Sample records for higher order visual

  1. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  2. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.

    PubMed

    Rocha, Karolinne Maia; Vabre, Laurent; Chateau, Nicolas; Krueger, Ronald R

    2010-01-01

    To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator. A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test. Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations. The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction. Copyright 2010, SLACK Incorporated.

  3. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1

    PubMed Central

    Matsui, Teppei; Ohki, Kenichi

    2013-01-01

    Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987

  4. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  5. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex

    PubMed Central

    Imhof, Fabia; Martini, Francisco J.; Hofer, Sonja B.

    2017-01-01

    Sensory perception depends on the context within which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher-order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context – yet the nature of the signals conveyed to cortex by higher-order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher-order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal’s own actions. PMID:26691828

  6. Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception

    PubMed Central

    Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas

    2011-01-01

    How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432

  7. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    PubMed

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  8. Wavefront-Guided Scleral Lens Correction in Keratoconus

    PubMed Central

    Marsack, Jason D.; Ravikumar, Ayeswarya; Nguyen, Chi; Ticak, Anita; Koenig, Darren E.; Elswick, James D.; Applegate, Raymond A.

    2014-01-01

    Purpose To examine the performance of state-of-the-art wavefront-guided scleral contact lenses (wfgSCLs) on a sample of keratoconic eyes, with emphasis on performance quantified with visual quality metrics; and to provide a detailed discussion of the process used to design, manufacture and evaluate wfgSCLs. Methods Fourteen eyes of 7 subjects with keratoconus were enrolled and a wfgSCL was designed for each eye. High-contrast visual acuity and visual quality metrics were used to assess the on-eye performance of the lenses. Results The wfgSCL provided statistically lower levels of both lower-order RMS (p < 0.001) and higher-order RMS (p < 0.02) than an intermediate spherical equivalent scleral contact lens. The wfgSCL provided lower levels of lower-order RMS than a normal group of well-corrected observers (p < < 0.001). However, the wfgSCL does not provide less higher-order RMS than the normal group (p = 0.41). Of the 14 eyes studied, 10 successfully reached the exit criteria, achieving residual higher-order root mean square wavefront error (HORMS) less than or within 1 SD of the levels experienced by normal, age-matched subjects. In addition, measures of visual image quality (logVSX, logNS and logLIB) for the 10 eyes were well distributed within the range of values seen in normal eyes. However, visual performance as measured by high contrast acuity did not reach normal, age-matched levels, which is in agreement with prior results associated with the acute application of wavefront correction to KC eyes. Conclusions Wavefront-guided scleral contact lenses are capable of optically compensating for the deleterious effects of higher-order aberration concomitant with the disease, and can provide visual image quality equivalent to that seen in normal eyes. Longer duration studies are needed to assess whether the visual system of the highly aberrated eye wearing a wfgSCL is capable of producing visual performance levels typical of the normal population. PMID:24830371

  9. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  10. Higher order aberrations and relative risk of symptoms after LASIK.

    PubMed

    Sharma, Munish; Wachler, Brian S Boxer; Chan, Colin C K

    2007-03-01

    To understand what level of higher order aberrations increases the relative risk of visual symptoms in patients after myopic LASIK. This study was a retrospective comparative analysis of 103 eyes of 62 patients divided in two groups, matched for age, gender, pupil size, and spherical equivalent refraction. The symptomatic group comprised 36 eyes of 24 patients after conventional LASIK with different laser systems evaluated in our referral clinic and the asymptomatic control group consisted of 67 eyes of 38 patients following LADARVision CustomCornea wavefront LASIK. Comparative analysis was performed for uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), contrast sensitivity, refractive cylinder, and higher order aberrations. Wavefront analysis was performed with the LADARWave aberrometer at 6.5-mm analysis for all eyes. Blurring of vision was the most common symptom (41.6%) followed by double image (19.4%), halo (16.7%), and fluctuation in vision (13.9%) in symptomatic patients. A statistically significant difference was noted in UCVA (P = .001), BSCVA (P = .001), contrast sensitivity (P < .001), and manifest cylinder (P = .001) in the two groups. The percentage difference between the symptomatic and control group mean root-mean-square (RMS) values ranged from 157% to 206% or 1.57 to 2.06 times greater. Patients with visual symptoms after LASIK have significantly lower visual acuity and contrast sensitivity and higher mean RMS values for higher order aberrations than patients without symptoms. Root-mean-square values of greater than two times the normal after-LASIK population for any given laser platform may increase the relative risk of symptoms.

  11. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system

    PubMed Central

    Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.

    2013-01-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295

  12. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system.

    PubMed

    Balaram, Pooja; Hackett, Troy A; Kaas, Jon H

    2013-05-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology.

    PubMed

    Milner-Bolotin, Marina; Nashon, Samson Madera

    2012-02-01

    Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.

  14. Association of visual sensory function and higher order visual processing skills with incident driving cessation

    PubMed Central

    Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia

    2017-01-01

    Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of factors, not just vision, influenced the decision to stop driving and may be amenable to intervention. PMID:27353969

  15. Increased internal higher-order aberrations as a useful parameter for indication of vitrectomy in three asteroid hyalosis cases

    PubMed Central

    Yokoyama, Sho; Kojima, Takashi; Kaga, Tatsushi; Ichikawa, Kazuo

    2015-01-01

    We report three asteroid hyalosis cases in which internal higher-order aberrations (HOAs) were improved concomitant with improved visual symptoms after vitrectomy. Cases 1 and 2 reported severe floaters and glare disability, although their visual acuities were fairly good. Case 3 showed poor visual acuity since this patient also suffered from mild macular degeneration. For these three asteroid hyalosis cases, we were unsure if treatment with vitrectomy could improve visual symptoms. Therefore, we measured internal HOAs with an aberrometer, and found that the internal HOA values in these cases were high. We suspected that internal high HOAs values were associated with visual disturbance, and performed vitrectomy. After the vitrectomy, the internal HOA values in these three asteroid hyalosis cases markedly decreased, and visual symptoms improved. These observations suggested that measurement of internal HOAs may be useful to determine the indication for vitrectomy. PMID:26698200

  16. Increased internal higher-order aberrations as a useful parameter for indication of vitrectomy in three asteroid hyalosis cases.

    PubMed

    Yokoyama, Sho; Kojima, Takashi; Kaga, Tatsushi; Ichikawa, Kazuo

    2015-12-23

    We report three asteroid hyalosis cases in which internal higher-order aberrations (HOAs) were improved concomitant with improved visual symptoms after vitrectomy. Cases 1 and 2 reported severe floaters and glare disability, although their visual acuities were fairly good. Case 3 showed poor visual acuity since this patient also suffered from mild macular degeneration. For these three asteroid hyalosis cases, we were unsure if treatment with vitrectomy could improve visual symptoms. Therefore, we measured internal HOAs with an aberrometer, and found that the internal HOA values in these cases were high. We suspected that internal high HOAs values were associated with visual disturbance, and performed vitrectomy. After the vitrectomy, the internal HOA values in these three asteroid hyalosis cases markedly decreased, and visual symptoms improved. These observations suggested that measurement of internal HOAs may be useful to determine the indication for vitrectomy. 2015 BMJ Publishing Group Ltd.

  17. Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks

    PubMed Central

    Houston, James R.; Bennett, Ilana J.; Allen, Philip A.; Madden, David J.

    2016-01-01

    Background Declining visual capacities in older adults have been posited as a driving force behind adult age differences in higher-order cognitive functions (e.g., the “common cause” hypothesis of Lindenberger & Baltes, 1994). McGowan, Patterson and Jordan (2013) also found that a surprisingly large number of published cognitive aging studies failed to include adequate measures of visual acuity. However, a recent meta-analysis of three studies (LaFleur & Salthouse, 2014) failed to find evidence that visual acuity moderated or mediated age differences in higher-level cognitive processes. In order to provide a more extensive test of whether visual acuity moderates age differences in higher-level cognitive processes, we conducted a more extensive meta-analysis of topic. Methods Using results from 456 studies, we calculated effect sizes for the main effect of age across four cognitive domains (attention, executive function, memory, and perception/language) separately for five levels of visual acuity criteria (no criteria, undisclosed criteria, self-reported acuity, 20/80-20/31, and 20/30 or better). Results As expected, age had a significant effect on each cognitive domain. However, these age effects did not further differ as a function of visual acuity criteria. Conclusion The current meta-analytic, cross-sectional results suggest that visual acuity is not significantly related to age group differences in higher-level cognitive performance—thereby replicating LaFleur and Salthouse (2014). Further efforts are needed to determine whether other measures of visual functioning (e.g. contrast sensitivity, luminance) affect age differences in cognitive functioning. PMID:27070044

  18. Corneal higher-order aberrations and higher-order Strehl ratio after aberration-free ablation profile to treat compound myopic astigmatism.

    PubMed

    Brenner, Luis F

    2015-12-01

    To evaluate the changes in corneal higher-order aberrations (HOAs) and their impact on corneal higher-order Strehl ratio after aberration-free ablation profile. Verter Institute, H. Olhos, São Paulo, Brazil. Prospective interventional study. Eyes that had aberration-free myopic ablation were divided into 3 groups, based on the spherical equivalent (SE). The corneal HOAs and higher-order Strehl ratios were calculated before surgery and 3 months after surgery. The postoperative uncorrected-distance visual acuity, corrected-distance visual acuity, and SE did not present statistical differences among groups (88 eyes, P > .05). For a 6 mm pupil, the corneal HOA showed a mean increase of 0.17 μm (range 0.39 to 0.56 μm) (P < .001) and the corneal higher-order Strehl ratio presented a reduction of 0.03 (from 0.25 to 0.22) (P = .001). The following consistent linear predictive model was obtained: corneal HOA induction = 1.474 - 0.032 × SE - 0.225 × OZ, where OZ is the optical zone (R(2) = 0.49, adjusted R(2) = 0.48, P < .001). The corneal HOAs and the higher-order Strehl ratios deteriorated after moderate and high myopic ablations. The worsening in corneal aberrations and optical quality were related to the magnitude of the intended correction and did not affect high-contrast visual performance. The OZ was the only modifiable parameter capable to restrain the optical quality loss. The author has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons.

    PubMed

    Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin

    2017-01-01

    Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.

  20. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons

    PubMed Central

    Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin

    2017-01-01

    Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117

  1. Effect of Yellow-Tinted Lenses on Visual Attributes Related to Sports Activities

    PubMed Central

    Kohmura, Yoshimitsu; Murakami, Shigeki; Aoki, Kazuhiro

    2013-01-01

    The purpose of this study was to clarify the effect of colored lenses on visual attributes related to sports activities. The subjects were 24 students (11 females, 13 males; average age 21.0 ±1.2 years) attending a sports university. Lenses of 5 colors were used: colorless, light yellow, dark yellow, light gray, and dark gray. For each lens, measurements were performed in a fixed order: contrast sensitivity, dynamic visual acuity, depth perception, hand-eye coordination and visual acuity and low-contrast visual acuity. The conditions for the measurements of visual acuity and low-contrast visual acuity were in the order of Evening, Evening+Glare, Day, and Day+Glare. There were no significant differences among lenses in dynamic visual acuity and depth perception. For hand-eye coordination, time was significantly shorter with colorless than dark gray lenses. Contrast sensitivity was significantly higher with colorless, light yellow, and light gray lenses than with dark yellow and dark gray lenses. The low-contrast visual acuity test in the Day+Glare condition showed no significant difference among the lenses. In the Evening condition, low-contrast visual acuity was significantly higher with colorless and light yellow lenses than with dark gray lenses, and in the Evening+Glare condition, low-contrast visual acuity was significantly higher with colorless lenses than with the other colors except light yellow. Under early evening conditions and during sports activities, light yellow lenses do not appear to have an adverse effect on visual attributes. PMID:23717352

  2. Research progress on Drosophila visual cognition in China.

    PubMed

    Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang

    2010-03-01

    Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.

  3. In-Service Teacher Education: Asking Questions for Higher Order Thinking in Visual Literacy

    ERIC Educational Resources Information Center

    Moodley, Visvaganthie

    2013-01-01

    The kinds of questions teachers ask may thwart or promote learner high-order thinking; teachers themselves must have expertise in questioning skills to promote higher order cognition among learners. Drawing on experiential knowledge of assessment, and as an English-teaching professional development programme (PDP) facilitator, I demonstrate that…

  4. Eye movements reveal the time-course of anticipating behaviour based on complex, conflicting desires.

    PubMed

    Ferguson, Heather J; Breheny, Richard

    2011-05-01

    The time-course of representing others' perspectives is inconclusive across the currently available models of ToM processing. We report two visual-world studies investigating how knowledge about a character's basic preferences (e.g. Tom's favourite colour is pink) and higher-order desires (his wish to keep this preference secret) compete to influence online expectations about subsequent behaviour. Participants' eye movements around a visual scene were tracked while they listened to auditory narratives. While clear differences in anticipatory visual biases emerged between conditions in Experiment 1, post-hoc analyses testing the strength of the relevant biases suggested a discrepancy in the time-course of predicting appropriate referents within the different contexts. Specifically, predictions to the target emerged very early when there was no conflict between the character's basic preferences and higher-order desires, but appeared to be relatively delayed when comprehenders were provided with conflicting information about that character's desire to keep a secret. However, a second experiment demonstrated that this apparent 'cognitive cost' in inferring behaviour based on higher-order desires was in fact driven by low-level features between the context sentence and visual scene. Taken together, these results suggest that healthy adults are able to make complex higher-order ToM inferences without the need to call on costly cognitive processes. Results are discussed relative to previous accounts of ToM and language processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    PubMed Central

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  6. Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants.

    PubMed

    Dobkins, Karen R; Bosworth, Rain G; McCleery, Joseph P

    2009-09-30

    To investigate effects of visual experience versus preprogrammed mechanisms on visual development, we used multiple regression analysis to determine the extent to which a variety of variables (that differ in the extent to which they are tied to visual experience) predict luminance and chromatic (red/green) contrast sensitivity (CS), which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Our variables included gestational length (GL), birth weight (BW), gender, postnatal age (PNA), and birth order (BO). Two-month-olds (n = 60) and 6-month-olds (n = 122) were tested. Results revealed that (1) at 2 months, infants with longer GL have higher luminance CS; (2) at both ages, CS significantly increases over a approximately 21-day range of PNA, but this effect is stronger in 2- than 6-month-olds and stronger for chromatic than luminance CS; (3) at 2 months, boys have higher luminance CS than girls; and (4) at 2 months, firstborn infants have higher CS, while at 6 months, non-firstborn infants have higher CS. The results for PNA/GL are consistent with the possibility that P pathway development is more influenced by variables tied to visual experience (PNA), while M pathway development is more influenced by variables unrelated to visual experience (GL). Other variables, including prenatal environment, are also discussed.

  7. Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants

    PubMed Central

    Dobkins, Karen R.; Bosworth, Rain G.; McCleery, Joseph P.

    2010-01-01

    To investigate effects of visual experience versus preprogrammed mechanisms on visual development, we used multiple regression analysis to determine the extent to which a variety of variables (that differ in the extent to which they are tied to visual experience) predict luminance and chromatic (red/green) contrast sensitivity (CS), which are mediated by the magnocellular (M) and parvocellular (P) subcortical pathways, respectively. Our variables included gestational length (GL), birth weight (BW), gender, postnatal age (PNA), and birth order (BO). Two-month-olds (n = 60) and 6-month-olds (n = 122) were tested. Results revealed that (1) at 2 months, infants with longer GL have higher luminance CS; (2) at both ages, CS significantly increases over a ~21-day range of PNA, but this effect is stronger in 2- than 6-month-olds and stronger for chromatic than luminance CS; (3) at 2 months, boys have higher luminance CS than girls; and (4) at 2 months, firstborn infants have higher CS, while at 6 months, non-firstborn infants have higher CS. The results for PNA/GL are consistent with the possibility that P pathway development is more influenced by variables tied to visual experience (PNA), while M pathway development is more influenced by variables unrelated to visual experience (GL). Other variables, including prenatal environment, are also discussed. PMID:19810800

  8. Improving Reading Comprehension through Higher-Order Thinking Skills

    ERIC Educational Resources Information Center

    McKown, Brigitte A.; Barnett, Cynthia L.

    2007-01-01

    This action research project report documents the action research project that was conducted to improve reading comprehension with second grade and third grade students. The teacher researchers intended to improve reading comprehension by using higher-order thinking skills such as predicting, making connections, visualizing, inferring,…

  9. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  10. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    PubMed Central

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  11. Discriminating between first- and second-order cognition in first-episode paranoid schizophrenia.

    PubMed

    Bliksted, Vibeke; Samuelsen, Erla; Sandberg, Kristian; Bibby, Bo Martin; Overgaard, Morten Storm

    2017-03-01

    An impairment of visually perceiving backward masked stimuli is commonly observed in patients with schizophrenia, yet it is unclear whether this impairment is the result of a deficiency in first or higher order processing and for which subtypes of schizophrenia it is present. Here, we compare identification (first order) and metacognitive (higher order) performance in a visual masking paradigm between a highly homogenous group of young first-episode patients diagnosed with paranoid schizophrenia (N = 11) to that of carefully matched healthy controls (N = 13). We find no difference across groups in first-order performance, but find a difference in metacognitive performance, particularly for stimuli with relatively high visibility. These results indicate that the masking deficit is present in first-episode patients with paranoid schizophrenia, but that it is primarily an impairment of metacognition.

  12. Developing Visual Literacy: Historical and Manipulated Photography in the Social Studies Classroom

    ERIC Educational Resources Information Center

    Cruz, Bárbara C.; Ellerbrock, Cheryl R.

    2015-01-01

    The importance of visual literacy development is demonstrated using social studies examples from an innovative, collaborative arts program. Discussion of the Visual Thinking Strategies approach, connections to the Common Core State Standards, prompts for higher-order critical thinking, and the application of historical and social science ideas in…

  13. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  14. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia.

    PubMed

    Lin, Fangyu; Xu, Yesheng; Yang, Yabo

    2014-04-01

    To perform a comparative clinical analysis of the safety, efficacy, and predictability of two surgical procedures (ie, small incision lenticule extraction [SMILE] and femtosecond laser-assisted LASIK [FS-LASIK]) to correct myopia. Sixty eyes of 31 patients with a mean spherical equivalent of -5.13 ± 1.75 diopters underwent myopia correction with the SMILE procedure. Fifty-one eyes of 27 patients with a mean spherical equivalent of -5.58 ± 2.41 diopters were treated with the FS-LASIK procedure. Postoperative uncorrected and corrected distance visual acuity, manifest refraction, and higher-order aberrations were analyzed statistically at 1 and 3 months postoperatively. No statistically significant differences were found at 1 and 3 months in parameters that included the percentage of eyes with an uncorrected distance visual acuity of 20/20 or better (P = .556, .920) and mean spherical equivalent refraction (P = .055, .335). At 1 month, 4 SMILE-treated eyes and 1 FS-LASIK-treated eye lost one or more line of visual acuity (P = .214, chi-square test). At 3 months, 2 SMILE-treated eyes lost one or more line of visual acuity, whereas all FS-LASIK-treated eyes had an unchanged or corrected distance visual acuity. Higher-order aberrations and spherical aberration were significantly lower in the SMILE group than the FS-LASIK group at 1 (P = .007, .000) and 3 (P = .006, .000) months of follow-up. SMILE and FS-LASIK are safe, effective, and predictable surgical procedures to treat myopia. SMILE has a lower induction rate of higher-order aberrations and spherical aberration than the FS-LASIK procedure. Copyright 2014, SLACK Incorporated.

  15. A comparative psychophysical approach to visual perception in primates.

    PubMed

    Matsuno, Toyomi; Fujita, Kazuo

    2009-04-01

    Studies on the visual processing of primates, which have well developed visual systems, provide essential information about the perceptual bases of their higher-order cognitive abilities. Although the mechanisms underlying visual processing are largely shared between human and nonhuman primates, differences have also been reported. In this article, we review psychophysical investigations comparing the basic visual processing that operates in human and nonhuman species, and discuss the future contributions potentially deriving from such comparative psychophysical approaches to primate minds.

  16. Evaluation of Gifted and Talented Students' Reflective Thinking in Visual Arts Course

    ERIC Educational Resources Information Center

    Genç, Mehmet Ali

    2016-01-01

    The use of higher order thinking skills is necessary for the education of gifted and talented students in order to ensure that these students, who have development potential compared to their peers, use their capacities at maximum level. This study aims to present gifted and talented students' reflective thinking skills, one of the higher order…

  17. Sensitivity to timing and order in human visual cortex

    PubMed Central

    Singer, Jedediah M.; Madsen, Joseph R.; Anderson, William S.

    2014-01-01

    Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. PMID:25429116

  18. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  19. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Promoting English oral communication and higher-order thinking in Taiwanese ESL students through the use of knowledge visualization techniques.

    PubMed

    Wang, Ya-Huei; Liao, Hung-Chang

    2014-06-01

    The study examined whether the students using concept mapping in a Freshman English course would improve English oral communication proficiency, higher-order thinking, and perception of abilities. A quasi-experimental design, lasting for 12 weeks, was administered to an experimental group (21 students) and a control group (20 students). The experimental group had significantly better performance on all measures. Concept mapping was effective in improving college students' English oral communication, higher-order thinking, and perception of abilities development.

