also develop programs that support and engage adjunct faculty (Blodgett, 2008; Landers, 2012). The purpose of this study was to analyze and describe differences…

  13. Study of Interpolated Timing Recovery Phase-Locked Loop with Linearly Constrained Adaptive Prefilter for Higher-Density Optical Disc

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yoshiyuki; Shiraishi, Junya; Kobayashi, Shoei; Yamagami, Tamotsu

    2009-03-01

    A digital phase-locked loop (PLL) with a linearly constrained adaptive filter (LCAF) has been studied for higher-linear-density optical discs. LCAF has been implemented before an interpolated timing recovery (ITR) PLL unit in order to improve the quality of phase error calculation by using an adaptively equalized partial response (PR) signal. Coefficient update of an asynchronous sampled adaptive FIR filter with a least-mean-square (LMS) algorithm has been constrained by a projection matrix in order to suppress the phase shift of the tap coefficients of the adaptive filter. We have developed projection matrices that are suitable for Blu-ray disc (BD) drive systems by numerical simulation. Results have shown the properties of the projection matrices. Then, we have designed the read channel system of the ITR PLL with an LCAF model on the FPGA board for experiments. Results have shown that the LCAF improves the tilt margins of 30 gigabytes (GB) recordable BD (BD-R) and 33 GB BD read-only memory (BD-ROM) with a sufficient LMS adaptation stability.

  14. A simple second-order digital phase-locked loop.

    NASA Technical Reports Server (NTRS)

    Tegnelia, C. R.

    1972-01-01

    A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.

  15. A single-loop optimization method for reliability analysis with second order uncertainty

    NASA Astrophysics Data System (ADS)

    Xie, Shaojun; Pan, Baisong; Du, Xiaoping

    2015-08-01

    Reliability analysis may involve random variables and interval variables. In addition, some of the random variables may have interval distribution parameters owing to limited information. This kind of uncertainty is called second order uncertainty. This article develops an efficient reliability method for problems involving the three aforementioned types of uncertain input variables. The analysis produces the maximum and minimum reliability and is computationally demanding because two loops are needed: a reliability analysis loop with respect to random variables and an interval analysis loop for extreme responses with respect to interval variables. The first order reliability method and nonlinear optimization are used for the two loops, respectively. For computational efficiency, the two loops are combined into a single loop by treating the Karush-Kuhn-Tucker (KKT) optimal conditions of the interval analysis as constraints. Three examples are presented to demonstrate the proposed method.

  16. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  17. Cosmological models in energy-momentum-squared gravity

    NASA Astrophysics Data System (ADS)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  18. Cohesin organizes chromatin loops at DNA replication factories

    PubMed Central

    Guillou, Emmanuelle; Ibarra, Arkaitz; Coulon, Vincent; Casado-Vela, Juan; Rico, Daniel; Casal, Ignacio; Schwob, Etienne; Losada, Ana; Méndez, Juan

    2010-01-01

    Genomic DNA is packed in chromatin fibers organized in higher-order structures within the interphase nucleus. One level of organization involves the formation of chromatin loops that may provide a favorable environment to processes such as DNA replication, transcription, and repair. However, little is known about the mechanistic basis of this structuration. Here we demonstrate that cohesin participates in the spatial organization of DNA replication factories in human cells. Cohesin is enriched at replication origins and interacts with prereplication complex proteins. Down-regulation of cohesin slows down S-phase progression by limiting the number of active origins and increasing the length of chromatin loops that correspond with replicon units. These results give a new dimension to the role of cohesin in the architectural organization of interphase chromatin, by showing its participation in DNA replication. PMID:21159821

  19. Polyakov loop modeling for hot QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Skokov, Vladimir

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  20. Polyakov loop modeling for hot QCD

    DOE PAGES

    Fukushima, Kenji; Skokov, Vladimir

    2017-06-19

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  1. Novel All Digital Ring Cavity Locking Servo

    NASA Astrophysics Data System (ADS)

    Baker, J.; Gallant, D.; Lucero, A.; Miller, H.; Stohs, J.

    We plan to use this servo in the new 50W 589-nm sodium guidestar laser to be installed in the AMOS facility in July 2010. Though the basic design is unchanged from the successful Hillman/Denman design, numerous improvements are being implemented in order to bring the device even further out of the lab and into the field. The basic building block of the Hillman/Denman design are two low noise master oscillators that are injected into higher power slave oscillators that are locked to the frequencies of the master oscillator cavities. In the previous system a traditional analog Pound-Drever-Hall (PDH) loop was employed to provide the frequency locking. Analog servos work well, in general, but robust locking for a complex set of multiply-interconnected PDH servos in the guidestar source challenges existing analog approaches. One of the significant changes demonstrated thus far is the implementation of an all-digital servo using only COTS components and a fast CISC processing architecture for orchestrating the basic PDH loops active within system. Compared to the traditionally used analog servo loops, an all-digital servo is a not only an orders-of-magnitude simpler servo loop to implement but the control loop can be modified by merely changing the computer code. Field conditions are often different from laboratory conditions, requiring subtle algorithm changes, and physical accessibility in the field is generally limited and difficult. Remotely implemented, trimmer-less and solderless servo upgrades are a much welcomed improvement in the field installed guidestar system. Also, OEM replacement of usual benchtop components saves considerable space and weight as well in the locking system. We will report on the details of the servo system and recent experimental results locking a master-slave laser oscillator system using the all-digital Pound-Drever-Hall loop.

  2. Method of implementing digital phase-locked loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A. (Inventor); Thomas, Jess Brooks, Jr. (Inventor)

    1993-01-01

    In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, or root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (BLT yields 0) and in a discrete-update formulation with arbitrary BLT. Deficiencies of the continuous-update approximation in large-BLT applications are avoided in the new discrete-update formulation. A new method for direct, transient-free acquisition with third- and fourth-order loops can improve the versatility and reliability of acquisition with such loops.

  3. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  4. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE PAGES

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  5. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.

    1989-01-01

    This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  6. All orders results for self-crossing Wilson loops mimicking double parton scattering

    DOE PAGES

    Dixon, Lance J.; Esterlis, Ilya

    2016-07-21

    Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limitmore » to high loop order in planar N = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. Furthermore, we also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.« less

  7. All orders results for self-crossing Wilson loops mimicking double parton scattering

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Esterlis, Ilya

    2016-07-01

    Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limit to high loop order in planar {N} = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. We also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.

  8. Itinerant electrons in the Coulomb phase

    NASA Astrophysics Data System (ADS)

    Jaubert, L. D. C.; Piatecki, Swann; Haque, Masudul; Moessner, R.

    2012-02-01

    We study the interplay between magnetic frustration and itinerant electrons. For example, how does the coupling to mobile charges modify the properties of a spin liquid, and does the underlying frustration favor insulating or conducting states? Supported by Monte Carlo simulations, our goal is in particular to provide an analytical picture of the mechanisms involved. The models under consideration exhibit Coulomb phases in two and three dimensions, where the itinerant electrons are coupled to the localized spins via double exchange interactions. Because of the Hund coupling, magnetic loops naturally emerge from the Coulomb phase and serve as conducting channels for the mobile electrons, leading to doping-dependent rearrangements of the loop ensemble in order to minimize the electronic kinetic energy. At low electron density ρ, the double exchange coupling mainly tends to segment the very long loops winding around the system into smaller ones while it gradually lifts the extensive degeneracy of the Coulomb phase with increasing ρ. For higher doping, the results are strongly lattice dependent, displaying loop crystals with a given loop length for some specific values of ρ. By varying ρ, they can melt into different mixtures of these loop crystals, recovering extensive degeneracy in the process. Finally, we contrast this to the qualitatively different behavior of analogous models on kagome or triangular lattices.

  9. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  10. Digital second-order phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.

    1975-01-01

    Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.

  11. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  12. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  13. Precision comparison of the power spectrum in the EFTofLSS with simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, Simon; Senatore, Leonardo; Perrier, Hideki, E-mail: sfore@stanford.edu, E-mail: senatore@stanford.edu, E-mail: hideki.perrier@unige.ch

    2016-05-01

    We study the prediction of the dark matter power spectrum at two-loop order in the Effective Field Theory of Large Scale Structures (EFTofLSS) using high precision numerical simulations. In our universe, short distance non-linear fluctuations, not under perturbative control, affect long distance fluctuations through an effective stress tensor that needs to be parametrized in terms of counterterms that are functions of the long distance fluctuating fields. We find that at two-loop order it is necessary to include three counterterms: a linear term in the overdensity, δ, a quadratic term, δ{sup 2}, and a higher derivative term, ∂{sup 2}δ. After themore » inclusion of these three terms, the EFTofLSS at two-loop order matches simulation data up to k ≅ 0.34 h Mpc{sup −1} at redshift z = 0, up to k ≅ 0.55 h Mpc{sup −1} at z = 1, and up to k ≅ 1.1 h Mpc{sup −1} at z = 2. At these wavenumbers, the cosmic variance of the simulation is at least as small as 10{sup −3}, providing for the first time a high precision comparison between theory and data. The actual reach of the theory is affected by theoretical uncertainties associated to not having included higher order terms in perturbation theory, for which we provide an estimate, and by potentially overfitting the data, which we also try to address. Since in the EFTofLSS the coupling constants associated with the counterterms are unknown functions of time, we show how a simple parametrization gives a sensible description of their time-dependence. Overall, the k -reach of the EFTofLSS is much larger than previous analytical techniques, showing that the amount of cosmological information amenable to high-precision analytical control might be much larger than previously believed.« less

  14. QCD phase diagram using PNJL model with eight-quark interactions

    NASA Astrophysics Data System (ADS)

    Deb, Paramita; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Ray, Rajarshi; Lahiri, Anirban

    2011-07-01

    We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu-Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.

  15. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  16. Statistical Characteristic of Global Tropical Cyclone Looping Motion

    NASA Astrophysics Data System (ADS)

    Shen, W.; Song, J.; Wang, Y.

    2016-12-01

    Statistical characteristic of looping motion of tropical cyclones (TCs) in the Western North Pacific (WPAC), North Atlantic (NATL), Eastern North Pacific (EPAC), Northern Indian Ocean (NIO), Southern Indian Ocean (SIO) and South Pacific (SPAC) basins are investigated by using IBTrACS archive maintained by NOAA. From global perspective, about ten percent TCs experience a looping motion in the above six basins. The southern hemisphere (SH) including SIO and SPAC basins have higher looping percentage than the northern hemisphere (NH), while the EPAC basin has the least looping percentage. The interannual variation of the number of looping TCs are significantly correlated with that of total TCs in the NATL, SIO and SPAC basins, while there are no correlations between the EPAC and NIO basins. The numbers of looping TCs have a higher percentage in the early and late cyclone season in the NH rather than the peak period of cyclone season, while the SIO and SPAC basins have the higher looping percentage in the early and late cyclone season, respectively. The looping motion of TCs mainly concentrates on the scale of tropical depression to category 2 and has its peak value on the scale of tropical storm. The looping motion appears more frequently and has a higher percentage at the pre-mature stage than the post-mature stage of TCs in most basins except EPAC. Comparing the intensity and intensity variation caused by the looping motion, the weaker TCs tend to intensify after looping, while the more intense ones weaken.

  17. TeV scale dark matter and electroweak radiative corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-08-15

    Recent anomalies in cosmic rays data, namely, from the PAMELA Collaboration, can be interpreted in terms of TeV scale decaying/annihilating dark matter. We analyze the impact of radiative corrections coming from the electroweak sector of the standard model on the spectrum of the final products at the interaction point. As an example, we consider virtual one loop corrections and real gauge bosons emission in the case of a very heavy vector boson annihilating into fermions. We find electroweak corrections that are relevant, but not as big as sometimes found in the literature; we relate this mismatch to the issue ofmore » gauge invariance. At scales much higher than the symmetry breaking scale, one loop electroweak effects are so big that eventually higher orders/resummations have to be considered: we advocate for the inclusion of these effects in parton shower Monte Carlo models aiming at the description of TeV scale physics.« less

  18. Investigation of air transportation technology at Ohio University, 1980. [general aviation aircraft and navigation aids

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1981-01-01

    Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.

  19. Hard-thermal-loop perturbation theory to two loops

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael

    2002-10-01

    We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.

  20. The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects

    NASA Astrophysics Data System (ADS)

    Young, Donovan

    2007-06-01

    Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.

  1. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  2. Metaphors for the Nature of Human-Computer Interaction in an Empowering Environment: Interaction Style Influences the Manner of Human Accomplishment.

    ERIC Educational Resources Information Center

    Weller, Herman G.; Hartson, H. Rex

    1992-01-01

    Describes human-computer interface needs for empowering environments in computer usage in which the machine handles the routine mechanics of problem solving while the user concentrates on its higher order meanings. A closed-loop model of interaction is described, interface as illusion is discussed, and metaphors for human-computer interaction are…

  3. Electron microscopy observations of radiation damage in irradiated and annealed tungsten

    NASA Astrophysics Data System (ADS)

    Grzonka, J.; Ciupiński, Ł.; Smalc-Koziorowska, J.; Ogorodnikova, O. V.; Mayer, M.; Kurzydłowski, K. J.

    2014-12-01

    In the present work tungsten samples were irradiated with W6+ ions with a kinetic energy of 20 MeV in order to simulate radiation damage by fast neutrons. Two samples with cumulative damage of 2.3 and 6.36 displacements per atom were produced. The scanning transmission electron microscopy investigations were carried out in order to determine structure changes resulting from the irradiation. The evolution of the damage with post implantation annealing in the temperature range 673-1100 K was also assessed. Damage profiles were studied at cross-sections. Scanning transmission electron microscopy studies of the lamellae after annealing revealed aggregation of defects and rearrangement as well as partial healing of dislocations at higher temperatures. The results confirm the higher density of radiation-induced dislocations in the near surface area of the sample (1.8 * 1014 m-2) in comparison with a deeper damage area (1.5 * 1014 m-2). Significant decrease of dislocation density was observed after annealing with a concurrent growth of dislocation loops. Transmission electron microscopy analyses show that the dislocation loops are perfect dislocations with the Burgers vectors of b = ½[ 1 1 1].

  4. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  5. Higgs mass prediction in the MSSM at three-loop level in a pure \\overline{{ {DR}}} context

    NASA Astrophysics Data System (ADS)

    Harlander, Robert V.; Klappert, Jonas; Voigt, Alexander

    2017-12-01

    The impact of the three-loop effects of order α _tα _s^2 on the mass of the light CP-even Higgs boson in the { {MSSM}} is studied in a pure \\overline{{ {DR}}} context. For this purpose, we implement the results of Kant et al. (JHEP 08:104, 2010) into the C++ module Himalaya and link it to FlexibleSUSY, a Mathematica and C++ package to create spectrum generators for BSM models. The three-loop result is compared to the fixed-order two-loop calculations of the original FlexibleSUSY and of FeynHiggs, as well as to the result based on an EFT approach. Aside from the expected reduction of the renormalization scale dependence with respect to the lower-order results, we find that the three-loop contributions significantly reduce the difference from the EFT prediction in the TeV-region of the { {SUSY}} scale {M_S}. Himalaya can be linked also to other two-loop \\overline{{ {DR}}} codes, thus allowing for the elevation of these codes to the three-loop level.

  6. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  7. Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.

    PubMed

    Tourkine, Piotr; Vanhove, Pierre

    2016-11-18

    The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.

  8. Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations

    NASA Technical Reports Server (NTRS)

    Potter, P. D.; Finnie, C.

    1978-01-01

    A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.

  9. Design and implementation of a hybrid digital phase-locked loop with a TMS320C25: An application to a transponder receiver breadboard

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1994-01-01

    Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.

  10. Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle

    NASA Astrophysics Data System (ADS)

    Bakhshalizadeh, Ali; Zangeneh, Hamid R. Z.; Kazemi, Rasool

    In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Tlalpa, A.; Novales-Sanchez, H.; Toscano, J. J.

    The one-loop contribution of the excited Kaluza-Klein (KK) modes of the SU{sub L}(2) gauge group on the off-shell W{sup -}W{sup +}{gamma} and W{sup -}W{sup +}Z vertices is calculated in the context of a pure Yang-Mills theory in five dimensions and its phenomenological implications discussed. The use of a gauge-fixing procedure for the excited KK modes that is covariant under the standard gauge transformations of the SU{sub L}(2) group is stressed. A gauge-fixing term and the Faddeev-Popov ghost sector for the KK gauge modes that are separately invariant under the standard gauge transformations of SU{sub L}(2) are presented. It is shownmore » that the one-loop contributions of the KK modes to the off-shell W{sup -}W{sup +}{gamma} and W{sup -}W{sup +}Z vertices are free of ultraviolet divergences and well-behaved at high energies. It is found that for a size of the fifth dimension of R{sup -1{approx}}1 TeV, the one-loop contribution of the KK modes to these vertices is about 1 order of magnitude lower than the corresponding standard model radiative correction. This contribution is similar to the one estimated for new gauge bosons contributions in other contexts. Tree-level effects on these vertices induced by operators of higher canonical dimension are also investigated. It is found that these effects are lower than those generated at the one-loop order by the KK gauge modes.« less

  12. Closed loop cavitation control - A step towards sonomechatronics.

    PubMed

    Saalbach, Kai-Alexander; Ohrdes, Hendrik; Twiefel, Jens

    2018-06-01

    In the field of sonochemistry, many processes are made possible by the generation of cavitation. This article is about closed loop control of ultrasound assisted processes with the aim of controlling the intensity of cavitation-based sonochemical processes. This is the basis for a new research field which the authors call "sonomechatronics". In order to apply closed loop control, a so called self-sensing technique is applied, which uses the ultrasound transducer's electrical signals to gain information about cavitation activity. Experiments are conducted to find out if this self-sensing technique is capable of determining the state and intensity of acoustic cavitation. A distinct frequency component in the transducer's current signal is found to be a good indicator for the onset and termination of transient cavitation. Measurements show that, depending on the boundary conditions, the onset and termination of transient cavitation occur at different thresholds, with the onset occurring at a higher value in most cases. This known hysteresis effect offers the additional possibility of achieving an energetic optimization by controlling cavitation generation. Using the cavitation indicator for the implementation of a double set point closed loop control, the mean driving current was reduced by approximately 15% compared to the value needed to exceed the transient cavitation threshold. The results presented show a great potential for the field of sonomechatronics. Nevertheless, further investigations are necessary in order to design application-specific sonomechatronic processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Massive QCD Amplitudes at Higher Orders

    NASA Astrophysics Data System (ADS)

    Moch, S.; Mitov, A.

    2007-11-01

    We consider the factorisation properties of on-shell QCD amplitudes with massive partons in the limit when all kinematical invariants are large compared to the parton mass and discuss the structure of their infrared singularities. The dimensionally regulated soft poles and the large collinear logarithms of the parton masses exponentiate to all orders. Based on this factorisation a simple relation between massless and massive scattering amplitudes in gauge theories can be established. We present recent applications of this relation for the calculation of the two-loop virtual QCD corrections to the hadro-production of heavy quarks.

  14. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster

    PubMed Central

    Mishiro, Tsuyoshi; Ishihara, Ko; Hino, Shinjiro; Tsutsumi, Shuichi; Aburatani, Hiroyuki; Shirahige, Katsuhiko; Kinoshita, Yoshikazu; Nakao, Mitsuyoshi

    2009-01-01

    Long-range regulatory elements and higher-order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin-mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF-enriched sites and three cohesin protein RAD21-enriched sites (two overlap with the CTCF sites), resulting in the formation of two transcribed chromatin loops by interactions between insulators. The C3 enhancer and APOC3/A4/A5 promoters reside in the same loop, where the APOC3/A4 promoters are pointed towards the C3 enhancer, whereas the APOA1 promoter is present in the different loop. The depletion of either CTCF or RAD21 disrupts the chromatin loop structure, together with significant changes in the APO expression and the localization of transcription factor hepatocyte nuclear factor (HNF)-4α and transcriptionally active form of RNA polymerase II at the APO promoters. Thus, CTCF/cohesin-mediated insulators maintain the chromatin loop formation and the localization of transcriptional apparatus at the promoters, suggesting an essential role of chromatin insulation in controlling the expression of clustered genes. PMID:19322193

  15. Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco

    NASA Astrophysics Data System (ADS)

    Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.

    2018-01-01

    Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.

  16. Spinning AdS loop diagrams: two point functions

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Sleight, Charlotte; Taronna, Massimo

    2018-06-01

    We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.

  17. Second-order electron self-energy loop-after-loop correction for low- Z hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Goidenko, Igor; Labzowsky, Leonti; Plunien, Günter; Soff, Gerhard

    2005-07-01

    The second-order electron self-energy loop-after-loop correction is investigated for hydrogen-like ions in the region of low nuclear charge numbers Z. Both irreducible and reducible parts of this correction are evaluated for the 1s1/2-state within the Fried-Yennie gauge. We confirm the result obtained first by Mallampalli and Sapirstein. The reducible part of this correction is evaluated numerically for the first time and it is consistent with the corresponding analytical αZ-expansion.

  18. N -loop running should be combined with N -loop matching

    NASA Astrophysics Data System (ADS)

    Braathen, Johannes; Goodsell, Mark D.; Krauss, Manuel E.; Opferkuch, Toby; Staub, Florian

    2018-01-01

    We investigate the high-scale behavior of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalization group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behavior, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N -loop RGEs, a matching should even be performed at N -loop order in contrast to common lore. We show both analytical and numerical results where the impact is sizable for three minimal extensions of the Standard Model: a singlet extension, a second Higgs doublet and finally vector-like quarks. We highlight that the known two-loop RGEs tend to moderate the running of their one-loop counterparts, typically delaying the appearance of Landau poles. For the addition of vector-like quarks we show that the complete two-loop matching and RGE evolution hints at a stabilization of the electroweak vacuum at high energies, in contrast to results in the literature.

  19. Analysis and design of a second-order digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1979-01-01

    A specific second-order digital phase-locked loop (DPLL) was modeled as a first-order Markov chain with alternatives. From the matrix of transition probabilities of the Markov chain, the steady-state phase error of the DPLL was determined. In a similar manner the loop's response was calculated for a fading input. Additionally, a hardware DPLL was constructed and tested to provide a comparison to the results obtained from the Markov chain model. In all cases tested, good agreement was found between the theoretical predictions and the experimental data.

  20. Quark mass relations to four-loop order in perturbative QCD.

    PubMed

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.

  1. Topology-driven phase transitions in the classical monomer-dimer-loop model.

    PubMed

    Li, Sazi; Li, Wei; Chen, Ziyu

    2015-06-01

    In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice, whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing (nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and can serve as the order parameter for detecting the phase transitions.