  1. Short-term effects of instillation of a rebamipide suspension on visual function.

    PubMed

    Kaido, Minako; Ishida, Reiko; Dogru, Murat; Tsubota, Kazuo

    2014-05-01

    To investigate the short-term adverse effects of using rebamipide for the treatment of dry eye by assessing visual function and optical quality. This interventional noncomparative study included 14 right eyes of 14 healthy volunteers. Serial measurements of visual acuity (VA) and higher-order aberrations were obtained prior to instillation of the rebamipide suspension (baseline) and immediately after and at 5, 10, 20, and 30 min after instillation. Functional VA measurement was performed over a 60-s period with the subject blinking naturally. Ocular aberrations were measured for 10 s while the subject was told not to blink, but no topical anesthesia was applied. Each patient also filled out a questionnaire exploring the rebamipide-associated adverse effects. There was no significant difference between functional VA measured at baseline and at each time point after the instillation of rebamipide. In contrast, the root mean square of third-order and total higher-order aberrations increased significantly immediately after drug instillation (P<0.05). The severity of higher-order aberrations at baseline was similar to that observed at 5, 10, 20, and 30 min after instillation (P>0.05). The transient reduction in optical quality immediately after administration of rebamipide is corrected by the patient's natural blink reflex. The adverse effects observed in this study do not outweigh the benefits of rebamipide treatment.

  2. Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation.

    PubMed

    Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J

    2006-01-01

    The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

  3. Lateral resolution improvement in scanning nonlinear dielectric microscopy by measuring super-higher-order nonlinear dielectric constants

    NASA Astrophysics Data System (ADS)

    Chinone, N.; Yamasue, K.; Hiranaga, Y.; Honda, K.; Cho, Y.

    2012-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can be used to visualize polarization distributions in ferroelectric materials and dopant profiles in semiconductor devices. Without using a special sharp tip, we achieved an improved lateral resolution in SNDM through the measurement of super-higher-order nonlinearity up to the fourth order. We observed a multidomain single crystal congruent LiTaO3 (CLT) sample, and a cross section of a metal-oxide-semiconductor (MOS) field-effect-transistor (FET). The imaged domain boundaries of the CLT were narrower in the super-higher-order images than in the conventional image. Compared to the conventional method, the super-higher-order method resolved the more detailed structure of the MOSFET.

  4. Tessellating with Logo: Effects on Visual Literacy.

    ERIC Educational Resources Information Center

    Knupfer, Nancy Nelson; Clark, Barbara I.

    This investigation of the potential of a Logo environment to develop visual literacy skills in elementary school students focused on the recognition of Escher-type geometric constructions by second and sixth grade students. Four research questions were addressed: (1) whether students can use higher-order and creative thinking skills in using…

  5. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.

    PubMed

    Paulk, Angelique C; Gronenberg, Wulfila

    2008-11-01

    To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.

  6. Refractive and Aberration Outcomes after Customized Photorefractive Keratectomy in Comparison with Customized Femtosecond Laser

    PubMed Central

    Sajjadi, Valleh; Ghoreishi, Mohammad; Jafarzadehpour, Ebrahim

    2015-01-01

    To compare the refractive and visual outcomes and higher order aberrations in patients with low to moderate myopia who underwent customized photorefractive keratectomy (PRK) or femtosecond laser in situ keratomileusis (Femto-LASIK) this research performed. This study includes data of 120 consecutive eyes of 60 patients with myopia between -3.00 D and -7.00 D with or without astigmatism in two surgery groups: PRK and Femto-LASIK. Refractive, visual, and aberration outcomes of the two methods of surgery were compared after 6 months of follow-up. After six months of follow-up, sphere and cylinder were found significantly decreased and there was no statistically significant difference between the two groups. The mean of uncorrected distance visual acuity in LogMar format for the PRK and Femto-LASIK groups was -0.03±0.07 and -0.01±0.08, respectively, which was not significantly different between the two groups. Higher orders and spherical aberrations increased in both groups significantly, while total aberrations decreased in both groups. After surgery, no differences were observed between the two groups in the amount of aberrations. In conclusion, Both PRK and Femto-LASIK are effective and safe in correcting myopia. In this study PRK induced more spherical and higher order aberrations than Femto-LASIK. PMID:27800501

  7. Sensitivity to timing and order in human visual cortex.

    PubMed

    Singer, Jedediah M; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2015-03-01

    Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. Copyright © 2015 the American Physiological Society.

  8. Integration of color, orientation, and size functional domains in the ventral pathway

    PubMed Central

    Ghose, Geoffrey M.; Ts’o, Daniel Y.

    2017-01-01

    Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155

  9. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  10. Effect of higher frequency on the classification of steady-state visual evoked potentials.

    PubMed

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  11. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiencymore » of pathline computation.« less

  12. Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions

    PubMed Central

    Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.

    2016-01-01

    Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less

  14. Visual performance with changes in eccentricity in PROSE device: a case report.

    PubMed

    Jagadeesh, Divya; Mahadevan, Rajeswari

    2014-01-01

    This case report describes the variations in visual performance of a subject with moderate keratoconus with changes in front surface eccentricities (FSEs) of PROSE (Prosthetic Replacement of Ocular Surface Ecosystem). PROSE device of 0.6 FSE provided maximum visual improvement and reduction in Higher Order Aberrations (HOAs) compared to 0, 0.3 and 0.8 FSEs in this clinical condition. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  15. Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up.

    PubMed

    Wigledowska-Promienska, D; Zawojska, I

    2007-01-01

    To assess efficacy, safety, and changes in higher order aberrations after wavefront-guided photorefractive keratectomy (PRK) in comparison with conventional PRK for low to moderate myopia with myopic astigmatism using a WASCA Workstation with the MEL 70 G-Scan excimer laser. A total of 126 myopic or myopic-astigmatic eyes of 112 patients were included in this retrospective study. Patients were divided into two groups: Group 1, the study group; and Group 2, the control group. Group 1 consisted of 78 eyes treated with wavefront-guided PRK. Group 2 consisted of 48 eyes treated with spherocylindrical conventional PRK. Two years postoperatively, in Group 1, 5% of eyes achieved an uncorrected visual acuity (UCVA) of 0.05; 69% achieved a UCVA of 0.00; 18% of eyes experienced enhanced visual acuity of -0.18 and 8% of -0.30. In Group 2, 8% of eyes achieved a UCVA of 0.1; 25% achieved a UCVA of 0.05; and 67% achieved a UCVA of 0.00 according to logMAR calculation method. Total higher-order root-mean square increased by a factor 1.18 for Group 1 and 1.6 for Group 2. There was a significant increase of coma by a factor 1.74 in Group 2 and spherical aberration by a factor 2.09 in Group 1 and 3.56 in Group 2. The data support the safety and effectiveness of the wavefront-guided PRK using a WASCA Workstation for correction of low to moderate refractive errors. This method reduced the number of higher order aberrations induced by excimer laser surgery and improved uncorrected and spectacle-corrected visual acuity when compared to conventional PRK.

  16. Comparison of monochromatic aberrations in young adults with different visual acuity and refractive errors.

    PubMed

    Yazar, Seyhan; Hewitt, Alex W; Forward, Hannah; McKnight, Charlotte M; Tan, Alex; Mountain, Jenny A; Mackey, David A

    2014-03-01

    To compare the monochromatic aberrations in a large cohort of 20-year-old Australians with differing levels of visual acuity and explore the relationship between these aberrations and refractive error. Lions Eye Institute, Perth, Western Australia, Australia. Cross-sectional analysis of a population-based cohort. Monochromatic aberrations were measured using a Zywave II wavefront aberrometer with natural pupils in a dark room. The logMAR corrected distance visual acuity (CDVA) was measured monocularly under normal illumination. Cycloplegic autorefraction was also performed. The study enrolled 2039 eyes of 1040 participants. Data from 1007 right eyes were analyzed. The median CDVA and spherical equivalent were -0.06 logMAR (interquartile range [IQR], -0.10 to 0.00) and +0.25 diopters (D) (IQR, -0.38 to 0.63), respectively. The median 6.0 mm higher-order aberration (HOA) was 0.58 μm (IQR, 0.44 to 0.79). Coma-like aberrations and 3rd-, 4th-, and 5th-order HOAs were significantly different between subjects with a CDVA of -0.10 logMAR or better and those with a CDVA worse than -0.10 logMAR. Fourth-order aberrations Z(4,-4) (P=.024) and Z(4,-2) (P=.029) and 2nd-order aberration Z(2,0) (P<.001) differed significantly between myopic eyes, emmetropic eyes, and hyperopic eyes. Subjects with higher myopia had slightly higher total HOAs. The HOAs in this population were marginally higher than previously reported values. The findings confirm there is a difference in monochromatic aberrations between different vision and refractive groups. Results in this study will benefit decision-making processes in the clinical setting. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.

    PubMed

    Shuster, Anastasia; Levy, Dino J

    2018-01-01

    Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.

  18. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations

    PubMed Central

    2018-01-01

    Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408

  19. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths.

    PubMed

    Stöckl, A L; O'Carroll, D; Warrant, E J

    2017-06-28

    To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta , and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila , but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies. © 2017 The Author(s).

  20. Visual acuity measured with luminance-modulated and contrast-modulated noise letter stimuli in young adults and adults above 50 years old

    PubMed Central

    Woi, Pui Juan; Kaur, Sharanjeet; Waugh, Sarah J.; Hairol, Mohd Izzuddin

    2016-01-01

    The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05].  Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone. PMID:28184281

  1. A Mathematical Mystery Tour: Higher-Thinking Math Tasks.

    ERIC Educational Resources Information Center

    Wahl, Mark

    This book contains mathematics activities based upon the concepts of Fibonacci numbers and the Golden Ratio. The activities include higher order thinking skills, calculation practice, integration with different subject areas, mathematics history, extensions and home tasks, teaching notes, and questions for thought and comprehension. A visual map…

  2. Where Similarity Beats Redundancy: The Importance of Context, Higher Order Similarity, and Response Assignment

    ERIC Educational Resources Information Center

    Eidels, Ami; Townsend, James T.; Pomerantz, James R.

    2008-01-01

    People are especially efficient in processing certain visual stimuli such as human faces or good configurations. It has been suggested that topology and geometry play important roles in configural perception. Visual search is one area in which configurality seems to matter. When either of 2 target features leads to a correct response and the…

  3. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    PubMed

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  4. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  5. Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits

    DTIC Science & Technology

    2015-05-30

    3 3 Accomplishments / New Findings .......................................................................................... 3 3.1...Posters: ........................................................................ 51 6.2 Consultative and advisory functions ...53 7 New Discoveries, Inventions, or Patent Disclosures

  6. Cognitive processing in the primary visual cortex: from perception to memory.

    PubMed

    Supèr, Hans

    2002-01-01

    The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.

  7. Effect of neodymium:YAG laser capsulotomy on visual function in patients with posterior capsule opacification and good visual acuity.

    PubMed

    Yotsukura, Erisa; Torii, Hidemasa; Saiki, Megumi; Negishi, Kazuno; Tsubota, Kazuo

    2016-03-01

    To evaluate the effect of neodymium:YAG (Nd:YAG) laser capsulotomy on the visual function in patients with posterior capsule opacification (PCO) and good visual acuity. Keio University Hospital, Tokyo, Japan. Observational case series. Eyes were evaluated that had previous cataract surgery with a clinical diagnosis of PCO requiring Nd:YAG laser capsulotomy regardless of a good corrected distance visual acuity (CDVA) (at least 20/20). The CDVA, 10% low contrast visual acuity (LCVA), wavefront aberrations from the 3rd to 6th order, and retinal straylight were measured before and after Nd:YAG laser capsulotomy. The study included 16 eyes of 16 patients (10 men, 6 women; mean age 69.5 years ± 9.3 [SD]). The mean CDVA, LCVA, and straylight after Nd:YAG laser capsulotomy improved significantly (P < .05). The root mean square (RMS) of the 3rd Zernike coefficients (S3) and the RMS of the total higher-order aberrations (HOAs) from the 3rd to 6th order decreased significantly after capsulotomy (P < .05). The straylight correlated significantly with the total HOAs (r = 0.727, P = .002) and S3 (r = 0.748, P = .001) before capsulotomy. Subjective symptoms resolved after capsulotomy in all cases. Neodymium:YAG laser capsulotomy enabled a significant improvement in visual function even in patients with PCO with good visual acuity. Straylight measurements might be useful to determine the indications for Nd:YAG laser capsulotomy when patients report visual disturbances without decreased visual acuity. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Technology and informal education: what is taught, what is learned.

    PubMed

    Greenfield, Patricia M

    2009-01-02

    The informal learning environments of television, video games, and the Internet are producing learners with a new profile of cognitive skills. This profile features widespread and sophisticated development of visual-spatial skills, such as iconic representation and spatial visualization. A pressing social problem is the prevalence of violent video games, leading to desensitization, aggressive behavior, and gender inequity in opportunities to develop visual-spatial skills. Formal education must adapt to these changes, taking advantage of new strengths in visual-spatial intelligence and compensating for new weaknesses in higher-order cognitive processes: abstract vocabulary, mindfulness, reflection, inductive problem solving, critical thinking, and imagination. These develop through the use of an older technology, reading, which, along with audio media such as radio, also stimulates imagination. Informal education therefore requires a balanced media diet using each technology's specific strengths in order to develop a complete profile of cognitive skills.

  9. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study

    PubMed Central

    Takesaki, Natsumi; Kikuchi, Mitsuru; Yoshimura, Yuko; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Kaneda, Reizo; Nakatani, Hideo; Takahashi, Tetsuya; Mottron, Laurent; Minabe, Yoshio

    2016-01-01

    Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas. PMID:27631982

  10. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  11. Control of Visually Guided Saccades in Multiple Sclerosis: Disruption to Higher-Order Processes

    ERIC Educational Resources Information Center

    Fielding, Joanne; Kilpatrick, Trevor; Millist, Lynette; White, Owen

    2009-01-01

    Ocular motor abnormalities are a common feature of multiple sclerosis (MS), with more salient deficits reflecting tissue damage within brainstem and cerebellar circuits. However, MS may also result in disruption to higher level or cognitive control processes governing eye movement, including attentional processes that enhance the neural processing…

  12. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu

    2014-06-15

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less

  13. The Prevalence of Age-Related Eye Diseases and Visual Impairment in Aging: Current Estimates

    PubMed Central

    Klein, Ronald; Klein, Barbara E. K.

    2013-01-01

    Purpose. To examine prevalence of five age-related eye conditions (age-related cataract, AMD, open-angle glaucoma, diabetic retinopathy [DR], and visual impairment) in the United States. Methods. Review of published scientific articles and unpublished research findings. Results. Cataract, AMD, open-angle glaucoma, DR, and visual impairment prevalences are high in four different studies of these conditions, especially in people over 75 years of age. There are disparities among racial/ethnic groups with higher age-specific prevalence of DR, open-angle glaucoma, and visual impairment in Hispanics and blacks compared with whites, higher prevalence of age-related cataract in whites compared with blacks, and higher prevalence of late AMD in whites compared with Hispanics and blacks. The estimates are based on old data and do not reflect recent changes in the distribution of age and race/ethnicity in the United States population. There are no epidemiologic estimates of prevalence for many visually-impairing conditions. Conclusions. Ongoing prevalence surveys designed to provide reliable estimates of visual impairment, AMD, age-related cataract, open-angle glaucoma, and DR are needed. It is important to collect objective data on these and other conditions that affect vision and quality of life in order to plan for health care needs and identify areas for further research. PMID:24335069

  14. Agreement Between Autorefraction and Subjective Refraction in Keraring-Implanted Keratoconic Eyes.

    PubMed

    Al-Tuwairqi, Waleed S; Ogbuehi, Kelechi C; Razzouk, Haya; Alanazi, Mana A; Osuagwu, Uchechukwu L

    2017-03-01

    To assess the agreement between subjective refraction and autorefraction and to explore the relationship between the magnitude of higher order aberration, and visual acuity and refraction, before and after keraring implantation. This prospective, randomized, interventional study enrolled 27 subjects (mean age 28.1±6.5 years) with keratoconus. Noncycloplegic refraction was performed subjectively by one clinician and with an autorefractor by another clinician, before and 6 months after surgery. The limit of agreement (LoA) between methods was assessed, and the relationships between the corrected distance visual acuity, logMAR on the one hand and refraction measurements and higher-order aberrations on the other, were examined. The agreement in mean spherical equivalent refraction (MSER) between methods was good postoperatively but poor preoperatively. The autorefractor gave a more myopic refraction than subjective refraction preoperatively (-3.28±3.06 D; LoA -9.27 to +2.71 D, P<0.0001) and postoperatively (-0.63±1.64 D; LoA -3.85 to +2.58 D, P=0.055), and returned higher negative cylinders preoperatively (-1.10±1.17 D; LoA -3.40 to +1.19 D, P<0.0001) and postoperatively (-1.08±1.27 D; LoA -3.60 to +1.41 D, P<0.0001) in keratoconic eyes. The difference in MSER between methods was significantly related to the refractive error at both visits (P<0.05) and to the magnitude of higher-order aberrations in keratoconic eyes preoperatively (P<0.05). The logMAR visual acuity achieved subjectively worsened as the magnitude of higher-order aberrations increased preoperatively (P<0.001). The autorefractor returns values that are significantly more myopic in MSER and higher negative cylinders than subjective refraction, preoperatively, but the MSER was similar between devices postoperatively. The autorefactor seems a valid starting point for subjective refraction in keratoconic eyes treated with keraring, but the cylinder should be corrected by about +1 D. The instruments agree more in less myopic than high myopic eyes.

  15. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision.

    PubMed

    Maravall, Darío; de Lope, Javier; Fuentes, Juan P

    2017-01-01

    We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks.

  16. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision

    PubMed Central

    Maravall, Darío; de Lope, Javier; Fuentes, Juan P.

    2017-01-01

    We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks. PMID:28900394

  17. Designing multifocal corneal models to correct presbyopia by laser ablation

    NASA Astrophysics Data System (ADS)

    Alarcón, Aixa; Anera, Rosario G.; Del Barco, Luis Jiménez; Jiménez, José R.

    2012-01-01

    Two multifocal corneal models and an aspheric model designed to correct presbyopia by corneal photoablation were evaluated. The design of each model was optimized to achieve the best visual quality possible for both near and distance vision. In addition, we evaluated the effect of myosis and pupil decentration on visual quality. The corrected model with the central zone for near vision provides better results since it requires less ablated corneal surface area, permits higher addition values, presents stabler visual quality with pupil-size variations and lower high-order aberrations.

  18. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience suggests that higher-order cognition may be involved in VPL. If so, real-time strategy (RTS) video-game experience may facilitate VPL as a result of heavy involvement of cognitive skills. Here, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and investigated the underlying neural mechanisms. VGPs showed better performance in the early phase of training on the texture discrimination task and greater level of neuronal activity in cognitive areas and structural connectivity between visual and cognitive areas than NVGPs. These results support the hypothesis that VPL can occur beyond the visual cortex. Copyright © 2015 the authors 0270-6474/15/3510485-08$15.00/0.

  19. Interactions between attention, context and learning in primary visual cortex.

    PubMed

    Gilbert, C; Ito, M; Kapadia, M; Westheimer, G

    2000-01-01

    Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.

  20. Temporal integration property of stereopsis after higher-order aberration correction

    PubMed Central

    Kang, Jian; Dai, Yun; Zhang, Yudong

    2015-01-01

    Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010

  1. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals.

    PubMed

    Heesy, Christopher P

    2008-01-01

    Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins. (c) 2007 S. Karger AG, Basel.

  2. Visual Outcomes After LASIK Using Topography-Guided vs Wavefront-Guided Customized Ablation Systems.

    PubMed

    Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Tsubota, Kazuo

    2016-11-01

    To evaluate the visual performance of two customized ablation systems (wavefront-guided ablation and topography-guided ablation) in LASIK. In this prospective, randomized clinical study, 68 eyes of 35 patients undergoing LASIK were enrolled. Patients were randomly assigned to wavefront-guided ablation using the iDesign aberrometer and STAR S4 IR Excimer Laser system (Abbott Medical Optics, Inc., Santa Ana, CA) (wavefront-guided group; 32 eyes of 16 patients; age: 29.0 ± 7.3 years) or topography-guided ablation using the OPD-Scan aberrometer and EC-5000 CXII excimer laser system (NIDEK, Tokyo, Japan) (topography-guided group; 36 eyes of 19 patients; age: 36.1 ± 9.6 years). Preoperative manifest refraction was -4.92 ± 1.95 diopters (D) in the wavefront-guided group and -4.44 ± 1.98 D in the topography-guided group. Visual function and subjective symptoms were compared between groups before and 1 and 3 months after LASIK. Of seven subjective symptoms evaluated, four were significantly milder in the wavefront-guided group at 3 months. Contrast sensitivity with glare off at low spatial frequencies (6.3° and 4°) was significantly higher in the wavefront-guided group. Uncorrected and corrected distance visual acuity, manifest refraction, and higher order aberrations measured by OPD-Scan and iDesign were not significantly different between the two groups at 1 and 3 months after LASIK. Both customized ablation systems used in LASIK achieved excellent results in predictability and visual function. The wavefront-guided ablation system may have some advantages in the quality of vision. It may be important to select the appropriate system depending on eye conditions such as the pattern of total and corneal higher order aberrations. [J Refract Surg. 2016;32(11):727-732.]. Copyright 2016, SLACK Incorporated.