  2. CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function

    PubMed Central

    Guo, Ya; Xu, Quan; Canzio, Daniele; Shou, Jia; Li, Jinhuan; Gorkin, David U.; Jung, Inkyung; Wu, Haiyang; Zhai, Yanan; Tang, Yuanxiao; Lu, Yichao; Wu, Yonghu; Jia, Zhilian; Li, Wei; Zhang, Michael Q.; Ren, Bing; Krainer, Adrian R.; Maniatis, Tom; Wu, Qiang

    2015-01-01

    SUMMARY CTCF/cohesin play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters, and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. The findings reveal how 3D chromosome architecture can be encoded by genome sequence. PMID:26276636

  3. Mechanisms underlying radiosensitivity : iIvestigations in xrs-5, an X-ray sensitive hamster cell line

    NASA Astrophysics Data System (ADS)

    Johnston, Peter James

    The damage caused to cells by ionising radiation is believed to center on damage to the DNA. In particular, the induction of DNA double strand breaks (DSB) have been implicated in biological end-points such as cell killing and the formation of chromosomal aberrations. The xrs-5 cell line is a mutant Chinese hamster ovary fibroblast (CHO-K1) mutant which exhibits sensitivity to ionising radiation and a number of other DNA damaging agents. This mutation, postulated to involve the hamster homologue of the human XRCC5 gene, is believed to be involved in the repair of the DSB. In addition, there are constitutive differences between the wild type and xrs cells involving the structure and function of the nucleus and higher order chromatin structures. The aims of this thesis were to study further the xrs-5 cell line and its response to DNA damage and to investigate the possible link between chromatin structure and DSB repair. By the examination of the response of xrs-5 cells to a number of DNA damaging agents and potential modulators of this response using the cytokinesis block micronucleus assay [Fenech and Morley, 1985] a possible cell cycle defect was identified in addition to elevated levels of chromosomal damage. Xrs-5 cells appeared to be partially defective in the cell cycle checkpoints involving the passage from G2 phase to mitosis. By the use of a modified neutral filter elution procedure variations in the repair of DSB were observed between xrs-5 and CHO. Conventional neutral filter elution requires harsh lysis conditions to remove higher order chromatin structures which interfere with the elution of DNA containing DSB. By lysing cells with non-ionic detergent in the presence of 2 M NaC1, histone depleted structures which retain the higher order nuclear matrix organisation, including chromatin loops, can be produced. Elution from these structures will only occur if two or more DSB lie within a single looped domain delineated by points of attachment to the nuclear matrix. Repair experiments indicate that in CHO cells repair of DSB in loops containing multiple DSB are repaired with "slow" kinetics (t1/2 = 5 hrs) whilst DSB occurring in loops containing single DSB are repaired with "fast" kinetics (t1/2 " 10 min). Xrs- 5 cells are incapable of repairing these multiply damaged loops. This work indicates that the spatial orientation of DSB in higher order structures of chromatin are a possible factor in the repair of these lesions. By construction of a mathematical model of the process of elution from chromatin loops it was possible to postulate the size of the loops to approximate to 2.5-3 Mbp. Further evidence of a potential structural defect in the chromatin of xrs-5 cells was provided by examination of the polypeptide composition and DNA binding activity of nuclear extracts. The affinity of extracted proteins for double-stranded calf-thymus DNA was measured in nuclear extracts of xrs-5 and CHO cells. There was an alteration in the DNA binding activity of salt extractable proteins from xrs-5 as measured by a filter binding assay. By the use of SDS-PAGE and the technique of South-Western blotting, it was possible to identify the approximate molecular weights of these DNA binding proteins. Differences were found in DNA binding between proteins from CHO and xrs-5 extracts of both non-irradiated and irradiated cells. Two proteins with apparent molecular weights of 32.2 and 31.8 kDa exhibited a lower DNA binding activity in xrs-5 than proteins of similar extracts from CHO. The amount of the 32.2 kDa protein was less in the xrs-5 extracts than in CHO extracts, as measured by Coomassie blue staining. The two proteins have not yet been identified but comprise a major DNA binding activity in CHO extracts obtained by detergent-free extraction procedures. This work provides circumstantial evidence that suggests these two polypeptides may form part of the histone H1 family.

  4. Renormalization scheme dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM.

    PubMed

    Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W

    Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.

  5. The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves

    NASA Astrophysics Data System (ADS)

    Bahari, K.; Shahhosaini, N.

    2018-05-01

    longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.

  6. The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves

    NASA Astrophysics Data System (ADS)

    Bahari, K.; Shahhosaini, N.

    2018-07-01

    Longitudinal magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. The WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first-order approximation the time-dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.

  7. Quantum Loop Expansion to High Orders, Extended Borel Summation, and Comparison with Exact Results

    NASA Astrophysics Data System (ADS)

    Noreen, Amna; Olaussen, Kåre

    2013-07-01

    We compare predictions of the quantum loop expansion to (essentially) infinite orders with (essentially) exact results in a simple quantum mechanical model. We find that there are exponentially small corrections to the loop expansion, which cannot be explained by any obvious “instanton”-type corrections. It is not the mathematical occurrence of exponential corrections but their seeming lack of any physical origin which we find surprising and puzzling.

  8. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  9. Higher-order chromatin structure: bridging physics and biology.

    PubMed

    Fudenberg, Geoffrey; Mirny, Leonid A

    2012-04-01

    Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  11. All-loop Mondrian diagrammatics and 4-particle amplituhedron

    NASA Astrophysics Data System (ADS)

    An, Yang; Li, Yi; Li, Zhinan; Rao, Junjie

    2018-06-01

    Based on 1712.09990 which handles the 4-particle amplituhedron at 3-loop, we have found an extremely simple pattern, yet far more non-trivial than one might naturally expect: the all-loop Mondrian diagrammatics. By further simplifying and rephrasing the key relation of positivity in the amplituhedron setting, remarkably, we find a completeness relation unifying all diagrams of the Mondrian types for the 4-particle integrand of planar N = 4 SYM to all loop orders, each of which can be mapped to a simple product following a few plain rules designed for this relation. The explicit examples we investigate span from 3-loop to 7-loop order, and based on them, we classify the basic patterns of Mondrian diagrams into four types: the ladder, cross, brick-wall and spiral patterns. Interestingly, for some special combinations of ordered subspaces (a concept defined in the previous work), we find failed exceptions of the completeness relation which are called "anomalies", nevertheless, they substantially give hints on the all-loop recursive proof of this relation. These investigations are closely related to the combinatoric knowledge of separable permutations and Schröder numbers, and go even further from a diagrammatic perspective. For physical relevance, we need to further consider dual conformal invariance for two basic diagrammatic patterns to correct the numerator for a local integrand involving one or both of such patterns, while the denominator encoding its pole structure and also the sign factor, are already fixed by rules of the completeness relation. With this extra treatment to ensure the integrals are dual conformally invariant, each Mondrian diagram can be exactly translated to its corresponding physical loop integrand after being summed over all ordered subspaces that admit it.

  12. Higgs boson gluon-fusion production in QCD at three loops.

    PubMed

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Herzog, Franz; Mistlberger, Bernhard

    2015-05-29

    We present the cross section for the production of a Higgs boson at hadron colliders at next-to-next-to-next-to-leading order (N^{3}LO) in perturbative QCD. The calculation is based on a method to perform a series expansion of the partonic cross section around the threshold limit to an arbitrary order. We perform this expansion to sufficiently high order to obtain the value of the hadronic cross at N^{3}LO in the large top-mass limit. For renormalization and factorization scales equal to half the Higgs boson mass, the N^{3}LO corrections are of the order of +2.2%. The total scale variation at N^{3}LO is 3%, reducing the uncertainty due to missing higher order QCD corrections by a factor of 3.

  13. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Wilson Lines and Webs in Higher-Order QCD

    NASA Astrophysics Data System (ADS)

    White, Chris D.

    2018-03-01

    Wilson lines have a number of uses in non-abelian gauge theories. A topical example in QCD is the description of radiation in the soft or collinear limit, which must often be resummed to all orders in perturbation theory. Correlators involving a pair of Wilson lines are known to exponentiate in terms of special Feynman diagrams called "webs". I will show how this language can be extended to an arbitrary number of Wilson lines, which introduces novel new combinatoric structures (web mixing matrices) of interest in their own right. I will also summarise recent results obtained from applying this formalism at three-loop order, before concluding with a list of open problems.

  15. Effects of two-loop contributions in the pseudofermion functional renormalization group method for quantum spin systems

    NASA Astrophysics Data System (ADS)

    Rück, Marlon; Reuther, Johannes

    2018-04-01

    We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.

  16. Digital simulation of hybrid loop operation in RFI backgrounds.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.

    1972-01-01

    A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.

  17. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  18. Attempt to generalize fractional-order electric elements to complex-order ones

    NASA Astrophysics Data System (ADS)

    Si, Gangquan; Diao, Lijie; Zhu, Jianwei; Lei, Yuhang; Zhang, Yanbin

    2017-06-01

    The complex derivative {D}α +/- {{j}β }, with α, β \\in R+ is a generalization of the concept of integer derivative, where α=1, β=0. Fractional-order electric elements and circuits are becoming more and more attractive. In this paper, the complex-order electric elements concept is proposed for the first time, and the complex-order elements are modeled and analyzed. Some interesting phenomena are found that the real part of the order affects the phase of output signal, and the imaginary part affects the amplitude for both the complex-order capacitor and complex-order memristor. More interesting is that the complex-order capacitor can do well at the time of fitting electrochemistry impedance spectra. The complex-order memristor is also analyzed. The area inside the hysteresis loops increases with the increasing of the imaginary part of the order and decreases with the increasing of the real part. Some complex case of complex-order memristors hysteresis loops are analyzed at last, whose loop has touching points beyond the origin of the coordinate system.

  19. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops canmore » be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor γ ∼ 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.« less

  20. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  1. Closed-loop fiber optic gyroscope with homodyne detection

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, BingKun; Chen, Shufen

    1996-09-01

    Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.

  2. Improvements in deep-space tracking by use of third-order loops.

    NASA Technical Reports Server (NTRS)

    Tausworth, R. C.; Crow, R. B.

    1972-01-01

    Third-order phase-locked receivers have not yet found wide application in deep-space communications systems because the second-order systems now used have performed adequately on past spacecraft missions. However, a survey of the doppler profiles for future missions shows that an unaided second-order loop may be unable to perform within reasonable error bounds. This article discusses the characteristics of a simple third-order extension to present second-order systems that not only extends doppler-tracking capability, but widens the pull-in range and decreases pull-in time as well.

  3. Cascade detection for the extraction of localized sequence features; specificity results for HIV-1 protease and structure-function results for the Schellman loop.

    PubMed

    Newell, Nicholas E

    2011-12-15

    The extraction of the set of features most relevant to function from classified biological sequence sets is still a challenging problem. A central issue is the determination of expected counts for higher order features so that artifact features may be screened. Cascade detection (CD), a new algorithm for the extraction of localized features from sequence sets, is introduced. CD is a natural extension of the proportional modeling techniques used in contingency table analysis into the domain of feature detection. The algorithm is successfully tested on synthetic data and then applied to feature detection problems from two different domains to demonstrate its broad utility. An analysis of HIV-1 protease specificity reveals patterns of strong first-order features that group hydrophobic residues by side chain geometry and exhibit substantial symmetry about the cleavage site. Higher order results suggest that favorable cooperativity is weak by comparison and broadly distributed, but indicate possible synergies between negative charge and hydrophobicity in the substrate. Structure-function results for the Schellman loop, a helix-capping motif in proteins, contain strong first-order features and also show statistically significant cooperativities that provide new insights into the design of the motif. These include a new 'hydrophobic staple' and multiple amphipathic and electrostatic pair features. CD should prove useful not only for sequence analysis, but also for the detection of multifactor synergies in cross-classified data from clinical studies or other sources. Windows XP/7 application and data files available at: https://sites.google.com/site/cascadedetect/home. nacnewell@comcast.net Supplementary information is available at Bioinformatics online.

  4. On the performance of digital phase locked loops in the threshold region

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    Extended Kalman filter algorithms are used to obtain a digital phase lock loop structure for demodulation of angle modulated signals. It is shown that the error variance equations obtained directly from this structure enable one to predict threshold if one retains higher frequency terms. This is in sharp contrast to the similar analysis of the analog phase lock loop, where the higher frequency terms are filtered out because of the low pass filter in the loop. Results are compared to actual simulation results and threshold region results obtained previously.

  5. Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto

    2011-02-01

    We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.

  6. Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators

    NASA Astrophysics Data System (ADS)

    Ahmadiniaz, Naser; Gomez, Humberto; Lopez-Arcos, Cristhiam

    2018-05-01

    In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them to the bi-adjoint Φ3 theory. As a byproduct, we found a new type of graphs that we called the non-planar CHY-graphs. These graphs encode all the information for the subleading order at one-loop, and there is not an equivalent of these in the Feynman formalism.

  7. Closing the Loop: A Study of How the National Survey of Student Engagement (NSSE) Is Used for Decision-Making and Planning in Student Affairs

    ERIC Educational Resources Information Center

    McCaul, Jennifer Lee

    2015-01-01

    "Closing the loop" is a commonly used phrase in discussing cyclical processes, such as the area of outcomes assessment in higher education. Increased interest in accountability and a shift in accreditation focus have necessitated that higher education institutions are closing the assessment loop and creating a culture of evidence to…

  8. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  9. A dynamic flare with anomalously dense flare loops

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Fontenla, J. M.; Machado, M. E.; Martin, S. F.; Neidig, D. F.

    1986-01-01

    The dynamic flare of November 6, 1980 developed a rich system of growing loops which could be followed in H-alpha for 1.5 hours. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of b-values for a hydrogen atom reveal that this requires electron densities in the loops to be close to 10 to the 12th per cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th per cu cm if no nonthermal motions were present. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density a loop would cool through radiation from 10 to the 7th K to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, the density must have been significantly smaller when the loops were formed and the flare loops were apparently both shrinking and becoming denser while cooling.

  10. Folded Supersymmetry and the LDP Paradox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2006-09-21

    We present a new class of models that stabilize the weak scale against radiative corrections up to scales of order 5 TeV without large corrections to precision electroweak observables. In these ''folded supersymmetric'' theories the one loop quadratic divergences of the Standard Model Higgs field are canceled by opposite spin partners, but the gauge quantum numbers of these new particles are in general different from those of the conventional superpartners. This class of models is built around the correspondence that exists in the large N limit between the correlation functions of supersymmetric theories and those of their non-supersymmetric orbifold daughters.more » By identifying the mechanism which underlies the cancellation of one loop quadratic divergences in these theories, we are able to construct simple extensions of the Standard Model which are radiatively stable at one loop. Ultraviolet completions of these theories can be obtained by imposing suitable boundary conditions on an appropriate supersymmetric higher dimensional theory compactified down to four dimensions. We construct a specific model based on these ideas which stabilizes the weak scale up to about 20 TeV and where the states which cancel the top loop are scalars not charged under Standard Model color. Its collider signatures are distinct from conventional supersymmetric theories and include characteristic events with hard leptons and missing energy.« less

  11. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome

    PubMed Central

    Lee, Yun-Tzai Cloud; Chang, Chia-Yun; Chen, Szu-Yu; Pan, Yun-Ru; Ho, Meng-Ru; Hsu, Shang-Te Danny

    2017-01-01

    Human ubiquitin C-terminal hydrolyase UCH-L5 is a topologically knotted deubiquitinase that is activated upon binding to the proteasome subunit Rpn13. The length of its intrinsically disordered cross-over loop is essential for substrate recognition. Here, we showed that the catalytic domain of UCH-L5 exhibits higher equilibrium folding stability with an unfolding rate on the scale of 10−8 s−1, over four orders of magnitudes slower than its paralogs, namely UCH-L1 and -L3, which have shorter cross-over loops. NMR relaxation dynamics analysis confirmed the intrinsic disorder of the cross-over loop. Hydrogen deuterium exchange analysis further revealed a positive correlation between the length of the cross-over loop and the degree of local fluctuations, despite UCH-L5 being thermodynamically and kinetically more stable than the shorter UCHs. Considering the role of UCH-L5 in removing K48-linked ubiquitin to prevent proteasomal degradation of ubiquitinated substrates, our findings offered mechanistic insights into the evolution of UCH-L5. Compared to its paralogs, it is entropically stabilized to withstand mechanical unfolding by the proteasome while maintaining structural plasticity. It can therefore accommodate a broad range of substrate geometries at the cost of unfavourable entropic loss. PMID:28338014

  12. Universal dual amplitudes and asymptotic expansions for gg→ H and H→ γ γ in four dimensions

    NASA Astrophysics Data System (ADS)

    Driencourt-Mangin, Félix; Rodrigo, Germán; Sborlini, Germán F. R.

    2018-03-01

    Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (FDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.

  13. Single-Event Upset Characterization of Common First- and Second-Order All-Digital Phase-Locked Loops

    NASA Astrophysics Data System (ADS)

    Chen, Y. P.; Massengill, L. W.; Kauppila, J. S.; Bhuva, B. L.; Holman, W. T.; Loveless, T. D.

    2017-08-01

    The single-event upset (SEU) vulnerability of common first- and second-order all-digital-phase-locked loops (ADPLLs) is investigated through field-programmable gate array-based fault injection experiments. SEUs in the highest order pole of the loop filter and fraction-based phase detectors (PDs) may result in the worst case error response, i.e., limit cycle errors, often requiring system restart. SEUs in integer-based linear PDs may result in loss-of-lock errors, while SEUs in bang-bang PDs only result in temporary-frequency errors. ADPLLs with the same frequency tuning range but fewer bits in the control word exhibit better overall SEU performance.

  14. Closed-Loop Insulin Delivery for Adults with Type 1 Diabetes Undertaking High-Intensity Interval Exercise Versus Moderate-Intensity Exercise: A Randomized, Crossover Study.

    PubMed

    Jayawardene, Dilshani C; McAuley, Sybil A; Horsburgh, Jodie C; Gerche, André La; Jenkins, Alicia J; Ward, Glenn M; MacIsaac, Richard J; Roberts, Timothy J; Grosman, Benyamin; Kurtz, Natalie; Roy, Anirban; O'Neal, David N

    2017-06-01

    We aimed to compare closed-loop glucose control for people with type 1 diabetes undertaking high-intensity interval exercise (HIIE) versus moderate-intensity exercise (MIE). Adults with type 1 diabetes established on insulin pumps undertook HIIE and MIE stages in random order during automated insulin delivery via a closed-loop system (Medtronic). Frequent venous sampling for glucose, lactate, ketones, insulin, catecholamines, cortisol, growth hormone, and glucagon levels was performed. The primary outcome was plasma glucose <4.0 mmol/L for ≥15 min, from exercise commencement to 120 min postexercise. Secondary outcomes included continuous glucose monitoring and biochemical parameters. Twelve adults (age mean ± standard deviation 40 ± 13 years) were recruited; all completed the study. Plasma glucose of one participant fell to 3.4 mmol/L following MIE completion; no glucose levels were <4.0 mmol/L for HIIE (primary outcome). There were no glucose excursions >15.0 mmol/L for either stage. Mean (±standard error) plasma glucose did not differ between stages pre-exercise; was higher during exercise in HIIE than MIE (11.3 ± 0.5 mmol/L vs. 9.7 ± 0.6 mmol/L, respectively; P < 0.001); and remained higher until 60 min postexercise. There were no differences in circulating free insulin before, during, or postexercise. During HIIE compared with MIE, there were greater increases in lactate (P < 0.001), catecholamines (all P < 0.05), and cortisol (P < 0.001). Ketones increased more with HIIE than MIE postexercise (P = 0.031). Preliminary findings suggest that closed-loop glucose control is safe for people undertaking HIIE and MIE. However, the management of the postexercise rise in ketones secondary to counter-regulatory hormone-induced insulin resistance observed with HIIE may represent a challenge for closed-loop systems.

  15. Next-to-leading order QCD predictions for top-quark pair production with up to three jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höche, S.; Maierhöfer, P.; Moretti, N.

    2017-03-07

    Here, we present theoretical predictions for the production of top-quark pairs with up to three jets at the next-to leading order in perturbative QCD. The relevant calculations are performed with Sherpa and OpenLoops. In order to address the issue of scale choices and related uncertainties in the presence of multiple scales, we compare results obtained with the standard scale HT/2HT/2 at fixed order and the MiNLO procedure. By analyzing various cross sections and distributions for tmore » $$\\bar{t}$$+0,1,2,3 jets at the 13 TeV LHC we found a remarkable overall agreement between fixed-order and MiNLO results. The differences are typically below the respective factor-two scale variations, suggesting that for all considered jet multiplicities missing higher-order effects should not exceed the ten percent level.« less

  16. Automatic Event Detection in Search for Inter-Moss Loops in IRIS Si IV Slit-Jaw Images

    NASA Technical Reports Server (NTRS)

    Fayock, Brian; Winebarger, Amy R.; De Pontieu, Bart

    2015-01-01

    The high-resolution capabilities of the Interface Region Imaging Spectrometer (IRIS) mission have allowed the exploration of the finer details of the solar magnetic structure from the chromosphere to the lower corona that have previously been unresolved. Of particular interest to us are the relatively short-lived, low-lying magnetic loops that have foot points in neighboring moss regions. These inter-moss loops have also appeared in several AIA pass bands, which are generally associated with temperatures that are at least an order of magnitude higher than that of the Si IV emission seen in the 1400 angstrom pass band of IRIS. While the emission lines seen in these pass bands can be associated with a range of temperatures, the simultaneous appearance of these loops in IRIS 1400 and AIA 171, 193, and 211 suggest that they are not in ionization equilibrium. To study these structures in detail, we have developed a series of algorithms to automatically detect signal brightening or events on a pixel-by-pixel basis and group them together as structures for each of the above data sets. These algorithms have successfully picked out all activity fitting certain adjustable criteria. The resulting groups of events are then statistically analyzed to determine which characteristics can be used to distinguish the inter-moss loops from all other structures. While a few characteristic histograms reveal that manually selected inter-moss loops lie outside the norm, a combination of several characteristics will need to be used to determine the statistical likelihood that a group of events be categorized automatically as a loop of interest. The goal of this project is to be able to automatically pick out inter-moss loops from an entire data set and calculate the characteristics that have previously been determined manually, such as length, intensity, and lifetime. We will discuss the algorithms, preliminary results, and current progress of automatic characterization.

  17. SMD-based numerical stochastic perturbation theory

    NASA Astrophysics Data System (ADS)

    Dalla Brida, Mattia; Lüscher, Martin

    2017-05-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.

  18. Compensation effects and relation between the activation energy of spin transition and the hysteresis loop width for an iron(ii) complex.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-06-22

    The enthalpy-entropy compensation was observed for the cooperative → spin transition (the phase is a mononuclear complex [FeL2](BF4)2, L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine). The physical origin of this effect is the fact that the → spin transition is the first order phase transition accompanied by noticeable variations in the Tonset↑, ΔH and ΔS values. Higher ΔH and ΔS values are correlated with higher Tonset↑ values. The higher the enthalpy and entropy of the spin transition, the wider the hysteresis loop. The kinetic compensation effect, i.e. a linear relationship between ln A and Ea, was observed for the → spin transition. Moreover, an isokinetic relationship was detected in this system: the Arrhenius lines (ln k vs. 1/T) obtained from magnetochemical data for different samples of the phase undergoing the → transition show a common point of intersection (Tiso = 490 ± 2 K, ln kiso = -6.0 ± 0.2). The validity of this conclusion was confirmed by the Exner-Linert statistical method. This means that the isokinetic relationship and the kinetic compensation effect (ln A vs. Ea) in this system are true ones. The existence of a true kinetic compensation effect is supported independently by the fact that the hysteresis loop width for the cooperative spin transition ↔ increases with increasing activation barrier height. Estimating the energy of excitations for the phase with Tiso ∼ 490 K yields wavenumbers of ca. 340 cm(-1) corresponding to the frequencies of the stretching vibrations of the Fe(LS)-N bonds, i.e. the bonds directly involved in the mechanism of the spin transition. This is the first observation of the kinetic compensation effect (ln A vs. Ea) and the isokinetic relationship for a cooperative spin crossover system showing thermal hysteresis. Our results provide the first experimental evidence that the higher the activation barrier for the spin transition, the wider the hysteresis loop for a series of related spin crossover systems.

  19. A program to evaluate a control system based on feedback of aerodynamic pressure differentials

    NASA Technical Reports Server (NTRS)

    Levy, D. W.; Finn, P.; Roskam, J.

    1981-01-01

    The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.