  3. Infants' prospective control during object manipulation in an uncertain environment.

    PubMed

    Gottwald, Janna M; Gredebäck, Gustaf

    2015-08-01

    This study investigates how infants use visual and sensorimotor information to prospectively control their actions. We gave 14-month-olds two objects of different weight and observed how high they were lifted, using a Qualisys Motion Capture System. In one condition, the two objects were visually distinct (different color condition) in another they were visually identical (same color condition). Lifting amplitudes of the first movement unit were analyzed in order to assess prospective control. Results demonstrate that infants lifted a light object higher than a heavy object, especially when vision could be used to assess weight (different color condition). When being confronted with two visually identical objects of different weight (same color condition), infants showed a different lifting pattern than what could be observed in the different color condition, expressed by a significant interaction effect between object weight and color condition on lifting amplitude. These results indicate that (a) visual information about object weight can be used to prospectively control lifting actions and that (b) infants are able to prospectively control their lifting actions even without visual information about object weight. We argue that infants, in the absence of reliable visual information about object weight, heighten their dependence on non-visual information (tactile, sensorimotor memory) in order to estimate weight and pre-adjust their lifting actions in a prospective manner.

  4. The BHVI-EyeMapper: peripheral refraction and aberration profiles.

    PubMed

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C; Holden, Brien A

    2014-10-01

    The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, -3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (-2.00 to -5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to -5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.

  5. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  6. A Role for Mouse Primary Visual Cortex in Motion Perception.

    PubMed

    Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo

    2018-06-04

    Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Custom vs conventional PRK: a prospective, randomized, contralateral eye comparison of postoperative visual function.

    PubMed

    Mifflin, Mark D; Hatch, Bryndon B; Sikder, Shameema; Bell, James; Kurz, Christopher J; Moshirfar, Majid

    2012-02-01

    To determine whether VISX S4 (VISX Inc) custom photorefractive keratectomy (PRK) results in better visual outcomes than VISX S4 conventional PRK. Photorefractive keratectomy was performed on 80 eyes from 40 patients in this randomized, prospective, contralateral eye study. Dominant eyes were randomized to one group with the fellow eye receiving the alternate treatment. Primary outcome measures included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), contrast sensitivity, and root-mean-square (RMS) higher order aberrations. Mean UDVA was -0.023±0.099 (20/19) in the custom group and -0.044±0.080 (20/18) in the conventional group 6 months after surgery (P=.293). Mean CDVA was -0.073±0.067 (20/17) in the custom group and -0.079±0.071 (20/17) in the conventional group 6 months after surgery (P=.659). Total higher order aberration RMS and spherical aberration increased in both groups compared to preoperative values (P<.05). Coma increased in the conventional group (P<.05) whereas it was similar to preoperative values in the custom group. No significant differences were noted in induction of trefoil. Custom and conventional PRK were shown to be safe and effective with excellent visual acuity and contrast sensitivity performance at 6 and 12 months. Conventional PRK induced more coma than custom PRK; however, this did not seem to correlate with clinical outcomes. Copyright 2012, SLACK Incorporated.

  8. Sandia Higher Order Elements (SHOE) v 0.5 alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-09-24

    SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likelymore » exist.« less

  9. Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus.

    PubMed

    Woodhead, Zoe Victoria Joan; Wise, Richard James Surtees; Sereno, Marty; Leech, Robert

    2011-10-01

    Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties.

  10. Parameters of Semantic Multisensory Integration Depend on Timing and Modality Order among People on the Autism Spectrum: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Russo, N.; Mottron, L.; Burack, J. A.; Jemel, B.

    2012-01-01

    Individuals with autism spectrum disorders (ASD) report difficulty integrating simultaneously presented visual and auditory stimuli (Iarocci & McDonald, 2006), albeit showing enhanced perceptual processing of unisensory stimuli, as well as an enhanced role of perception in higher-order cognitive tasks (Enhanced Perceptual Functioning (EPF) model;…

  11. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  12. Figure-ground modulation in awake primate thalamus.

    PubMed

    Jones, Helen E; Andolina, Ian M; Shipp, Stewart D; Adams, Daniel L; Cudeiro, Javier; Salt, Thomas E; Sillito, Adam M

    2015-06-02

    Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process.

  13. Figure-ground modulation in awake primate thalamus

    PubMed Central

    Jones, Helen E.; Andolina, Ian M.; Shipp, Stewart D.; Adams, Daniel L.; Cudeiro, Javier; Salt, Thomas E.; Sillito, Adam M.

    2015-01-01

    Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process. PMID:25901330

  14. UV reactor flow visualization and mixing quantification using three-dimensional laser-induced fluorescence.

    PubMed

    Gandhi, Varun; Roberts, Philip J W; Stoesser, Thorsten; Wright, Harold; Kim, Jae-Hong

    2011-07-01

    Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze mixing in a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. The recirculation zone and the von Karman vortex shedding that commonly occur in flows around bluff bodies were successfully visualized. Multiple flow paths were analyzed by injecting the dye at various heights with respect to the lamp sleeve. A major difference in these pathways was the amount of dye that traveled close to the sleeve, i.e., a zone of higher residence time and higher UV exposure. Paths away from the center height had higher velocities and hence minimal influence by the presence of sleeve. Approach length was also characterized in order to increase the probability of microbes entering the region around the UV lamp. The 3DLIF technique developed in this study is expected to provide new insight on UV dose delivery useful for the design and optimization of UV reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Selection of higher order regression models in the analysis of multi-factorial transcription data.

    PubMed

    Prazeres da Costa, Olivia; Hoffman, Arthur; Rey, Johannes W; Mansmann, Ulrich; Buch, Thorsten; Tresch, Achim

    2014-01-01

    Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-treatment with interferon-γ. We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.

  16. Interference, aging, and visuospatial working memory: the role of similarity.

    PubMed

    Rowe, Gillian; Hasher, Lynn; Turcotte, Josée

    2010-11-01

    Older adults' performance on working memory (WM) span tasks is known to be negatively affected by the buildup of proactive interference (PI) across trials. PI has been reduced in verbal tasks and performance increased by presenting distinctive items across trials. In addition, reversing the order of trial presentation (i.e., starting with the longest sets first) has been shown to reduce PI in both verbal and visuospatial WM span tasks. We considered whether making each trial visually distinct would improve older adults' visuospatial WM performance, and whether combining the 2 PI-reducing manipulations, distinct trials and reversed order of presentation, would prove additive, thus providing even greater benefit. Forty-eight healthy older adults (age range = 60-77 years) completed 1 of 3 versions of a computerized Corsi block test. For 2 versions of the task, trials were either all visually similar or all visually distinct, and were presented in the standard ascending format (shortest set size first). In the third version, visually distinct trials were presented in a reverse order of presentation (longest set size first). Span scores were reliably higher in the ascending version for visually distinct compared with visually similar trials, F(1, 30) = 4.96, p = .03, η² = .14. However, combining distinct trials and a descending format proved no more beneficial than administering the descending format alone. Our findings suggest that a more accurate measurement of the visuospatial WM span scores of older adults (and possibly neuropsychological patients) might be obtained by reducing within-test interference.

  17. Predicting perceptual learning from higher-order cortical processing.

    PubMed

    Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan

    2016-01-01

    Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study

    PubMed Central

    Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin

    2016-01-01

    Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936

  19. Assessment of the risk of fall, related to visual stimulation, in patients with central vestibular disorders.

    PubMed

    Suárez, H; Musé, P; Suárez, A; Arocena, M

    2001-01-01

    In order to assess the influence of visual stimulation in the triggering of imbalance and falls in the elderly population, the postural responses of 18 elderly patients with central vestibular disorders and clinical evidence of instability and falls were studied while receiving different types of visual stimuli. The stimulation conditions were: (i) no specific stimuli; (ii) smooth pursuit with pure sinusoids of 0.2 Hz as foveal stimulation; and (iii) optokinetic stimulation (OK) as retinal stimuli. Using a platform AMTI Accusway platform, the 95% confidence ellipse (CE) and sway velocity (SV) were evaluated with a scalogram using wavelets in order to assess the relationship between time and frequency in postural control. Velocity histograms were also constructed in order to observe the distribution of velocity values during the recording. A non-homogeneous postural behavior after visual stimulation was found among this population. In five of the patients the OK stimulation generated: (i) significantly higher average values of CE ( > 3.4+/-0.69 cm2); (ii) a significant increase in the average values of the SV ( > 3.89+/-1.15 cm/s) and a velocity histogram with a homogeneous distribution between 0 and 18 cm/s; and (iii) a scalogram with sway frequencies of up to 4 Hz distributed in both the X and Y directions (backwards and forwards and lateral) during visual stimulation with arbitrary units of energy density > 5. These three qualitative and quantitative aspects could be "markers" of visual dependence in the triggering of the mechanism of lack of equilibrium and hence falls in some elderly patients and should be considered in order to prevent falls and also to assist in the rehabilitation program of these patients.

  20. Near-Earth Object Astrometric Interferometry

    NASA Technical Reports Server (NTRS)

    Werner, Martin R.

    2005-01-01

    Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.

  1. Analysis of correlation between corneal topographical data and visual performance

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanqing; Yu, Lei; Ren, Qiushi

    2007-02-01

    Purpose: To study correlation among corneal asphericity, higher-order aberrations and visual performance for eyes of virgin myopia and postoperative laser in situ keratomileusis (LASIK). Methods: There were 320 candidates 590 eyes for LASIK treatment included in this study. The mean preoperative spherical equivalence was -4.35+/-1.51D (-1.25 to -9.75), with astigmatism less than 2.5 D. Corneal topography maps and contrast sensitivity were measured and analyzed for every eye before and one year after LASIK for the analysis of corneal asphericity and wavefront aberrations. Results: Preoperatively, only 4th and 6th order aberration had significant correlation with corneal asphericity and apical radius of curvature (p<0.001). Postoperatively, all 3th to 6th order aberrations had statistically significant correlation with corneal asphericity (p<0.01), but only 4th and 6th order aberration had significant correlation with apical radius of curvature (p<0.05). The asymmetrical aberration like coma had significant correlation with vertical offset of pupil center (p<0.01). Preoperatively, corneal aberrations had no significant correlation with visual acuity and area under the log contrast sensitivity (AULCSF) (P>0.05). Postoperatively, corneal aberrations still didn't have significant correlation with visual acuity (P>0.05), but had significantly negative correlation with AULCSF (P<0.01). Corneal asphericity had no significant correlation with AULCSF before and after the treatment (P>0.05). Conclusions: Corneal aberrations had different correlation with corneal profile and visual performance for eyes of virgin myopia and postoperative LASIK, which may be due to changed corneal profile and limitation of metrics of corneal aberrations.

  2. Retrospective Analysis of the Post-Operative Changes in Higher-Order Aberrations: A Comparison of the WaveLight EX500 to the VISX S4 Laser in Refractive Surgery.

    PubMed

    Reed, Donovan S; Apsey, Douglas; Steigleman, Walter; Townley, James; Caldwell, Matthew

    2017-11-01

    In an attempt to maximize treatment outcomes, refractive surgery techniques are being directed toward customized ablations to correct not only lower-order aberrations but also higher-order aberrations specific to the individual eye. Measurement of the entirety of ocular aberrations is the most definitive means to establish the true effect of refractive surgery on image quality and visual performance. Whether or not there is a statistically significant difference in induced higher-order corneal aberrations between the VISX Star S4 (Abbott Medical Optics, Santa Ana, California) and the WaveLight EX500 (Alcon, Fort Worth, Texas) lasers was examined. A retrospective analysis was performed to investigate the difference in root-mean-square (RMS) value of the higher-order corneal aberrations postoperatively between two currently available laser platforms, the VISX Star S4 and the WaveLight EX500 lasers. The RMS is a compilation of higher-order corneal aberrations. Data from 240 total eyes of active duty military or Department of Defense beneficiaries who completed photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK) refractive surgery at the Wilford Hall Ambulatory Surgical Center Joint Warfighter Refractive Surgery Center were examined. Using SPSS statistics software (IBM Corp., Armonk, New York), the mean changes in RMS values between the two lasers and refractive surgery procedures were determined. A Student t test was performed to compare the RMS of the higher-order aberrations of the subjects' corneas from the lasers being studied. A regression analysis was performed to adjust for preoperative spherical equivalent. The study and a waiver of informed consent have been approved by the Clinical Research Division of the 59th Medical Wing Institutional Review Board (Protocol Number: 20150093H). The mean change in RMS value for PRK using the VISX laser was 0.00122, with a standard deviation of 0.02583. The mean change in RMS value for PRK using the WaveLight EX500 laser was 0.004323, with a standard deviation of 0.02916. The mean change in RMS value for LASIK using the VISX laser was 0.00841, with a standard deviation of 0.03011. The mean change in RMS value for LASIK using the WaveLight EX500 laser was 0.0174, with a standard deviation of 0.02417. When comparing the two lasers for PRK and LASIK procedures, the p values were 0.431 and 0.295, respectively. The results of this study suggest no statistically significant difference concerning induced higher-order aberrations between the two laser platforms for either LASIK or PRK. Overall, the VISX laser did have consistently lower induced higher-order aberrations postoperatively, but this did not reach statistical significance. It is likely the statistical significance of this study was hindered by the power, given the relatively small sample size. Additional limitations of the study include its design, being a retrospective analysis, and the generalizability of the study, as the Department of Defense population may be significantly different from the typical refractive surgery population in terms of overall health and preoperative refractive error. Further investigation of visual outcomes between the two laser platforms should be investigated before determining superiority in terms of visual image and quality postoperatively. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  3. Useful field of view test.

    PubMed

    Wood, Joanne M; Owsley, Cynthia

    2014-01-01

    The useful field of view test was developed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view test (UFOV) is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers; these measure the speed of visual processing for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher-order cognitive abilities, but performance also relies on visual sensory function because in order for targets to be attended to, they must be visible. The format of the UFOV has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest version measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and can have a positive impact on health and functional well-being, with the potential to increase the mobility and hence the independence of older adults. © 2014 S. Karger AG, Basel

  4. Exploiting Superconvergence in Discontinuous Galerkin Methods for Improved Time-Stepping and Visualization

    DTIC Science & Technology

    2016-09-08

    Accuracy Conserving (SIAC) filter when applied to nonuniform meshes; 2) Theoretically and numerical demonstration of the 2k+1 order accuracy of the SIAC...Establishing a more theoretical and numerical understanding of a computationally efficient scaling for the SIAC filter for nonuniform meshes [7]; 2...Li, “SIAC Filtering of DG Methods – Boundary and Nonuniform Mesh”, International Conference on Spectral and Higher Order Methods (ICOSAHOM

  5. ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.

    PubMed

    Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra

    2018-05-08

    Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Analysis and automatic identification of sleep stages using higher order spectra.

    PubMed

    Acharya, U Rajendra; Chua, Eric Chern-Pin; Chua, Kuang Chua; Min, Lim Choo; Tamura, Toshiyo

    2010-12-01

    Electroencephalogram (EEG) signals are widely used to study the activity of the brain, such as to determine sleep stages. These EEG signals are nonlinear and non-stationary in nature. It is difficult to perform sleep staging by visual interpretation and linear techniques. Thus, we use a nonlinear technique, higher order spectra (HOS), to extract hidden information in the sleep EEG signal. In this study, unique bispectrum and bicoherence plots for various sleep stages were proposed. These can be used as visual aid for various diagnostics application. A number of HOS based features were extracted from these plots during the various sleep stages (Wakefulness, Rapid Eye Movement (REM), Stage 1-4 Non-REM) and they were found to be statistically significant with p-value lower than 0.001 using ANOVA test. These features were fed to a Gaussian mixture model (GMM) classifier for automatic identification. Our results indicate that the proposed system is able to identify sleep stages with an accuracy of 88.7%.

  7. The influence of age, sex, bulb position, visual feedback, and the order of testing on maximum anterior and posterior tongue strength and endurance in healthy belgian adults.

    PubMed

    Vanderwegen, Jan; Guns, Cindy; Van Nuffelen, Gwen; Elen, Rik; De Bodt, Marc

    2013-06-01

    This study collected data on the maximum anterior and posterior tongue strength and endurance in 420 healthy Belgians across the adult life span to explore the influence of age, sex, bulb position, visual feedback, and order of testing. Measures were obtained using the Iowa Oral Performance Instrument (IOPI). Older participants (more than 70 years old) demonstrated significantly lower strength than younger persons at the anterior and the posterior tongue. Endurance remains stable throughout the major part of life. Gender influence remains significant but minor throughout life, with males showing higher pressures and longer endurance. The anterior part of the tongue has both higher strength and longer endurance than the posterior part. Mean maximum tongue pressures in this European population seem to be lower than American values and are closer to Asian results. The normative data can be used for objective assessment of tongue weakness and subsequent therapy planning of dysphagic patients.

  8. Local image statistics: maximum-entropy constructions and perceptual salience

    PubMed Central

    Victor, Jonathan D.; Conte, Mary M.

    2012-01-01

    The space of visual signals is high-dimensional and natural visual images have a highly complex statistical structure. While many studies suggest that only a limited number of image statistics are used for perceptual judgments, a full understanding of visual function requires analysis not only of the impact of individual image statistics, but also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to construct synthetic images in which local image statistics—including luminance distributions, pair-wise correlations, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local image statistics and to sample their interactions. PMID:22751397

  9. Language-guided visual processing affects reasoning: the role of referential and spatial anchoring.

    PubMed

    Dumitru, Magda L; Joergensen, Gitte H; Cruickshank, Alice G; Altmann, Gerry T M

    2013-06-01

    Language is more than a source of information for accessing higher-order conceptual knowledge. Indeed, language may determine how people perceive and interpret visual stimuli. Visual processing in linguistic contexts, for instance, mirrors language processing and happens incrementally, rather than through variously-oriented fixations over a particular scene. The consequences of this atypical visual processing are yet to be determined. Here, we investigated the integration of visual and linguistic input during a reasoning task. Participants listened to sentences containing conjunctions or disjunctions (Nancy examined an ant and/or a cloud) and looked at visual scenes containing two pictures that either matched or mismatched the nouns. Degree of match between nouns and pictures (referential anchoring) and between their expected and actual spatial positions (spatial anchoring) affected fixations as well as judgments. We conclude that language induces incremental processing of visual scenes, which in turn becomes susceptible to reasoning errors during the language-meaning verification process. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Audiovisual associations alter the perception of low-level visual motion

    PubMed Central

    Kafaligonul, Hulusi; Oluk, Can

    2015-01-01

    Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869

  11. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  12. Higher-order aberrations after wavefront-optimized photorefractive keratectomy and laser in situ keratomileusis

    PubMed Central

    Randleman, J. Bradley; Perez-Straziota, Claudia E.; Hu, Michelle H.; White, Alfred J.; Loft, Evan S.; Stulting, R. Doyle

    2013-01-01

    PURPOSE To analyze the changes in higher-order aberrations (HOAs) that occur after wavefront-optimized photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). SETTING Private practice, Atlanta, Georgia, USA. METHODS This retrospective analysis comprised eyes that had PRK or LASIK from June 2004 through October 2005. Postoperative outcome measures included 3-month uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction spherical equivalent (MRSE), changes in the root mean square (RMS) and grouped coefficient HOAs (microns) measured with a corneal analyzer, and subjective assessment of visual aberrations. RESULTS One hundred consecutive eyes of 54 patients had PRK, and 100 contemporaneous consecutive eyes of 71 patients had LASIK. The PRK and LASIK populations were similar in general demographics, preoperative HOAs, and postoperative UCVA and BSCVA. The mean MRSE was slightly hyperopic after PRK (mean +0.11 diopters [D]) and slightly myopic after LASIK (mean −0.19 D) (P<.0001). There were no statistically significant changes in RMS or grouped coefficient HOA values after PRK or LASIK, nor were there significant differences in postoperative RMS or grouped coefficient HOA values between PRK and LASIK. One percent of PRK and LASIK patients reported a subjective increase in postoperative visual aberrations; 5% reported a subjective improvement postoperatively. CONCLUSIONS Wavefront-optimized excimer laser surgery did not induce significant HOAs after PRK or LASIK. The 2 techniques were equally efficacious and had equivalent postoperative HOA profiles. PMID:19185240

  13. LASIK for myopia and astigmatism using the SCHWIND AMARIS excimer laser: an international multicenter trial.

    PubMed

    Arbelaez, Maria Clara; Aslanides, Ioannis M; Barraquer, Carmen; Carones, Francesco; Feuermannova, Alena; Neuhann, Tobias; Rozsival, Pavel

    2010-02-01

    To assess the efficacy, predictability, and safety of LASIK for the surgical correction of low to moderate myopia with astigmatism using the SCHWIND AMARIS excimer laser. Six international study sites enrolled 358 eyes with a manifest refraction spherical equivalent (MRSE) from -0.50 to -7.38 diopters (D) (mean sphere: -3.13+/-1.58 D) with up to -5.00 D of astigmatism (mean: -0.69+/-0.67 D). All eyes underwent treatment with the nonwavefront-guided aspheric algorithm of the SCHWIND AMARIS excimer laser. All eyes were targeted for emmetropia. Refractive outcomes and corneal higher order aberrations were analyzed pre- and postoperatively. Visual quality was assessed using photopic and mesopic contrast sensitivity. Six-month postoperative outcomes are reported. At 6 months postoperative, the MRSE for all eyes was -0.21+/-0.20 D, and 96% (343/358) of eyes had MRSE within +/-0.50 D. Uncorrected visual acuity was 20/20 or better in 98% (351/358) of eyes, and no eyes lost 2 or more lines of best spectacle-corrected visual acuity. The total corneal higher order aberrations root-mean-square increased by 0.09 microm, spherical aberration increased by 0.08 microm, and coma increased by 0.04 microm postoperatively. Photopic and mesopic contrast sensitivity did not change 6 months postoperatively. Treatment of myopia with astigmatism using the SCHWIND AMARIS excimer laser is safe, efficacious, predictable, and maintains visual quality.