  20. Simple adaptive control system design for a quadrotor with an internal PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro

    2014-12-01

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  1. Evidence of Significant Energy Input in the Late Phase of A Solar Flare from NuSTAR X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kuhar, Matej; Krucker, Sam; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; hide

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/ AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at approximately 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  2. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Tim; Beck, Griffin; Bennett, Jeffrey

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO 2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and testmore » new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long-term reliability problems in CO 2 service at these temperatures. However, long-term testing in a flowing environment is recommended in order to understand accurately the severity of the attack. Detailed economic modeling of the existing air cycle recuperator and CO 2 cycle recuperator options was also completed, including costs for material, fabrication, fuel, maintenance, and operation. The analysis results show that the increased capital cost for high-temperature materials may be offset by higher cycle efficiencies, decreasing the overall lifetime cost of the system. The economic analysis also examines costs associated with increased pressure drop and material changes for two redesign options. These results show that, even with slightly reduced performance and/or higher material costs, the lifetime cost per energy production may still be reduced by over 12%. The existing recuperator design information was provided by Solar Turbines, Inc. via several models, drawings, and design handoff meetings. Multiple fluid/thermal and structural models were created in order to analyze critical recuperator performance and mechanical strength in critical areas throughout the redesign process. These models were analyzed for a baseline condition (consistent with current Mercury 50 operation) for validation purposes. Results are presented for heat transfer coefficients and pressure drops, matching well with the existing operational data. Simulation of higher-temperature CO 2 conditions was also performed, showing a slight expected increase in both heat transfer and pressure drop. Mechanical analysis results for critical areas on the cross-flow and counter-flow sheets have also been obtained for air and CO 2 cases. These results show similar stresses in both cases but significantly reduced safety factors for the CO 2 case due to reduced yield and creep rupture strengths of alloy 625 at the higher temperatures. A concept brainstorm session and initial down-selection were completed in order to identify promising redesign options for further analysis. Detailed analysis of all promising redesign options was performed via finite element and computational fluid dynamic simulations in order to characterize mechanical and thermal-fluid performance of each option. These options included material change, various sheet thickness configurations, pitch and phasing of cross-flow and counter-flow sheets, and separator sheets. The analysis results have identified two viable redesign options that maintain existing safety margins optimally through a material change to Haynes 282 and (A) sheet thickness increases of 40% on the counter-flow sheet and 75% on the hot side cross-flow corrugation sheet or (B) addition of a separator sheet in the counter-flow section while maintaining the original counter-flow sheet thickness and increasing the cross-flow corrugation sheet thickness by 90% to account for the increase in cell height. While both options satisfy mechanical stress constraints, the separator sheet design has a higher part count, slightly reduced heat transfer, and slightly higher pressure drop than the first option and is not preferred. Finally, several test loop concepts have been developed for different full-scale and reduced-scale recuperator testing options. For each option, various loop components, such as heat exchangers, valves, heaters, and compressors, were evaluated in an effort to maximize utilization of existing resources. All concepts utilize an existing 3-MW CO 2 compressor, heater, and loop coolers, but the concepts vary by incorporating different amounts of new equipment for achieving various flow rates (all concepts operate at design pressure and temperature). The third concept achieves a 1 kg/s test without purchasing any costly equipment (coolers, heaters, blowers, etc.). Since the stacked cell design of the recuperator results in the same flow conditions at each core cell (even for a reduced-scale test). Thus, test loop Concept #3 was selected for the preliminary design. This loop design is detailed within the report, culminating in a budgetary estimate of $1,013,000.00 for the detailed design, construction, commissioning, and operation of a high-temperature recuperator test loop.« less

  3. Entanglement entropy with a time-dependent Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Allic

    2018-03-01

    The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.

  4. Closed-Loop Control Better than Open-Loop Control of Profofol TCI Guided by BIS: A Randomized, Controlled, Multicenter Clinical Trial to Evaluate the CONCERT-CL Closed-Loop System

    PubMed Central

    Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun

    2015-01-01

    Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041

  5. Drivers from the deep: the contribution of collicular input to thalamocortical processing.

    PubMed

    Wurtz, Robert H; Sommer, Marc A; Cavanaugh, James

    2005-01-01

    A traditional view of the thalamus is that it is a relay station which receives sensory input and conveys this information to cortex. This sensory input determines most of the properties of first order thalamic neurons, and so is said to drive, rather than modulate, these neurons. This holds as a rule for first order thalamic nuclei, but in contrast, higher order thalamic nuclei receive much of their driver input back from cerebral cortex. In addition, higher order thalamic neurons receive inputs from subcortical movement-related centers. In the terminology popularized from studies of the sensory system, can we consider these ascending motor inputs to thalamus from subcortical structures to be modulators, subtly influencing the activity of their target neurons, or drivers, dictating the activity of their target neurons? This chapter summarizes relevant evidence from neuronal recording, inactivation, and stimulation of pathways projecting from the superior colliculus through thalamus to cerebral cortex. The study concludes that many inputs to the higher order nuclei of the thalamus from subcortical oculomotor areas - from the superior colliculus and probably other midbrain and pontine regions - should be regarded as motor drivers analogous to the sensory drivers at the first order thalamic nuclei. These motor drivers at the thalamus are viewed as being at the top of a series of feedback loops that provide information on impending actions, just as sensory drivers provide information about the external environment.

  6. Two-loop renormalization of the quark propagator in the light-cone gauge

    NASA Astrophysics Data System (ADS)

    Williams, James Daniel

    The divergent parts of the five two-loop quark self- energy diagrams of quantum chromodynamics are evaluated in the noncovariant light-cone gauge. Most of the Feynman integrals are computed by means of the powerful matrix integration method, originally developed for the author's Master's thesis. From the results of the integrations, it is shown how to renormalize the quark mass and wave function in such a way that the effective quark propagator is rendered finite at two-loop order. The required counterterms turn out to be local functions of the quark momentum, due to cancellation of the nonlocal divergent parts of the two-loop integrals with equal and opposite contributions from one-loop counterterm subtraction diagrams. The final form of the counterterms is seen to be consistent with the renormalization framework proposed by Bassetto, Dalbosco, and Soldati, in which all noncovariant divergences are absorbed into the wave function normalizations. It also turns out that the mass renormalization d m is the same in the light-cone gauge as it is in a general covariant gauge, at least up to two-loop order.

  7. Stabilization and analytical tuning rule of double-loop control scheme for unstable dead-time process

    NASA Astrophysics Data System (ADS)

    Ugon, B.; Nandong, J.; Zang, Z.

    2017-06-01

    The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.

  8. Invariant measure of the one-loop quantum gravitational backreaction on inflation

    NASA Astrophysics Data System (ADS)

    Miao, S. P.; Tsamis, N. C.; Woodard, R. P.

    2017-06-01

    We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.

  9. Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong

    2009-01-01

    A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.

  10. Qualitative Analysis of Primary Fingerprint Pattern in Different Blood Group and Gender in Nepalese

    PubMed Central

    Maharjan, Niroj; Adhikari, Nischita; Shrestha, Pragya

    2018-01-01

    Dermatoglyphics, the study of epidermal ridges on palm, sole, and digits, is considered as most effective and reliable evidence of identification. The fingerprints were studied in 300 Nepalese of known blood groups of different ages and classified into primary patterns and then analyzed statistically. In both sexes, incidence of loops was highest in ABO blood group and Rh +ve blood types, followed by whorls and arches, while the incidence of whorls was highest followed by loops and arches in Rh −ve blood types. Loops were higher in all blood groups except “A –ve” and “B –ve” where whorls were predominant. The fingerprint pattern in Rh blood types of blood group “A” was statistically significant while in others it was insignificant. In middle and little finger, loops were higher whereas in ring finger whorls were higher in all blood groups. Whorls were higher in thumb and index finger except in blood group “O” where loops were predominant. This study concludes that distribution of primary pattern of fingerprint is not related to gender and blood group but is related to individual digits. PMID:29593909

  11. Method of Implementing Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A. (Inventor); Thomas, J. Brooks (Inventor)

    1997-01-01

    In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, and root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (B(sub L)T approaches 0) and in a discrete-update formulation with arbitrary B(sub L)T. Deficiencies of the continuous-update approximation in large-B(sub L)T applications are avoided in the new discrete-update formulation.

  12. Two-loop hard-thermal-loop thermodynamics with quarks

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-08-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.

  13. Multi-thermal observations of newly formed loops in a dynamic flare

    NASA Technical Reports Server (NTRS)

    Svestka, Zdenek F.; Fontenla, Juan M.; Machado, Marcos E.; Martin, Sara F.; Neidig, Donald F.

    1987-01-01

    The dynamic flare of November 6, 1980 (max at about 15:26 UT) developed a rich system of growing loops which could be followed in H-alpha for 1.5 hr. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of deviations from LTE populations for a hydrogen atom reveal that this requires electron densities in the loops close to, or in excess of 10 to the 12th/cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th/cu cm if no nonthermal motions were present, or 5 x 10 to the 11th/cu cm for a turbulent velocity of about 12 km/s. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density, a loop would cool through radiation from 10 to the 7th to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, it is suggested that the density must have been significantly lower when the loops were formed, and that the flare loops were apparently both shrinking and increasing in density while cooling.

  14. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  15. 78 FR 5745 - Nonsubstantive, Editorial or Conforming Amendments of the Commission's Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... ``high- frequency portion of the loop'' in Sec. 51.319(a)(1)(i) has continuing relevance for the...). Accordingly, in deleting Sec. 51.319(a)(1)(i), this order moves the definition of ``high-frequency portion of... Order deletes references to ``the high-frequency portion of the copper loop'' in Sec. 51.319(a)(1)(iii...

  16. New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis

    NASA Astrophysics Data System (ADS)

    Bodendorfer, N.; Thiemann, T.; Thurn, A.

    2013-02-01

    Loop quantum gravity (LQG) relies heavily on a connection formulation of general relativity such that (1) the connection Poisson commutes with itself and (2) the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D + 1 = 4 spacetime dimensions. However, interesting string theories and supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional supergravity loop quantizations at one’s disposal in order to compare these approaches. In this series of papers we take first steps toward this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG which does not require the time gauge and which generalizes to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauß, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes of quantization.

  17. Two-Loop Gell-Mann Function for General Renormalizable N = 1 Supersymmetric Theory, Regularized by Higher Derivatives

    NASA Astrophysics Data System (ADS)

    Shevtsova, Ekaterina

    2011-10-01

    For the general renormalizable N=1 supersymmetric Yang-Mills theory, regularized by higher covariant derivatives, a two-loop β-function is calculated. It is shown that all integrals, needed for its obtaining are integrals of total derivatives.

  18. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  19. Vector-Boson Fusion Higgs Production at Three Loops in QCD.

    PubMed

    Dreyer, Frédéric A; Karlberg, Alexander

    2016-08-12

    We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.

  20. Dark photon decay beyond the Euler-Heisenberg limit

    NASA Astrophysics Data System (ADS)

    McDermott, Samuel D.; Patel, Hiren H.; Ramani, Harikrishnan

    2018-04-01

    We calculate the exact width for a dark photon decaying to three photons at one-loop order for dark photon masses m' below the e+e- production threshold of 2 me. We find substantial deviations from previous results derived from the lowest order Euler-Heisenberg effective Lagrangian in the range me≲m'≤2 me, where higher order terms in the derivative expansion are non-negligible. This mass range is precisely where the three photon decay takes place on cosmologically relevant timescales. Our improved analysis reveals a window for dark photons in the range 850 KeV ≲m'≤2 me , 10-5≲ɛ ≲10-4 that is only constrained by possibly model-dependent bounds on the number of light degrees of freedom in the early Universe.

  1. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture

    PubMed Central

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P.H.

    2014-01-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384

  2. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.

    PubMed

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H

    2014-05-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  3. A fast and accurate dihedral interpolation loop subdivision scheme

    NASA Astrophysics Data System (ADS)

    Shi, Zhuo; An, Yalei; Wang, Zhongshuai; Yu, Ke; Zhong, Si; Lan, Rushi; Luo, Xiaonan

    2018-04-01

    In this paper, we propose a fast and accurate dihedral interpolation Loop subdivision scheme for subdivision surfaces based on triangular meshes. In order to solve the problem of surface shrinkage, we keep the limit condition unchanged, which is important. Extraordinary vertices are handled using modified Butterfly rules. Subdivision schemes are computationally costly as the number of faces grows exponentially at higher levels of subdivision. To address this problem, our approach is to use local surface information to adaptively refine the model. This is achieved simply by changing the threshold value of the dihedral angle parameter, i.e., the angle between the normals of a triangular face and its adjacent faces. We then demonstrate the effectiveness of the proposed method for various 3D graphic triangular meshes, and extensive experimental results show that it can match or exceed the expected results at lower computational cost.

  4. Evaluation of peristaltic micromixers for highly integrated microfluidic systems

    PubMed Central

    Kim, Duckjong; Rho, Hoon Suk; Jambovane, Sachin; Shin, Soojeong; Hong, Jong Wook

    2016-01-01

    Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip. PMID:27036809

  5. Evaluation of peristaltic micromixers for highly integrated microfluidic systems

    NASA Astrophysics Data System (ADS)

    Kim, Duckjong; Rho, Hoon Suk; Jambovane, Sachin; Shin, Soojeong; Hong, Jong Wook

    2016-03-01

    Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip.

  6. Analysis and design of segment control system in segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao

    2017-10-01

    Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.

  7. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  8. LOOP- SIMULATION OF THE AUTOMATIC FREQUENCY CONTROL SUBSYSTEM OF A DIFFERENTIAL MINIMUM SHIFT KEYING RECEIVER

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1994-01-01

    The LOOP computer program was written to simulate the Automatic Frequency Control (AFC) subsystem of a Differential Minimum Shift Keying (DMSK) receiver with a bit rate of 2400 baud. The AFC simulated by LOOP is a first order loop configuration with a first order R-C filter. NASA has been investigating the concept of mobile communications based on low-cost, low-power terminals linked via geostationary satellites. Studies have indicated that low bit rate transmission is suitable for this application, particularly from the frequency and power conservation point of view. A bit rate of 2400 BPS is attractive due to its applicability to the linear predictive coding of speech. Input to LOOP includes the following: 1) the initial frequency error; 2) the double-sided loop noise bandwidth; 3) the filter time constants; 4) the amount of intersymbol interference; and 5) the bit energy to noise spectral density. LOOP output includes: 1) the bit number and the frequency error of that bit; 2) the computed mean of the frequency error; and 3) the standard deviation of the frequency error. LOOP is written in MS SuperSoft FORTRAN 77 for interactive execution and has been implemented on an IBM PC operating under PC DOS with a memory requirement of approximately 40K of 8 bit bytes. This program was developed in 1986.

  9. Fourth-order self-energy contribution to the two loop Lamb shift

    NASA Astrophysics Data System (ADS)

    Palur Mallampalli, Subrahmanyam

    1998-11-01

    The calculation of the two loop Lamb shift in hydrogenic ions involves the numerical evaluation of ten Feynman diagrams. In this thesis, four fourth-order Feynman diagrams including the pure self-energy contributions are evaluated using exact Dirac-Coulomb propagators, so that higher order binding corrections can be extracted by comparing with the known terms in the Z/alpha expansion. The entire calculation is performed in Feynman gauge. One of the vacuum polarization diagrams is evaluated in the Uehling approximation. At low Z, it is seen to be perturbative in Z/alpha, while new predictions for high Z are made. The calculation of the three self-energy diagrams is reorganized into four terms, which we call the PO, M, F and P terms. The PO term is separately gauge invariant while the latter three form a gauge invariant set. The PO term is shown to exhibit the most non-perturbative behavior yet encountered in QED at low Z, so much so that even at Z = 1, the complete result is of the opposite sign as that of the leading term in its Z/alpha expansion. At high Z, we agree with an earlier calculation. The analysis of ultraviolet divergences in the two loop self-energy is complicated by the presence of sub- divergences. All divergences except the self-mass are shown to cancel. The self-mass is then removed by a self- mass counterterm. Parts of the calculation are shown to contain reference state singularities, that finally cancel. A numerical regulator to handle these singularities is described. The M term, an ultraviolet finite quantity, is defined through a subtraction scheme in coordinate space. Being computationally intensive, it is evaluated only at high Z, specifically Z = 83 and 92. The F term involves the evaluation of several Feynman diagrams with free electron propagators. These are computed for a range of values of Z. The P term, also ultraviolet finite, involves Dirac- Coulomb propagators that are best defined in coordinate space, as well as functions associated with the one loop self-energy that are best defined in momentum space. Possible methods of evaluating the P term are discussed.

  10. Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops

    NASA Technical Reports Server (NTRS)

    Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.

    1995-01-01

    The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.

  11. Loops in AdS from conformal field theory

    DOE PAGES

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; ...

    2017-07-10

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  12. Loops in AdS from conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  13. Loops in AdS from conformal field theory

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric

    2017-07-01

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.

  14. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  15. Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields

    NASA Astrophysics Data System (ADS)

    Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni

    2017-01-01

    The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.

  16. Pushing the limits of radiofrequency (RF) neuronal telemetry

    PubMed Central

    Yousefi, Tara; Diaz, Rodolfo E.

    2015-01-01

    In a previous report it was shown that the channel capacity of an in vivo communication link using microscopic antennas at radiofrequency is severely limited by the requirement not to damage the tissue surrounding the antennas. For dipole-like antennas the strong electric field dissipates too much power into body tissues. Loop-type antennas have a strong magnetic near field and so dissipate much less power into the surrounding tissues but they require such a large current that the antenna temperature is raised to the thermal damage threshold of the tissue. The only solution was increasing the antenna size into hundreds of microns, which makes reporting on an individual neuron impossible. However, recently demonstrated true magnetic antennas offer an alternative not covered in the previous report. The near field of these antennas is dominated by the magnetic field yet they don’t require large currents. Thus they combine the best characteristics of dipoles and loops. By calculating the coupling between identical magnetic antennas inside a model of the body medium we show an increase in the power transfer of up to 8 orders of magnitude higher than could be realized with the loops and dipoles, making the microscopic RF in-vivo transmitting antenna possible. PMID:26035824

  17. Undersize solute element effects on defect structure development in copper under electron irradiation

    NASA Astrophysics Data System (ADS)

    Satoh, Y.; Yoshiie, T.; Arai, S.

    2018-03-01

    We conducted systematic experiments of defect structure development in Cu base binary alloys under 1000 kV electron irradiation at temperatures higher than 300 K, using in situ observations with high voltage electron microscopy. This report describes the effects of undersize elements: Co (-3.78%), Ni (-8.45%) and Be (-26.45%). The volume size factors are given in parentheses. The amounts of the respective elements were 2, 0.3, 0.05 at.%, or less. In Cu-Ni and Cu-Co and in the reference Cu, temperature dependence of the number density of interstitial-type dislocation loops had a down peak (i.e. loops hardly formed) at approximately 373 K, attributed to unexpected impurity atoms. Above the down-peak temperature, the addition of Co or Ni increased the loop number density through continuous nucleation of loops, extended the loop formation to higher temperatures, and decreased the apparent activation energy of loop growth rate. The addition of Be for 0.3 at.% or more delayed loop formation after formation of stacking fault tetrahedra (SFTs) around 300 K. The apparent mobility of self-interstitial atoms is expected to be smaller than that of vacancies because of strong binding with Be. Loop formation at temperatures higher than 373 K was enhanced by Be for 0.3 or 2 at.%, although it was suppressed greatly for 0.05 at.% or less. All undersize atoms increased the stability of SFTs under irradiation. Mechanisms of those effects were discussed and were briefly compared with earlier results found for oversize elements in Cu.

  18. Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly

    PubMed Central

    Chereji, Răzvan V.; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V.; Broach, James R.

    2017-01-01

    Abstract Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3′-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. PMID:28575439

  19. LOCSET Phase Locking: Operation, Diagnostics, and Applications

    NASA Astrophysics Data System (ADS)

    Pulford, Benjamin N.

    The aim of this dissertation is to discuss the theoretical and experimental work recently done with the Locking of Optical Coherence via Single-detector Electronic-frequency Tagging (LOCSET) phase locking technique developed and employed here are AFRL. The primary objectives of this effort are to detail the fundamental operation of the LOCSET phase locking technique, recognize the conditions in which the LOCSET control electronics optimally operate, demonstrate LOCSET phase locking with higher channel counts than ever before, and extend the LOCSET technique to correct for low order, atmospherically induced, phase aberrations introduced to the output of a tiled array of coherently combinable beams. The experimental work performed for this effort resulted in the coherent combination of 32 low power optical beams operating with unprecedented LOCSET phase error performance of lambda/71 RMS in a local loop beam combination configuration. The LOCSET phase locking technique was also successfully extended, for the first time, into an Object In the Loop (OIL) configuration by utilizing light scattered off of a remote object as the optical return signal for the LOCSET phase control electronics. Said LOCSET-OIL technique is capable of correcting for low order phase aberrations caused by atmospheric turbulence disturbances applied across a tiled array output.

  20. Comparison of detection limit in fiber-based conventional, amplified, and gain-clamped cavity ring-down techniques

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.

    2018-01-01

    Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.

  1. QCD Resummation for Single Spin Asymmetries

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Xiao, Bo-Wen; Yuan, Feng

    2011-10-01

    We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.

  2. QCD Resummation for Single Spin Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang Z.; Xiao, Bo-Wen; Yuan, Feng

    We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.

  3. f (R ,Rμν 2) at one loop

    NASA Astrophysics Data System (ADS)

    Ohta, N.; Percacci, R.; Pereira, A. D.

    2018-05-01

    We compute the one-loop divergences in a theory of gravity with a Lagrangian of the general form f (R ,Rμ νRμ ν), on an Einstein background. We also establish that the one-loop effective action is invariant under a duality that consists of changing certain parameters in the relation between the metric and the quantum fluctuation field. Finally, we discuss the unimodular version of such a theory and establish its equivalence at one-loop order with the general case.

  4. Evidence for two-loop interaction from IRIS and SDO observations of penumbral brightenings

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Koukras, A.; Patsourakos, S.; Nindos, A.

    2017-07-01

    Aims: We investigate small scale energy release events which can provide clues on the heating mechanism of the solar corona. Methods: We analyzed spectral and imaging data from the Interface Region Imaging Spectrograph (IRIS), images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatoty (SDO), and magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO. Results: We report observations of small flaring loops in the penumbra of a large sunspot on July 19, 2013. Our main event consisted of a loop spanning 15'', from the umbral-penumbral boundary to an opposite polarity region outside the penumbra. It lasted approximately 10 min with a two minute impulsive peak and was observed in all AIA/SDO channels, while the IRIS slit was located near its penumbral footpoint. Mass motions with an apparent velocity of 100 km s-1 were detected beyond the brightening, starting in the rise phase of the impulsive peak; these were apparently associated with a higher-lying loop. We interpret these motions in terms of two-loop interaction. IRIS spectra in both the C II and Si iv lines showed very extended wings, up to about 400 km s-1, first in the blue (upflows) and subsequently in the red wing. In addition to the strong lines, emission was detected in the weak lines of Cl I, O I and C I, as well as in the Mg II triplet lines. Absorption features in the profiles of the C II doublet, the Si iv doublet and the Mg II h and k lines indicate the existence of material with a lower source function between the brightening and the observer. We attribute this absorption to the higher loop and this adds further credibility to the two-loop interaction hypothesis. Tilts were detected in the absorption spectra, as well as in the spectra of Cl I, O I, and C I lines, possibly indicating rotational motions from the untwisting of magnetic flux tubes. Conclusions: We conclude that the absorption features in the C II, Si iv and Mg II profiles originate in a higher-lying, descending loop; as this approached the already activated lower-lying loop, their interaction gave rise to the impulsive peak, the very broad line profiles and the mass motions. Movies associated to Figs. A.1-A.3 are available at http://www.aanda.org

  5. Controlled-Root Approach To Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A.; Thomas, J. Brooks

    1995-01-01

    Performance tailored more flexibly and directly to satisfy design requirements. Controlled-root approach improved method for analysis and design of digital phase-locked loops (DPLLs). Developed rigorously from first principles for fully digital loops, making DPLL theory and design simpler and more straightforward (particularly for third- or fourth-order DPLL) and controlling performance more accurately in case of high gain.

  6. A study of digital gyro compensation loops. [data conversion routines and breadboard models

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.

  7. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  8. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  9. Strong competition between ΘI I-loop-current order and d -wave charge order along the diagonal direction in a two-dimensional hot spot model

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Kloss, Thomas; Montiel, Xavier; Freire, Hermann; Pépin, Catherine

    2015-08-01

    We study the fate of the so-called ΘI I-loop-current order that breaks both time-reversal and parity symmetries in a two-dimensional hot spot model with antiferromagnetically mediated interactions, using Fermi surfaces relevant to the phenomenology of the cuprate superconductors. We start from a three-band Emery model describing the hopping of holes in the CuO2 plane that includes two hopping parameters tp p and tp d, local onsite Coulomb interactions Ud and Up, and nearest-neighbor Vp d couplings between the fermions in the copper [Cu (3 dx2-y2) ] and oxygen [O (2 px) and O (2 py)] orbitals. By focusing on the lowest-energy band, we proceed to decouple the local interaction Ud of the Cu orbital in the spin channel using a Hubbard-Stratonovich transformation to arrive at the interacting part of the so-called spin-fermion model. We also decouple the nearest-neighbor interaction Vp d to introduce the order parameter of the ΘI I-loop-current order. In this way, we are able to construct a consistent mean-field theory that describes the strong competition between the composite order parameter made of a quadrupole-density wave and d -wave pairing fluctuations proposed in Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] with the ΘI I-loop-current order parameter that is argued to be relevant for explaining important aspects of the physics of the pseudogap phase displayed in the underdoped cuprates.

  10. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  11. How securely is the testicular artery occluded in the spermatic cord by using a ligature?

    PubMed

    Rijkenhuizen, A B M; Sommerauer, S; Fasching, M; Velde, K; Peham, C

    2013-09-01

    There are no studies on the ideal ligature technique for the spermatic cord. To compare the maximal resistance pressure in the testicular artery and the maximal tensile forces to produce failure of 2 different ligature techniques used for ligation of the equine spermatic cord. The capabilities of 2 types of ligatures, single knot loop and double knot loop, were assessed using a pressure-resistance test in testicular arteries and with an in vitro mechanical evaluation of the tensile strength by single cycle-to-failure testing. In the pressure-resistance test, the mean ± s.d. peak force at failure of the single knot loop was 354.4 ± 91.7 mmHg and for the double knot loop 303.2 ± 62.0 mmHg. There was no significant difference between the maximal load to failure of the single knot loop and double knot loop technique. The pressure needed for rupture was significantly higher (P = 0.001) than for leakage. The maximal tensile force at failure of the single knot loop was significantly higher than the double knot loop (P = 0.028). There was no significant difference in load elongation properties to failure between the single knot loop and double knot loop. Although no significant differences were obtained in the pressure-resistance test, the single knot loop sustained significantly greater load to failure than the double knot loop in single cycle-to-failure testing. Based on these findings, it would appear that the performance of the single knot loop should be superior to the double knot loop. Both ligature techniques are able to withstand the normal physiological intravascular pressure. The single knot loop has the greater breaking strength of the 2 ligatures tested and is less time consuming to perform and may therefore have advantages during equine castration. © 2012 EVJ Ltd.

  12. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  13. Adaptation of a modern medium helicopter (Sikorsky S-76) to higher harmonic control

    NASA Technical Reports Server (NTRS)

    Oleary, J. J.; Kottapalli, S. B. R.; Davis, M. W.

    1985-01-01

    Sikorsky Aircraft has performed analytical studies, design analyses, and risk reduction tests have been performed for Higher Harmonic Control (HHC) on the S-76. The S-76 is an 8 to 10,000 lb helicopter which cruises at 145 kts. Flight test hardware has been assembled, main servo frequency response tested and upgraded, aircraft control system shake tested and verified, open loop controllers designed and fabricated, closed loop controllers defined and evaluated, and rotors turning ground and flight tests planned for the near future. Open loop analysis shows that about 2 deg of higher harmonic feathering at the blade 75% radius will be required to eliminate 4P vibration in the cockpit.

  14. Perturbative two- and three-loop coefficients from large β Monte Carlo

    NASA Astrophysics Data System (ADS)

    Lepage, G. P.; Mackenzie, P. B.; Shakespeare, N. H.; Trottier, H. D.

    Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large β on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z3 tunneling.

  15. Perturbative two- and three-loop coefficients from large b Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.P. Lepage; P.B. Mackenzie; N.H. Shakespeare

    1999-10-18

    Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large {beta} on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z{sub 3} tunneling.

  16. OPTICON: Pro-Matlab software for large order controlled structure design

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    1989-01-01

    A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.

  17. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Degradation in finite-harmonic subcarrier demodulation

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Townes, S.; Pham, T.

    1995-01-01

    Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.

  19. Digital Filters for Digital Phase-locked Loops

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1985-01-01

    An s/z hybrid model for a general phase locked loop is proposed. The impact of the loop filter on the stability, gain margin, noise equivalent bandwidth, steady state error and time response is investigated. A specific digital filter is selected which maximizes the overall gain margin of the loop. This filter can have any desired number of integrators. Three integrators are sufficient in order to track a phase jerk with zero steady state error at loop update instants. This filter has one zero near z = 1.0 for each integrator. The total number of poles of the filter is equal to the number of integrators plus two.

  20. Thermal management systems and methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  1. Complete next-to-leading-order calculation for pion production in nucleon-nucleon collisions at threshold

    NASA Astrophysics Data System (ADS)

    Hanhart, C.; Kaiser, N.

    2002-11-01

    Based on a counting scheme that explicitly takes into account the large momentum (Mmπ) characteristic for pion production in nucleon-nucleon collisions we calculate all diagrams for the reaction NN-->NNπ at threshold up to next-to-leading-order. At this order there are no free parameters and the size of the next-to-leading- order contributions is in line with the expectation from power counting. The sum of loop corrections at that order vanishes for the process pp-->ppπ0 at threshold. The total contribution at next-to-leading-order from loop diagrams that include the delta degree of freedom vanishes at threshold in both reaction channels pp-->ppπ0,pnπ+.

  2. Higher-Order Binding Corrections to the Lamb Shift

    NASA Astrophysics Data System (ADS)

    Pachucki, K.

    1993-08-01

    In this work a new analytical method for calculating the one-loop self-energy correction to the Lamb shift is presented in detail. The technique relies on division into the low and the high energy parts. The low energy part is calculated using the multipole expansion and the high energy part is calculated by expanding the Dirac-Coulomb propagator in powers of the Coulomb field. The obtained results are in agreement with those previously known, but are more accurate. A new theoretical value of the Lamb shift is also given.

  3. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  4. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions

    NASA Astrophysics Data System (ADS)

    Netz, R. R.; Orland, H.

    2000-02-01

    We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.

  5. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    NASA Astrophysics Data System (ADS)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  6. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  7. Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit

    NASA Astrophysics Data System (ADS)

    Gordon, James

    2018-01-01

    We study the 1/2 -BPS circular Wilson loop in the totally antisymmetric representation of the gauge group in N = 4 supersymmetric Yang-Mills. This observable is captured by a Gaussian matrix model with appropriate insertion. We compute the first 1 /N correction at leading order in 't Hooft coupling by means of the matrix model loop equations. Disagreement with the 1-loop effective action of the holographically dual D5-brane suggests the need to account for gravitational backreaction on the string theory side.

  8. Computer simulation of multiple pilots flying a modern high performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.

  9. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  10. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  11. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo, E-mail: matthew.lewandowski@ipht.fr, E-mail: senatore@stanford.edu

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. We then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.« less

  12. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less

  13. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    DOE PAGES

    Lewandowski, Matthew; Senatore, Leonardo

    2017-08-31

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less

  14. Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Wen, Aijun; Gao, Yongsheng; Shang, Shuo; Zheng, Hanxiao; He, Hongye

    2017-12-01

    In this paper, a filterless photonic frequency-octupling scheme is presented. It is implemented by cascading a Sagnac loop with an intensity modulator (IM) in it and a dual-parallel Mach-Zehnder modulator (DPMZM) in series. The Sagnac loop is used to get the ±2nd-order sidebands of LO signal. The following DPMZM is utilized to obtain the ±4th-order sidebands. By photo-detecting the ±4th-order sidebands, mm-wave signal with the eightfold frequency of LO signal can be obtained. The scheme is verified by experiments, and a 32-GHz mm-wave signal is produced with the assistance of a 4-GHz LO signal. A 20-dB optical sideband suppression ratio (OSSR) and a 17-dB electrical spurious suppression ratio (ESSR) are realized, and no extra deterioration of phase noise is observed. Besides, the verification of the frequency tunability is implemented in the experiment.

  15. An algebraic approach to the analytic bootstrap

    DOE PAGES

    Alday, Luis F.; Zhiboedov, Alexander

    2017-04-27

    We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. Here, we analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers ofmore » operators in the crossed channel. We apply this method to the critical O(N ) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N ) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.« less

  16. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2017-10-27

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.

  18. The Learning-Paradigm Campus: From Single- to Double-Loop Learning

    ERIC Educational Resources Information Center

    Tagg, John

    2010-01-01

    Since the 1980s, advocates for change in higher education have called for double-loop learning. One of the main criticisms of the evaluation of colleges and universities was that they measured inputs rather than the outputs. Higher education now needs to apply the lessons of learning and change to campus leadership and organization.

  19. Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals

    NASA Astrophysics Data System (ADS)

    Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.

    2018-04-01

    We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.

  20. Characterisation of radiation damage in W and W-based alloys from 2MeV self-ion near-bulk implantations

    DOE PAGES

    Yi, Xiaoou; Culham Science Centre, Abingdon; Jenkins, Michael L.; ...

    2015-04-21

    The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W + irradiation to doses 3.3×10 17 - 2.5×10 19 W +/m 2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majoritymore » being ≤ 6 nm. The loop number density varied between 10 22 and 10 23 loops/m 3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.« less

  1. Tunable Composite Metamaterials with Imbedded Coherently Controllable Atomic or Molecular Materials

    DTIC Science & Technology

    2010-10-07

    using nanoporous alumina templates [G. Sauer, G. Brehm, and S. Schneider, “Highly ordered monocrystalline silver nanowire arrays” J. Appl...using stimulated Raman Scattering into the Stokes modes. Fig. 2: Left panel : A cross-sectional view of a typical unit cell of the plasmonic loop...Right panel : Magnetic response of an isolated loop inclusion illustrating the concentration of the magnetic field inside the loop at resonance, when

  2. Characterisation of case depth in induction-hardened medium carbon steels based on magnetic minor hysteresis loop measurement technique

    NASA Astrophysics Data System (ADS)

    He, Cunfu; Yang, Meng; Liu, Xiucheng; Wang, Xueqian; Wu, Bin

    2017-11-01

    The magnetic hysteresis behaviours of ferromagnetic materials vary with the heat treatment-induced micro-structural changes. In the study, the minor hysteresis loop measurement technique was used to quantitatively characterise the case depth in two types of medium carbon steels. Firstly, high-frequency induction quenching was applied in rod samples to increase the volume fraction of hard martensite to the soft ferrite/pearlite (or sorbite) in the sample surface. In order to determine the effective and total case depth, a complementary error function was employed to fit the measured hardness-depth profiles of induction-hardened samples. The cluster of minor hysteresis loops together with the tangential magnetic field (TMF) were recorded from all the samples and the comparative study was conducted among three kinds of magnetic parameters, which were sensitive to the variation of case depth. Compared to the parameters extracted from an individual minor loop and the distortion factor of the TMF, the magnitude of three-order harmonic of TMF was more suitable to indicate the variation in case depth. Two new minor-loop coefficients were introduced by combining two magnetic parameters with cumulative statistics of the cluster of minor-loops. The experimental results showed that the two coefficients monotonically linearly varied with the case depth within the carefully selected magnetisation region.

  3. Hypoglycaemia incidence and recovery during home use of hybrid closed-loop insulin delivery in adults with type 1 diabetes.

    PubMed

    Ruan, Yue; Bally, Lia; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Tauschmann, Martin; Wilinska, Malgorzata E; Evans, Mark L; Mader, Julia K; Kojzar, Harald; Dellweg, Sibylle; Benesch, Carsten; Arnolds, Sabine; Pieber, Thomas R; Hovorka, Roman

    2018-03-25

    Glucose excursion was assessed prior to and post hypoglycaemia to increase understanding of hypoglycaemia incidence and recovery during hybrid closed-loop insulin delivery. We retrospectively analysed data from 60 adults with type 1 diabetes who received, in a crossover randomized design, day-and-night hybrid closed-loop insulin delivery and insulin pump therapy, the latter with or without real-time continuous glucose monitoring. Over 4-week study periods, we identified hypoglycaemic episodes, defined as sensor glucose <3.0 mmol/L, and analysed sensor glucose relative to the onset of hypoglycaemia. We identified 377 hypoglycaemic episodes during hybrid closed-loop intervention vs 662 during control intervention (P < .001), with a predominant reduction of nocturnal hypoglycaemia. The slope of sensor glucose prior to hypoglycaemia was steeper during closed-loop intervention than during control intervention (P < .01), while insulin delivery was reduced (P < .01). During both day and night, participants recovered from hypoglycaemia faster when treated by closed-loop intervention. At 120 minutes post hypoglycaemia, sensor glucose levels were higher during closed-loop intervention compared to the control period (P < .05). In conclusion, closed-loop intervention reduces the risk of hypoglycaemia, particularly overnight, with swift recovery from hypoglycaemia leading to higher 2-hour post-hypoglycaemia glucose levels. © 2018 John Wiley & Sons Ltd.

  4. PLATSIM: A Simulation and Analysis Package for Large-Order Flexible Systems. Version 2.0

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Kenny, Sean P.; Giesy, Daniel P.

    1997-01-01

    The software package PLATSIM provides efficient time and frequency domain analysis of large-order generic space platforms. PLATSIM can perform open-loop analysis or closed-loop analysis with linear or nonlinear control system models. PLATSIM exploits the particular form of sparsity of the plant matrices for very efficient linear and nonlinear time domain analysis, as well as frequency domain analysis. A new, original algorithm for the efficient computation of open-loop and closed-loop frequency response functions for large-order systems has been developed and is implemented within the package. Furthermore, a novel and efficient jitter analysis routine which determines jitter and stability values from time simulations in a very efficient manner has been developed and is incorporated in the PLATSIM package. In the time domain analysis, PLATSIM simulates the response of the space platform to disturbances and calculates the jitter and stability values from the response time histories. In the frequency domain analysis, PLATSIM calculates frequency response function matrices and provides the corresponding Bode plots. The PLATSIM software package is written in MATLAB script language. A graphical user interface is developed in the package to provide convenient access to its various features.

  5. Lattice corrections to the quark quasidistribution at one loop

    DOE PAGES

    Carlson, Carl E.; Freid, Michael

    2017-05-12

    Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less

  6. Methods of forming thermal management systems and thermal management methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  7. Lattice corrections to the quark quasidistribution at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Carl E.; Freid, Michael

    Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less

  8. Closing the Feedback Loop Is Not Enough: The Assessment Spiral

    ERIC Educational Resources Information Center

    Wehlburg, Catherine M.

    2007-01-01

    For quite some time, the call to close the feedback loop has been heard throughout higher education. Faculty and administrators have paid attention, and now they can more easily than ever point to the fact that at their institution, the feedback loop is almost always closed. As reviewers from accreditation teams visit campuses, they often hear…

  9. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less

  10. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study.

    PubMed

    Gupta, Asmita; Bansal, Manju

    2016-10-19

    Mechanical unfolding studies on Ribonucleic Acid (RNA) structures are a subject of tremendous interest as they shed light on the principles of higher order assembly of these structures. Pseudoknotting is one of the most elementary ways in which this higher order assembly is achieved as discrete secondary structural units in RNA are brought in close proximity to form a tertiary structure. Using steered molecular dynamics (SMD) simulations, we have studied the unfolding of five RNA pseudoknot structures that differ from each other either by base substitutions in helices or loops. Our SMD simulations reveal the manner in which a biologically functional RNA pseudoknot unfolds and the effect of changes in the primary structure on this unfolding pathway, providing necessary insights into the driving forces behind the functioning of these structures. We observed that an A → C mutation in the loop sequence makes the pseudoknot far more resistant against force induced disruption relative to its wild type structure. In contrast to this, a base-pair substitution GC → AU near the pseudoknot junction region renders it more vulnerable to this disruption. The quantitative estimation of differences in the unfolding paths was carried out using force extension curves, potential of mean force profiles, and the opening of different Watson-Crick and non-Watson-Crick interactions. The results provide a quantified view in which the unfolding paths of the small RNA structures can be used for investigating the programmability of RNA chains for designing RNA switches and aptamers as their biological folding and unfolding could be assessed and manipulated.

  11. A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor

    PubMed Central

    Xia, Dunzhu; Cheng, Limei; Yao, Yanhong

    2017-01-01

    In order to achieve the complicated trajectory tracking of quadrotor, a geometric inner and outer loop control scheme is presented. The outer loop generates the desired rotation matrix for the inner loop. To improve the response speed and robustness, a geometric SMC controller is designed for the inner loop. The outer loop is also designed via sliding mode control (SMC). By Lyapunov theory and cascade theory, the closed-loop system stability is guaranteed. Next, the tracking performance is validated by tracking three representative trajectories. Then, the robustness of the proposed control method is illustrated by trajectory tracking in presence of model uncertainty and disturbances. Subsequently, experiments are carried out to verify the method. In the experiment, ultra wideband (UWB) is used for indoor positioning. Extended Kalman Filter (EKF) is used for fusing inertial measurement unit (IMU) and UWB measurements. The experimental results show the feasibility of the designed controller in practice. The comparative experiments with PD and PD loop demonstrate the robustness of the proposed control method. PMID:28925984

  12. Dose-Volume Histogram Predictors of Chronic Gastrointestinal Complications After Radical Hysterectomy and Postoperative Concurrent Nedaplatin-Based Chemoradiation Therapy for Early-Stage Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isohashi, Fumiaki, E-mail: isohashi@radonc.med.osaka-u.ac.jp; Yoshioka, Yasuo; Mabuchi, Seiji

    2013-03-01

    Purpose: The purpose of this study was to evaluate dose-volume histogram (DVH) predictors for the development of chronic gastrointestinal (GI) complications in cervical cancer patients who underwent radical hysterectomy and postoperative concurrent nedaplatin-based chemoradiation therapy. Methods and Materials: This study analyzed 97 patients who underwent postoperative concurrent chemoradiation therapy. The organs at risk that were contoured were the small bowel loops, large bowel loop, and peritoneal cavity. DVH parameters subjected to analysis included the volumes of these organs receiving more than 15, 30, 40, and 45 Gy (V15-V45) and their mean dose. Associations between DVH parameters or clinical factors andmore » the incidence of grade 2 or higher chronic GI complications were evaluated. Results: Of the clinical factors, smoking and low body mass index (BMI) (<22) were significantly associated with grade 2 or higher chronic GI complications. Also, patients with chronic GI complications had significantly greater V15-V45 volumes and higher mean dose of the small bowel loops compared with those without GI complications. In contrast, no parameters for the large bowel loop or peritoneal cavity were significantly associated with GI complications. Results of the receiver operating characteristics (ROC) curve analysis led to the conclusion that V15-V45 of the small bowel loops has high accuracy for prediction of GI complications. Among these parameters, V40 gave the highest area under the ROC curve. Finally, multivariate analysis was performed with V40 of the small bowel loops and 2 other clinical parameters that were judged to be potential risk factors for chronic GI complications: BMI and smoking. Of these 3 parameters, V40 of the small bowel loops and smoking emerged as independent predictors of chronic GI complications. Conclusions: DVH parameters of the small bowel loops may serve as predictors of grade 2 or higher chronic GI complications after postoperative concurrent nedaplatin-based chemoradiation therapy for early-stage cervical cancer.« less

  13. Mended chiral symmetry and the linear sigma model in one-loop order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scadron, M.D.

    1992-02-28

    In this paper it is shown that the linear {sigma}-model in one loop order in the chiral limit recovers meson masses m{sub {pi}} = 0, m{sub {sigma}} = 2m{sub qk} (NJL), m {sub {rho}} = {radical}2 g{sub {rho}}f{pi} (KSRF), along with couplings g{sigma}{pi}{pi} = m{sup 2}{sub {sigma}}/2f{pi}, g{rho}{pi}{pi} = g{sub {rho}} (VMD universality) and Weinberg's mended chiral symmetry decay width relation {Gamma}{sub {sigma}} = (9/2){Gamma}{sub {rho}}. The linear {sigma}-model combined quark and meson loops also properly predict the radiative decays {pi}{sup 0} {yields} 2{gamma} {yields} e{nu}{gamma} and {delta}{sup 0} (983) {yields} 2{gamma}.

  14. Design of dissipative low-authority controllers using an eigensystem assignment technique

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Gupta, S.; Joshi, S. M.

    1992-01-01

    A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.

  15. Study of Fluid Cooling Loop System in Chinese Manned Spacecraft

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong

    2002-01-01

    change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The thermal designs of the key heat exchanging parts (such as radiator, heat exchangers and cooling plates) in the cooling loop are rational and effective, they meet the requirements of heat exchanging and assure the entire system work order.

  16. Translation initiation events on structured eukaryotic mRNAs generate gene expression noise

    PubMed Central

    Dacheux, Estelle; Malys, Naglis; Meng, Xiang; Ramachandran, Vinoy; Mendes, Pedro

    2017-01-01

    Abstract Gene expression stochasticity plays a major role in biology, creating non-genetic cellular individuality and influencing multiple processes, including differentiation and stress responses. We have addressed the lack of knowledge about posttranscriptional contributions to noise by determining cell-to-cell variations in the abundance of mRNA and reporter protein in yeast. Two types of structural element, a stem–loop and a poly(G) motif, not only inhibit translation initiation when inserted into an mRNA 5΄ untranslated region, but also generate noise. The noise-enhancing effect of the stem–loop structure also remains operational when combined with an upstream open reading frame. This has broad significance, since these elements are known to modulate the expression of a diversity of eukaryotic genes. Our findings suggest a mechanism for posttranscriptional noise generation that will contribute to understanding of the generally poor correlation between protein-level stochasticity and transcriptional bursting. We propose that posttranscriptional stochasticity can be linked to cycles of folding/unfolding of a stem–loop structure, or to interconversion between higher-order structural conformations of a G-rich motif, and have created a correspondingly configured computational model that generates fits to the experimental data. Stochastic events occurring during the ribosomal scanning process can therefore feature alongside transcriptional bursting as a source of noise. PMID:28521011

  17. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  18. False vacuum decay in quantum mechanics and four dimensional scalar field theory

    NASA Astrophysics Data System (ADS)

    Bezuglov, Maxim

    2018-04-01

    When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.

  19. SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgenfritz, Ernst-Michael; Humboldt-Universitaet zu Berlin, Institut fuer Physik, 12489 Berlin; Menz, Christoph

    2011-03-01

    We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory. In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of themore » associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite size, and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order numerical stochastic perturbation theory.« less

  20. Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Her; Lin, Ruei-De; Cherng, Bo-Ruei; Cherng, Jyh-Shiarn

    2018-05-01

    The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films are systematically studied. Those films were reactively sputtered in various sputtering modes using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in an amorphous matrix, which undergoes an abnormal grain growth upon annealing at 800 °C. At 500 °C, the measured ionic conductivity of this annealed film is higher, by about a half order of magnitude, than those of its poisoned-mode counterparts, which are in turn significantly higher than that of the YSZ bulk by about two orders of magnitude. The abnormally-grown ultra-large grain size of the film deposited in the transition mode and then annealed is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.

  1. A Markov chain technique for determining the acquisition behavior of a digital tracking loop

    NASA Technical Reports Server (NTRS)

    Chadwick, H. D.

    1972-01-01

    An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.

  2. Loop corrections to primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  3. Tanlock loop noise reduction using an optimised phase detector

    NASA Astrophysics Data System (ADS)

    Al-kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh

    2013-06-01

    This article proposes a time-delay digital tanlock loop (TDTL), which uses a new phase detector (PD) design that is optimised for noise reduction making it amenable for applications that require wide lock range without sacrificing the level of noise immunity. The proposed system uses an improved phase detector design which uses two phase detectors; one PD is used to optimise the noise immunity whilst the other is used to control the acquisition time of the TDTL system. Using the modified phase detector it is possible to reduce the second- and higher-order harmonics by at least 50% compared with the conventional TDTL system. The proposed system was simulated and tested using MATLAB/Simulink using frequency step inputs and inputs corrupted with varying levels of harmonic distortion. A hardware prototype of the system was implemented using a field programmable gate array (FPGA). The practical and simulation results indicate considerable improvement in the noise performance of the proposed system over the conventional TDTL architecture.

  4. Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis.

    PubMed

    Petrie, Emma J; Sandow, Jarrod J; Jacobsen, Annette V; Smith, Brian J; Griffin, Michael D W; Lucet, Isabelle S; Dai, Weiwen; Young, Samuel N; Tanzer, Maria C; Wardak, Ahmad; Liang, Lung-Yu; Cowan, Angus D; Hildebrand, Joanne M; Kersten, Wilhelmus J A; Lessene, Guillaume; Silke, John; Czabotar, Peter E; Webb, Andrew I; Murphy, James M

    2018-06-21

    Necroptotic cell death is mediated by the most terminal known effector of the pathway, MLKL. Precisely how phosphorylation of the MLKL pseudokinase domain activation loop by the upstream kinase, RIPK3, induces unmasking of the N-terminal executioner four-helix bundle (4HB) domain of MLKL, higher-order assemblies, and permeabilization of plasma membranes remains poorly understood. Here, we reveal the existence of a basal monomeric MLKL conformer present in human cells prior to exposure to a necroptotic stimulus. Following activation, toggling within the MLKL pseudokinase domain promotes 4HB domain disengagement from the pseudokinase domain αC helix and pseudocatalytic loop, to enable formation of a necroptosis-inducing tetramer. In contrast to mouse MLKL, substitution of RIPK3 substrate sites in the human MLKL pseudokinase domain completely abrogated necroptotic signaling. Therefore, while the pseudokinase domains of mouse and human MLKL function as molecular switches to control MLKL activation, the underlying mechanism differs between species.