  14. Visual processing in anorexia nervosa and body dysmorphic disorder: similarities, differences, and future research directions

    PubMed Central

    Madsen, Sarah K.; Bohon, Cara; Feusner, Jamie D.

    2013-01-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are psychiatric disorders that involve distortion of the experience of one’s physical appearance. In AN, individuals believe that they are overweight, perceive their body as “fat,” and are preoccupied with maintaining a low body weight. In BDD, individuals are preoccupied with misperceived defects in physical appearance, most often of the face. Distorted visual perception may contribute to these cardinal symptoms, and may be a common underlying phenotype. This review surveys the current literature on visual processing in AN and BDD, addressing lower- to higher-order stages of visual information processing and perception. We focus on peer-reviewed studies of AN and BDD that address ophthalmologic abnormalities, basic neural processing of visual input, integration of visual input with other systems, neuropsychological tests of visual processing, and representations of whole percepts (such as images of faces, bodies, and other objects). The literature suggests a pattern in both groups of over-attention to detail, reduced processing of global features, and a tendency to focus on symptom-specific details in their own images (body parts in AN, facial features in BDD), with cognitive strategy at least partially mediating the abnormalities. Visuospatial abnormalities were also evident when viewing images of others and for non-appearance related stimuli. Unfortunately no study has directly compared AN and BDD, and most studies were not designed to disentangle disease-related emotional responses from lower-order visual processing. We make recommendations for future studies to improve the understanding of visual processing abnormalities in AN and BDD. PMID:23810196

  15. Tracking with the mind's eye

    NASA Technical Reports Server (NTRS)

    Krauzlis, R. J.; Stone, L. S.

    1999-01-01

    The two components of voluntary tracking eye-movements in primates, pursuit and saccades, are generally viewed as relatively independent oculomotor subsystems that move the eyes in different ways using independent visual information. Although saccades have long been known to be guided by visual processes related to perception and cognition, only recently have psychophysical and physiological studies provided compelling evidence that pursuit is also guided by such higher-order visual processes, rather than by the raw retinal stimulus. Pursuit and saccades also do not appear to be entirely independent anatomical systems, but involve overlapping neural mechanisms that might be important for coordinating these two types of eye movement during the tracking of a selected visual object. Given that the recovery of objects from real-world images is inherently ambiguous, guiding both pursuit and saccades with perception could represent an explicit strategy for ensuring that these two motor actions are driven by a single visual interpretation.

  16. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    PubMed

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multimodal stimulation of the Colorado potato beetle: Prevalence of visual over olfactory cues

    USDA-ARS?s Scientific Manuscript database

    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order processing and behavioral output. He...

  18. Higher order correlations of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander

    1992-01-01

    The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.

  19. Perceptual grouping across eccentricity.

    PubMed

    Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan

    2014-10-01

    Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sketchy Rendering for Information Visualization.

    PubMed

    Wood, J; Isenberg, P; Isenberg, T; Dykes, J; Boukhelifa, N; Slingsby, A

    2012-12-01

    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visualization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users' ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization design. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty.

  1. [Research advances on cortical functional and structural deficits of amblyopia].

    PubMed

    Wu, Y; Liu, L Q

    2017-05-11

    Previous studies have observed functional deficits in primary visual cortex. With the development of functional magnetic resonance imaging and electrophysiological technique, the research of the striate, extra-striate cortex and higher-order cortical deficit underlying amblyopia reaches a new stage. The neural mechanisms of amblyopia show that anomalous responses exist throughout the visual processing hierarchy, including the functional and structural abnormalities. This review aims to summarize the current knowledge about structural and functional deficits of brain regions associated with amblyopia. (Chin J Ophthalmol, 2017, 53: 392 - 395) .

  2. Assessing the effect of physical differences in the articulation of consonants and vowels on audiovisual temporal perception

    PubMed Central

    Vatakis, Argiro; Maragos, Petros; Rodomagoulakis, Isidoros; Spence, Charles

    2012-01-01

    We investigated how the physical differences associated with the articulation of speech affect the temporal aspects of audiovisual speech perception. Video clips of consonants and vowels uttered by three different speakers were presented. The video clips were analyzed using an auditory-visual signal saliency model in order to compare signal saliency and behavioral data. Participants made temporal order judgments (TOJs) regarding which speech-stream (auditory or visual) had been presented first. The sensitivity of participants' TOJs and the point of subjective simultaneity (PSS) were analyzed as a function of the place, manner of articulation, and voicing for consonants, and the height/backness of the tongue and lip-roundedness for vowels. We expected that in the case of the place of articulation and roundedness, where the visual-speech signal is more salient, temporal perception of speech would be modulated by the visual-speech signal. No such effect was expected for the manner of articulation or height. The results demonstrate that for place and manner of articulation, participants' temporal percept was affected (although not always significantly) by highly-salient speech-signals with the visual-signals requiring smaller visual-leads at the PSS. This was not the case when height was evaluated. These findings suggest that in the case of audiovisual speech perception, a highly salient visual-speech signal may lead to higher probabilities regarding the identity of the auditory-signal that modulate the temporal window of multisensory integration of the speech-stimulus. PMID:23060756

  3. Visual Field Map Clusters in High-Order Visual Processing: Organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus

    PubMed Central

    Barton, Brian; Brewer, Alyssa A.

    2017-01-01

    The cortical hierarchy of the human visual system has been shown to be organized around retinal spatial coordinates throughout much of low- and mid-level visual processing. These regions contain visual field maps (VFMs) that each follows the organization of the retina, with neighboring aspects of the visual field processed in neighboring cortical locations. On a larger, macrostructural scale, groups of such sensory cortical field maps (CFMs) in both the visual and auditory systems are organized into roughly circular cloverleaf clusters. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization. Here we use fMRI and population receptive field (pRF) modeling to investigate the extent of VFM and cluster organization with an examination of higher-level visual processing in temporal cortex and compare these measurements to mid-level visual processing in dorsal occipital cortex. In human temporal cortex, the posterior superior temporal sulcus (pSTS) has been implicated in various neuroimaging studies as subserving higher-order vision, including face processing, biological motion perception, and multimodal audiovisual integration. In human dorsal occipital cortex, the transverse occipital sulcus (TOS) contains the V3A/B cluster, which comprises two VFMs subserving mid-level motion perception and visuospatial attention. For the first time, we present the organization of VFMs in pSTS in a cloverleaf cluster. This pSTS cluster contains four VFMs bilaterally: pSTS-1:4. We characterize these pSTS VFMs as relatively small at ∼125 mm2 with relatively large pRF sizes of ∼2–8° of visual angle across the central 10° of the visual field. V3A and V3B are ∼230 mm2 in surface area, with pRF sizes here similarly ∼1–8° of visual angle across the same region. In addition, cortical magnification measurements show that a larger extent of the pSTS VFM surface areas are devoted to the peripheral visual field than those in the V3A/B cluster. Reliability measurements of VFMs in pSTS and V3A/B reveal that these cloverleaf clusters are remarkably consistent and functionally differentiable. Our findings add to the growing number of measurements of widespread sensory CFMs organized into cloverleaf clusters, indicating that CFMs and cloverleaf clusters may both be fundamental organizing principles in cortical sensory processing. PMID:28293182

  4. A comparison of haptic material perception in blind and sighted individuals.

    PubMed

    Baumgartner, Elisabeth; Wiebel, Christiane B; Gegenfurtner, Karl R

    2015-10-01

    We investigated material perception in blind participants to explore the influence of visual experience on material representations and the relationship between visual and haptic material perception. In a previous study with sighted participants, we had found participants' visual and haptic judgments of material properties to be very similar (Baumgartner, Wiebel, & Gegenfurtner, 2013). In a categorization task, however, visual exploration had led to higher categorization accuracy than haptic exploration. Here, we asked congenitally blind participants to explore different materials haptically and rate several material properties in order to assess the role of the visual sense for the emergence of haptic material perception. Principal components analyses combined with a procrustes superimposition showed that the material representations of blind and blindfolded sighted participants were highly similar. We also measured haptic categorization performance, which was equal for the two groups. We conclude that haptic material representations can emerge independently of visual experience, and that there are no advantages for either group of observers in haptic categorization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Escape from harm: linking affective vision and motor responses during active avoidance

    PubMed Central

    Keil, Andreas

    2014-01-01

    When organisms confront unpleasant objects in their natural environments, they engage in behaviors that allow them to avoid aversive outcomes. Here, we linked visual processing of threat to its behavioral consequences by including a motor response that terminated exposure to an aversive event. Dense-array steady-state visual evoked potentials were recorded in response to conditioned threat and safety signals viewed in active or passive behavioral contexts. The amplitude of neuronal responses in visual cortex increased additively, as a function of emotional value and action relevance. The gain in local cortical population activity for threat relative to safety cues persisted when aversive reinforcement was behaviorally terminated, suggesting a lingering emotionally based response amplification within the visual system. Distinct patterns of long-range neural synchrony emerged between the visual cortex and extravisual regions. Increased coupling between visual and higher-order structures was observed specifically during active perception of threat, consistent with a reorganization of neuronal populations involved in linking sensory processing to action preparation. PMID:24493849

  6. Attention Alters Perceived Attractiveness.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another. © The Author(s) 2016.

  7. Subjective and Quantitative Measurement of Wavefront Aberrations in Nuclear Cataracts – A Retrospective Case Controlled Study

    PubMed Central

    Wali, Upender K.; Bialasiewicz, Alexander A.; Al-Kharousi, Nadia; Rizvi, Syed G.; Baloushi, Habiba

    2009-01-01

    Purpose: To measure, quantify and compare Ocular Aberrations due to nuclear cataracts. Setting: Department of ophthalmology and school for ophthalmic technicians, college of medicine and health sciences, Sultan Qaboos University, Muscat, Oman. Design: Retrospective case controlled study. Methods: 113 eyes of 77 patients with nuclear cataract (NC) were recruited from outpatient clinic of a major tertiary referral center for Ophthalmology. Patients having NC with no co-existing ocular pathologies were selected. All patients were subjected to wavefront aberrometry (make) using Hartmann-Shack (HS) aberrometer. Consents were taken from all patients. Higher order Aberrations (HOA) were calculated with Zernike polynomials up to the fourth order. For comparison 28 eyes of 15 subjects with no lenticular opacities (control group) were recruited and evaluated in an identical manner. No pupillary mydriasis was done in both groups. Results: Total aberrations were almost six times higher in NC group compared to control (normal) subjects. The HOA were 21 times higher in NC group, and coma was significantly higher in NC eyes compared to normal (control) group. The pupillary diameter was significantly larger in control group (5.48mm ± 1.0024, p<.001) compared to NC (3.05mm ± 1.9145) subjects (probably due to younger control age group). Amongst Zernike coefficients up to fourth order, two polynomials, defocus (Z20) and spherical aberration (Z42) were found to be significantly greater amongst NC group, compared to normal control group. Conclusion: Nuclear cataracts predominantly produce increased defocus and spherical aberrations. This could explain visual symptoms like image deterioration in spite of normal Visual acuity. PMID:20142953

  8. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception.

    PubMed

    Mottron, Laurent; Dawson, Michelle; Soulières, Isabelle; Hubert, Benedicte; Burack, Jake

    2006-01-01

    We propose an "Enhanced Perceptual Functioning" model encompassing the main differences between autistic and non-autistic social and non-social perceptual processing: locally oriented visual and auditory perception, enhanced low-level discrimination, use of a more posterior network in "complex" visual tasks, enhanced perception of first order static stimuli, diminished perception of complex movement, autonomy of low-level information processing toward higher-order operations, and differential relation between perception and general intelligence. Increased perceptual expertise may be implicated in the choice of special ability in savant autistics, and in the variability of apparent presentations within PDD (autism with and without typical speech, Asperger syndrome) in non-savant autistics. The overfunctioning of brain regions typically involved in primary perceptual functions may explain the autistic perceptual endophenotype.

  9. Sensory system plasticity in a visually specialized, nocturnal spider.

    PubMed

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  10. Assigning the low lying vibronic states of CH3O and CD3O

    NASA Astrophysics Data System (ADS)

    Johnson, Britta A.; Sibert, Edwin L.

    2017-05-01

    The assignment of lines in vibrational spectra in strongly mixing systems is considered. Several low lying vibrational states of the ground electronic X˜ 2E state of the CH3O and CD3O radicals are assigned. Jahn-Teller, spin-orbit, and Fermi couplings mix the normal mode states. The mixing complicates the assignment of the infrared spectra using a zero-order normal mode representation. Alternative zero-order representations, which include specific Jahn-Teller couplings, are explored. These representations allow for definitive assignments. In many instances it is possible to plot the wavefunctions on which the assignments are based. The plots, which are shown in the adiabatic representation, allow one to visualize the effects of various higher order couplings. The plots also enable one to visualize the conical seam and its effect on the wavefunctions. The first and the second order Jahn-Teller couplings in the rocking motion dominate the spectral features in CH3O, while first order and modulated first order couplings dominate the spectral features in CD3O. The methods described here are general and can be applied to other Jahn-Teller systems.

  11. A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts

    PubMed Central

    Onken, Arno; Dragoi, Valentin; Obermayer, Klaus

    2012-01-01

    Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392

  12. The influence of visual ability on learning and memory performance in 13 strains of mice.

    PubMed

    Brown, Richard E; Wong, Aimée A

    2007-03-01

    We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.

  13. High-level, but not low-level, motion perception is impaired in patients with schizophrenia.

    PubMed

    Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia

    2013-01-01

    Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.

  14. Figure-ground processing during fixational saccades in V1: indication for higher-order stability.

    PubMed

    Gilad, Ariel; Pesoa, Yair; Ayzenshtat, Inbal; Slovin, Hamutal

    2014-02-26

    In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.

  15. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    PubMed

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of Hearing Status and Sign Language Use on Working Memory

    ERIC Educational Resources Information Center

    Marschark, Marc; Sarchet, Thomastine; Trani, Alexandra

    2016-01-01

    Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential…

  17. Middle School Students' Mathematics Knowledge Retention: Online or Face-To-Face Environments

    ERIC Educational Resources Information Center

    Edwards, Clayton M.; Rule, Audrey C.; Boody, Robert M.

    2017-01-01

    Educators seek to develop students' mathematical knowledge retention to increase student efficacy in follow-on classwork, improvement of test scores, attainment of standards, and preparation for careers. Interactive visuals, feedback during problem solving, and incorporation of higher-order thinking skills are known to increase retention, but a…

  18. Recognition of Amodal Language Identity Emerges in Infancy

    ERIC Educational Resources Information Center

    Lewkowicz, David J.; Pons, Ferran

    2013-01-01

    Audiovisual speech consists of overlapping and invariant patterns of dynamic acoustic and optic articulatory information. Research has shown that infants can perceive a variety of basic auditory-visual (A-V) relations but no studies have investigated whether and when infants begin to perceive higher order A-V relations inherent in speech. Here, we…

  19. Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images

    PubMed Central

    Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049

  20. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    PubMed

    Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  1. Disentangling How the Brain is “Wired” in Cortical/Cerebral Visual Impairment (CVI)

    PubMed Central

    Merabet, Lotfi B.; Mayer, D. Luisa; Bauer, Corinna M.; Wright, Darick; Kran, Barry S.

    2017-01-01

    Cortical/cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment/blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher order visual processing and attention. Together, these visual impairments can dramatically impact upon a child’s development and well-being. Given the complex neurological underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. PMID:28941531

  2. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    PubMed

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S

    2017-05-01

    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The development and discussion of computerized visual perception assessment tool for Chinese characters structures - Concurrent estimation of the overall ability and the domain ability in item response theory approach.

    PubMed

    Wu, Huey-Min; Lin, Chin-Kai; Yang, Yu-Mao; Kuo, Bor-Chen

    2014-11-12

    Visual perception is the fundamental skill required for a child to recognize words, and to read and write. There was no visual perception assessment tool developed for preschool children based on Chinese characters in Taiwan. The purposes were to develop the computerized visual perception assessment tool for Chinese Characters Structures and to explore the psychometrical characteristic of assessment tool. This study adopted purposive sampling. The study evaluated 551 kindergarten-age children (293 boys, 258 girls) ranging from 46 to 81 months of age. The test instrument used in this study consisted of three subtests and 58 items, including tests of basic strokes, single-component characters, and compound characters. Based on the results of model fit analysis, the higher-order item response theory was used to estimate the performance in visual perception, basic strokes, single-component characters, and compound characters simultaneously. Analyses of variance were used to detect significant difference in age groups and gender groups. The difficulty of identifying items in a visual perception test ranged from -2 to 1. The visual perception ability of 4- to 6-year-old children ranged from -1.66 to 2.19. Gender did not have significant effects on performance. However, there were significant differences among the different age groups. The performance of 6-year-olds was better than that of 5-year-olds, which was better than that of 4-year-olds. This study obtained detailed diagnostic scores by using a higher-order item response theory model to understand the visual perception of basic strokes, single-component characters, and compound characters. Further statistical analysis showed that, for basic strokes and compound characters, girls performed better than did boys; there also were differences within each age group. For single-component characters, there was no difference in performance between boys and girls. However, again the performance of 6-year-olds was better than that of 4-year-olds, but there were no statistical differences between the performance of 5-year-olds and 6-year-olds. Results of tests with basic strokes, single-component characters and compound characters tests had good reliability and validity. Therefore, it can be apply to diagnose the problem of visual perception at preschool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The association between socioeconomic status and visual impairments among primary glaucoma: the results from Nationwide Korean National Health Insurance Cohort from 2004 to 2013.

    PubMed

    Sung, Haejune; Shin, Hyun Ho; Baek, Yunseng; Kim, Gyu Ah; Koh, Jae Sang; Park, Eun-Cheol; Shin, Jaeyong

    2017-08-23

    Glaucoma is one of the most leading causes of permanent visual impairments in Korea, and social expenses spent for the glaucoma are increasing. This study is to identify association between socioeconomic status and the visual impairments caused by primary glaucoma in Korea. This study is based on a cohort study using stratified representative samples in the National Health Insurance claim data from 2002 to 2013 with 1,025,340 representative subjects. Target subjects were patients who are newly diagnosed with primary glaucoma from 2004 to 2013. We conducted a multiple logistic regression analysis depending on the occurrence of visual impairment and its temporal order compared to the glaucoma diagnosis. Among 1728 patients with primary glaucoma, those with low and middle income shows higher odds ratio (OR) of the visual impairments than those with high income group (low income; OR = 3.42, 95% Confidential Interval (CI):2.06-5.66, middle income; OR = 2.13, 95% CI: 1.28-3.55), in case of the occurrence of the visual impairments preceded the diagnosis of glaucoma. Glaucoma patients without pre-existing glaucoma history before visual impairment have higher association between socioeconomic status and the occurrence of visual impairments by primary glaucoma. Since glaucoma had not been diagnosed and recognized yet, the differences may have been derived from the disparities of the awareness of the glaucoma. These findings call attention to the correlation between socioeconomic factors and the visual impairments by glaucoma, and raise public health needs over the importance of glaucoma awareness and eye screening for glaucoma, especially for low socioeconomic status.

  5. Verbal and visual divergent thinking in aging.

    PubMed

    Palmiero, Massimiliano; Nori, Raffaella; Piccardi, Laura

    2017-04-01

    According to the peak and decline model divergent thinking declines at a specific age (in or after middle age). However, if divergent thinking declines steadily in aging still has to be clarified. In order to explore the age-related changes in verbal and visual divergent thinking, in the present study a sample of 159 participants was divided in five age groups: young adults (18-35 years), middle-aged adults (36-55), young old (56-74), old (75-85) and the oldest-old (86-98). Two divergent thinking tasks were administered: the alternative uses for cardboard boxes, aimed at assessing verbal ideational fluency, flexibility and originality; the completion drawing task, aimed at assessing visual ideational fluency, flexibility and originality. Results showed that after peaking in the young adult group (20-35 years) all components of verbal and visual divergent thinking stabilized in the middle-aged adult group (36-55 years) and then started declining in the young old group (56-75). Interestingly, all components were found to be preserved after declining. Yet, verbal and visual divergent thinking were found at the same extent across age groups, with the exception of visual ideational fluency, that was higher in the young old group, the old group and the oldest-old group than verbal ideational fluency. These results support the idea that divergent thinking does not decline steadily in the elderly. Given that older people can preserve to some extent verbal and visual divergent thinking, these findings have important implications for active aging, that is, divergent thinking might be fostered in aging in order to prevent the cognitive decline.

  6. Postural and Spatial Orientation Driven by Virtual Reality

    PubMed Central

    Keshner, Emily A.; Kenyon, Robert V.