  5. Hybrid Smith predictor and phase lead based divergence compensation for hardware-in-the-loop contact simulation with measurement delay

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye

    2018-06-01

    On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.

  6. Space environmental effects: Construction and utilization of a system to measure low thermal strain in one meter graphite epoxy tubes

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Rives, C.

    1982-01-01

    A system for measuring the expansion of low coefficient of thermal expansion (CTE) materials was constructed around a H.P. 5526-A laser measuring system. The vacuum CTE measurements in the -150 F to +120 F range were made over a 6 month period on a graphite epoxy tube yielding CTE values of 2.5 to one fifty-millionth/F above ambient and 2 + or - one ten-millionth F below ambient temperature. To assure that the below ambient, approximately 10 microns high open loop nature of the delta L/L vs. T curves was not apparatus related, similar size quartz tubes (A and B) were checked and found to have only a 2 micron (negligable for quartz) open loop component. These two quartz tubes, A and B, had ambient CTE values 20% and 45% respectively higher than the average handbook value. The overnight microcreep diminished an order of magnitude during the first several cycles after the system had been reopened.

  7. Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly.

    PubMed

    Chereji, Razvan V; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V; Broach, James R; Björklund, Stefan

    2017-09-06

    Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3'-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Higher order chromatin structure: bridging physics and biology

    PubMed Central

    Fudenberg, Geoffrey; Mirny, Leonid A.

    2012-01-01

    Recent advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of high-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently-developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. PMID:22360992

  9. Resummation of jet veto logarithms at N 3 LL a + NNLO for W + W ? production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, S.; Jaiswal, P.; Li, Ye

    We compute the resummed on-shell W+W- production cross section under a jet veto at the LHC to partial N3LL order matched to the fixed-order NNLO result. Differential NNLO cross sections are obtained from an implementation of qT subtraction in Sherpa. The two-loop virtual corrections to the qq¯→W+W- amplitude, used in both fixed-order and resummation predictions, are extracted from the public code qqvvamp. We perform resummation using soft collinear effective theory, with approximate beam functions where only the logarithmic terms are included at two-loop. In addition to scale uncertainties from the hard matching scale and the factorization scale, rapidity scale variationsmore » are obtained within the analytic regulator approach. Our resummation results show a decrease in the jet veto cross section compared to NNLO fixed-order predictions, with reduced scale uncertainties compared to NNLL+NLO resummed predictions. We include the loop-induced gg contribution with jet veto resummation to NLL+LO. The prediction shows good agreement with recent LHC measurements.« less

  10. Resummation of jet veto logarithms at N 3 LL a + NNLO for W + W ? production at the LHC

    DOE PAGES

    Dawson, S.; Jaiswal, P.; Li, Ye; ...

    2016-12-01

    We compute the resummed on-shell W+W- production cross section under a jet veto at the LHC to partial N3LL order matched to the fixed-order NNLO result. Differential NNLO cross sections are obtained from an implementation of qT subtraction in Sherpa. The two-loop virtual corrections to the qq¯→W+W- amplitude, used in both fixed-order and resummation predictions, are extracted from the public code qqvvamp. We perform resummation using soft collinear effective theory, with approximate beam functions where only the logarithmic terms are included at two-loop. In addition to scale uncertainties from the hard matching scale and the factorization scale, rapidity scale variationsmore » are obtained within the analytic regulator approach. Our resummation results show a decrease in the jet veto cross section compared to NNLO fixed-order predictions, with reduced scale uncertainties compared to NNLL+NLO resummed predictions. We include the loop-induced gg contribution with jet veto resummation to NLL+LO. The prediction shows good agreement with recent LHC measurements.« less

  11. Efficient Computation of Closed-loop Frequency Response for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1997-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, full-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open and closed loop loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, a speed-up of almost two orders of magnitude was observed while accuracy improved by up to 5 decimal places.

  12. No evidence for orbital loop currents in charge-ordered YBa2Cu3O6 +x from polarized neutron diffraction

    NASA Astrophysics Data System (ADS)

    Croft, T. P.; Blackburn, E.; Kulda, J.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Hayden, S. M.

    2017-12-01

    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2Cu3O6 +x with doping levels p =0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θI I pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB for p =0.104 .

  13. Double-winding Wilson loops in SU(N) Yang-Mills theory - A criterion for testing the confinement models -

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi; Shibata, Akihiro

    2018-03-01

    We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N - 3)A1/(N - 1) + A2 with A1 and A2(A1 < A2) being the minimal areas spanned respectively by the loops C1 and C2, which is neither sum-ofareas (A1 + A2) nor difference-of-areas (A2 - A1) law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.

  14. Mapping the Structural and Dynamical Features of Multiple p53 DNA Binding Domains: Insights into Loop 1 Intrinsic Dynamics

    PubMed Central

    Lukman, Suryani; Lane, David P.; Verma, Chandra S.

    2013-01-01

    The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site. PMID:24324553

  15. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  16. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig

    2014-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.

  17. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems thatmore » were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.« less

  18. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  19. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence.

    PubMed

    Jones, S P; Kerner, M; Luisoni, G

    2018-04-20

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  20. The singular behavior of one-loop massive QCD amplitudes with one external soft gluon

    NASA Astrophysics Data System (ADS)

    Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander

    2012-03-01

    We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.

  1. Eddy currents in a conducting sphere

    NASA Technical Reports Server (NTRS)

    Bergman, John; Hestenes, David

    1986-01-01

    This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.

  2. Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop

    NASA Astrophysics Data System (ADS)

    Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud

    2013-09-01

    The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.

  3. 47 CFR 51.319 - Specific unbundling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Triennial Review Order, the high frequency portion of a copper loop shall no longer be required to be... the requesting telecommunications carrier using the high frequency portion of the loop. The high... the demarcation point at the end-user customer premises, and includes the high frequency portion of...

  4. 47 CFR 51.319 - Specific unbundling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Triennial Review Order, the high frequency portion of a copper loop shall no longer be required to be... the requesting telecommunications carrier using the high frequency portion of the loop. The high... the demarcation point at the end-user customer premises, and includes the high frequency portion of...

  5. 47 CFR 51.319 - Specific unbundling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Triennial Review Order, the high frequency portion of a copper loop shall no longer be required to be... the requesting telecommunications carrier using the high frequency portion of the loop. The high... the demarcation point at the end-user customer premises, and includes the high frequency portion of...

  6. Higher-order binding corrections to the Lamb shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachucki, K.

    1993-08-15

    In this work a new analytical method for calculating the one-loop self-energy correction to the Lamb shift is presented in detail. The technique relies on division into the low and the high energy parts. The low energy part is calculated using the multipole expansion and the high energy part is calculated by expanding the Dirac-Coulomb propagator in powers of the Coulomb field. The obtained results are in agreement with those previously known, but are more accurate. A new theoretical value of the Lamb shift is also given. 47 refs., 2 figs., 1 tab.

  7. Rule-based navigation control design for autonomous flight

    NASA Astrophysics Data System (ADS)

    Contreras, Hugo; Bassi, Danilo

    2008-04-01

    This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.

  8. A radiative seesaw model with higher order terms under an alternative U(1)B-L

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-06-01

    We propose a model based on an alternative U(1) B - L gauge symmetry with 5 dimensional operators in the Lagrangian, and we construct the neutrino masses at one-loop level, and discuss lepton flavor violations, dark matter, and the effective number of neutrino species due to two massless particles in our model. Then we search allowed region to satisfy the current experimental data of neutrino oscillation and lepton flavor violations without conflict of several constraints such as stability of dark matter and the effective number of neutrino species, depending on normal hierarchy and inverted one.

  9. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  10. Study of the post-flare loops on 29 July 1973. II - Physical parameters in the X-ray loops

    NASA Technical Reports Server (NTRS)

    Petrasso, R. D.; Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Krogstad, R.; Seguin, F. H.; Svestka, Z.

    1979-01-01

    We use the filter ratio method of analysis to determine spatially resolved values of plasma parameters in the X-ray emitting post-flare loop system which developed on 29 and 30 July 1973. We find that the loops were hotter and had higher plasma pressure at their tops than near their footpoints. The loop tops were at nearly the same temperature at different places 3 hr after the flare maximum and were also at nearly this same temperature 3 and 8 hr later. Variations in brightness transverse to the loops were due to variations in emission measure. We show by consideration of radiative losses alone that energy must have been added to the hottest part of the flare, at the tops of the loops, late in the decay phase of the flare.

  11. Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1992-01-01

    Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions.

  12. 3D-Stereoscopic Analysis of Solar Active Region Loops. 2; SoHo/EIT Observations at Temperatures of 1.5-2.5 MK

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen

    1999-01-01

    In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop-aligned magnetic field component B(sub z) at the footpoints, but is correlated with the azimuthal field B(sub phi) = Bz(RDelta Phi/L) of a twisted loop, and is thus consistent with heating mechanisms based on field-aligned currents.

  13. Integrated flight/propulsion control system design based on a centralized approach

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.

    1989-01-01

    An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.

  14. Digital Phase-Locked Loop With Phase And Frequency Feedback

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks

    1991-01-01

    Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.

  15. Loop versus divided colostomy for the management of anorectal malformations.

    PubMed

    Oda, Omar; Davies, Dafydd; Colapinto, Kimberly; Gerstle, J Ted

    2014-01-01

    The purpose of this study was to compare the clinical outcomes of loop and divided colostomies in patients with anorectal malformations (ARM). We performed a retrospective cohort study reviewing the medical records of all patients with ARM managed with diverting colostomies between 2000 and 2010 at our institution. Independent variables and outcomes of stoma complications were analyzed by parametric measures and logistic regression. One hundred forty-four patients managed with a colostomy for ARM were evaluated (37.5% females, 50.7% loop, 49.3% divided). The incidence of patients with loop and divided colostomies who developed stoma-related complications was 31.5 and 15.5%, respectively (p=0.031). The incidence of prolapse was 17.8 and 2.8%, respectively (p=0.005). Multivariable-logistic regression controlling for other significant independent variables found loop colostomies to be positively associated with the development of a stoma complication (OR 3.13, 95%CI (1.09, 8.96), p=0.033). When individual complications were evaluated, it was only stoma prolapse that was more likely in patients with loop colostomies (OR 8.75, 95%CI (1.74, 44.16), p=0.009). Because of the higher incidence of prolapse, loop colostomies were found to be associated with a higher total incidence of complications than divided stomas. The development of other complications, including urinary tract infections (UTIs) and megarectum, were independent of the type of colostomy performed. © 2014.

  16. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, O.; Esquivel, E.; Efe, M.

    Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less

  17. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

    DOE PAGES

    El-Atwani, O.; Esquivel, E.; Efe, M.; ...

    2018-02-20

    Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less

  18. Asymmetric structure of five and six membered DNA hairpin loops

    NASA Technical Reports Server (NTRS)

    Baumann, U.; Chang, S.

    1995-01-01

    The tertiary structure of nucleic acid hairpins was elucidated by means of the accessibility of the single-strand-specific nuclease from mung bean. This molecular probe has proven especially useful in determining details of the structural arrangement of the nucleotides within a loop. In this study 3'-labeling is introduced to complement previously used 5'-labeling in order to assess and to exclude possible artifacts of the method. Both labeling procedures result in mutually consistent cleavage patterns. Therefore, methodological artifacts can be excluded and the potential of the nuclease as structural probe is increased. DNA hairpins with five and six membered loops reveal an asymmetric loop structure with a sharp bend of the phosphate-ribose backbone between the second and third nucleotide on the 3'-side of a loop. These hairpin structures differ from smaller loops with 3 or 4 members, which reveal this type of bend between the first and second 3' nucleotide, and resemble with respect to the asymmetry anticodon loops of tRNA.

  19. FIR digital filter-based ZCDPLL for carrier recovery

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2016-04-01

    The objective of this work is to analyse the performance of the newly proposed two-tap FIR digital filter-based first-order zero-crossing digital phase-locked loop (ZCDPLL) in the absence or presence of additive white Gaussian noise (AWGN). The introduction of the two-tap FIR digital filter widens the lock range of a ZCDPLL and improves the loop's operation in the presence of AWGN. The FIR digital filter tap coefficients affect the loop convergence behaviour and appropriate selection of those gains should be taken into consideration. The new proposed loop has wider locking range and faster acquisition time and reduces the phase error variations in the presence of noise.

  20. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  1. Evidence of Significant Energy Input in the Late Phase of a Solar Flare from NuSTAR X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ˜18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  2. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of newmore » post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.« less

  3. Current collector for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1989-01-01

    An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.

  4. Extracting Loop Bounds for WCET Analysis Using the Instrumentation Point Graph

    NASA Astrophysics Data System (ADS)

    Betts, A.; Bernat, G.

    2009-05-01

    Every calculation engine proposed in the literature of Worst-Case Execution Time (WCET) analysis requires upper bounds on loop iterations. Existing mechanisms to procure this information are either error prone, because they are gathered from the end-user, or limited in scope, because automatic analyses target very specific loop structures. In this paper, we present a technique that obtains bounds completely automatically for arbitrary loop structures. In particular, we show how to employ the Instrumentation Point Graph (IPG) to parse traces of execution (generated by an instrumented program) in order to extract bounds relative to any loop-nesting level. With this technique, therefore, non-rectangular dependencies between loops can be captured, allowing more accurate WCET estimates to be calculated. We demonstrate the improvement in accuracy by comparing WCET estimates computed through our HMB framework against those computed with state-of-the-art techniques.

  5. Closed-Loop Control of Vortex Formation in Separated Flows

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Joe, Won Tae; MacMynowski, Doug; Rowley, Clancy; Taira, Sam; Ahuja, Sunil

    2010-01-01

    In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.

  6. Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.

  7. New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED

    NASA Astrophysics Data System (ADS)

    Volkov, Sergey

    2017-11-01

    This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.

  8. The strainrange conversion principle for treating cumulative fatigue damage in the creep range

    NASA Technical Reports Server (NTRS)

    Manson, S. S.

    1983-01-01

    A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.

  9. Non-local order in Mott insulators, duality and Wilson loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, Steffen Patrick, E-mail: steffen.rath@ph.tum.de; Simeth, Wolfgang; Endres, Manuel

    2013-07-15

    It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I.more » Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.« less

  10. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  11. Numbers and functions in quantum field theory

    NASA Astrophysics Data System (ADS)

    Schnetz, Oliver

    2018-04-01

    We review recent results in the theory of numbers and single-valued functions on the complex plane which arise in quantum field theory. These results are the basis for a new approach to high-loop-order calculations. As concrete examples, we provide scheme-independent counterterms of primitive log-divergent graphs in ϕ4 theory up to eight loops and the renormalization functions β , γ , γm of dimensionally regularized ϕ4 theory in the minimal subtraction scheme up to seven loops.

  12. Assessing Command and Control System Vulnerabilities in Underdeveloped, Degraded and Denied Operational Environments

    DTIC Science & Technology

    2013-06-01

    simulation of complex systems (Sterman 2000, Meadows 2008): a) Causal Loop Diagrams. A Causal Loop Diagram ( CLD ) is used to represent the feedback...structure of the dynamic system. CLDs consist of variables in the system being connected by arrows to show their causal influences and relationships. It is...distribution of orders will be included in the model. 6.4.2 Causal Loop Diagrams The CLD , as seen in Figure 5, is derived from the WDA constructs for the

  13. NNLO splitting and coefficient functions with time-like kinematics

    NASA Astrophysics Data System (ADS)

    Mitov, A.; Moch, S.; Vogt, A.

    2006-10-01

    We discuss recent results on the three-loop (next-to-next-to-leading order, NNLO) time-like splitting functions of QCD and the two-loop (NNLO) coefficient functions in one-particle inclusive e+e--annihilation. These results form the basis for extracting fragmentation functions for light and heavy flavors with NNLO accuracy that will be needed at the LHC and ILC. The two-loop calculations have been performed in Mellin space based on a new method, the main features of which we also describe briefly.

  14. Turbofan engine control system design using the LQG/LTR methodology

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1989-01-01

    Application of the linear-quadratic-Gaussian with loop-transfer-recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired target feedback loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.

  15. Turbofan engine control system design using the LQG/LTR methodology

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1989-01-01

    Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.

  16. Thermal Analysis of Post-eruption Loops from 80,000 to 1.6 million K

    NASA Technical Reports Server (NTRS)

    Kucera, T.; Landi, E.

    2006-01-01

    We analyze the thermal properties of a set of post eruptive loops which appeared after a prominence eruption on April 30, 2004. The event was observed by TRACE and SOHO/SUMER. The SUMER data was taken from a single slit location with a 90 second cadence and included a number of lines spanning the temperature range 80,000 to 1.6 million K. We perform a differential emission measure analysis of the loops in order to study their thermal evolution.

  17. New understanding of nano-scale interstitial dislocation loops in BCC iron

    NASA Astrophysics Data System (ADS)

    Gao, N.; Chen, J.; Kurtz, R. J.; Wang, Z. G.; Zhang, R. F.; Gao, F.

    2017-11-01

    Complex states of nanoscale interstitial dislocation loop can be described by its habit plane and Burgers vector. Using atomistic simulations, we provide direct evidences on the change of the habit plane of a 1/2〈1 1 1〉 loop from {1 1 1} to {1 1 0} and {2 1 1}, in agreement with TEM observations. A new {1 0 0} habit plane of this loop is also predicted by simulations. The non-conservation of the Burgers vector is approved theoretically for: (1) dislocation reactions between loops with different Burgers vectors and (2) the transition between 〈1 0 0〉 loops and 1/2〈1 1 1〉 loops. The rotation from a 1/2〈1 1 1〉 to a 〈1 0 0〉 loop has also been explored, which occurs at 570 K for time on the order of 10 s. The dislocation-precipitate phase duality and change of habit plane are then proposed as new features for nano-scale dislocation loops.

  18. Colombian Creole horse breeds: Same origin but different diversity

    PubMed Central

    Jimenez, Ligia Mercedes; Mendez, Susy; Dunner, Susana; Cañón, Javier; Cortés, Óscar

    2012-01-01

    In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino. PMID:23271940

  19. Infrared singularities of scattering amplitudes in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less

  20. Renormalization of loop functions for all loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-08-15

    It is shown that the vacuum expectation values W(C/sub 1/,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp(igcontour-integral/sub C/iA/sub ..mu../(x)dx/sup ..mu../) are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub ..mu../(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multipliedmore » by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub ..gamma../ is a loop which is smooth and simple except for a single cusp of angle ..gamma.., then W/sub R/(C/sub ..gamma../) = Z(..gamma..)W(C/sub ..gamma../) is finite for a suitable renormalization factor Z(..gamma..) which depends on ..gamma.. but on no other characteristic of C/sub ..gamma../. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub ..gamma../) = 1 for an arbitrary but fixed loop C-bar/sub ..gamma../. Next, if C/sub ..beta../ is a loop which is smooth and simple except for a cross point of angles ..beta.., then W(C/sub ..beta../) must be renormalized together with the loop functions of associated sets S/sup i//sub ..beta../ = )C/sup i//sub 1/,xxx, C/sup i//sub p/i) (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub ..beta../equivalentC/sup 1//sub 1/. Then W/sub R/(S/sup i//sub ..beta../) = Z/sup i/j(..beta..)W(S/sup j//sub ..beta../) is finite for a suitable matrix Z/sup i/j(..beta..).« less

  1. A second-order frequency-aided digital phase-locked loop for Doppler rate tracking

    NASA Astrophysics Data System (ADS)

    Chie, C. M.

    1980-08-01

    A second-order digital phase-locked loop (DPLL) has a finite lock range which is a function of the frequency of the incoming signal to be tracked. For this reason, it is not capable of tracking an input with Doppler rate for an indefinite period of time. In this correspondence, an analytical expression for the hold-in time is derived. In addition, an all-digital scheme to alleviate this problem is proposed based on the information obtained from estimating the input signal frequency.

  2. Structure and Dynamics Analysis on Plexin-B1 Rho GTPase Binding Domain as a Monomer and Dimer

    PubMed Central

    2015-01-01

    Plexin-B1 is a single-pass transmembrane receptor. Its Rho GTPase binding domain (RBD) can associate with small Rho GTPases and can also self-bind to form a dimer. In total, more than 400 ns of NAMD molecular dynamics simulations were performed on RBD monomer and dimer. Different analysis methods, such as root mean squared fluctuation (RMSF), order parameters (S2), dihedral angle correlation, transfer entropy, principal component analysis, and dynamical network analysis, were carried out to characterize the motions seen in the trajectories. RMSF results show that after binding, the L4 loop becomes more rigid, but the L2 loop and a number of residues in other regions become slightly more flexible. Calculating order parameters (S2) for CH, NH, and CO bonds on both backbone and side chain shows that the L4 loop becomes essentially rigid after binding, but part of the L1 loop becomes slightly more flexible. Backbone dihedral angle cross-correlation results show that loop regions such as the L1 loop including residues Q25 and G26, the L2 loop including residue R61, and the L4 loop including residues L89–R91, are highly correlated compared to other regions in the monomer form. Analysis of the correlated motions at these residues, such as Q25 and R61, indicate two signal pathways. Transfer entropy calculations on the RBD monomer and dimer forms suggest that the binding process should be driven by the L4 loop and C-terminal. However, after binding, the L4 loop functions as the motion responder. The signal pathways in RBD were predicted based on a dynamical network analysis method using the pathways predicted from the dihedral angle cross-correlation calculations as input. It is found that the shortest pathways predicted from both inputs can overlap, but signal pathway 2 (from F90 to R61) is more dominant and overlaps all of the routes of pathway 1 (from F90 to P111). This project confirms the allosteric mechanism in signal transmission inside the RBD network, which was in part proposed in the previous experimental study. PMID:24901636

  3. A cosmic book. [of physics of early universe

    NASA Technical Reports Server (NTRS)

    Peebles, P. J. E.; Silk, Joseph

    1988-01-01

    A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.

  4. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  5. The Size of the Internal Loop in DNA Hairpins Influences Their Targeting with Partially Complementary Strands

    PubMed Central

    2015-01-01

    Targeting of noncanonical DNA structures, such as hairpin loops, may have significant diagnostic and therapeutic potential. Oligonucleotides can be used for binding to mRNA, forming a DNA/RNA hybrid duplex that inhibits translation. This kind of modulation of gene expression is called the antisense approach. In order to determine the best strategy to target a common structural motif in mRNA, we have designed a set of stem-loop DNA molecules with sequence: d(GCGCTnGTAAT5GTTACTnGCGC), where n = 1, 3, or 5, “T5” is an end loop of five thymines. We used a combination of calorimetric and spectroscopy techniques to determine the thermodynamics for the reaction of a set of hairpins containing internal loops with their respective partially complementary strands. Our aim was to determine if internal- and end-loops are promising regions for targeting with their corresponding complementary strands. Indeed, all targeting reactions were accompanied by negative changes in free energy, indicating that reactions proceed spontaneously. Further investigation showed that these negative free energy terms result from a net balance of unfavorable entropy and favorable enthalpy contributions. In particular, unfolding of hairpins and duplexes is accompanied by positive changes in heat capacity, which may be a result of exposure of hydrophobic groups to the solvent. This study provides a new method for the targeting of mRNA in order to control gene expression. PMID:25486129

  6. Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, T.L.

    1991-11-12

    Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of {sup 125}I-{alpha}-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b and the structurally similarmore » segment of CVS rabies virus glycoprotein. These affinities were comparable to those of d-tubocurarine and suberyldicholine. These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Since this region of the glycoprotein contains residues corresponding to all of the functionally invariant neurotoxin residues, it may interact with the acetylcholine receptor through a mechanism similar to that of the neurotoxins.« less

  7. Integrable open spin chains from flavored ABJM theory

    NASA Astrophysics Data System (ADS)

    Bai, Nan; Chen, Hui-Huang; He, Song; Wu, Jun-Bao; Yang, Wen-Li; Zhu, Meng-Qi

    2017-08-01

    We compute the two-loop anomalous dimension matrix in the scalar sector of planar N=3 flavored ABJM theory. Using coordinate Bethe ansatz, we obtain the reflection matrices and confirm that the boundary Yang-Baxter equations are satisfied. This establishes the integrability of this theory in the scalar sector at the two-loop order.

  8. Orthopositronium decay form factors and two-photon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Gregory S.; Droz, Daniel R.; Rastawicki, Dominik

    2010-04-15

    We give results for the orthopositronium decay form factors through one-loop order. We use the form factors to calculate momentum correlations of the final-state photons and , including one-loop corrections, for ensembles of initial orthopositronium atoms having arbitrary polarization.

  9. Matrix Solution of Coupled Differential Equations and Looped Car Following Models

    ERIC Educational Resources Information Center

    McCartney, Mark

    2008-01-01

    A simple mathematical model for the behaviour of how vehicles follow each other along a looped stretch of road is described. The resulting coupled first order differential equations are solved using appropriate matrix techniques and the physical significance of the model is discussed. A number possible classroom exercises are suggested to help…

  10. ATLAS LTCS Vertically Challenged System Lessons Learned

    NASA Technical Reports Server (NTRS)

    Patel, Deepak; Garrison, Matt; Ku, Jentung

    2014-01-01

    Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.

  11. Geoscience Laser Altimeter System (GLAS) Final Test Report of DM LHP TV Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    Two loop heat pipes (LHPs) are to be used for thermal control of the Geoscience Laser Altimeter System (GLAS), planned for flight in 2001. One LHP will be used to transport 100 W from a laser to the radiator, the other will transport 210 W from electronic boxes to the radiator. In order to verify the LHP design for the GLAS application, an LHP Development Model has been fabricated, and ambient and thermal vacuum tested. Two aluminum blocks of 15 kg and 30 kg, respectively, were attached to the LHP to simulate the thermal masses connected to the heat sources. A 20 W starter heater was installed on the evaporator to aid the loop startup. A new concept to thermally couple the vapor and liquid line was also incorporated in the LHP design. Such a thermal coupling would reduce the power requirement on the compensation chamber in order to maintain the loop set point temperature. To avoid freezing of the liquid in the condenser during cold cases, propylene was selected as the working fluid. The LHP was tested under reflux mode and with adverse elevation. Tests conducted included start-up, power cycle, steady state and transient operation during hot and cold cases, and heater power requirements for the set point temperature control of the LHP. Test results showed very successful operation of the LHP under all conditions. The 20 W starter heater proved necessary in order to start the loop when a large thermal mass was attached to the evaporator. The thermal coupling between the liquid line and the vapor line significantly reduced the heater power required for loop temperature control, which was less than 5 watts in all cases, including a cold radiator. The test also demonstrated successful operation with a propylene working fluid, with successful startups with condenser temperatures as low as 100 C. Furthermore, the test demonstrated accurate control of the loop operating temperature within +/- 0.2 C, and a successful shutdown of the loop during the survival mode of operation.

  12. From Loops to Trees By-passing Feynman's Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catani, Stefano; Gleisberg, Tanju; Krauss, Frank

    2008-04-22

    We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluationmore » of cross-sections at next-to-leading order.« less

  13. The 1-loop effective potential for the Standard Model in curved spacetime

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen

    2018-06-01

    The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

  14. Superhorizon electromagnetic field background from Higgs loops in inflation

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2018-03-01

    If Higgs is a spectator scalar, i.e. if it is not directly coupled to the inflaton, superhorizon Higgs modes must have been exited during inflation. Since Higgs is unstable its decay into photons is expected to seed superhorizon photon modes. We use in-in perturbation theory to show that this naive physical expectation is indeed fulfilled via loop effects. Specifically, we calculate the first order Higgs loop correction to the magnetic field power spectrum evaluated at some late time after inflation. It turns out that this loop correction becomes much larger than the tree-level power spectrum at the superhorizon scales. This suggests a mechanism to generate cosmologically interesting superhorizon vector modes by scalar-vector interactions.

  15. On the thermal stability of coronal loop plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Emslie, A. G.; Shoub, E. C.; An, C. H.

    1982-01-01

    The stability to thermal perturbation of static models of coronal loops is considered including the effects of cool, radiatively stable material at the loop base. The linear stability turns out to be sensitive only to the boundary conditions assumed on the velocity at the loop base. The question of the appropriate boundary conditions is discussed, and it is concluded that the free surface condition (the pressure perturbation vanishes), rather than the rigid wall (the velocity vanishes), is relevant to the solar case. The static models are found to be thermally unstable, with a growth time of the order of the coronal cooking time. The physical implications of these results for the solar corona and transition region are examined.

  16. Structure of an Arrestin2-clathrin Complex Reveals a Novel Clathrin Binding Domain that Modulates Receptor Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, D.; Kern, R; Puthenveedu, M

    2009-01-01

    Non-visual arrestins play a pivotal role as adaptor proteins in regulating the signaling and trafficking of multiple classes of receptors. Although arrestin interaction with clathrin, AP-2, and phosphoinositides contributes to receptor trafficking, little is known about the configuration and dynamics of these interactions. Here, we identify a novel interface between arrestin2 and clathrin through x-ray diffraction analysis. The intrinsically disordered clathrin binding box of arrestin2 interacts with a groove between blades 1 and 2 in the clathrin {beta}-propeller domain, whereas an 8-amino acid splice loop found solely in the long isoform of arrestin2 (arrestin2L) interacts with a binding pocket formedmore » by blades 4 and 5 in clathrin. The apposition of the two binding sites in arrestin2L suggests that they are exclusive and may function in higher order macromolecular structures. Biochemical analysis demonstrates direct binding of clathrin to the splice loop in arrestin2L, whereas functional analysis reveals that both binding domains contribute to the receptor-dependent redistribution of arrestin2L to clathrin-coated pits. Mutagenesis studies reveal that the clathrin binding motif in the splice loop is (L/I){sub 2}GXL. Taken together, these data provide a framework for understanding the dynamic interactions between arrestin2 and clathrin and reveal an essential role for this interaction in arrestin-mediated endocytosis.« less

  17. The dynamics and control of large flexible space structures - 12, supplement 11

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Xu, Jianke

    1989-01-01

    The rapid 2-D slewing and vibrational control of the unsymmetrical flexible SCOLE (Spacecraft Control Laboratory Experiment) with multi-bounded controls is considered. Pontryagin's Maximum Principle is applied to the nonlinear equations of the system to derive the necessary conditions for the optimal control. The resulting two point boundary value problem is then solved by using the quasilinearization technique, and the near minimum time is obtained by sequentially shortening the slewing time until the controls are near the bang-bang type. The tradeoff between the minimum time and the minimum flexible amplitude requirements is discussed. The numerical results show that the responses of the nonlinear system are significantly different from those of the linearized system for rapid slewing. The SCOLE station-keeping closed loop dynamics are re-examined by employing a slightly different method for developing the equations of motion in which higher order terms in the expressions for the mast modal shape functions are now included. A preliminary study on the effect of actuator mass on the closed loop dynamics of large space systems is conducted. A numerical example based on a coupled two-mass two-spring system illustrates the effect of changes caused in the mass and stiffness matrices on the closed loop system eigenvalues. In certain cases the need for redesigning control laws previously synthesized, but not accounting for actuator masses, is indicated.

  18. Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals

    NASA Astrophysics Data System (ADS)

    Patel, Hiren H.

    2017-09-01

    This article summarizes new features and enhancements of the first major update of Package-X. Package-X 2.0 can now generate analytic expressions for arbitrarily high rank dimensionally regulated tensor integrals with up to four distinct propagators, each with arbitrary integer weight, near an arbitrary even number of spacetime dimensions, giving UV divergent, IR divergent, and finite parts at (almost) any real-valued kinematic point. Additionally, it can generate multivariable Taylor series expansions of these integrals around any non-singular kinematic point to arbitrary order. All special functions and abbreviations output by Package-X 2.0 support Mathematica's arbitrary precision evaluation capabilities to deal with issues of numerical stability. Finally, tensor algebraic routines of Package-X have been polished and extended to support open fermion chains both on and off shell. The documentation (equivalent to over 100 printed pages) is accessed through Mathematica's Wolfram Documentation Center and contains information on all Package-X symbols, with over 300 basic usage examples, 3 project-scale tutorials, and instructions on linking to FEYNCALC and LOOPTOOLS. Program files doi:http://dx.doi.org/10.17632/yfkwrd4d5t.1 Licensing provisions: CC by 4.0 Programming language: Mathematica (Wolfram Language) Journal reference of previous version: H. H. Patel, Comput. Phys. Commun 197, 276 (2015) Does the new version supersede the previous version?: Yes Summary of revisions: Extension to four point one-loop integrals with higher powers of denominator factors, separate extraction of UV and IR divergent parts, testing for power IR divergences, construction of Taylor series expansions of one-loop integrals, numerical evaluation with arbitrary precision arithmetic, manipulation of fermion chains, improved tensor algebraic routines, and much expanded documentation. Nature of problem: Analytic calculation of one-loop integrals in relativistic quantum field theory. Solution method: Passarino-Veltman reduction formula, Denner-Dittmaier reduction formulae, and additional algorithms described in the manuscript. Restrictions: One-loop integrals are limited to those involving no more than four denominator factors.

  19. Loop transfer recovery for general nonminimum phase discrete time systems. I - Analysis

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov

    1992-01-01

    A complete analysis of loop transfer recovery (LTR) for general nonstrictly proper, not necessarily minimum phase discrete time systems is presented. Three different observer-based controllers, namely, `prediction estimator' and full or reduced-order type `current estimator' based controllers, are used. The analysis corresponding to all these three controllers is unified into a single mathematical framework. The LTR analysis given here focuses on three fundamental issues: (1) the recoverability of a target loop when it is arbitrarily given, (2) the recoverability of a target loop while taking into account its specific characteristics, and (3) the establishment of necessary and sufficient conditions on the given system so that it has at least one recoverable target loop transfer function or sensitivity function. Various differences that arise in LTR analysis of continuous and discrete systems are pointed out.

  20. Automatic blocking of nested loops

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert; Dongarra, Jack J.

    1990-01-01

    Blocked algorithms have much better properties of data locality and therefore can be much more efficient than ordinary algorithms when a memory hierarchy is involved. On the other hand, they are very difficult to write and to tune for particular machines. The reorganization is considered of nested loops through the use of known program transformations in order to create blocked algorithms automatically. The program transformations used are strip mining, loop interchange, and a variant of loop skewing in which invertible linear transformations (with integer coordinates) of the loop indices are allowed. Some problems are solved concerning the optimal application of these transformations. It is shown, in a very general setting, how to choose a nearly optimal set of transformed indices. It is then shown, in one particular but rather frequently occurring situation, how to choose an optimal set of block sizes.

  1. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    PubMed

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  2. Mercury in fish products: what's the best for consumers between bluefin tuna and yellowfin tuna?

    PubMed

    Cammilleri, Gaetano; Vazzana, Mirella; Arizza, Vincenzo; Giunta, Francesca; Vella, Antonio; Lo Dico, Gianluigi; Giaccone, Vita; Giofrè, Salvatore V; Giangrosso, Giuseppe; Cicero, Nicola; Ferrantelli, Vincenzo

    2018-02-01

    A total of 205 bluefin and yellowfin tuna samples were examined for mercury detection in order to verify possible differences and have a detailed risk assessment of the two tuna species. The results showed significant higher mercury concentration in muscle tissue of bluefin tuna respect yellowfin tuna (p < 0.001) with mean concentration of 0.84 mg/kg and maximum value of 1.94 mg/kg. These differences can be due the different biological and ecological aspects of the two tuna species and to different oceanographic aspects between Atlantic Ocean and Mediterranean sea. The results obtained in this study suggest an advisable containment of the sources of pollution and further studies on the closed-loop farming of bluefin tuna, in order to ensure the product safety.

  3. Carrier-envelope phase stabilization with sub-10 as residual timing jitter.

    PubMed

    Borchers, B; Koke, S; Husakou, A; Herrmann, J; Steinmeyer, G

    2011-11-01

    We demonstrate carrier-envelope phase (CEP) stabilization of a mode-locked Ti:sapphire oscillator with unprecedented timing jitter of eight attoseconds. The stabilization performance is obtained by a combination of two different stabilization approaches. In a first step the drift of the CEP is stabilized with a conventional feedback loop by means of controlling the oscillator pump power with an acousto-optic modulator (AOM). In a second step we utilize a recently developed feed-forward type stabilization scheme which has a much higher control bandwith. Here an acousto-optic frequency shifter (AOFS) produces the stabilized output in the first diffraction order. Moreover, we present numerical results on the optimization of the length of the photonic crystal fiber, which is used to generate an octave-spanning spectrum, in order to optimize the sensitivity in the f-to-2f interferometers.

  4. A Unified Theoretical Framework for Cognitive Sequencing.

    PubMed

    Savalia, Tejas; Shukla, Anuj; Bapi, Raju S

    2016-01-01

    The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.

  5. A Unified Theoretical Framework for Cognitive Sequencing

    PubMed Central

    Savalia, Tejas; Shukla, Anuj; Bapi, Raju S.

    2016-01-01

    The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks. PMID:27917146

  6. Power impact of loop buffer schemes for biomedical wireless sensor nodes.

    PubMed

    Artes, Antonio; Ayala, Jose L; Catthoor, Francky

    2012-11-06

    Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.

  7. THE INSTABILITY AND NON-EXISTENCE OF MULTI-STRANDED LOOPS WHEN DRIVEN BY TRANSVERSE WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magyar, N.; Van Doorsselaere, T., E-mail: norbert.magyar@wis.kuleuven.be

    2016-06-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of themore » word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.« less

  8. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  9. Low-energy effective action in two-dimensional SQED: a two-loop analysis

    NASA Astrophysics Data System (ADS)

    Samsonov, I. B.

    2017-07-01

    We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.

  10. Offset quadrature communications with decision-feedback carrier synchronization

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1974-01-01

    In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.

  11. Viscous-enstrophy scaling law for Navier-Stokes reconnection

    NASA Astrophysics Data System (ADS)

    Kerr, Robert M.

    2017-11-01

    Simulations of perturbed, helical trefoil vortex knots and anti-parallel vortices find ν-independent collapse of temporally scaled (√{ ν} Z) - 1 / 2, Z enstrophy, between when the loops first touch at tΓ, and when reconnection ends at tx for the viscosity ν varying by 256. Due to mathematical bounds upon higher-order norms, this collapse requires that the domain increase as ν decreases, possibly to allow large-scale negative helicity to grow as compensation for small-scale positive helicity and enstrophy growth. This mechanism could be a step towards explaining how smooth solutions of the Navier-Stokes can generate finite-energy dissipation in a finite time as ν -> 0 .

  12. On the interpretation of the geomagnetic energy spectrum

    USGS Publications Warehouse

    Benton, E.R.; Alldredge, L.R.

    1987-01-01

    Two recent high-degree magnetic energy spectra, based mostly on MAGSAT data, are compared and found to agree very well out to order and degree n = 15, but the spectrum remains somewhat uncertain for higher degrees. The hypothesis that a primary break in the slope of the spectrum, plotted semi-logarithmically, is due to a transition from dominance by core sources to dominance by crustal magnetization is tested. Simple arrays of dipoles and current loops are found whose combined fields fit the spectrum. Two distinctly different ranges of source depth are found to be adequate. Because one range is shallow and the other deep, the hypothesis is supported. ?? 1987.

  13. Dynamics of a multi-thermal loop in the solar corona

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2014-10-01

    Context. We present an observation of a long-living multi-thermal coronal loop, visible in different extreme ultra-violet wavebands of SDO/AIA in a quiet-Sun region close to the western solar limb. Aims: Analysis of persistent kink displacements of the loop seen in different bandpasses that correspond to different temperatures of the plasma allows sub-resolution structuring of the loop to be revealed. Methods: A vertically oriented slit is taken at the loop top, and time-distance maps are made from it. Loop displacements in time-distance maps are automatically tracked with the Gaussian fitting technique and fitted with a sinusoidal function that is "guessed". Wavelet transforms are further used in order to quantify the periodicity variation in time of the kink oscillations. Results: The loop strands are found to oscillate with the periods ranging between 3 and 15 min. The oscillations are observed in intermittent regime with temporal changes in the period and amplitude. The oscillations are different at three analysed wavelengths. Conclusions: This finding suggests that the loop-like threads seen at different wavelengths are not co-spatial, hence that the loop consists of several multi-thermal strands. The detected irregularity of the oscillations can be associated with a stochastic driver acting at the footpoints of the loop. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  14. Navigating around the algebraic jungle of QCD: efficient evaluation of loop helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.

    1993-05-01

    A method is developed whereby spinor helicity techniques can be used to simlify the calculation of loop amplitudes. This is achieved by using the Feynman-parameter representation where the offending off-shell loop momenta do not appear. Other shortcuts motivated by the Bern-Kosower one-loop string calculations can be incorporated into the formalism. This includes color reorganization into Chan-Paton factors and the use of background Feynman gauge. This method is applicable to any Feynman diagram with any number of loops as long as the external masses can be ignored. In order to minimize the very considerable algebra encountered in non-abelian gauge theories, graphical methods are developed for most of the calculations. This enables the large number of terms encountered to be organized implicitly in the Feynman diagram without the necessity of writing down any of them algebraically. A one-loop four-gluon amplitude in a particular helicity configuration is computed explicitly to illustrate the method.

  15. Examining the relationship between immediate serial recall and immediate free recall: common effects of phonological loop variables but only limited evidence for the phonological loop.

    PubMed

    Spurgeon, Jessica; Ward, Geoff; Matthews, William J

    2014-07-01

    We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by concurrent articulation (CA; Experiment 1). We further assumed that the use of the phonological loop would be evidenced by greater serial recall for lists of phonologically dissimilar words relative to lists of phonologically similar words (Experiments 2A and 2B). We found that in both tasks, (a) CA reduced recall; (b) participants recalled short lists from the start of the list, leading to enhanced forward-ordered recall; (c) participants were increasingly likely to recall longer lists from the end of the list, leading to extended recency effects; (d) there were significant phonological similarity effects in ISR and IFR when both were analyzed using serial recall scoring; (e) these were reduced by free recall scoring and eliminated by CA; and (f) CA but not phonological similarity affected the tendency to initiate recall with the first list item. We conclude that similar mechanisms underpin ISR and IFR. Critically, the phonological loop is not strictly necessary for the forward-ordered recall of short lists on both tasks but may augment recall by increasing the accessibility of the list items (relative to CA), and in so doing, the order of later items is preserved better in phonologically dissimilar than in phonologically similar lists. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. The digital phase-locked loop as a near-optimum FM demodulator.

    NASA Technical Reports Server (NTRS)

    Kelly, C. N.; Gupta, S. C.

    1972-01-01

    This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.

  17. 75 FR 16732 - Action Affecting Export Privileges; Aqua-Loop Cooling Towers, Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Regulations by facilitating or coordinating the export of approximately 174 rolls of hog hair filter media... about September 28, 2004, Aqua-Loop ordered or financed approximately 174 rolls of hog hair filter media... coordinating the export of approximately 185 rolls of hog hair filter media, part number HHB6O 130 and valued...

  18. Generation of PCV2 in PK15 cells transfected with recombinant baculovirus containing a 1.1 copy of the PCV2 genome.

    PubMed

    Cai, Jie; Xie, Xiaohong; Hu, Yi; Zhan, Yang; Yu, Wanting; Wang, Aibing; Wang, Naidong

    2017-06-01

    Porcine circovirus associated diseases (PCVAD) caused by PCV2 are responsible for severe economic losses in the swine industry. The mechanism of PCV2 replication has not been fully elucidated yet. PCV2 may be successfully rescued by means of either an infectious DNA clone containing the full length of the viral genomic DNA, or from PCV2-infected clinical tissues in PK15 cell culture. However, viruses harvested by both methods have low titres. In this study, PCV2 was prepared with a higher titre from PK15 cells infected by recombinant baculoviruses containing 1PCV2 (one stem-loop structure) or 1.1PCV2 (two stem-loop structure) genomic DNA copy. In addition, infectious DNA clones containing two stem-loop structures in either plasmid or baculovirus backbones are capable of generating a higher virus titre than the DNA clones with only one copy of stem-loop structure.

  19. Buoyancy Driven Coolant Mixing Studies of Natural Circulation Flows at the ROCOM Test Facility Using ANSYS CFX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohne, Thomas; Kliem, Soren; Rohde, Ulrich

    2006-07-01

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shiftedmore » towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)« less

  20. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  1. Generic calculation of two-body partial decay widths at the full one-loop level

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Liebler, Stefan; Staub, Florian

    2017-11-01

    We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a \\overline{ {DR}} (or \\overline{ {MS}}) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.

  2. A quality assurance device for measuring afterloader performance and transit dose for nasobiliary high-dose-rate brachytherapy.

    PubMed

    Deufel, Christopher L; Mullins, John P; Zakhary, Mark J

    2018-05-17

    Nasobiliary high-dose-rate (HDR) brachytherapy has emerged as an effective tool to boost the radiation dose for patients with unresectable perihilar cholangiocarcinoma. This work describes a quality assurance (QA) tool for measuring the HDR afterloader's performance, including the transit dose, when the source wire travels through a tortuous nasobiliary catheter path. The nasobiliary QA device was designed to mimic the anatomical path of a nasobiliary catheter, including the nasal, stomach, duodenum, and bile duct loops. Two of these loops, the duodenum and bile duct loops, have adjustable radii of curvature, resulting in the ability to maximize stress on the source wire in transit. The device was used to measure the performance over time for the HDR afterloader and the differences between intraluminal catheter lots. An upper limit on the transit dose was also measured using radiochromic film and compared with a simple theoretical model. The QA device was capable of detecting performance variations among nasobiliary catheter lots and following radioactive source replacement. The transit dose from a nasobiliary treatment increased by up to one order of magnitude when the source wire encountered higher than normal friction. Three distinct travel speeds of the source wire were observed: 5.2, 17.4, and 54.7 cm/s. The maximum transit dose was 0.3 Gy at a radial distance of 5 mm from a 40.3 kU 192 Ir source. The source wire encounters substantially greater friction when it navigates through the nasobiliary brachytherapy catheter. A QA tool that mimics the nasal, stomach, duodenum, and bile duct loops may be used to evaluate transit dose and the afterloader's performance over time. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. High Field fMRI Reveals Thalamocortical Integration of Segregated Cognitive and Emotional Processing in Mediodorsal and Intralaminar Thalamic Nuclei

    PubMed Central

    Metzger, C. D.; Eckert, U.; Steiner, J.; Sartorius, A.; Buchmann, J. E.; Stadler, J.; Tempelmann, C.; Speck, O.; Bogerts, B.; Abler, B.; Walter, M.

    2010-01-01

    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing. PMID:21088699

  4. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  5. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  6. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget.

    PubMed

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-04-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n -2 power-law with radial order n and temporal spectra follow a f -1.5 power-law with temporal frequency f . From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.

  7. Top-forms of leading singularities in nonplanar multi-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Chen, Gang; Cheung, Yeuk-Kwan E.; Xie, Ruofei; Xin, Yuan

    2018-02-01

    The on-shell diagram is a very important tool in studying scattering amplitudes. In this paper we discuss the on-shell diagrams without external BCFW bridges. We introduce an extra step of adding an auxiliary external momentum line. Then we can decompose the on-shell diagrams by removing external BCFW bridges to a planar diagram whose top-form is well known now. The top-form of the on-shell diagram with the auxiliary line can be obtained by adding the BCFW bridges in an inverse order as discussed in our former paper (Chen et al. in Eur Phys J C 77(2):80 2017). To get the top-form of the original diagram, the soft limit of the auxiliary line is needed. We obtain the evolution rule for the Grassmannian integral and the geometry constraint in the soft limit. This completes the top-form description of leading singularities in nonplanar scattering amplitudes of N=4 Super Yang-Mills (SYM), which is valid for arbitrary higher-loops and beyond the Maximally-Helicity-Violation (MHV) amplitudes.

  8. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget

    PubMed Central

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-01-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n−2 power-law with radial order n and temporal spectra follow a f−1.5 power-law with temporal frequency f. From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates. PMID:28736657

  9. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.

    PubMed

    Kuryavyi, V; Majumdar, A; Shallop, A; Chernichenko, N; Skripkin, E; Jones, R; Patel, D J

    2001-06-29

    The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples. Copyright 2001 Academic Press.