    2009-01-01

    Orientation in space is a perceptual variable intimately related to postural orientation that relies on visual and vestibular signals to correctly identify our position relative to vertical. We have combined a virtual environment with motion of a posture platform to produce visual-vestibular conditions that allow us to explore how motion of the visual environment may affect perception of vertical and, consequently, affect postural stabilizing responses. In order to involve a higher level perceptual process, we needed to create a visual environment that was immersive. We did this by developing visual scenes that possess contextual information using color, texture, and 3-dimensional structures. Update latency of the visual scene was close to physiological latencies of the vestibulo-ocular reflex. Using this system we found that even when healthy young adults stand and walk on a stable support surface, they are unable to ignore wide field of view visual motion and they adapt their postural orientation to the parameters of the visual motion. Balance training within our environment elicited measurable rehabilitation outcomes. Thus we believe that virtual environments can serve as a clinical tool for evaluation and training of movement in situations that closely reflect conditions found in the physical world. PMID:19592796

  7. Global data on visual impairment in the year 2002.

    PubMed Central

    Resnikoff, Serge; Pascolini, Donatella; Etya'ale, Daniel; Kocur, Ivo; Pararajasegaram, Ramachandra; Pokharel, Gopal P.; Mariotti, Silvio P.

    2004-01-01

    This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma. PMID:15640920

  8. Global data on visual impairment in the year 2002.

    PubMed

    Resnikoff, Serge; Pascolini, Donatella; Etya'ale, Daniel; Kocur, Ivo; Pararajasegaram, Ramachandra; Pokharel, Gopal P; Mariotti, Silvio P

    2004-11-01

    This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma.

  9. Imagining others' handedness: visual and motor processes in the attribution of the dominant hand to an imagined agent.

    PubMed

    Marzoli, Daniele; Menditto, Silvia; Lucafò, Chiara; Tommasi, Luca

    2013-08-01

    In a previous study, we found that when required to imagine another person performing an action, participants reported a higher correspondence between their own dominant hand and the hand used by the imagined person when the agent was visualized from the back compared to when the agent was visualized from the front. This suggests a greater involvement of motor representations in the back-view perspective, possibly indicating a greater proneness to put oneself in the agent's shoes in such a condition. In order to assess whether bringing to the foreground the right or left hand of an imagined agent can foster the activation of the corresponding motor representations, we required 384 participants to imagine a person-as seen from the right or left side-performing a single manual action and to indicate the hand used by the imagined person during movement execution. The proportion of right- versus left-handed reported actions was higher in the right-view condition than in the left-view condition, suggesting that a lateral vantage point may activate the corresponding hand motor representations, which is in line with previous research indicating a link between the hemispheric specialization of one's own body and the visual representation of others' bodies. Moreover, in agreement with research on hand laterality judgments, the effect of vantage point was stronger for left-handers (who reported a higher proportion of right- than left-handed actions in the right-view condition and a slightly higher proportion of left- than right-handed actions in the left-view condition) than for right-handers (who reported a higher proportion of right- than left-handed actions in both view conditions), indicating that during the mental simulation of others' actions, right-handers rely on sensorimotor processes more than left-handers, while left-handers rely on visual processes more than right-handers.

  10. A Balanced Comparison of Object Invariances in Monkey IT Neurons.

    PubMed

    Ratan Murty, N Apurva; Arun, Sripati P

    2017-01-01

    Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.

  11. The influence of spontaneous activity on stimulus processing in primary visual cortex.

    PubMed

    Schölvinck, M L; Friston, K J; Rees, G

    2012-02-01

    Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.

  12. What can fish brains tell us about visual perception?

    PubMed Central

    Rosa Salva, Orsola; Sovrano, Valeria Anna; Vallortigara, Giorgio

    2014-01-01

    Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation. PMID:25324728

  13. Emotional facilitation of sensory processing in the visual cortex.

    PubMed

    Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2003-01-01

    A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.

  14. Artistic creation as stimulated by superimposed versus combined-composite visual images.

    PubMed

    Rothenberg, A

    1986-02-01

    The creative role of homospatial thinking in visual art was assessed in an experiment with 39 highly talented young artists. In order to compare the creative effects of visual elements occupying the same space with identical elements arrayed in a combined foreground and background organization, superimposed slide images were presented to a randomly selected portion of the subject group, and the other portion of the subject group viewed the same slide images constructed into a figure-ground composite. Both groups produced three drawings stimulated by the slide stimuli, and these drawings were independently judged by three art experts. Results were that drawings produced by the group exposed to the superimposed images were rated higher in creative potential than those stimulated by the figure-ground controls. These results extend previous experimental findings of a tendency toward homospatial thinking in creative individuals in literature and visual art.

  15. Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.

    PubMed

    Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris

    2016-05-04

    Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Epicenters of dynamic connectivity in the adaptation of the ventral visual system.

    PubMed

    Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge

    2017-04-01

    Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Working Memory Capacity and the Top-Down Control of Visual Search: Exploring the Boundaries of "Executive Attention"

    ERIC Educational Resources Information Center

    Kane, Michael J.; Poole, Bradley J.; Tuholski, Stephen W.; Engle, Randall W.

    2006-01-01

    The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual…

  18. When a Dog Has a Pen for a Tail: The Time Course of Creative Object Processing

    ERIC Educational Resources Information Center

    Wang, Botao; Duan, Haijun; Qi, Senqing; Hu, Weiping; Zhang, Huan

    2017-01-01

    Creative objects differ from ordinary objects in that they are created by human beings to contain novel, creative information. Previous research has demonstrated that ordinary object processing involves both a perceptual process for analyzing different features of the visual input and a higher-order process for evaluating the relevance of this…

  19. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    ERIC Educational Resources Information Center

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  20. Intact Inner Speech Use in Autism Spectrum Disorder: Evidence from a Short-Term Memory Task

    ERIC Educational Resources Information Center

    Williams, David; Happe, Francesca; Jarrold, Christopher

    2008-01-01

    Background: Inner speech has been linked to higher-order cognitive processes including "theory of mind", self-awareness and executive functioning, all of which are impaired in autism spectrum disorder (ASD). Individuals with ASD, themselves, report a propensity for visual rather than verbal modes of thinking. This study explored the extent to…

  1. Eye Movements Reveal the Time-Course of Anticipating Behaviour Based on Complex, Conflicting Desires

    ERIC Educational Resources Information Center

    Ferguson, Heather J.; Breheny, Richard

    2011-01-01

    The time-course of representing others' perspectives is inconclusive across the currently available models of ToM processing. We report two visual-world studies investigating how knowledge about a character's basic preferences (e.g. "Tom's favourite colour is pink") and higher-order desires (his wish to keep this preference secret) compete to…

  2. Linking Cognitive and Visual Perceptual Decline in Healthy Aging: The Information Degradation Hypothesis

    PubMed Central

    Monge, Zachary A.; Madden, David J.

    2016-01-01

    Several hypotheses attempt to explain the relation between cognitive and perceptual decline in aging (e.g., common-cause, sensory deprivation, cognitive load on perception, information degradation). Unfortunately, the majority of past studies examining this association have used correlational analyses, not allowing for these hypotheses to be tested sufficiently. This correlational issue is especially relevant for the information degradation hypothesis, which states that degraded perceptual signal inputs, resulting from either age-related neurobiological processes (e.g., retinal degeneration) or experimental manipulations (e.g., reduced visual contrast), lead to errors in perceptual processing, which in turn may affect non-perceptual, higher-order cognitive processes. Even though the majority of studies examining the relation between age-related cognitive and perceptual decline have been correlational, we reviewed several studies demonstrating that visual manipulations affect both younger and older adults’ cognitive performance, supporting the information degradation hypothesis and contradicting implications of other hypotheses (e.g., common-cause, sensory deprivation, cognitive load on perception). The reviewed evidence indicates the necessity to further examine the information degradation hypothesis in order to identify mechanisms underlying age-related cognitive decline. PMID:27484869

  3. Protein assignments without peak lists using higher-order spectra.

    PubMed

    Benison, Gregory; Berkholz, Donald S; Barbar, Elisar

    2007-12-01

    Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.

  4. [Comparative clinical study of wavefront-guided laser in situ keratomileusis with versus without iris recognition for myopia or myopic astigmatism].

    PubMed

    Wang, Wei-qun; Zhang, Jin-song; Zhao, Xiao-jin

    2011-10-01

    To explore the postoperative visual acuity results of wavefront-guided LASIK with iris recognition for myopia or myopic astigmatism and the changes of higher-order aberrations and contrast sensitivity function (CSF). Series of prospective case studies, 158 eyes (85 cases) of myopia or myopic astigmatism were divided into two groups: one group underwent wavefront-guided LASIK with iris recognition (iris recognition group); another group underwent wavefront-guided LASIK treatment without iris recognition through the limbus maring point (non-iris recognition group). To comparative analyze the postoperative visual acuity, residual refraction, the RMS of higher-order aberrations and CSF of two groups. There was no statistical significance difference between two groups of the average uncorrected visual acuity (t = 0.039, 0.058, 0.898; P = 0.844, 0.810, 0.343), best corrected visual acuity (t = 0.320, 0.440, 1.515; P = 0.572, 0.507, 0.218), and residual refraction [spherical equivalent (t = 0.027, 0.215, 0.238; P = 0.869, 0.643, 0.626), spherical (t = 0.145, 0.117, 0.038; P = 0.704, 0.732, 0.845) and cylinder (t = 1.676, 1.936, 0.334; P = 0.195, 0.164, 0.563)] at postoperative 10 days, 1 month and 3 month. The security index of iris recognition group at postoperative 3 month was 1.06 and non-iris recognition group was 1.03; the efficacy index of iris recognition group is 1.01 and non-iris recognition group was 1.00. Postoperative 3 month iris recognition group 93.83% eyes and non-iris recognition group of 90.91% eyes spherical equivalent within ± 0.50 D (χ(2) = 0.479, P = 0.489), iris recognition group of 98.77% eyes and non-iris recognition group of 97.40% eyes spherical equivalent within ± 1.00 D (Fisher test, P = 0.613). There was no significance difference between the two groups of security, efficacy and predictability. Non-iris recognition group postoperative 1 month and postoperative 3 months 3-order order aberrations root mean square value (RMS) higher than the iris recognition group increased (t = 3.414, -2.870; P = 0.027, 0.045), in particular of coma; the general higher-order aberrations (t = 0.386, 1.132; P = 0.719, 0.321), 4-order aberrations (t = 0.808, 2.720; P = 0.464, 0.063), and 5-order aberrations (t = 0.148, -1.717; P = 0.890, 0.161) show no statistically significant difference. Three months after surgery, two groups have recovered at all spatial frequencies of CSF, iris recognition group at 3.0 c/d (t = 3.209, P = 0.002) and 6.0 c/d (t = 2.997, P = 0.004) spatial frequencies of CSF under mesopic condition was better than non-iris recognition group, glare contrast sensitivity function (GCSF) for 3.0 c/d (t = 3.423, P = 0.001) and 6.0 c/d (t = 6.986, P = 0.000) spatial frequencies under mesopic condition and 1.5 c/d (t = 9.839, P = 0.000) and 3.0 c/d (t = 7.367, P = 0.000) spatial frequencies under photopic condition in iris recognition group were better than non-iris recognition group, there were no significant difference between two groups at the other spatial frequencies. Wavefront-guided LASIK with or without iris recognition both acquired better postoperative visual acuity, but in comparison with without iris recognition, wavefront-guided LASIK with iris recognition is efficient to reduce coma and enhance contrast sensitivity of postoperative.

  5. Epidemiology of blindness in children.

    PubMed

    Solebo, Ameenat Lola; Teoh, Lucinda; Rahi, Jugnoo

    2017-09-01

    An estimated 14 million of the world's children are blind. A blind child is more likely to live in socioeconomic deprivation, to be more frequently hospitalised during childhood and to die in childhood than a child not living with blindness. This update of a previous review on childhood visual impairment focuses on emerging therapies for children with severe visual disability (severe visual impairment and blindness or SVI/BL).For children in higher income countries, cerebral visual impairment and optic nerve anomalies remain the most common causes of SVI/BL, while retinopathy of prematurity (ROP) and cataract are now the most common avoidable causes. The constellation of causes of childhood blindness in lower income settings is shifting from infective and nutritional corneal opacities and congenital anomalies to more resemble the patterns seen in higher income settings. Improvements in maternal and neonatal health and investment in and maintenance of national ophthalmic care infrastructure are the key to reducing the burden of avoidable blindness. New therapeutic targets are emerging for childhood visual disorders, although the safety and efficacy of novel therapies for diseases such as ROP or retinal dystrophies are not yet clear. Population-based epidemiological research, particularly on cerebral visual impairment and optic nerve hypoplasia, is needed in order to improve understanding of risk factors and to inform and support the development of novel therapies for disorders currently considered 'untreatable'. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL.

    PubMed

    Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José

    2012-02-01

    To compare the visual outcomes and intraocular optical quality observed postoperatively in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL) and an apodized diffractive multifocal IOL. Seventy-four consecutive eyes of 40 cataract patients (age range: 36 to 79 years) were divided into two groups: zonal refractive group, 39 eyes implanted with a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 IOL, Oculentis GmbH); and diffractive group, 35 eyes implanted with an apodized diffractive multifocal IOL (ReSTOR SN6AD3, Alcon Laboratories Inc). Distance and near visual acuity outcomes, contrast sensitivity, intraocular optical quality, and defocus curves were evaluated during 3-month follow-up. Calculation of the intraocular aberrations was performed by subtracting corneal aberrations from total ocular aberrations. Uncorrected near visual acuity and distance-corrected near visual acuity were better in the diffractive group than in the zonal refractive group (P=.01), whereas intermediate visual acuity (defocus +1.00 and +1.50 diopters) was better in the zonal refractive group. Photopic contrast sensitivity was significantly better in the zonal refractive group (P=.04). Wavefront aberrations (total, higher order, tilt, primary coma) were significantly higher in the zonal refractive group than in the diffractive group (P=.02). Both multifocal IOLs are able to successfully restore visual function after cataract surgery. The zonal refractive multifocal IOL provides better results in contrast sensitivity and intermediate vision, whereas the diffractive multifocal IOL provides better near vision at a closer distance. Copyright 2012, SLACK Incorporated.

  7. Brain signal complexity rises with repetition suppression in visual learning.

    PubMed

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. [Astigmatic keratotomy with the femtosecond laser: correction of high astigmatisms after keratoplasty].

    PubMed

    Kook, D; Bühren, J; Klaproth, O K; Bauch, A S; Derhartunian, V; Kohnen, T

    2011-02-01

    The purpose of this study was to evaluate a novel technique for the correction of postoperative astigmatism after penetrating keratoplasty with the use of the femtosecond laser creating astigmatic keratotomies (femto-AK) in the scope of a retrospective case series. Clinical data of ten eyes of nine patients with high residual astigmatism after penetrating keratoplasty undergoing paired femto-AK using a 60-kHz femtosecond laser (IntraLase™, AMO) were analyzed. A new software algorithm was used to create paired arcuate cuts deep into the donor corneal button with different cut angles. Target values were refraction, uncorrected visual acuity, best corrected visual acuity, topographic data (Orbscan®, Bausch & Lomb, Rochester, NY, USA), and corneal wavefront analysis using Visual Optics Lab (VOL)-Pro 7.14 Software (Sarver and Associates). Vector analysis was performed using the Holladay, Cravy and Koch formula. Statistical analysis was performed to detect significances between visits using Student's t test. All procedures were performed without any major complications. The mean follow-up was 13 months. The mean patient age was 48.7 years. The preoperative mean uncorrected visual acuity (logMAR) was 1.27, best corrected visual acuity 0.55, mean subjective cylinder -7.4 D, and mean topometric astigmatism 9.3 D. The postoperative mean uncorrected visual acuity (logMAR) was 1.12, best corrected visual acuity 0.47, mean subjective cylinder -4.1 D, and mean topometric astigmatism 6.5 D. Differences between corneal higher order aberrations showed a high standard deviation and were therefore not statistically significant. Astigmatic keratotomy using the femtosecond laser seems to be a safe and effective tool for the correction of higher corneal astigmatisms. Due to the biomechanical properties of the cornea and missing empirical data for the novel femto-AK technology, higher numbers of patients are necessary to develop optimal treatment nomograms.

  9. Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error

    PubMed Central

    Coletta, Nancy J.; Marcos, Susana; Troilo, David

    2012-01-01

    The common marmoset, Callithrix jacchus, is a primate model for emmetropization studies. The refractive development of the marmoset eye depends on visual experience, so knowledge of the optical quality of the eye is valuable. We report on the wavefront aberrations of the marmoset eye, measured with a clinical Hartmann-Shack aberrometer (COAS, AMO Wavefront Sciences). Aberrations were measured on both eyes of 23 marmosets whose ages ranged from 18 to 452 days. Twenty-one of the subjects were members of studies of emmetropization and accommodation, and two were untreated normal subjects. Eleven of the 21 experimental subjects had worn monocular diffusers or occluders and ten had worn binocular spectacle lenses of equal power. Monocular deprivation or lens rearing began at about 45 days of age and ended at about 108 days of age. All refractions and aberration measures were performed while the eyes were cyclopleged; most aberration measures were made while subjects were awake, but some control measurements were performed under anesthesia. Wavefront error was expressed as a seventh-order Zernike polynomial expansion, using the Optical Society of America’s naming convention. Aberrations in young marmosets decreased up to about 100 days of age, after which the higher-order RMS aberration leveled off to about 0.10 micron over a 3 mm diameter pupil. Higher-order aberrations were 1.8 times greater when the subjects were under general anesthesia than when they were awake. Young marmoset eyes were characterized by negative spherical aberration. Visually deprived eyes of the monocular deprivation animals had greater wavefront aberrations than their fellow untreated eyes, particularly for asymmetric aberrations in the odd-numbered Zernike orders. Both lens-treated and deprived eyes showed similar significant increases in Z3-3 trefoil aberration, suggesting the increase in trefoil may be related to factors that do not involve visual feedback. PMID:20800078

  10. Bilateral symmetry in vision and influence of ocular surgical procedures on binocular vision: A topical review.

    PubMed

    Arba Mosquera, Samuel; Verma, Shwetabh

    2016-01-01

    We analyze the role of bilateral symmetry in enhancing binocular visual ability in human eyes, and further explore how efficiently bilateral symmetry is preserved in different ocular surgical procedures. The inclusion criterion for this review was strict relevance to the clinical questions under research. Enantiomorphism has been reported in lower order aberrations, higher order aberrations and cone directionality. When contrast differs in the two eyes, binocular acuity is better than monocular acuity of the eye that receives higher contrast. Anisometropia has an uncommon occurrence in large populations. Anisometropia seen in infancy and childhood is transitory and of little consequence for the visual acuity. Binocular summation of contrast signals declines with age, independent of inter-ocular differences. The symmetric associations between the right and left eye could be explained by the symmetry in pupil offset and visual axis which is always nasal in both eyes. Binocular summation mitigates poor visual performance under low luminance conditions and strong inter-ocular disparity detrimentally affects binocular summation. Considerable symmetry of response exists in fellow eyes of patients undergoing myopic PRK and LASIK, however the method to determine whether or not symmetry is maintained consist of comparing individual terms in a variety of ad hoc ways both before and after the refractive surgery, ignoring the fact that retinal image quality for any individual is based on the sum of all terms. The analysis of bilateral symmetry should be related to the patients' binocular vision status. The role of aberrations in monocular and binocular vision needs further investigation. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  11. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma.

    PubMed

    Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-08-11

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.

  12. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma

    PubMed Central

    Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406

  13. Is inattentional blindness related to individual differences in visual working memory capacity or executive control functioning?

    PubMed

    Hannon, Emily M; Richards, Anne

    2010-01-01

    Inattentional blindness (IB) research deals with situations where, under focused attention tasks, salient stimuli that are irrelevant to that task do not reach conscious awareness. Although such research has captured popular imagination, to date very little research has been conducted on whether some are more likely to experience this phenomenon than others. Here we provide evidence that working memory capacity (WMC) contributed to this experience, with lower WMC being predictive of IB. We also investigated whether IB could be more readily explained in terms of domain-specific visual WMC. No group differences in visual WMC were found, nor any differences in the ability to perform the primary IB task. These findings suggest that differences in higher-order executive control of attention contributes to the experience of IB.

  14. Effects of aging on perception of motion

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Wilder, Joseph; Hung, George; Julesz, Bela

    1997-09-01

    Driving requires two basic visual components: 'visual sensory function' and 'higher order skills.' Among the elderly, it has been observed that when attention must be divided in the presence of multiple objects, their attentional skills and relational processes, along with impairment of basic visual sensory function, are markedly impaired. A high frame rate imaging system was developed to assess the elderly driver's ability to locate and distinguish computer generated images of vehicles and to determine their direction of motion in a simulated intersection. Preliminary experiments were performed at varying target speeds and angular displacements to study the effect of these parameters on motion perception. Results for subjects in four different age groups, ranging from mid- twenties to mid-sixties, show significantly better performance for the younger subjects as compared to the older ones.