  10. One-loop supergravity on AdS 4 × S 7/Z k and comparison with ABJM theory

    DOE PAGES

    Liu, James T.; Zhao, Wenli

    2016-11-18

    The large-N limit of ABJM theory is holographically dual to M-theory on AdS 4 × S 7/Z k. The 3-sphere partition function has been obtained via localization, and its leading behavior F ABJM (0) ~ k 1/2N 3/2 is exactly reproduced in the dual theory by tree-level supergravity. In this paper, we extend this comparison to the sub-leading O(N 0) order by computing the one-loop supergravity free energy as a function of k and comparing it with the ABJM result. Curiously, we find that the expressions do not match, with F SUGRA (1)~k 6, while F ABJM (1)~ k 2.more » Finally, this suggests that the low-energy approximation Z M-theory = Z SUGRA breaks down at one-loop order.« less

  11. Optimal guidance law development for an advanced launch system

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Hodges, Dewey H.

    1990-01-01

    A regular perturbation analysis is presented. Closed-loop simulations were performed with a first order correction including all of the atmospheric terms. In addition, a method was developed for independently checking the accuracy of the analysis and the rather extensive programming required to implement the complete first order correction with all of the aerodynamic effects included. This amounted to developing an equivalent Hamiltonian computed from the first order analysis. A second order correction was also completed for the neglected spherical Earth and back-pressure effects. Finally, an analysis was begun on a method for dealing with control inequality constraints. The results on including higher order corrections do show some improvement for this application; however, it is not known at this stage if significant improvement will result when the aerodynamic forces are included. The weak formulation for solving optimal problems was extended in order to account for state inequality constraints. The formulation was tested on three example problems and numerical results were compared to the exact solutions. Development of a general purpose computational environment for the solution of a large class of optimal control problems is under way. An example, along with the necessary input and the output, is given.

  12. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.

    PubMed

    Zhang, Yajia; Hauser, Kris

    2013-01-01

    Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.

  13. Unbiased, scalable sampling of protein loop conformations from probabilistic priors

    PubMed Central

    2013-01-01

    Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175

  14. Effective field theory dimensional regularization

    NASA Astrophysics Data System (ADS)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  15. A comparison of Manchester symbol tracking loops for block 5 applications

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.

    1991-01-01

    The linearized tracking errors of three Manchester (biphase coded) symbol tracking loops are compared to determine which is appropriate for Block 5 receiver applications. The first is a nonreturn to zero (NRZ) symbol synchronizer loop operating at twice the symbol rate (NRZ x 2) so that it operates on half symbols. The second near optimally processes the mid-symbol transitions and ignores the between symbol transitions. In the third configuration, the first two approaches are combined as a hybrid to produce the best performance. Although this hybrid loop is the best at low symbol signal to noise ratios (SNRs), it has about the same performance as the NRZ x 2 loop at higher SNRs (greater than 0-dB E sub s/N sub 0). Based on this analysis, it is tentatively recommended that the hybrid loop be implemented for Manchester data in the Block 5 receiver. However, the high data rate case and the hardware implications of each implementation must be understood and analyzed before the hybrid loop is recommended unconditionally.

  16. Identification of Low Order Equivalent System Models From Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    Identification of low order equivalent system dynamic models from flight test data was studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models characterized the total aircraft response including bare airframe and flight control system. Theoretical investigations were conducted and related to results found in the literature. Low order equivalent system modeling techniques using output error and equation error parameter estimation in the frequency domain were developed and validated on simulation data. It was found that some common difficulties encountered in identifying closed loop low order equivalent system models from flight test data could be overcome using the developed techniques. Implications for data requirements and experiment design were discussed. The developed methods were demonstrated using realistic simulation cases, then applied to closed loop flight test data from the NASA F-18 High Alpha Research Vehicle.

  17. Acceleration characteristics of human ocular accommodation.

    PubMed

    Bharadwaj, Shrikant R; Schor, Clifton M

    2005-01-01

    Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.

  18. Shortening a loop can increase protein native state entropy.

    PubMed

    Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov

    2015-12-01

    Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.

  19. Tuning algorithms for fractional order internal model controllers for time delay processes

    NASA Astrophysics Data System (ADS)

    Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.

    2016-03-01

    This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.

  20. Improving Challenge/Skill Ratio in a Multimodal Interface by Simultaneously Adapting Game Difficulty and Haptic Assistance through Psychophysiological and Performance Feedback

    PubMed Central

    Rodriguez-Guerrero, Carlos; Knaepen, Kristel; Fraile-Marinero, Juan C.; Perez-Turiel, Javier; Gonzalez-de-Garibay, Valentin; Lefeber, Dirk

    2017-01-01

    In order to harmonize robotic devices with human beings, the robots should be able to perceive important psychosomatic impact triggered by emotional states such as frustration or boredom. This paper presents a new type of biocooperative control architecture, which acts toward improving the challenge/skill relation perceived by the user when interacting with a robotic multimodal interface in a cooperative scenario. In the first part of the paper, open-loop experiments revealed which physiological signals were optimal for inclusion in the feedback loop. These were heart rate, skin conductance level, and skin conductance response frequency. In the second part of the paper, the proposed controller, consisting of a biocooperative architecture with two degrees of freedom, simultaneously modulating game difficulty and haptic assistance through performance and psychophysiological feedback, is presented. With this setup, the perceived challenge can be modulated by means of the game difficulty and the perceived skill by means of the haptic assistance. A new metric (FlowIndex) is proposed to numerically quantify and visualize the challenge/skill relation. The results are contrasted with comparable previously published work and show that the new method afforded a higher FlowIndex (i.e., a superior challenge/skill relation) and an improved balance between augmented performance and user satisfaction (higher level of valence, i.e., a more enjoyable and satisfactory experience). PMID:28507503

  1. Detection of low tension cosmic superstrings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2018-05-01

    Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).

  2. Soft thermal contributions to 3-loop gauge coupling

    NASA Astrophysics Data System (ADS)

    Laine, M.; Schicho, P.; Schröder, Y.

    2018-05-01

    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.

  3. Rapid Damping of the Oscillations of Coronal Loops with an Azimuthal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.

    2005-06-01

    We consider the MHD oscillations of an inhomogeneous coronal loop that consists of a dense cord surrounded by a shell. The magnetic field is longitudinal in the cord and has only an azimuthal component in the shell. The parameters of the loop are chosen to be such that there are no resonances; i.e., the resonance points are cut off. This choice is dictated by the formulated problem of considering the influence of the radiation of MHD waves into the surrounding space on the loop oscillations, thereby ruling out the possibility of resonant energy absorption. The wave radiation efficiency is high and allows low oscillation Q-factors, which are equal in order of magnitude to their observed values, to be obtained.

  4. Top-quark loop corrections in Z+jet and Z + 2 jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Keith Ellis, R.

    2017-01-01

    The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less

  5. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian

    2010-09-01

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  6. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the RI/SMOM schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, C.; Almeida, L.

    2010-04-26

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the {ovr MS} scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{mu}} schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f} = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  7. Restriction enzyme cutting site distribution regularity for DNA looping technology.

    PubMed

    Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao

    2014-01-25

    The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  9. Nonlinear model predictive control for chemical looping process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less

  10. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.

  11. PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW

    NASA Astrophysics Data System (ADS)

    Kita, Tomoko; Kanaya, Ken

    Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

  12. Crystal defect studies using x-ray diffuse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less

  13. Visualizing Active-Site Dynamics in Single Crystals of HePTP: Opening of the WPD Loop Involves Coordinated Movement of the E Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Critton; L Tautz; R Page

    2011-12-31

    Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loopmore » in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an 'atypically open' conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.« less

  14. High order field-to-field corrections for imaging and overlay to achieve sub 20-nm lithography requirements

    NASA Astrophysics Data System (ADS)

    Mulkens, Jan; Kubis, Michael; Hinnen, Paul; de Graaf, Roelof; van der Laan, Hans; Padiy, Alexander; Menchtchikov, Boris

    2013-04-01

    Immersion lithography is being extended to the 20-nm and 14-nm node and the lithography performance requirements need to be tightened further to enable this shrink. In this paper we present an integral method to enable high-order fieldto- field corrections for both imaging and overlay, and we show that this method improves the performance with 20% - 50%. The lithography architecture we build for these higher order corrections connects the dynamic scanner actuators with the angle resolved scatterometer via a separate application server. Improvements of CD uniformity are based on enabling the use of freeform intra-field dose actuator and field-to-field control of focus. The feedback control loop uses CD and focus targets placed on the production mask. For the overlay metrology we use small in-die diffraction based overlay targets. Improvements of overlay are based on using the high order intra-field correction actuators on a field-tofield basis. We use this to reduce the machine matching error, extending the heating control and extending the correction capability for process induced errors.

  15. The structure of high-temperature solar flare plasma in non-thermal flare models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1985-01-01

    Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.

  16. Can Flare Loops Contribute to the White-light Emission of Stellar Superflares?

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Shibata, K.

    2018-06-01

    Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012‑1013 cm‑3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.

  17. Partition functions with spin in AdS2 via quasinormal mode methods

    DOE PAGES

    Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng

    2016-10-12

    We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less

  18. An all-digital phase-locked loop demodulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Gong, X. F.; Cui, Z. D.

    2017-09-01

    This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.

  19. Development of a quantitative loop-mediated isothermal amplification (qLAMP) assay for the detection of Magnaporthe oryzae airborne inoculum in turf ecosystems

    USDA-ARS?s Scientific Manuscript database

    Grey Leaf Spot (GLS) is a detrimental disease of perennial ryegrass caused by a host-specialized form of Magnaporthe oryzae (Mot). In order to improve turf management, a quantitative loop-mediated isothermal amplification (LAMP) assay coupled with a simple spore trap is being developed to monitor GL...

  20. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  1. Hard matching for boosted tops at two loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Andre H.; Pathak, Aditya; Pietrulewicz, Piotr

    2015-12-10

    Here, cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the corresponding factorization theorem for e +e – collisions we extract the last missing ingredient that is needed to evaluate the cross section differential in the jet-mass at two-loop order, namely the matching coefficient at the scale μ≃m t. Our extraction alsomore » yields the final ingredients needed to carry out logarithmic re-summation at next-to-next-to-leading logarithmic order (or N 3LL if we ignore the missing 4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity logarithm starting at O(α 2 s) due to virtual top quark loops, which we treat using rapidity renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in the matching coefficient between two effective theories around the heavy quark mass scale μ ≃ m t.« less

  2. Astrocytic autoantibody of neuromyelitis optica (NMO-IgG) binds to aquaporin-4 extracellular loops, monomers, tetramers and high order arrays

    PubMed Central

    Iorio, Raffaele; Fryer, James P.; Hinson, Shannon R.; Fallier-Becker, Petra; Wolburg, Hartwig; Pittock, Sean J.; Lennon, Vanda A.

    2012-01-01

    The principal central nervous system (CNS) water channel, aquaporin-4 (AQP4), is confined to astrocytic and ependymal membranes and is the target of a pathogenic autoantibody, neuromyelitis optica (NMO)-IgG. This disease-specific autoantibody unifies a spectrum of relapsing CNS autoimmune inflammatory disorders of which NMO exemplifies the classic phenotype. Multiple sclerosis and other immune-mediated demyelinating disorders of the CNS lack a distinctive biomarker. Two AQP4 isoforms, M1 and M23, exist as homotetrameric and heterotetrameric intramembranous particles (IMPs). Orthogonal arrays of predominantly M23 particles (OAPs) are an ultrastructural characteristic of astrocytic membranes. We used high-titered serum from 32 AQP4-IgG-seropositive patients and 85 controls to investigate the nature and molecular location of AQP4 epitopes that bind NMO-IgG, and the influence of supramolecular structure. NMO-IgG bound to denatured AQP4 monomers (68% of cases), to native tetramers and high order arrays (90% of cases), and to AQP4 in live cell membranes (100% of cases). Disease-specific epitopes reside in extracellular loop C more than in loops A or E. IgG binding to intracellular epitopes lacks disease specificity. These observations predict greater disease specificity and sensitivity for tissue-based and cell-based serological assays employing “native” AQP4 than assays employing denatured AQP4 and fragments. NMO-IgG binds most avidly to plasma membrane surface AQP4 epitopes formed by loop interactions within tetramers and by intermolecular interactions within high order structures. The relative abundance and localization of AQP4 high order arrays in distinct CNS regions may explain the variability in clinical phenotype of NMO spectrum disorders. PMID:22906356

  3. Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes

    PubMed Central

    Artes, Antonio; Ayala, Jose L.; Catthoor, Francky

    2012-01-01

    Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application. PMID:23202202

  4. Numerical Simulation in a Supercirtical CFB Boiler

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Gaol, Xiang; Luo, Zhongyang; Jiang, Xiaoguo

    The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many unknowns and challenges that should be identified and resolved during the development. In order to realize a reasonable and reliable design of the hot circulation loop, numerical simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. The working condition of hot circulation loop flow field, gas-solid flow affected by three unsymmetrical cyclones, air distribution and pressure drop in furnace were analyzed. The simulation results showed that the general arrangement of the 600MWe supercritical CFB boiler is reasonable.

  5. Quadratic electroweak corrections for polarized Moller scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov

    2012-01-01

    The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.

  6. Nonequilibrium phase transitions in isotropic Ashkin-Teller model

    NASA Astrophysics Data System (ADS)

    Akıncı, Ümit

    2017-03-01

    Dynamic behavior of an isotropic Ashkin-Teller model in the presence of a periodically oscillating magnetic field has been analyzed by means of the mean field approximation. The dynamic equation of motion has been constructed with the help of a Glauber type stochastic process and solved for a square lattice. After defining the possible dynamical phases of the system, phase diagrams have been given and the behavior of the hysteresis loops has been investigated in detail. The hysteresis loop for specific order parameter of isotropic Ashkin-Teller model has been defined and characteristics of this loop in different dynamical phases have been given.

  7. Two-loop virtual top-quark effect on Higgs-boson decay to bottom quarks.

    PubMed

    Butenschön, Mathias; Fugel, Frank; Kniehl, Bernd A

    2007-02-16

    In most of the mass range encompassed by the limits from the direct search and the electroweak precision tests, the Higgs boson of the standard model preferably decays to bottom quarks. We present, in analytic form, the dominant two-loop electroweak correction, of O(GF2mt4), to the partial width of this decay. It amplifies the familiar enhancement due to the O(GFmt2) one-loop correction by about +16% and thus more than compensates the screening by about -8% through strong-interaction effects of order O(alphasGFmt2).

  8. Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.

    2018-03-01

    Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.

  9. Modeling a Full Coronal Loop Observed with Hinode EIS and SDO AIA

    NASA Technical Reports Server (NTRS)

    Alexander, Caroline; Winebarger, Amy R.

    2015-01-01

    Physical parameters measured from an observation of a coronal loop from Gupta et al. (2015) using Hinode/EIS and SDO/AIA were used as input for the hydrodynamic, impulsively heating NRLSOFM 1-­d loop model. The model was run at eight different energy inputs and used the measured quantities of temperature (0.73 MK), density (10(sup 8.5)cm(sup -3) and minimum loop lifetime to evaluate the success of the model at recreating the observations. The loop was measured by us to have an unprojected length of 236 Mm and was assumed to be almost perpendicular to the solar surface (tilt of 3.5 degrees) and have a dipolar geometry. Our results show that two of our simulation runs (with input energies of 0.01 and 0.02 ergs cm(sup -3)S(sup -1) closely match the temperature/density combination exhibited by the loop observation. However, our simulated loops only remain in the temperature sensitive region of the Mg 278.4 Angstrom filter for 500 and 800 seconds respectively which is less than the 1200 seconds that the loop is observed for with EIS in order to make the temperature/density measurements over the loop's entire length. This leads us to conclude that impulsive heating of a single loop is not complex enough to explain this observation. Additional steady heating or a collection of additional strands along the line-­of-­sight would help to align the simulation with the observation.

  10. Surface NMR imaging with simultaneously energized transmission loops

    NASA Astrophysics Data System (ADS)

    Irons, T. P.; Kass, A.; Parsekian, A.

    2016-12-01

    Surface nuclear magnetic resonance (sNMR) is a unique geophysical technique which allows for the direct detection of liquid-phase water. In saturated media the sNMR response also provides estimates of hydrologic properties including porosity and permeability. The most common survey deployment consists of a single coincident loop performing both transmission and receiving. Because the sNMR method is relatively slow, tomography using coincident loops is time-intensive. Surveys using multiple receiver loops (but a single transmitter) provide additional sensitivity; however, they still require iterating transmission over the loops, and do not decrease survey acquisition time. In medical rotating frame imaging, arrays of transmitters are employed in order to decrease acquisition time, whilst optimizing image resolving power-a concept which we extend to earth's field imaging. Using simultaneously energized transmission loops decreases survey time linearly with the number of channels. To demonstrate the efficacy and benefits of multiple transmission loops, we deployed simultaneous sNMR transmission arrays using minimally coupled loops and a specially modified instrument at the Red Buttes Hydrogeophysics Experiment Site-a well-characterized location near Laramie, Wyoming. The proposed survey proved capable of acquiring multiple-channel imaging data with comparable noise levels to figure-eight configurations. Finally, the channels can be combined after acquisition or inverted simultaneously to provide composite datasets and images. This capability leverages the improved near surface resolving power of small loops but retains sensitivity to deep media through the use of synthetic aperature receivers. As such, simultaneously acquired loop arrays provide a great deal of flexibility.

  11. Viable inflationary evolution from Einstein frame loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Odintsov, S. D.; Oikonomou, V. K.

    2018-04-01

    In this work we construct a bottom-up reconstruction technique for loop quantum cosmology scalar-tensor theories, from the observational indices. Particularly, the reconstruction technique is based on fixing the functional form of the scalar-to-tensor ratio as a function of the e -foldings number. The aim of the technique is to realize viable inflationary scenarios, and the only assumption that must hold true in order for the reconstruction technique to work is that the dynamical evolution of the scalar field obeys the slow-roll conditions. We use two functional forms for the scalar-to-tensor ratio, one of which corresponds to a popular inflationary class of models, the α attractors. For the latter, we calculate the leading order behavior of the spectral index and we demonstrate that the resulting inflationary theory is viable and compatible with the latest Planck and BICEP2/Keck-Array data. In addition, we find the classical limit of the theory, and as we demonstrate, the loop quantum cosmology corrected theory and the classical theory are identical at leading order in the perturbative expansion quantified by the parameter ρc, which is the critical density of the quantum theory. Finally, by using the formalism of slow-roll scalar-tensor loop quantum cosmology, we investigate how several inflationary potentials can be realized by the quantum theory, and we calculate directly the slow-roll indices and the corresponding observational indices. In addition, the f (R ) gravity frame picture is presented.

  12. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  13. Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Byrns, E. V., Jr.

    1986-01-01

    The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.

  14. Homological Order in Three and Four dimensions: Wilson Algebra, Entanglement Entropy and Twist Defects

    NASA Astrophysics Data System (ADS)

    Roy, Abhishek; Chen, Xiao; Teo, Jeffrey

    2013-03-01

    We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship

  15. Ultrastable laser array at 633 nm for real-time dimensional metrology

    NASA Astrophysics Data System (ADS)

    Lawall, John; Pedulla, J. Marc; Le Coq, Yann

    2001-07-01

    We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N 3LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N 3LO Higgs production.more » The second uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.« less

  17. Higgs boson decay into b-quarks at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  18. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    NASA Astrophysics Data System (ADS)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  19. A molecular mechanism of P-loop pliability of Rho-kinase investigated by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Gohda, Keigo; Hakoshima, Toshio

    2008-11-01

    Rho-kinase is a leading player in the regulation of cytoskeletal events involving smooth muscle contraction and neurite growth-cone collapse and retraction, and is a promising drug target in the treatment of both vascular and neurological disorders. Recent crystal structure of Rho-kinase complexed with a small-molecule inhibitor fasudil has revealed structural details of the ATP-binding site, which represents the target site for the inhibitor, and showed that the conserved phenylalanine on the P-loop occupies the pocket, resulting in an increase of protein-ligand contacts. Thus, the P-loop pliability is considered to play an important role in inhibitor binding affinity and specificity. In this study, we carried out a molecular dynamic simulation for Rho-kinase-fasudil complexes with two different P-loop conformations, i.e., the extended and folded conformations, in order to understand the P-loop pliability and dynamics at atomic level. A PKA-fasudil complex was also used for comparison. In the MD simulation, the flip-flop movement of the P-loop conformation starting either from the extended or folded conformation was not able to be observed. However, a significant conformational change in a long loop region covering over the P-loop, and also alteration of ionic interaction-manner of fasudil with acidic residues in the ATP binding site were shown only in the Rho-kinase-fasudil complex with the extended P-loop conformation, while Rho-kinase with the folded P-loop conformation and PKA complexes did not show large fluctuations, suggesting that the Rho-kinase-fasudil complex with the extended P-loop conformation represents a meta-stable state. The information of the P-loop pliability at atomic level obtained in this study could provide valuable clues to designing potent and/or selective inhibitors for Rho-kinase.

  20. Hopf bifurcation and chaos in a third-order phase-locked loop

    NASA Astrophysics Data System (ADS)

    Piqueira, José Roberto C.

    2017-01-01

    Phase-locked loops (PLLs) are devices able to recover time signals in several engineering applications. The literature regarding their dynamical behavior is vast, specifically considering that the process of synchronization between the input signal, coming from a remote source, and the PLL local oscillation is robust. For high-frequency applications it is usual to increase the PLL order by increasing the order of the internal filter, for guarantying good transient responses; however local parameter variations imply structural instability, thus provoking a Hopf bifurcation and a route to chaos for the phase error. Here, one usual architecture for a third-order PLL is studied and a range of permitted parameters is derived, providing a rule of thumb for designers. Out of this range, a Hopf bifurcation appears and, by increasing parameters, the periodic solution originated by the Hopf bifurcation degenerates into a chaotic attractor, therefore, preventing synchronization.

  1. Tuning of active vibration controllers for ACTEX by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  2. Frequency-domain full-waveform inversion with non-linear descent directions

    NASA Astrophysics Data System (ADS)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.

  3. Development and testing of fiber-reinforced composite space maintainers.

    PubMed

    Kulkarni, Gajanan; Lau, Domenic; Hafezi, Sara

    2009-01-01

    The purpose of this study was to develop a clinically acceptable, cheaper, and more expedient alternative to standard stainless steel band and loop space maintainers. Loops of fiber-reinforced composites were constructed using polyethylene fiber (Ribbond) and glass fiber (Sticktech). The loops were bonded on extracted third molars and tested for flexural strength before and after thermocycling and following repair of the appliances after initial stress failure. Bacterial colonization on the appliances was also compared. Conventional stainless steel band and loop space maintainers cemented with Ketac were controls. Ribbond samples demonstrated higher flexural strength than Sticktech and the control (P<.05). No differences were noted among the other samples and the control. The repaired Ribbond samples were statistically comparable in flexural strength to the initial samples. Thermocycling resulted in decreased flexural strength of both Ribbond and Sticktech (P<.05). Thermocycled Ribbond samples were comparable to the control, but a lower flexural strength was noted for Sticktech samples (P<.05). While all space maintainers allowed some bacterial adhesion, Sticktech showed higher Streptococcus mutans counts than Ribbond (P=.06). Ribbond space-maintainers are comparable to the stainless steel in terms of physical strength and biofilm formation. The fiber-reinforced composite space maintainers may be a clinically acceptable and expedient alternative to the conventional band-loop appliance.

  4. AdS/CFT in Fractional Dimension and Higher-Spins at One Loop

    NASA Astrophysics Data System (ADS)

    Skvortsov, Evgeny; Tran, Tung

    2017-08-01

    Large-$N$, $\\epsilon$-expansion or the conformal bootstrap allow one to make sense of some of conformal field theories in non-integer dimension, which suggests that AdS/CFT may also extend to fractional dimensions. It was shown recently that the sphere free energy and the $a$-anomaly coefficient of the free scalar field can be reproduced as a one-loop effect in the dual higher-spin theory in a number of integer dimensions. We extend this result to all integer and also to fractional dimensions. Upon changing the boundary conditions in the higher-spin theory the sphere free energy of the large-$N$ Wilson-Fisher CFT can also be reproduced from the higher-spin side.

  5. DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE TRANSITION REGION ABOVE SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleint, L.; Martínez-Sykora, J.; Antolin, P.

    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to bemore » the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.« less

  6. The design of multirate digital control systems

    NASA Technical Reports Server (NTRS)

    Berg, M. C.