  15. Comparison of ReLEx SMILE and PRK in terms of visual and refractive outcomes for the correction of low myopia.

    PubMed

    Ganesh, Sri; Brar, Sheetal; Patel, Utsav

    2018-06-01

    To compare the objective and subjective quality of vision after femtosecond laser-assisted small incision lenticule extraction (SMILE) and photorefractive keratectomy (PRK) for low myopia. One hundred and twenty eyes from 60 patients (34 females, 26 males) undergoing bilateral correction of low myopia (≤-4 D SE) with either ReLEx SMILE or PRK were included. Visual acuity, contrast sensitivity and higher-order aberrations were recorded preoperatively and compared postoperatively. A quality of vision questionnaire was scored and analyzed 3 months postoperatively. At 3 months, the SMILE group had significantly better uncorrected and corrected distant visual acuity (CDVA), compared to PRK group (p = 0.01). Post-op spherical equivalent (SE) was comparable in both groups (SMILE = -0.15 ± 0.19 D, PRK = -0.14 ± 0.23 D, p = 0.72). However, SE predictability was better in SMILE group with 97% eyes within ±0.05 D compared to 93% eyes in the PRK group. Total higher-order aberrations (HOAs) were significantly higher in PRK compared to the SMILE group (p = 0.022). The SMILE group demonstrated slightly better contrast sensitivity, which was significant at spatial frequency of 12 cpd (p = 0.03). Four eyes in the PRK group had loss of CDVA by one line due to mild haze. Both SMILE and PRK were effective procedures for correction of low myopia. However, SMILE offered superior quality of vision and patient satisfaction due to better postoperative comfort and lower induction of aberrations at 3 months.

  16. Rigid Gas Permeable Contact Lens as a Vision-Sparing Tool in Children After Traumatic Corneal Laceration.

    PubMed

    Elseht, Rabab Mohamed; Nagy, Khaled Ahmed

    2018-05-01

    To evaluate the clinical value of rigid gas permeable contact lenses in children after traumatic corneal scarring. This comparative study included 15 children (age range: 5.7 to 14 years; mean ± standard deviation = 9.4 ± 2.9 years) with corneal scars and best corrected visual acuity (BCVA) of worse than 20/20, history of penetrating ocular trauma, and/or cataract extraction. All children were advised to wear spherical rigid gas permeable contact lenses for 6 months with a special regimen. Visual acuity was compared before and after fitting. The total and anterior surface aberrations of all children were measured using a corneal topographer before and after treatment. There was a significant improvement in the BCVA after wearing rigid gas permeable contact lenses compared to spectacle visual acuity (P = .001). There was also significant improvement of the keratometric astigmatism (P = .001) and corneal aberrations such as higher order aberrations (P = .008), lower order aberrations, root mean square, and point spread function (P = .001). The optical performance of rigid gas permeable contact lenses has been demonstrated to be effective in the visual rehabilitation of children with traumatic corneal lacerations. Corneal topography was an objective tool for detecting optical disorders. [J Pediatr Ophthalmol Strabismus. 2018;55(3):178-181.]. Copyright 2018, SLACK Incorporated.

  17. Visual acuity and quality of life in dry eye disease: Proceedings of the OCEAN group meeting.

    PubMed

    Benítez-Del-Castillo, José; Labetoulle, Marc; Baudouin, Christophe; Rolando, Maurizio; Akova, Yonca A; Aragona, Pasquale; Geerling, Gerd; Merayo-Lloves, Jesús; Messmer, Elisabeth M; Boboridis, Kostas

    2017-04-01

    Dry eye disease (DED) results in tear film instability and hyperosmolarity, inflammation of the ocular surface and, ultimately, visual disturbance that can significantly impact a patient's quality of life. The effects on visual acuity result in difficulties with driving, reading and computer use and negatively impact psychological health. These effects also extend to the workplace, with a loss of productivity and quality of work causing substantial economic losses. The effects of DED and the impact on vision experienced by patients may not be given sufficient importance by ophthalmologists. Functional visual acuity (FVA) is a measure of visual acuity after sustained eye opening without blinking for at least 10 s and mimics the sustained visual acuity of daily life. Measuring dynamic FVA allows the detection of impaired visual function in patients with DED who may display normal conventional visual acuity. There are currently several tests and methods that can be used to measure dynamic visual function: the SSC-350 FVA measurement system, assessment of best-corrected visual acuity decay using the interblink visual acuity decay test, serial measurements of ocular and corneal higher order aberrations, and measurement of dynamic vision quality using the Optical Quality Analysis System. Although the equipment for these methods may be too large or unaffordable for use in clinical practice, FVA testing is an important assessment for DED. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. OPTICS OF CONDUCTIVE KERATOPLASTY: IMPLICATIONS FOR PRESBYOPIA MANAGEMENT

    PubMed Central

    Hersh, Peter S

    2005-01-01

    Purpose To define the corneal optics of conductive keratoplasty (CK) and assess the clinical implications for hyperopia and presbyopia management. Methods Four analyses were done. (1) Multifocal effects: In a prospective study of CK, uncorrected visual acuity (UCVA) for a given refractive error in 72 postoperative eyes was compared to control eyes. (2) Surgically induced astigmatism (SIA): 203 eyes were analyzed for magnitude and axis of SIA. (3) Higher-order optical aberrations: Corneal higher-order optical aberrations were assessed for 36 eyes after CK and a similar patient population after hyperopic laser in situ keratomileusis (LASIK). (4) Presbyopia clinical trial: Visual acuity, refractive result, and patient questionnaires were analyzed for 150 subjects in a prospective, multicenter clinical trial of presbyopia management with CK. Results (1) 63% and 82% of eyes after CK had better UCVA at distance and near, respectively, than controls. (2) The mean SIA was 0.23 diopter (D) steepening at 175° (P < .001); mean magnitude was 0.66 D (SD, 0.43 D). (3) After CK, composite fourth- and sixth-order spherical aberration increased; change in (Z12) spherical aberration alone was not statistically significant. When compared to hyperopic LASIK, there was a statistically significant increase in composite fourth- and sixth-order spherical aberration (P < .01) and spherical aberration (Z12) alone (P < .02); spherical aberration change was more prolate after CK. (4) After the CK monovision procedure, 80% of patients had J3 or better binocular UCVA at near; 84% of patients were satisfied. Satisfaction was associated with near UCVA of J3 or better in the monovision eye (P = .001) and subjectively good postoperative depth perception (P = .038). Conclusions CK seems to produce functional corneal multifocality with definable introduction of SIA and higher-order optical aberrations, and development of a more prolate corneal contour. These optical factors may militate toward improved near vision function. PMID:17057812

  19. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    PubMed

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement achieved a sequential analysis of aberrations during accommodation. Significant changes in the lower and higher-order aberrations could be detected. These are additionally varied by the associated pupillary response. Moreover, the synchronicity of wave front reaction in the accommodation process was proven.

  20. Fixed mydriatic pupil associated with an intraocular pressure rise as a complication of the implant of a Phakic Refractive Lens (PRL).

    PubMed

    Pérez-Cambrodí, Rafael José; Piñero-Llorens, David Pablo; Ruiz-Fortes, Juan Pedro; Blanes-Mompó, Francisco Javier; Cerviño-Expósito, Alejandro

    2014-07-01

    We describe a case report of a patient that was implanted with a posterior chamber phakic intraocular lens (Phakic Refractive Lens, PRL) for the correction of moderate myopia and who developed postoperatively a fixed mydriasis compatible with an Urrets-Zavalia Syndrome (UZS). Specifically, a sudden acute increase of IOP in the left eye was observed in the immediate postoperative period. After IOP stabilization, the refractive result was good, but a fixed and mydriatic pupil appeared. This condition led the patient to experience visual discomfort, halos, and glare associated with high levels of higher-order aberrations in spite of the good visual result. A tinted-contact lens was fitted in order to minimize those symptoms. The UZS should be considered as a possible complication after implantation of posterior chamber phakic intraocular lenses.

  1. A Balanced Comparison of Object Invariances in Monkey IT Neurons

    PubMed Central

    2017-01-01

    Abstract Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity. PMID:28413827

  2. Analyzing task-based user study data to determine colormap efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashton, Zoe Charon Maria; Wendelberger, Joanne Roth; Ticknor, Lawrence O.

    2015-07-23

    Domain scientists need colormaps to visualize their data and are especially useful for identifying areas of interest, like in ocean data to identify eddies or characterize currents. However, traditional Rainbow colormap performs poorly for understanding details, because of the small perceptual range. In order to assist domain scientists in recognizing and identifying important details in their data, different colormaps need to be applied to allow higher perceptual definition. Visual artist Francesca Samsel used her understanding of color theory to create new colormaps to improve perception. While domain scientists find the new colormaps to be useful, we implemented a rigorous andmore » quantitative study to determine whether or not the new colormaps have perceptually more colors. Color count data from one of these studies will be analyzed in depth in order to determine whether or not the new colormaps have more perceivable colors and what affects the number of perceivable colors.« less

  3. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses

    PubMed Central

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian

    2017-01-01

    Abstract Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. PMID:28008078

  4. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses.

    PubMed

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian; Kissler, Johanna

    2017-04-01

    Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150-300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. © The Author (2016). Published by Oxford University Press.

  5. Exploring Students' Group Work Needs in the Context of Internationalisation Using a Creative Visual Method

    ERIC Educational Resources Information Center

    Cox, Andrew; Chiles, Prue; Care, Leo

    2012-01-01

    While UK universities see group work as essential to building higher order intellectual and team skills, many international students are unfamiliar with this way of studying. Group work is also a focus of home students' concerns. Cultural differences in the interpretation of space for learning or how spatial issues affect group work processes has…

  6. Seeing Meaning in Action: A Bidirectional Link between Visual Perspective and Action Identification Level

    ERIC Educational Resources Information Center

    Libby, Lisa K.; Shaeffer, Eric M.; Eibach, Richard P.

    2009-01-01

    Actions do not have inherent meaning but rather can be interpreted in many ways. The interpretation a person adopts has important effects on a range of higher order cognitive processes. One dimension on which interpretations can vary is the extent to which actions are identified abstractly--in relation to broader goals, personal characteristics,…

  7. Thinking Maps: Research-Based Instructional Strategy in a PDS

    ERIC Educational Resources Information Center

    Kessler, Cristy; Zuercher, Deborah K.; Wong, Caroline S.

    2013-01-01

    An exploratory action research case study was conducted at Moanalua Middle School from 2006-2009 to examine the impact of Thinking Maps on student achievement. Thinking Maps are not just another set of graphic organizers but a set of eight of unique visual mind maps with each linked to a specific higher-order thinking pattern. This study tells the…

  8. Visual plate waste in hospitalized patients: length of stay and diet order.

    PubMed

    Kandiah, Jay; Stinnett, Lydia; Lutton, Dale

    2006-10-01

    The purpose of this pilot research was to investigate the effect of diet order, sex, diagnosis, and length of stay on visual lunch plate waste in hospitalized patients. Information on 346 patients was collected using the computer program CBORD Diet Office. Visual plate waste during lunch was measured and analyzed for 4 consecutive days. Neither sex nor diagnosis at admittance was associated with visual plate waste. However, the odds of visual plate waste increased by 14.1% for every day a patient was admitted. In patients receiving a diabetic diet order, odds of visual plate waste decreased by 61.2%, indicating there was reduction in plate waste. Conversely, in patients receiving altered consistency diet orders, odds of visual plate waste increased by 344%, signifying a rise in plate waste. Due to an increase of visual plate waste associated with long length of stay and altered consistency diet orders, registered dietitians working in acute-care facilities need to develop strategies to create cost-effective, nutritionally balanced, altered consistency diets that would enhance patient acceptance and consumption of food.

  9. Mental fatigue impairs soccer-specific decision-making skill.

    PubMed

    Smith, Mitchell R; Zeuwts, Linus; Lenoir, Matthieu; Hens, Nathalie; De Jong, Laura M S; Coutts, Aaron J

    2016-07-01

    This study aimed to investigate the impact of mental fatigue on soccer-specific decision-making. Twelve well-trained male soccer players performed a soccer-specific decision-making task on two occasions, separated by at least 72 h. The decision-making task was preceded in a randomised order by 30 min of the Stroop task (mental fatigue) or 30 min of reading from magazines (control). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort (referring to treatment) and motivation (referring to the decision-making task) were measured after treatment. Performance on the soccer-specific decision-making task was assessed using response accuracy and time. Visual search behaviour was also assessed throughout the decision-making task. Subjective ratings of mental fatigue and effort were almost certainly higher following the Stroop task compared to the magazines. Motivation for the upcoming decision-making task was possibly higher following the Stroop task. Decision-making accuracy was very likely lower and response time likely higher in the mental fatigue condition. Mental fatigue had unclear effects on most visual search behaviour variables. The results suggest that mental fatigue impairs accuracy and speed of soccer-specific decision-making. These impairments are not likely related to changes in visual search behaviour.

  10. Semantic processing and response inhibition.

    PubMed

    Chiang, Hsueh-Sheng; Motes, Michael A; Mudar, Raksha A; Rao, Neena K; Mansinghani, Sethesh; Brier, Matthew R; Maguire, Mandy J; Kraut, Michael A; Hart, John

    2013-11-13

    The present study examined functional MRI (fMRI) BOLD signal changes in response to object categorization during response selection and inhibition. Young adults (N=16) completed a Go/NoGo task with varying object categorization requirements while fMRI data were recorded. Response inhibition elicited increased signal change in various brain regions, including medial frontal areas, compared with response selection. BOLD signal in an area within the right angular gyrus was increased when higher-order categorization was mandated. In addition, signal change during response inhibition varied with categorization requirements in the left inferior temporal gyrus (lIT). lIT-mediated response inhibition when inhibiting the response only required lower-order categorization, but lIT mediated both response selection and inhibition when selecting and inhibiting the response required higher-order categorization. The findings characterized mechanisms mediating response inhibition associated with semantic object categorization in the 'what' visual object memory system.

  11. Visual processing in the central bee brain.

    PubMed

    Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila

    2009-08-12

    Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.

  12. Simulation of Ametropic Human Eyes

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Chen, Ying-Ling; Lewis, James W. L.

    2004-11-01

    The computational simulation of the performance of human eyes is complex because the optical parameters of the eye depend on many factors, including age, gender, race, refractive status (accommodation and near- or far-sightedness). This task is made more difficult by the inadequacy of the population statistical characteristics of these parameters. Previously we simulated ametropic (near- or far-sighted) eyes using three independent variables: the axial length of the eye, the corneal surface curvature, and the intraocular refractive index gradient. The prescription for the correction of an ametropic eye is determined by its second-order coefficients of the wavefront aberrations. These corrections are typically achieved using contact lens, spectacle lens, or laser surgery (LASIK). However, the higher order aberrations, which are not corrected and are likely complicated or enhanced by the lower-order correction, could be important for visual performance in a darkened environment. In this paper, we investigate the higher order wavefront aberrations of synthetic ametropic eyes and compare results with measured data published in the past decade. The behavior of three types of ametropes is discussed.

  13. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Letters persistence after physical offset: visual word form area and left planum temporale. An fMRI study.

    PubMed

    Barban, Francesco; Zannino, Gian Daniele; Macaluso, Emiliano; Caltagirone, Carlo; Carlesimo, Giovanni A

    2013-06-01

    Iconic memory is a high-capacity low-duration visual memory store that allows the persistence of a visual stimulus after its offset. The categorical nature of this store has been extensively debated. This study provides functional magnetic resonance imaging evidence for brain regions underlying the persistence of postcategorical representations of visual stimuli. In a partial report paradigm, subjects matched a cued row of a 3 × 3 array of letters (postcategorical stimuli) or false fonts (precategorical stimuli) with a subsequent triplet of stimuli. The cued row was indicated by two visual flankers presented at the onset (physical stimulus readout) or after the offset of the array (iconic memory readout). The left planum temporale showed a greater modulation of the source of readout (iconic memory vs. physical stimulus) when letters were presented compared to false fonts. This is a multimodal brain region responsible for matching incoming acoustic and visual patterns with acoustic pattern templates. These findings suggest that letters persist after their physical offset in an abstract postcategorical representation. A targeted region of interest analysis revealed a similar pattern of activation in the Visual Word Form Area. These results suggest that multiple higher-order visual areas mediate iconic memory for postcategorical stimuli. Copyright © 2012 Wiley Periodicals, Inc.

  15. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation.

    PubMed

    Fan, Jianping; Gao, Yuli; Luo, Hangzai

    2008-03-01

    In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.

  16. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  17. The use of higher-order statistics in rapid object categorization in natural scenes.

    PubMed

    Banno, Hayaki; Saiki, Jun

    2015-02-04

    We can rapidly and efficiently recognize many types of objects embedded in complex scenes. What information supports this object recognition is a fundamental question for understanding our visual processing. We investigated the eccentricity-dependent role of shape and statistical information for ultrarapid object categorization, using the higher-order statistics proposed by Portilla and Simoncelli (2000). Synthesized textures computed by their algorithms have the same higher-order statistics as the originals, while the global shapes were destroyed. We used the synthesized textures to manipulate the availability of shape information separately from the statistics. We hypothesized that shape makes a greater contribution to central vision than to peripheral vision and that statistics show the opposite pattern. Results did not show contributions clearly biased by eccentricity. Statistical information demonstrated a robust contribution not only in peripheral but also in central vision. For shape, the results supported the contribution in both central and peripheral vision. Further experiments revealed some interesting properties of the statistics. They are available for a limited time, attributable to the presence or absence of animals without shape, and predict how easily humans detect animals in original images. Our data suggest that when facing the time constraint of categorical processing, higher-order statistics underlie our significant performance for rapid categorization, irrespective of eccentricity. © 2015 ARVO.

  18. A preliminary investigation into the effects of ocular lubricants on higher order aberrations in normal and dry eye subjects.

    PubMed

    McGinnigle, Samantha; Eperjesi, Frank; Naroo, Shehzad A

    2014-04-01

    To study the effects of ocular lubricants on higher order aberrations in normal and self-diagnosed dry eyes. Unpreserved hypromellose drops, Tears Again™ liposome spray and a combination of both were administered to the right eye of 24 normal and 24 dry eye subjects following classification according to a 5 point questionnaire. Total ocular higher order aberrations, coma, spherical aberration and Strehl ratios for higher order aberrations were measured using the Nidek OPD-Scan III (Nidek Technologies, Gamagori, Japan) at baseline, immediately after application and after 60 min. The aberration data were analyzed over a 5mm natural pupil using Zernike polynomials. Each intervention was assessed on a separate day and comfort levels were recorded before and after application. Corneal staining was assessed and product preference recorded after the final measurement for each intervention. Hypromellose drops caused an increase in total higher order aberrations (p=<0.01 in normal and dry eyes) and a reduction in Strehl ratio (normal eyes: p=<0.01, dry eyes p=0.01) immediately after instillation. There were no significant differences between normal and self-diagnosed dry eyes for response to intervention and no improvement in visual quality or reduction in higher order aberrations after 60 min. Differences in comfort levels failed to reach statistical significance. Combining treatments does not offer any benefit over individual treatments in self-diagnosed dry eyes and no individual intervention reached statistical significance. Symptomatic subjects with dry eye and no corneal staining reported an improvement in comfort after using lubricants. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu

    In this project, we have developed techniques for visualizing large-scale time-varying multivariate particle and field data produced by the GPS_TTBP team. Our basic approach to particle data visualization is to provide the user with an intuitive interactive interface for exploring the data. We have designed a multivariate filtering interface for scientists to effortlessly isolate those particles of interest for revealing structures in densely packed particles as well as the temporal behaviors of selected particles. With such a visualization system, scientists on the GPS-TTBP project can validate known relationships and temporal trends, and possibly gain new insights in their simulations. Wemore » have tested the system using over several millions of particles on a single PC. We will also need to address the scalability of the system to handle billions of particles using a cluster of PCs. To visualize the field data, we choose to use direct volume rendering. Because the data provided by PPPL is on a curvilinear mesh, several processing steps have to be taken. The mesh is curvilinear in nature, following the shape of a deformed torus. Additionally, in order to properly interpolate between the given slices we cannot use simple linear interpolation in Cartesian space but instead have to interpolate along the magnetic field lines given to us by the scientists. With these limitations, building a system that can provide an accurate visualization of the dataset is quite a challenge to overcome. In the end we use a combination of deformation methods such as deformation textures in order to fit a normal torus into their deformed torus, allowing us to store the data in toroidal coordinates in order to take advantage of modern GPUs to perform the interpolation along the field lines for us. The resulting new rendering capability produces visualizations at a quality and detail level previously not available to the scientists at the PPPL. In summary, in this project we have successfully created new capabilities for the scientists to visualize their 3D data at higher accuracy and quality, enhancing their ability to evaluate the simulations and understand the modeled phenomena.« less

  20. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    PubMed Central

    Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching

    2015-01-01

    Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219

  1. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    PubMed

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  2. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    PubMed

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  3. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

    PubMed Central

    Paneri, Sofia; Gregoriou, Georgia G.

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784

  4. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions.

    PubMed

    Paneri, Sofia; Gregoriou, Georgia G

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.

  5. Seeing meaning in action: a bidirectional link between visual perspective and action identification level.

    PubMed

    Libby, Lisa K; Shaeffer, Eric M; Eibach, Richard P

    2009-11-01

    Actions do not have inherent meaning but rather can be interpreted in many ways. The interpretation a person adopts has important effects on a range of higher order cognitive processes. One dimension on which interpretations can vary is the extent to which actions are identified abstractly--in relation to broader goals, personal characteristics, or consequences--versus concretely, in terms of component processes. The present research investigated how visual perspective (own 1st-person vs. observer's 3rd-person) in action imagery is related to action identification level. A series of experiments measured and manipulated visual perspective in mental and photographic images to test the connection with action identification level. Results revealed a bidirectional causal relationship linking 3rd-person images and abstract action identifications. These findings highlight the functional role of visual imagery and have implications for understanding how perspective is involved in action perception at the social, cognitive, and neural levels. Copyright 2009 APA

  6. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  7. Duration estimates within a modality are integrated sub-optimally

    PubMed Central

    Cai, Ming Bo; Eagleman, David M.