    1986-01-01

    The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.

  7. Lidar-based wake tracking for closed-loop wind farm control

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  8. WiLE: A Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory

    NASA Astrophysics Data System (ADS)

    Preti, M.

    2018-06-01

    We present WiLE, a Mathematica® package designed to perform the weak coupling expansion of any Wilson loop in ABJ(M) theory at arbitrary perturbative order. For a given set of fields on the loop and internal vertices, the package displays all the possible Feynman diagrams and their integral representations. The user can also choose to exclude non planar diagrams, tadpoles and self-energies. Through the use of interactive input windows, the package should be easily accessible to users with little or no previous experience. The package manual provides some pedagogical examples and the computation of all ladder diagrams at three-loop relevant for the cusp anomalous dimension in ABJ(M). The latter application gives also support to some recent results computed in different contexts.

  9. THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xia; Yuan, Ding; Xia, Chun

    We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHImore » vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.« less

  10. Subleading soft graviton theorem for loop amplitudes

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2017-11-01

    Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.

  11. On the Origin of Tremor in Parkinson’s Disease

    PubMed Central

    Dovzhenok, Andrey; Rubchinsky, Leonid L.

    2012-01-01

    The exact origin of tremor in Parkinson’s disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson’s disease) leads to the occurrence of tremor-like burst firing. These tremor-like oscillations are suppressed when the connections are modulated back to represent a higher dopamine level (as it would be the case in dopaminergic therapy), as well as when the basal ganglia-thalamo-cortical loop is broken (as would be the case for ablative anti-parkinsonian surgeries). Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. The strengthening of the loop leads to tremor oscillations, while the weakening or disconnection of the loop suppresses them. The loop origin of parkinsonian tremor also suggests that new tremor-suppression therapies may have anatomical targets in different cortical and subcortical areas as long as they are within the basal ganglia-thalamo-cortical loop. PMID:22848541

  12. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  13. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage

    NASA Astrophysics Data System (ADS)

    Ipatova, I.; Harrison, R. W.; Wady, P. T.; Shubeita, S. M.; Terentyev, D.; Donnelly, S. E.; Jimenez-Melero, E.

    2018-04-01

    We have performed proton irradiation of W and W-5wt.%Ta materials at 350 °C with a step-wise damage level increase up to 0.7 dpa and using two beam energies, namely 40 keV and 3 MeV, in order to probe the accumulation of radiation-induced lattice damage in these materials. Interstitial-type a/2 <111> dislocation loops are formed under irradiation, and their size increases in W-5Ta up to a loop width of 21 ± 4 nm at 0.3 dpa, where loop saturation takes place. In contrast, the loop length in W increases progressively up to 183 ± 50 nm at 0.7 dpa, whereas the loop width remains relatively constant at 29 ± 7 nm at >0.3 dpa, giving rise to dislocation strings. The dislocation loops and tangles are observed in both materials examined after a 3 MeV proton irradiation at 350 °C. Ta doping delays the evolution of radiation-induced dislocation structures in W, and can consequently impact the hydrogen isotope retention under plasma exposure.

  14. Nuclear axial currents in chiral effective field theory

    DOE PAGES

    Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...

    2016-01-11

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less

  15. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOEpatents

    Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  16. Two-loop self-energy in the Lamb shift of the ground and excited states of hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.

    2018-05-01

    The two-loop self-energy correction to the Lamb shift of hydrogenlike ions is calculated for the 1 s , 2 s , and 2 p1 /2 states and nuclear charge numbers Z =30 -100 . The calculation is performed to all orders in the nuclear binding strength parameter Z α . As compared to previous calculations of this correction, numerical accuracy is improved by an order of magnitude and the region of the nuclear charges is extended. An analysis of the Z dependence of the obtained results demonstrates their consistency with the known Z α -expansion coefficients.

  17. Putting one step before the other: distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle

    PubMed Central

    Merrick, Karl A.; Fisher, Robert P.

    2010-01-01

    Eukaryotic cell division is controlled by the activity of cyclin-dependent kinases (CDKs). Cdk1 and Cdk2, which function at different stages of the mammalian cell cycle, both require cyclin-binding and phosphorylation of the activation (T-) loop for full activity, but differ with respect to the order in which the two steps occur in vivo. To form stable complexes with either of its partners—cyclins A and B—Cdk1 must be phosphorylated on its T-loop, but that phosphorylation in turn depends on the presence of cyclin. Cdk2 can follow a kinetically distinct path to activation in which T-loop phosphorylation precedes cyclin-binding, and thereby out-compete the more abundant Cdk1 for limiting amounts of cyclin A. Mathematical modeling suggests this could be a principal basis for the temporal ordering of CDK activation during S phase, which may dictate the sequence in which replication origins fire. Still to be determined are how: 1) the activation machinery discriminates between closely related CDKs, and 2) coordination of the cell cycle is affected when this mechanism of pathway insulation breaks down. PMID:20139727

  18. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Design and experimental evaluation of robust controllers for a two-wheeled robot

    NASA Astrophysics Data System (ADS)

    Kralev, J.; Slavov, Ts.; Petkov, P.

    2016-11-01

    The paper presents the design and experimental evaluation of two alternative μ-controllers for robust vertical stabilisation of a two-wheeled self-balancing robot. The controllers design is based on models derived by identification from closed-loop experimental data. In the first design, a signal-based uncertainty representation obtained directly from the identification procedure is used, which leads to a controller of order 29. In the second design the signal uncertainty is approximated by an input multiplicative uncertainty, which leads to a controller of order 50, subsequently reduced to 30. The performance of the two μ-controllers is compared with the performance of a conventional linear quadratic controller with 17th-order Kalman filter. A proportional-integral controller of the rotational motion around the vertical axis is implemented as well. The control code is generated using Simulink® controller models and is embedded in a digital signal processor. Results from the simulation of the closed-loop system as well as experimental results obtained during the real-time implementation of the designed controllers are given. The theoretical investigation and experimental results confirm that the closed-loop system achieves robust performance in respect to the uncertainties related to the identified robot model.

  20. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  1. Joint angle sensors for closed-loop control

    NASA Astrophysics Data System (ADS)

    Ko, Wen H.; Miao, Chih-Lei

    In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.

  2. A sliding mode control proposal for open-loop unstable processes.

    PubMed

    Rojas, Rubén; Camacho, Oscar; González, Luis

    2004-04-01

    This papers presents a sliding mode controller based on a first-order-plus-dead-time model of the process for controlling open-loop unstable systems. The proposed controller has a simple and fixed structure with a set of tuning equations as a function of the desired performance. Both linear and nonlinear models were used to study the controller performance by computer simulations.

  3. Investigation of RNA Hairpin Loop Folding with Time-Resolved Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stancik, Aaron Lee

    Ribonucleic acids (RNAs) are a group of functional biopolymers central to the molecular underpinnings of life. To complete the many processes they mediate, RNAs must fold into precise three-dimensional structures. Hairpin loops are the most ubiquitous and basic structural elements present in all folded RNAs, and are the foundation upon which all complex tertiary structures are built. A hairpin loop forms when a single stranded RNA molecule folds back on itself creating a helical stem of paired bases capped by a loop. This work investigates the formation of UNCG hairpin loops with the sequence 5'-GC(UNCG)GC-3' (N = A, U, G, or C) using both equilibrium infrared (IR) and time-resolved IR spectroscopy. Equilibrium IR melting data were used to determine thermodynamic parameters. Melting temperatures ranged from 50 to 60°C, and enthalpies of unfolding were on the order of 100 kJ/mol. In the time-resolved work, temperature jumps of up to 20°C at 2.5°C increments were obtained with transient relaxation kinetics spanning nanoseconds to hundreds of microseconds. The relaxation kinetics for all of the oligomers studied were fit to first or second order exponentials. Multiple vibrational transitions were probed on each oligomer for fully folded and partially denatured structures. In the time-resolved limit, in contrast to equilibrium melting, RNA does not fold according to two-state behavior. These results are some of the first to show that RNA hairpins fold according to a rugged energy landscape, which contradicts their relatively simple nature. In addition, this work has proven that time-resolved IR spectroscopy is a powerful and novel tool for investigating the earliest events of RNA folding, the formation of the hairpin loop.

  4. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification

    USDA-ARS?s Scientific Manuscript database

    The technique of loop-mediated isothermal amplification (LAMP) utilizes 4 (or 6) primers targeting 6 (or 8) regions within a fairly small segment of a genome for amplification, with concentration higher than that used in traditional PCR methods. The high concentrations of primers used leads to an in...

  5. Closing the Feedback Loop: Ensuring Effective Action from Student Feedback

    ERIC Educational Resources Information Center

    Watson, Sarah

    2003-01-01

    Feedback from students can inform improvement in higher education institutions and be part of the students' role in university management. To be effective it is important to"close the loop": from student views, through identifying issues and delegating responsibility for action, to informing students of the action resulting from their expressed…

  6. Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP

    NASA Astrophysics Data System (ADS)

    Thind, Harwinder

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.

  7. Current systems of coronal loops in 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.

    2017-11-01

    Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.

  8. Status of E-ELT M5 scale-one demonstrator

    NASA Astrophysics Data System (ADS)

    Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick

    2014-07-01

    The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.

  9. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    PubMed

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A study of the vacancy loop formation probability in Ni-Cu and Ag-Pd alloys. [50-keV Kr sup + ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalinskas, K.; Chen, Gengsheng; Haworth, J.

    1992-04-01

    The molten-zone model of vacancy loop formation from a displacement cascade predicts that the loop formation probability should scale with the melting temperature. To investigate this possibility the vacancy loop formation probability has been determined in a series of Cu-Ni and Ag-Pd alloys. The irradiations were performed at room temperature with 50 keV Kr+ ions and the resulting damage structure was examined by using transmission electron microscopy. In the Cu-Ni alloy series, the change in loop formation probability with increasing Ni concentration was complex, and at low- and high- nickel concentrations, the defect yield did not change in the predictedmore » manner. The defect yield was higher in the Cu-rich alloys than in the Ni-rich alloys. In the Ag-Pd alloy the change in the loop formation probability followed more closely the change in melting temperature, but no simple relationship was determined.« less

  11. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.

    PubMed

    Hoque, Md Anarul; Zhang, Yong; Chen, Liuqing; Yang, Guangyu; Khatun, Mst Afroza; Chen, Haifeng; Hao, Liu; Feng, Yan

    2017-05-19

    The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 7 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.

  12. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  13. Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian

    2011-01-01

    Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.

  14. Molecular dynamics modeling of helium bubbles in austenitic steels

    NASA Astrophysics Data System (ADS)

    Jelea, A.

    2018-06-01

    The austenitic steel devices from pressurized water reactors are continuously subjected to neutron irradiation that produces crystalline point defects and helium atoms in the steel matrix. These species evolve into large defects such as dislocation loops and helium filled bubbles. This paper analyzes, through molecular dynamics simulations with recently developed interatomic potentials, the impact of the helium/steel interface on the helium behavior in nanosize bubbles trapped in an austenitic steel matrix. It is shown that the repulsive helium-steel interactions induce higher pressures in the bubble compared to bulk helium at the same temperature and average density. A new equation of state for helium is proposed in order to take into account these interface effects.

  15. Vibration and Control of Flexible Rotor Supported by Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou

    1988-01-01

    Active vibration control of flexible rotors supported by magnetic bearings is discussed. Using a finite-element method for a mathematical model of the flexible rotor, the eigenvalue problem is formulated taking into account the interaction between a mechanical system of the flexible rotor and an electrical system of the magnetic bearings and the controller. However, for the sake of simplicity, gyroscopic effects are disregarded. It is possible to adapt this formulation to a general flexible rotor-magnetic bearing system. Controllability with and without collocation sensors and actuators located at the same distance along the rotor axis is discussed for the higher order flexible modes of the test rig. In conclusion, it is proposed that it is necessary to add new active control loops for the higher flexible modes even in the case of collocation. Then it is possible to stabilize for the case of uncollocation by means of this method.

  16. Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains.

    PubMed

    Krieger, Florian; Möglich, Andreas; Kiefhaber, Thomas

    2005-03-16

    Glycine and proline residues are frequently found in turn and loop structures of proteins and are believed to play an important role during chain compaction early in folding. We investigated their effect on the dynamics of intrachain loop formation in various unstructured polypeptide chains. Loop formation is significantly slower around trans prolyl peptide bonds and faster around glycine residues compared to any other amino acid. However, short loops are formed fastest around cis prolyl bonds with a time constant of 6 ns for end-to-end contact formation in a four-residue loop. Formation of short loops encounters activation energies in the range of 15 to 30 kJ/mol. The altered dynamics around glycine and trans prolyl bonds can be mainly ascribed to their effects on the activation energy. The fast dynamics around cis prolyl bonds, in contrast, originate in a higher Arrhenius pre-exponential factor, which compensates for an increased activation energy for loop formation compared to trans isomers. All-atom simulations of proline-containing peptides indicate that the conformational space for cis prolyl isomers is largely restricted compared to trans isomers. This leads to decreased average end-to-end distances and to a smaller loss in conformational entropy upon loop formation in cis isomers. The results further show that glycine and proline residues only influence formation of short loops containing between 2 and 10 residues, which is the typical loop size in native proteins. Formation of larger loops is not affected by the presence of a single glycine or proline residue.

  17. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    PubMed

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p < 0.05). Embryonic development rate, two cell embryos to blastocyst, as well as hatching rate were higher in the control group compared to the EM-grid group and OPS group (p < 0.05), yet no difference was noted between the control group and cryo-loop group. Development rate and hatching rate of eight cell morulae and blastocysts were all lower in the treatment groups than the control group whilst hatching rate of blastocysts was higher in the control group compared to the groups of EM-grid and OPS (p < 0.05); although the cryo-loop group was shown to be slightly higher than other groups, it was not statistically significant. In the study, we investigate effects of freezing containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  18. Cultivation of E. coli in single- and ten-stage tower-loop reactors.

    PubMed

    Adler, I; Schügerl, K

    1983-02-01

    E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.

  19. Influence of laser surface treated on the characterization and corrosion behavior of Al-Fe aerospace alloys

    NASA Astrophysics Data System (ADS)

    Pariona, Moisés Meza; Teleginski, Viviane; dos Santos, Kelly; de Lima, Angela A. O. C.; Zara, Alfredo J.; Micene, Katieli Tives; Riva, Rudimar

    2013-07-01

    In this research laser surface remelting without protective coating with a 2 kW Yb-fiber laser (IPG YLR-2000S) was applied in the Al-1.5 wt.%Fe alloy in order to investigate the layer treated with different techniques of superficial characterization, thereby, the technique of optical microscopy, atomic force microscopy and low-angle X-ray diffraction were used. The present work mainly focuses on the corrosion study by diverse techniques in aggressive environment of the laser-treated area and the substrate material was carried out, thereby, at open circuit potential testing, the results have shown a displacement to more anodic values in the corrosion potential for the laser-treated specimen when compared to the untreated specimen; in potentiodynamic polarization tests have shown that as a result of the laser treatment, the corrosion current can be reduced by as much as ten times, and a passive region was obtained, which served as an effective barrier for reducing anodic dissolution and finally, the result in cyclic polarization curves of the untreated sample there was a greater area of the hysteresis loop, implying that it is more susceptible to corrosion. This study was complemented by other techniques mentioned above in order to elucidate this study. Laser surface remelting process has definitely modified the surface film, which results in higher corrosion resistance, a large range of passivation and a lower area of the hysteresis loop.

  20. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    DTIC Science & Technology

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  1. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    PubMed

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  2. The baryon vector current in the combined chiral and 1/Nc expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Mendieta, Ruben; Goity, Jose L

    2014-12-01

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less

  3. The Kroll-Lee-Zumino Model and Pion Form Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C. A.; Loewe, M.

    2010-08-04

    At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding S = 0.40 fm{sup 2}. From this value we find for the low energy constant of chiral perturbation theory l{sub 4} = 3.4.« less

  4. Improvement of mechanical performance for vibratory microgyroscope based on sense mode closed-loop control

    NASA Astrophysics Data System (ADS)

    Xiao, Dingbang; Su, Jianbin; Chen, Zhihua; Hou, Zhanqiang; Wang, Xinghua; Wu, Xuezhong

    2013-04-01

    In order to improve its structural sensitivity, a vibratory microgyroscope is commonly sealed in high vacuum to increase the drive mode quality factor. The sense mode quality factor of the microgyroscope will also increase simultaneously after vacuum sealing, which will lead to a long decay time of free response and even self-oscillation of the sense mode. As a result, the mechanical performance of the microgyroscope will be seriously degraded. In order to solve this problem, a closed-loop control technique is presented to adjust and optimize the sense mode quality factor. A velocity feedback loop was designed to increase the electric damping of the sense mode vibration. A circuit was fabricated based on this technique, and experimental results indicate that the sense mode quality factor of the microgyroscope was adjusted from 8052 to 428. The decay time of the sense mode free response was shortened from 3 to 0.5 s, and the vibration-rejecting ability of the microgyroscope was improved obviously without sensitivity degradation.

  5. Counterterm counterexamples

    NASA Astrophysics Data System (ADS)

    Pope, C. N.; Sohnius, M. F.; Stelle, K. S.

    We show that, contrary to previous conjectures, there exist acceptable counterterms for Ricci-flat N = 1 and N = 2 super-symmetric σ-models. In the N = 1 case we present infinite sequences of counterterms, starting from the 7-loop order, that do not vanish for general riemannian Ricci-flat metrics but do vanish when the metric is also Kähler. We then investigate the counterterms for theories with Ricci-flat Kähler metrics (i.e. N = 2 models). Acceptable counterterms must vanish for hyper-Kähler metrics (the N = 4 case), and must respect the principle of universality; i.e. that counterterms to the metric can be expressed without the use of complex structures or other special tensors, which do not exist for general riemannian spaces. We show that a recently proposed 4-loop counterterm for the N = 2 models does indeed satisfy these two conditions, despite the apparent stringency of the universality principle. Hence the finiteness of Ricci-flat N = 1 and N = 2 supersymmetric σ-models seems unlikely to persist beyond the 3-loop order.

  6. An optimized algorithm for multiscale wideband deconvolution of radio astronomical images

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; Smirnov, O.

    2017-10-01

    We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.

  7. Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Filippeschi, Sauro

    2012-06-01

    A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.

  8. [Blood vessels of the epiphysis in comparative-anatomical aspect].

    PubMed

    Selin, Iu M

    1977-05-01

    The structure of the epiphysis and its inner blood vessels were studied in the representatives of nine orders of placental mammals and in man by means of injection of stained masses into the arteries and veins and subsequent preparation of histological sections. Not only form and topography of the organ differ in the representatives of different orders, but histological picture of the epiphysis is specific for each of them. In insectivores and chiroptera the loops of the inner three-dimensional capillary network are stretched along the longitudinal axis of the organ. In the epiphysis of carnivores, ungulata and monkey, the intraorganic vessels are situated in stromal trabeculae and the loops of the capillary network have polygonal shape. The intraepiphyseal vessels in man are arranged in peculiar baskets which envelope parenchymal lobules. The intraorganic veins beginning from the loops of the capillary network do not follow the arteries penetrating into the organ, but independently go to different surface parts of the organ where they flow into extraorganic veins.

  9. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    NASA Astrophysics Data System (ADS)

    Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.

    2002-05-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.

  10. Riemann correlator in de Sitter including loop corrections from conformal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric; Roura, Albert, E-mail: mfroeb@ffn.ub.edu, E-mail: albert.roura@uni-ulm.de, E-mail: enric.verdaguer@ub.edu

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicitmore » result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.« less

  11. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    NASA Astrophysics Data System (ADS)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  12. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    PubMed

    Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok

    2014-01-01

    Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  13. Concerted loop motion triggers induced fit of FepA to ferric enterobactin

    PubMed Central

    Smallwood, Chuck R.; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W.; Gala, Amparo; Hanson, Mathew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M.C.

    2014-01-01

    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. PMID:24981231

  14. Concerted loop motion triggers induced fit of FepA to ferric enterobactin.

    PubMed

    Smallwood, Chuck R; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W; Gala, Amparo; Hanson, Mathew; Hanson, Matthew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M C; Klebba, Phillip E

    2014-07-01

    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. © 2014 Smallwood et al.

  15. Performance improvement of a binary quantized all-digital phase-locked loop with a new aided-acquisition technique

    NASA Astrophysics Data System (ADS)

    Sandoz, J.-P.; Steenaart, W.

    1984-12-01

    The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.

  16. Conformal anomaly of generalized form factors and finite loop integrals

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Sokatchev, Emery

    2018-04-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an ℓ-loop integral is a 2nd-order differential equation whose right-hand side is an (ℓ - 1)-loop integral. It could serve as a new useful tool to find/test analytic expressions for conformal integrals. We illustrate this point with several examples of known integrals. We propose a new differential equation for the four-dimensional scalar double box.

  17. High resolution angular sensor. [reducing ring laser gyro output quantization using phase locked loops

    NASA Technical Reports Server (NTRS)

    Gneses, M. I.; Berg, D. S.

    1981-01-01

    Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.

  18. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  19. Loops and Self-Reference in the Construction of Dictionaries

    NASA Astrophysics Data System (ADS)

    Levary, David; Eckmann, Jean-Pierre; Moses, Elisha; Tlusty, Tsvi

    2012-07-01

    Dictionaries link a given word to a set of alternative words (the definition) which in turn point to further descendants. Iterating through definitions in this way, one typically finds that definitions loop back upon themselves. We demonstrate that such definitional loops are created in order to introduce new concepts into a language. In contrast to the expectations for a random lexical network, in graphs of the dictionary, meaningful loops are quite short, although they are often linked to form larger, strongly connected components. These components are found to represent distinct semantic ideas. This observation can be quantified by a singular value decomposition, which uncovers a set of conceptual relationships arising in the global structure of the dictionary. Finally, we use etymological data to show that elements of loops tend to be added to the English lexicon simultaneously and incorporate our results into a simple model for language evolution that falls within the “rich-get-richer” class of network growth.

  20. Deploy Nalu/Kokkos algorithmic infrastructure with performance benchmarking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domino, Stefan P.; Ananthan, Shreyas; Knaus, Robert C.

    The former Nalu interior heterogeneous algorithm design, which was originally designed to manage matrix assembly operations over all elemental topology types, has been modified to operate over homogeneous collections of mesh entities. This newly templated kernel design allows for removal of workset variable resize operations that were formerly required at each loop over a Sierra ToolKit (STK) bucket (nominally, 512 entities in size). Extensive usage of the Standard Template Library (STL) std::vector has been removed in favor of intrinsic Kokkos memory views. In this milestone effort, the transition to Kokkos as the underlying infrastructure to support performance and portability onmore » many-core architectures has been deployed for key matrix algorithmic kernels. A unit-test driven design effort has developed a homogeneous entity algorithm that employs a team-based thread parallelism construct. The STK Single Instruction Multiple Data (SIMD) infrastructure is used to interleave data for improved vectorization. The collective algorithm design, which allows for concurrent threading and SIMD management, has been deployed for the core low-Mach element- based algorithm. Several tests to ascertain SIMD performance on Intel KNL and Haswell architectures have been carried out. The performance test matrix includes evaluation of both low- and higher-order methods. The higher-order low-Mach methodology builds on polynomial promotion of the core low-order control volume nite element method (CVFEM). Performance testing of the Kokkos-view/SIMD design indicates low-order matrix assembly kernel speed-up ranging between two and four times depending on mesh loading and node count. Better speedups are observed for higher-order meshes (currently only P=2 has been tested) especially on KNL. The increased workload per element on higher-order meshes bene ts from the wide SIMD width on KNL machines. Combining multiple threads with SIMD on KNL achieves a 4.6x speedup over the baseline, with assembly timings faster than that observed on Haswell architecture. The computational workload of higher-order meshes, therefore, seems ideally suited for the many-core architecture and justi es further exploration of higher-order on NGP platforms. A Trilinos/Tpetra-based multi-threaded GMRES preconditioned by symmetric Gauss Seidel (SGS) represents the core solver infrastructure for the low-Mach advection/diffusion implicit solves. The threaded solver stack has been tested on small problems on NREL's Peregrine system using the newly developed and deployed Kokkos-view/SIMD kernels. fforts are underway to deploy the Tpetra-based solver stack on NERSC Cori system to benchmark its performance at scale on KNL machines.« less

Top