    2015-01-01

    Perceived duration can be influenced by various properties of sensory stimuli. For example, visual stimuli of higher temporal frequency are perceived to last longer than those of lower temporal frequency. How does the brain form a representation of duration when each of two simultaneously presented stimuli influences perceived duration in different way? To answer this question, we investigated the perceived duration of a pair of dynamic visual stimuli of different temporal frequencies in comparison to that of a single visual stimulus of either low or high temporal frequency. We found that the duration representation of simultaneously occurring visual stimuli is best described by weighting the estimates of duration based on each individual stimulus. However, the weighting performance deviates from the prediction of statistically optimal integration. In addition, we provided a Bayesian account to explain a difference in the apparent sensitivity of the psychometric curves introduced by the order in which the two stimuli are displayed in a two-alternative forced-choice task. PMID:26321965

  8. Attitudes towards and perceptions of visual loss and its causes among Hong Kong Chinese adults.

    PubMed

    Lau, Joseph Tak Fai; Lee, Vincent; Fan, Dorothy; Lau, Mason; Michon, John

    2004-06-01

    As part of a study of visual function among Hong Kong Chinese adults, their attitudes and perceptions related to visual loss were examined. These included fear of visual loss, negative functional impacts of visual loss, the relationship between ageing and visual loss and help-seeking behaviours related to visual loss. Demographic factors associated with these variables were also studied. The study population were people aged 40 and above randomly selected from the Shatin district of Hong Kong. The participants underwent eye examinations that included visual acuity, intraocular pressure measurement, visual field, slit-lamp biomicroscopy and ophthalmoscopy. The primary cause of visual disability was recorded. The participants were also asked about their attitudes and perceptions regarding visual loss using a structured questionnaire. The prevalence of bilateral visual disability was 2.2% among adults aged 40 or above and 6.4% among adults aged 60 or above. Nearly 36% of the participants selected blindness as the most feared disabling medical condition, which was substantially higher than conditions such as dementia, loss of limbs, deafness or aphasia. Inability to take care of oneself (21.0%), inconvenience related to mobility (20.2%) and inability to work (14.8%) were the three most commonly mentioned 'worst impact' effects of visual loss. Fully 68% of the participants believed that loss of vision is related to ageing. A majority of participants would seek help and advice from family members in case of visual loss. Visual function is perceived to be very important by Hong Kong Chinese adults. The fear of visual loss is widespread and particularly affects self-care and functional abilities. Visual loss is commonly seen as related to ageing. Attitudes and perceptions in this population may be modified by educational and outreach efforts in order to take advantage of preventive measures.

  9. Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber.

    PubMed

    Wang, Lihong; He, Jingsong; Xu, Hui; Wang, Ji; Porsezian, Kuppuswamy

    2017-04-01

    In this paper, we construct a special kind of breather solution of the nonlinear Schrödinger (NLS) equation, the so-called breather-positon (b-positon for short), which can be obtained by taking the limit λ_{j}→λ_{1} of the Lax pair eigenvalues in the order-n periodic solution, which is generated by the n-fold Darboux transformation from a special "seed" solution-plane wave. Further, an order-n b-positon gives an order-n rogue wave under a limit λ_{1}→λ_{0}. Here, λ_{0} is a special eigenvalue in a breather of the NLS equation such that its period goes to infinity. Several analytical plots of order-2 breather confirm visually this double degeneration. The last limit in this double degeneration can be realized approximately in an optical fiber governed by the NLS equation, in which an injected initial ideal pulse is created by a frequency comb system and a programable optical filter (wave shaper) according to the profile of an analytical form of the b-positon at a certain position z_{0}. We also suggest a new way to observe higher-order rogue waves generation in an optical fiber, namely, measure the patterns at the central region of the higher-order b-positon generated by above ideal initial pulses when λ_{1} is very close to the λ_{0}. The excellent agreement between the numerical solutions generated from initial ideal inputs with a low signal-to-noise ratio and analytical solutions of order-2 b-positon supports strongly this way in a realistic optical fiber system. Our results also show the validity of the generating mechanism of a higher-order rogue waves from a multibreathers through the double degeneration.

  10. Effectiveness and Adoption of a Drawing-to-Learn Study Tool for Recall and Problem Solving: Minute Sketches with Folded Lists

    ERIC Educational Resources Information Center

    Heideman, Paul D.; Flores, K. Adryan; Sevier, Lu M.; Trouton, Kelsey E.

    2017-01-01

    Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL),…

  11. Perception of second- and third-order orientation signals and their interactions

    PubMed Central

    Victor, Jonathan D.; Thengone, Daniel J.; Conte, Mary M.

    2013-01-01

    Orientation signals, which are crucial to many aspects of visual function, are more complex and varied in the natural world than in the stimuli typically used for laboratory investigation. Gratings and lines have a single orientation, but in natural stimuli, local features have multiple orientations, and multiple orientations can occur even at the same location. Moreover, orientation cues can arise not only from pairwise spatial correlations, but from higher-order ones as well. To investigate these orientation cues and how they interact, we examined segmentation performance for visual textures in which the strengths of different kinds of orientation cues were varied independently, while controlling potential confounds such as differences in luminance statistics. Second-order cues (the kind present in gratings) at different orientations are largely processed independently: There is no cancellation of positive and negative signals at orientations that differ by 45°. Third-order orientation cues are readily detected and interact only minimally with second-order cues. However, they combine across orientations in a different way: Positive and negative signals largely cancel if the orientations differ by 90°. Two additional elements are superimposed on this picture. First, corners play a special role. When second-order orientation cues combine to produce corners, they provide a stronger signal for texture segregation than can be accounted for by their individual effects. Second, while the object versus background distinction does not influence processing of second-order orientation cues, this distinction influences the processing of third-order orientation cues. PMID:23532909

  12. Parallel pathways from whisker and visual sensory cortices to distinct frontal regions of mouse neocortex

    PubMed Central

    Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C.H.

    2016-01-01

    Abstract. The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs. PMID:27921067

  13. Advances in color science: from retina to behavior

    PubMed Central

    Chatterjee, Soumya; Field, Greg D.; Horwitz, Gregory D.; Johnson, Elizabeth N.; Koida, Kowa; Mancuso, Katherine

    2010-01-01

    Color has become a premier model system for understanding how information is processed by neural circuits, and for investigating the relationships among genes, neural circuits and perception. Both the physical stimulus for color and the perceptual output experienced as color are quite well characterized, but the neural mechanisms that underlie the transformation from stimulus to perception are incompletely understood. The past several years have seen important scientific and technical advances that are changing our understanding of these mechanisms. Here, and in the accompanying minisymposium, we review the latest findings and hypotheses regarding color computations in the retina, primary visual cortex and higher-order visual areas, focusing on non-human primates, a model of human color vision. PMID:21068298

  14. Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization.

    PubMed

    Werner, Sebastian; Noppeney, Uta

    2010-02-17

    Multisensory interactions have been demonstrated in a distributed neural system encompassing primary sensory and higher-order association areas. However, their distinct functional roles in multisensory integration remain unclear. This functional magnetic resonance imaging study dissociated the functional contributions of three cortical levels to multisensory integration in object categorization. Subjects actively categorized or passively perceived noisy auditory and visual signals emanating from everyday actions with objects. The experiment included two 2 x 2 factorial designs that manipulated either (1) the presence/absence or (2) the informativeness of the sensory inputs. These experimental manipulations revealed three patterns of audiovisual interactions. (1) In primary auditory cortices (PACs), a concurrent visual input increased the stimulus salience by amplifying the auditory response regardless of task-context. Effective connectivity analyses demonstrated that this automatic response amplification is mediated via both direct and indirect [via superior temporal sulcus (STS)] connectivity to visual cortices. (2) In STS and intraparietal sulcus (IPS), audiovisual interactions sustained the integration of higher-order object features and predicted subjects' audiovisual benefits in object categorization. (3) In the left ventrolateral prefrontal cortex (vlPFC), explicit semantic categorization resulted in suppressive audiovisual interactions as an index for multisensory facilitation of semantic retrieval and response selection. In conclusion, multisensory integration emerges at multiple processing stages within the cortical hierarchy. The distinct profiles of audiovisual interactions dissociate audiovisual salience effects in PACs, formation of object representations in STS/IPS and audiovisual facilitation of semantic categorization in vlPFC. Furthermore, in STS/IPS, the profiles of audiovisual interactions were behaviorally relevant and predicted subjects' multisensory benefits in performance accuracy.

  15. Higher-order aberrations and best-corrected visual acuity in Native American children with a high prevalence of astigmatism

    PubMed Central

    Miller, Joseph M.; Harvey, Erin M.; Schwiegerling, Jim

    2016-01-01

    Purpose To determine whether higher-order aberrations (HOAs) in children from a highly astigmatic population differ from population norms and whether HOAs are associated with astigmatism and reduced best-corrected visual acuity. Methods Subjects were 218 Tohono O’odham Native American children 5–9 years of age. Noncycloplegic HOA measurements were obtained with a handheld Shack-Hartmann sensor (SHS). Signed (z06s to z14s) and unsigned (z06u to z14u) wavefront aberration Zernike coefficients Z(3,−3) to Z(4,4) were rescaled for a 4 mm diameter pupil and compared to adult population norms. Cycloplegic refraction and best-corrected logMAR letter visual acuity (BCVA) were also measured. Regression analyses assessed the contribution of astigmatism (J0) and HOAs to BCVA. Results The mean root-mean-square (RMS) HOA of 0.191 ± 0.072 μm was significantly greater than population norms (0.100 ± 0.044 μm. All unsigned HOA coefficients (z06u to z14u) and all signed coefficients except z09s, z10s, and z11s were significantly larger than population norms. Decreased BCVA was associated with astigmatism (J0) and spherical aberration (z12u) but not RMS coma, with the effect of J0 about 4 times as great as z12u. Conclusions Tohono O’odham children show elevated HOAs compared to population norms. Astigmatism and unsigned spherical aberration are associated with decreased acuity, but the effects of spherical aberration are minimal and not clinically significant. PMID:26239206

  16. Background instrumental music and serial recall.

    PubMed

    Nittono, H

    1997-06-01

    Although speech and vocal music are consistently shown to impair serial recall for visually presented items, instrumental music does not always produce a significant disruption. This study investigated the features of instrumental music that would modulate the disruption in serial recall. 24 students were presented sequences of nine digits and required to recall the digits in order of presentation. Instrumental music as played either forward or backward during the task. Forward music caused significantly more disruption than did silence, whereas the reversed music did not. Some higher-order factor may be at work in the effect of background music on serial recall.

  17. Sensitivity to synchronicity of biological motion in normal and amblyopic vision

    PubMed Central

    Luu, Jennifer Y.; Levi, Dennis M.

    2017-01-01

    Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301

  18. Effects of Hearing Status and Sign Language Use on Working Memory

    PubMed Central

    Sarchet, Thomastine; Trani, Alexandra

    2016-01-01

    Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential tasks and higher on some visual-spatial tasks than hearing nonsigners. However, hearing status and preferred language modality (signed or spoken) frequently are confounded in such studies. That situation is resolved in the present study by including deaf students who use spoken language and sign language interpreting students (hearing signers) as well as deaf signers and hearing nonsigners. Three complex memory span tasks revealed overall advantages for hearing signers and nonsigners over both deaf signers and deaf nonsigners on 2 tasks involving memory for verbal stimuli (letters). There were no differences among the groups on the task involving visual-spatial stimuli. The results are consistent with and extend recent findings concerning the effects of hearing status and language on memory and are discussed in terms of language modality, hearing status, and cognitive abilities among deaf and hearing individuals. PMID:26755684

  19. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  20. Efficacy, safety, predictability, aberrations and corneal biomechnical parameters after SMILE and FLEx: Meta-analysis.

    PubMed

    Ma, Jing; Cao, Nan-Jue; Xia, Li-Kun

    2016-01-01

    To identify possible differences of efficacy, safety, predictability, higher-order aberrations and corneal biomechnical parameters after small-incision lenticule extraction (SMILE) and femtosecond lenticule extraction (FLEx). A systematic literature retrieval was conducted in Medline, Embase and the Cochrane Library, up to October, 2015. The included studies were subject to a Meta-analysis. Comparison between SMILE and FLEx was measured as pooled odds ratio (OR) or weighted mean differences (WMD). Of 95% confidence intervals (CI) were used to analyze data. A total of seven studies were included. Firstly, there were no differences in uncorrected distance visual acuity (UDVA) 20/20 or better (OR, 1.37; 95% CI, 0.69 to 2.69; P=0.37) and logMAR UDVA (WMD, -0.02; 95% CI, -0.05 to 0.01; P=0.17) after SMILE versus FLEx. We found no differences in corrected distance visual acuity (CDVA) unchanged (OR, 0.98; 95% CI, 0.46 to 2.11; P=0.97) and logMAR CDVA (WMD, -0.00; 95% CI, -0.01 to 0.01; P=0.90) either. Secondly, we found no differences in refraction within ±1.00 D (OR, 0.98; 95% CI, 0.13 to 7.28; P=0.99) and ±0.50 D (OR, 1.62; 95% CI, 0.62 to 4.28; P=0.33) of target postoperatively. Thirdly, for higher-order aberrations, we found no differences in the total higher-order aberrations (WMD, -0.04; 95% CI, -0.09 to 0.01; P=0.14), coma (WMD, -0.04; 95% CI, -0.09 to 0.01; P=0.11), spherical (WMD, 0.01; 95% CI, -0.02 to 0.03; P=0.60) and trefoil (WMD, -0.00; 95% CI, -0.04 to 0.03; P=0.76). Furthermore, for corneal biomechanical parameters, we also found no differences (WMD, 0.08; 95% CI, -0.17 to 0.33; P=0.54) after SMILE versus FLEx. There are no statistically differences in efficacy, safety, predictability, higher-order aberrations and corneal biomechnical parameters postoperative between SMILE and FLEx.

  1. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.

    PubMed

    Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki

    2008-01-01

    The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.

  2. Emotional metacontrol of attention: Top-down modulation of sensorimotor processes in a robotic visual search task.

    PubMed

    Belkaid, Marwen; Cuperlier, Nicolas; Gaussier, Philippe

    2017-01-01

    Emotions play a significant role in internal regulatory processes. In this paper, we advocate four key ideas. First, novelty detection can be grounded in the sensorimotor experience and allow higher order appraisal. Second, cognitive processes, such as those involved in self-assessment, influence emotional states by eliciting affects like boredom and frustration. Third, emotional processes such as those triggered by self-assessment influence attentional processes. Last, close emotion-cognition interactions implement an efficient feedback loop for the purpose of top-down behavior regulation. The latter is what we call 'Emotional Metacontrol'. We introduce a model based on artificial neural networks. This architecture is used to control a robotic system in a visual search task. The emotional metacontrol intervenes to bias the robot visual attention during active object recognition. Through a behavioral and statistical analysis, we show that this mechanism increases the robot performance and fosters the exploratory behavior to avoid deadlocks.

  3. A Novel Robot Visual Homing Method Based on SIFT Features

    PubMed Central

    Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao

    2015-01-01

    Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880

  4. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  5. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements.

    PubMed

    Shichinohe, Natsuko; Akao, Teppei; Kurkin, Sergei; Fukushima, Junko; Kaneko, Chris R S; Fukushima, Kikuro

    2009-06-11

    Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion direction and the programming of appropriate pursuit eye movements.

  6. The perception of visual emotion: comparing different measures of awareness.

    PubMed

    Szczepanowski, Remigiusz; Traczyk, Jakub; Wierzchoń, Michał; Cleeremans, Axel

    2013-03-01

    Here, we explore the sensitivity of different awareness scales in revealing conscious reports on visual emotion perception. Participants were exposed to a backward masking task involving fearful faces and asked to rate their conscious awareness in perceiving emotion in facial expression using three different subjective measures: confidence ratings (CRs), with the conventional taxonomy of certainty, the perceptual awareness scale (PAS), through which participants categorize "raw" visual experience, and post-decision wagering (PDW), which involves economic categorization. Our results show that the CR measure was the most exhaustive and the most graded. In contrast, the PAS and PDW measures suggested instead that consciousness of emotional stimuli is dichotomous. Possible explanations of the inconsistency were discussed. Finally, our results also indicate that PDW biases awareness ratings by enhancing first-order accuracy of emotion perception. This effect was possibly a result of higher motivation induced by monetary incentives. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Top-down processing of symbolic meanings modulates the visual word form area.

    PubMed

    Song, Yiying; Tian, Moqian; Liu, Jia

    2012-08-29

    Functional magnetic resonance imaging (fMRI) studies on humans have identified a region in the left middle fusiform gyrus consistently activated by written words. This region is called the visual word form area (VWFA). Recently, a hypothesis, called the interactive account, is proposed that to effectively analyze the bottom-up visual properties of words, the VWFA receives predictive feedback from higher-order regions engaged in processing sounds, meanings, or actions associated with words. Further, this top-down influence on the VWFA is independent of stimulus formats. To test this hypothesis, we used fMRI to examine whether a symbolic nonword object (e.g., the Eiffel Tower) intended to represent something other than itself (i.e., Paris) could activate the VWFA. We found that scenes associated with symbolic meanings elicited a higher VWFA response than those not associated with symbolic meanings, and such top-down modulation on the VWFA can be established through short-term associative learning, even across modalities. In addition, the magnitude of the symbolic effect observed in the VWFA was positively correlated with the subjective experience on the strength of symbol-referent association across individuals. Therefore, the VWFA is likely a neural substrate for the interaction of the top-down processing of symbolic meanings with the analysis of bottom-up visual properties of sensory inputs, making the VWFA the location where the symbolic meaning of both words and nonword objects is represented.

  8. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence

    PubMed Central

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966

  9. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.

  10. Parameters of semantic multisensory integration depend on timing and modality order among people on the autism spectrum: evidence from event-related potentials.

    PubMed

    Russo, N; Mottron, L; Burack, J A; Jemel, B

    2012-07-01

    Individuals with autism spectrum disorders (ASD) report difficulty integrating simultaneously presented visual and auditory stimuli (Iarocci & McDonald, 2006), albeit showing enhanced perceptual processing of unisensory stimuli, as well as an enhanced role of perception in higher-order cognitive tasks (Enhanced Perceptual Functioning (EPF) model; Mottron, Dawson, Soulières, Hubert, & Burack, 2006). Individuals with an ASD also integrate auditory-visual inputs over longer periods of time than matched typically developing (TD) peers (Kwakye, Foss-Feig, Cascio, Stone & Wallace, 2011). To tease apart the dichotomy of both extended multisensory processing and enhanced perceptual processing, we used behavioral and electrophysiological measurements of audio-visual integration among persons with ASD. 13 TD and 14 autistics matched on IQ completed a forced choice multisensory semantic congruence task requiring speeded responses regarding the congruence or incongruence of animal sounds and pictures. Stimuli were presented simultaneously or sequentially at various stimulus onset asynchronies in both auditory first and visual first presentations. No group differences were noted in reaction time (RT) or accuracy. The latency at which congruent and incongruent waveforms diverged was the component of interest. In simultaneous presentations, congruent and incongruent waveforms diverged earlier (circa 150 ms) among persons with ASD than among TD individuals (around 350 ms). In sequential presentations, asymmetries in the timing of neuronal processing were noted in ASD which depended on stimulus order, but these were consistent with the nature of specific perceptual strengths in this group. These findings extend the Enhanced Perceptual Functioning Model to the multisensory domain, and provide a more nuanced context for interpreting ERP findings of impaired semantic processing in ASD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cognitive functioning and employment among people with schizophrenia in vocational rehabilitation.

    PubMed

    Lexén, Annika; Hofgren, Caisa; Stenmark, Richard; Bejerholm, Ulrika

    2016-06-16

    Employment is central to recovery in schizophrenia, but little attention has been paid to its relationship with cognitive functioning. This cross-sectional study adds to the knowledge base of relationships between cognitive functioning and gaining competitive employment, work hours per week, and monthly income among people with schizophrenia in vocational rehabilitation. It also examines which area of cognitive function may be decisive for gaining employment. Thirty-nine vocational rehabilitation participants were administered a cognitive battery based on MATRICS Consensus Cognitive Battery. Socio-demographic, clinical, and vocational data were gathered and analyzed with nonparametric statistics. Individuals with competitive employment differed from those without competitive employment in attention and psychomotor speed, delayed verbal recall, immediate visual recall, and planning, reasoning, and problem-solving. Higher scores in immediate and delayed verbal recall and planning, reasoning, and problem-solving correlated with more work hours per week and higher income. Immediate visual recall was related to higher income. Higher scores in planning, reasoning, and problem-solving was an indicator of competitive employment (OR = 1.48). Higher order cognitive functioning of planning, reasoning, and problem-solving may have a central role in gaining employment. The findings should be considered in compensation for or improving cognitive functions for vocational rehabilitation participants.

  12. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  13. Visual processing in reading disorders and attention-deficit/hyperactivity disorder and its contribution to basic reading ability

    PubMed Central

    Kibby, Michelle Y.; Dyer, Sarah M.; Vadnais, Sarah A.; Jagger, Audreyana C.; Casher, Gabriel A.; Stacy, Maria

    2015-01-01

    Whether visual processing deficits are common in reading disorders (RD), and related to reading ability in general, has been debated for decades. The type of visual processing affected also is debated, although visual discrimination and short-term memory (STM) may be more commonly related to reading ability. Reading disorders are frequently comorbid with ADHD, and children with ADHD often have subclinical reading problems. Hence, children with ADHD were used as a comparison group in this study. ADHD and RD may be dissociated in terms of visual processing. Whereas RD may be associated with deficits in visual discrimination and STM for order, ADHD is associated with deficits in visual-spatial processing. Thus, we hypothesized that children with RD would perform worse than controls and children with ADHD only on a measure of visual discrimination and a measure of visual STM that requires memory for order. We expected all groups would perform comparably on the measure of visual STM that does not require sequential processing. We found children with RD or ADHD were commensurate to controls on measures of visual discrimination and visual STM that do not require sequential processing. In contrast, both RD groups (RD, RD/ADHD) performed worse than controls on the measure of visual STM that requires memory for order, and children with comorbid RD/ADHD performed worse than those with ADHD. In addition, of the three visual measures, only sequential visual STM predicted reading ability. Hence, our findings suggest there is a deficit in visual sequential STM that is specific to RD and is related to basic reading ability. The source of this deficit is worthy of further research, but it may include both reduced memory for order and poorer verbal mediation. PMID:26579020

  14. Visual processing in reading disorders and attention-deficit/hyperactivity disorder and its contribution to basic reading ability.

    PubMed

    Kibby, Michelle Y; Dyer, Sarah M; Vadnais, Sarah A; Jagger, Audreyana C; Casher, Gabriel A; Stacy, Maria

    2015-01-01

    Whether visual processing deficits are common in reading disorders (RD), and related to reading ability in general, has been debated for decades. The type of visual processing affected also is debated, although visual discrimination and short-term memory (STM) may be more commonly related to reading ability. Reading disorders are frequently comorbid with ADHD, and children with ADHD often have subclinical reading problems. Hence, children with ADHD were used as a comparison group in this study. ADHD and RD may be dissociated in terms of visual processing. Whereas RD may be associated with deficits in visual discrimination and STM for order, ADHD is associated with deficits in visual-spatial processing. Thus, we hypothesized that children with RD would perform worse than controls and children with ADHD only on a measure of visual discrimination and a measure of visual STM that requires memory for order. We expected all groups would perform comparably on the measure of visual STM that does not require sequential processing. We found children with RD or ADHD were commensurate to controls on measures of visual discrimination and visual STM that do not require sequential processing. In contrast, both RD groups (RD, RD/ADHD) performed worse than controls on the measure of visual STM that requires memory for order, and children with comorbid RD/ADHD performed worse than those with ADHD. In addition, of the three visual measures, only sequential visual STM predicted reading ability. Hence, our findings suggest there is a deficit in visual sequential STM that is specific to RD and is related to basic reading ability. The source of this deficit is worthy of further research, but it may include both reduced memory for order and poorer verbal mediation.

  15. Post DSAEK Optical Changes: A Comprehensive Prospective Analysis on the Role of Ocular Wavefront Aberrations, Haze, and Corneal Thickness

    PubMed Central

    Hindman, Holly B.; Huxlin, Krystel R.; Pantanelli, Seth M.; Callan, Christine L.; Sabesan, Ramkumar; Ching, Steven S.T.; Miller, Brooke E.; Martin, Tim; Yoon, Geunyoung

    2014-01-01

    Purpose To assess the visual impact of ocular wavefront aberrations, corneal thickness, and corneal light scatter prospectively after Descemet’s Stripping Automated Endothelial Keratoplasty (DSAEK) in humans. Methods Data were obtained prospectively from 20 eyes pre-operatively and at 1, 3, 6, and 12 months post- DSAEK. At each visit, best spectacle corrected visual acuity (BSCVA) and visual acuity with glare (Brightness Acuity Testing - BAT) were recorded and ocular wavefront measurements and corneal Optical Coherence Tomography (OCT) performed. Magnitude and sign of individual Zernike terms (higher order aberrations HOA) were determined. Epithelial, host stromal, donor stromal, and total corneal thickness were quantified. Brightness, intensity profiles of OCT images were generated to quantify light scatter in the whole cornea, subepithelial region, anterior and posterior host stroma, interface, and donor stroma. Results Mean BSCVA and glare disability at low light levels improved from 1 to 12 months post-DSAEK. All corneal thicknesses and ocular lower- and HOAs were stable from 1 through 12 months, whereas total corneal, host stromal, and interface brightness intensities decreased significantly over the same period. A repeated measures ANOVA across the follow up period found that the change in scatter, but not the change in higher order aberrations, could account for the variability occurring in acuity from 1 to 12 months post-DSAEK. Conclusions While ocular HOAs and scatter are both elevated over normal post-DSAEK, our results demonstrate that improvements in visual performance occurring over the first year post-DSAEK are associated with decreasing light scatter. In contrast, there were no significant changes in ocular HOAs during this time. Because corneal light scatter decreased between 1 and 12 months despite stable corneal thicknesses over the same period, we conclude that factors that induced light scatter, other than tissue thickness or swelling (corneal edema), significantly impacted the visual improvements that occurred over time post-DSAEK. A better understanding of the cellular and extracellular matrix changes of the subepithelial region and interface, incurred by the surgical creation of a lamellar host -graft interface, and the subsequent healing of these tissues, is warranted. PMID:24162748

  16. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping.

    PubMed

    Yildirim, Funda; Carvalho, Joana; Cornelissen, Frans W

    2018-01-01

    Visual field or retinotopic mapping is one of the most frequently used paradigms in fMRI. It uses activity evoked by position-varying high luminance contrast visual patterns presented throughout the visual field for determining the spatial organization of cortical visual areas. While the advantage of using high luminance contrast is that it tends to drive a wide range of neural populations - thus resulting in high signal-to-noise BOLD responses - this may also be a limitation, especially for approaches that attempt to squeeze more information out of the BOLD response, such as population receptive field (pRF) mapping. In that case, more selective stimulation of a subset of neurons - despite reduced signals - could result in better characterization of pRF properties. Here, we used a second-order stimulus based on local differences in orientation texture - to which we refer as orientation contrast - to perform retinotopic mapping. Participants in our experiment viewed arrays of Gabor patches composed of a foreground (a bar) and a background. These could only be distinguished on the basis of a difference in patch orientation. In our analyses, we compare the pRF properties obtained using this new orientation contrast-based retinotopy (OCR) to those obtained using classic luminance contrast-based retinotopy (LCR). Specifically, in higher order cortical visual areas such as LO, our novel approach resulted in non-trivial reductions in estimated population receptive field size of around 30%. A set of control experiments confirms that the most plausible cause for this reduction is that OCR mainly drives neurons sensitive to orientation contrast. We discuss how OCR - by limiting receptive field scatter and reducing BOLD displacement - may result in more accurate pRF localization as well. Estimation of neuronal properties is crucial for interpreting cortical function. Therefore, we conclude that using our approach, it is possible to selectively target particular neuronal populations, opening the way to use pRF modeling to dissect the response properties of more clearly-defined neuronal populations in different visual areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experiences of Students with Visual Impairments in Canadian Higher Education

    ERIC Educational Resources Information Center

    Reed, Maureen; Curtis, Kathryn

    2012-01-01

    Introduction: This article presents a study of the higher education experiences of students with visual impairments in Canada. Methods: Students with visual impairments and the staff members of disability programs were surveyed and interviewed regarding the students' experiences in entering higher education and completing their higher education…

  18. Correlation of visual performance with quality of life and intraocular aberrometric profile in patients implanted with rotationally asymmetric multifocal IOLs.

    PubMed

    Ramón, María L; Piñero, David P; Pérez-Cambrodí, Rafael J

    2012-02-01

    To examine the visual performance of a rotationally asymmetric multifocal intraocular lens (IOL) by correlating the defocus curve of the IOL-implanted eye with the intraocular aberrometric profile and impact on the quality of life. A prospective, consecutive, case series study including 26 eyes from 13 patients aged between 50 and 83 years (mean: 65.54±7.59 years) was conducted. All patients underwent bilateral cataract surgery with implantation of a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 MF30, Oculentis GmbH). Distance and near visual acuity outcomes, intraocular aberrations, defocus curve, and quality of life (assessed using the National Eye Institute Visual Functioning Questionnaire-25) were evaluated postoperatively (mean follow-up: 6.42±2.24 months). A significant improvement in distance visual acuity was found postoperatively (P<.01). Mean postoperative logMAR distance-corrected near visual acuity was 0.19±0.12 (∼20/30). Corrected distance visual acuity and near visual acuity of 20/20 or better were achieved by 30.8% and 7.7% of eyes, respectively. Of all eyes, 96.2% had a postoperative addition between 0 and 1.00 diopter (D). The defocus curve showed two peaks of maximum visual acuity (0 and 3.00 D of defocus), with an acceptable range of intermediate vision. LogMAR visual acuity corresponding to near defocus was directly correlated with some higher order intraocular aberrations (r⩾0.44, P⩽.04). Some difficulties evaluated with the quality of life test correlated directly with near and intermediate visual acuity (r⩾0.50, P⩽.01). The Lentis Mplus multifocal IOL provides good distance, intermediate, and near visual outcomes; however, the induced intraocular aberrometric profile may limit the potential visual benefit. Copyright 2012, SLACK Incorporated.

  19. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    PubMed

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  20. Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity

    NASA Astrophysics Data System (ADS)

    Bause, Markus

    2008-02-01

    In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.

  1. Laser in situ keratomileusis for high hyperopia with corneal vertex centration and asymmetric offset.

    PubMed

    de Ortueta, Diego; Arba-Mosquera, Sam

    2017-03-10

    To investigate refractive outcomes and induction of corneal higher order aberrations (HOA) in eyes that underwent laser-assisted in situ keratomileusis (LASIK) for high hyperopia correction using an aberration neutral profile with corneal vertex centration and asymmetric offset. A total of 24 consecutive patients (38 eyes) who underwent LASIK by one surgeon using AMARIS 750S excimer laser and a Carriazo-Pendular microkeratome for flap creation were retrospectively analyzed. Eyes targeted for plano and with correction in the maximum hyperopic meridian strictly higher than +4D were included in the retrospective analysis. Patients were reviewed at 1, 3, and 6 months postoperatively. Postoperative monocular corrected distance visual acuity (CDVA) and uncorrected distance visual acuity (UDVA), manifest refraction, and corneal wavefront aberrations were compared with respective preoperative metrics. Mean preoperative spherical equivalent and refractive astigmatism was +4.07 ± 0.90 D and 1.37 ± 1.26 D, respectively, reducing to +0.28 ± 0.58D (p<0.0001) and 0.49 ± 0.47 D (p = 0.0001) at the last postoperative visit. Six months postoperatively, 78% of eyes achieved a UDVA of 20/25 or better. No eye lost more than 2 Snellen lines of CDVA at any follow-up. There was a statistically significant induction of vertical trefoil (+0.104 ± 0.299 µm, p<0.05), vertical coma (-0.181 ± 0.463 µm, p<0.01), horizontal coma (+0.198 ± 0.663 µm, p<0.05), spherical aberration (-0.324 ± 0.281 µm, p<0.0001), secondary vertical trefoil (+0.018 ± 0.044 µm, p<0.01), and secondary horizontal coma (+0.026 ± 0.083 µm, p<0.05). Laser-assisted in situ keratomileusis for high hyperopia using corneal vertex centration with asymmetric offset results in significant improvement in refraction and visual acuity although affected by significant induction of some higher order aberrations.

  2. Long-term effect of surface light scattering and glistenings of intraocular lenses on visual function.

    PubMed

    Hayashi, Ken; Hirata, Akira; Yoshida, Motoaki; Yoshimura, Koichi; Hayashi, Hideyuki

    2012-08-01

    To investigate the long-term effect of surface light scattering and glistenings of various intraocular lenses (IOLs) on visual function and optical aberrations after cataract surgery. Case-control study. Thirty-five eyes that underwent implantation of a hydrophobic acrylic, silicone, or polymethyl methacrylate (PMMA) IOL more than 10 years ago were recruited. The scattering light intensity of the surface and internal matrix of the optic was measured using Scheimpflug photography. Visual acuity (VA) was measured using VA charts, and contrast VA and that with glare (glare VA) were examined using a contrast sensitivity tester. Ocular higher-order aberrations (HOAs) were measured using a Hartmann-Shack aberrometer. Mean scattering light intensity of the surface and internal matrix of the optic was significantly higher in the acrylic group than in the silicone and PMMA groups (P < .0001). Mean uncorrected VA, photopic and mesopic contrast VA and glare VA, and HOAs did not differ significantly among groups, although mean corrected VA in the acrylic group was significantly better than that in the other groups (P = .0023). Scattering light intensity of the surface and internal matrix did not correlate with VA, contrast VA, or glare VA, and did not correlate with ocular and internal optic HOAs in the acrylic group. At more than 10 years postoperatively, visual function, including contrast sensitivity, and ocular HOAs were comparable among eyes that received acrylic, silicone, and PMMA IOLs. Surface scattering and glistenings with the acrylic IOLs were not significantly correlated with visual function and optical aberrations. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it. Copyright © 2017 the authors 0270-6474/17/3711572-20$15.00/0.

  4. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation

    PubMed Central

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-01-01

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation. PMID:24639586

  5. Enhancing the comprehension of visual metaphors in individuals with intellectual disability with or without down syndrome.

    PubMed

    Shnitzer-Meirovich, Shlomit; Lifshitz, Hefziba; Mashal, Nira

    2018-03-01

    This study is the first to investigate the effectiveness of deep and shallow intervention programs in the acquisition of visual metaphor comprehension in individuals with non-specific intellectual disability (NSID; aged 15-59, N = 53) or Down syndrome (DS; aged 15-52, N = 50). The deep intervention program was based on dynamic assessment model for enhancing analogical thinking. The shallow intervention program involves memorizing a metaphorical relationship between pairs of pictures. Visual metaphor comprehension was measured by the construction of a metaphorical connection between pairs of pictures. The results indicated that both etiology groups exhibited poor understanding of visual metaphors before the intervention. A significant improvement was observed in both interventions and both etiology groups, with greater improvement among individuals who underwent the deep processing. Moreover, the latter procedure led to greater generalization ability. The results also indicated that vocabulary contributed significantly to understanding unstudied metaphors and that participants with poorer linguistic abilities exhibited greater improvement in their metaphorical thinking. Thus, individuals with ID with or without DS are able to recruit the higher-order cognitive abilities required for visual metaphor comprehension. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Octopus vulgaris uses visual information to determine the location of its arm.

    PubMed

    Gutnick, Tamar; Byrne, Ruth A; Hochner, Binyamin; Kuba, Michael

    2011-03-22

    Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation.

    PubMed

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-05-05

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation.

  8. From perception to art: how vision creates meanings.

    PubMed

    Pinna, Baingio; Reeves, Adam

    2009-01-01

    This article describes the relationship between Art, as painting or sculpture, and a new theory of perceptual meaning, which builds on and now further develops the Gestalt principles. A key new idea in the theory is that higher-order groupings principles exist which, like the spatial grouping articulated by the principle of Prägnanz, helps to associate and combine stimuli, but which, unlike the Gestalt laws, can explain combinations of dissimilar as well as similar forms of visual information in a lawful manner. Similarities and dissimilarities are put together again by virtue of another and more global grouping factor that overcomes the dissimilarities of the components: it is some kind of meaning principle that perceptually solves the differences among whole and elements at a higher level, making them appear strongly linked just by virtue of the differences. In this way, similarities and dissimilarities complement and do not exclude each other. Such higher-order principles of grouping-by-meaning are articulated and illustrated using Art, from prehistoric to modern.

  9. Effect of Iris registration on visual outcome in wavefront-guided LASEK for myopic astigmatism.

    PubMed

    Lee, Jong Joo; Kim, Mee Kum; Wee, Won Ryang

    2018-04-01

    This study aimed to investigate the effect of iris registration (IR) on visual outcomes in wavefront-guided LASEK for myopic astigmatism. The retrospective chart review was performed for wavefront-guided LASEK using VISX Star S4 in patients with myopic astigmatism (cylinder ≥ 1.00 diopter[D]). Eyes were divided into IR group (LASEK with IR at the time of surgery) and Non-IR group (LASEK without IR system + failed-IR engagement during LASEK). Visual acuity (VA), astigmatism, higher-order aberration (HOA), and contrast sensitivity were assessed preoperatively and 3 months postoperatively. The IR and Non-IR groups were subcategorized depending on the spherical equivalent (lower myopia ≤-5.00 D vs. higher myopia >-5.00 D) for the comparison of HOA changes. Postoperative uncorrected VAs showed no differences between IR (n = 30) and Non-IR (n = 46). In astigmatic vector analyses, no differences were noted in the mean magnitude of error and the mean angle of error between two groups. There were no differences in postoperative total HOA, spherical aberration (SA), coma, and trefoil between the groups, either. The total HOA and SA increased in both groups, while coma increased only in Non-IR. In higher myopia, ΔRMS of coma was smaller in IR. Preoperative and postoperative total HOA were linearly correlated in Non-IR, but not for IR. Contrast sensitivity of 12 cycles per degree improved in both groups. IR had similar outcomes to conventional trackers in wavefront-guided LASEK, with less tendency of inducing coma, especially in higher myopia.

  10. Spatial interactions reveal inhibitory cortical networks in human amblyopia.

    PubMed

    Wong, Erwin H; Levi, Dennis M; McGraw, Paul V

    2005-10-01

    Humans with amblyopia have a well-documented loss of sensitivity for first-order, or luminance defined, visual information. Recent studies show that they also display a specific loss of sensitivity for second-order, or contrast defined, visual information; a type of image structure encoded by neurons found predominantly in visual area A18/V2. In the present study, we investigate whether amblyopia disrupts the normal architecture of spatial interactions in V2 by determining the contrast detection threshold of a second-order target in the presence of second-order flanking stimuli. Adjacent flanks facilitated second-order detectability in normal observers. However, in marked contrast, they suppressed detection in each eye of the majority of amblyopic observers. Furthermore, strabismic observers with no loss of visual acuity show a similar pattern of detection suppression. We speculate that amblyopia results in predominantly inhibitory cortical interactions between second-order neurons.

  11. A Systematic Review of the Literature on Parenting of Young Children with Visual Impairments and the Adaptions for Video-Feedback Intervention to Promote Positive Parenting (VIPP).

    PubMed

    van den Broek, Ellen G C; van Eijden, Ans J P M; Overbeek, Mathilde M; Kef, Sabina; Sterkenburg, Paula S; Schuengel, Carlo

    2017-01-01

    Secure parent-child attachment may help children to overcome the challenges of growing up with a visual or visual-and-intellectual impairment. A large literature exists that provides a blueprint for interventions that promote parental sensitivity and secure attachment. The Video-feedback Intervention to promote Positive Parenting (VIPP) is based on that blueprint. While it has been adapted to several specific at risk populations, children with visual impairment may require additional adjustments. This study aimed to identify the themes that should be addressed in adapting VIPP and similar interventions. A Delphi-consultation was conducted with 13 professionals in the field of visual impairment to select the themes for relationship-focused intervention. These themes informed a systematic literature search. Interaction, intersubjectivity, joint attention, exploration, play and specific behavior were the themes mentioned in the Delphi-group. Paired with visual impairment or vision disorders, infants or young children (and their parents) the search yielded 74 articles, making the six themes for intervention adaptation more specific and concrete. The rich literature on six visual impairment specific themes was dominated by the themes interaction, intersubjectivity, and joint attention. These themes need to be addressed in adapting intervention programs developed for other populations, such as VIPP which currently focuses on higher order constructs of sensitivity and attachment.

  12. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.

    PubMed

    Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka

    2017-04-01

    Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.

  13. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia

    PubMed Central

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5–6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. PMID:24698161

  14. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia.

    PubMed

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5-6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  15. Real-Time Indoor Scene Description for the Visually Impaired Using Autoencoder Fusion Strategies with Visible Cameras.

    PubMed

    Malek, Salim; Melgani, Farid; Mekhalfi, Mohamed Lamine; Bazi, Yakoub

    2017-11-16

    This paper describes three coarse image description strategies, which are meant to promote a rough perception of surrounding objects for visually impaired individuals, with application to indoor spaces. The described algorithms operate on images (grabbed by the user, by means of a chest-mounted camera), and provide in output a list of objects that likely exist in his context across the indoor scene. In this regard, first, different colour, texture, and shape-based feature extractors are generated, followed by a feature learning step by means of AutoEncoder (AE) models. Second, the produced features are fused and fed into a multilabel classifier in order to list the potential objects. The conducted experiments point out that fusing a set of AE-learned features scores higher classification rates with respect to using the features individually. Furthermore, with respect to reference works, our method: (i) yields higher classification accuracies, and (ii) runs (at least four times) faster, which enables a potential full real-time application.

  16. Neural correlates of coherent and biological motion perception in autism.

    PubMed

    Koldewyn, Kami; Whitney, David; Rivera, Susan M

    2011-09-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.

  17. Neural correlates of coherent and biological motion perception in autism

    PubMed Central

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2011-01-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323

  18. Overcoming Presbyopia by Manipulating the Eyes' Optics

    NASA Astrophysics Data System (ADS)

    Zheleznyak, Leonard A.

    Presbyopia, the age-related loss of accommodation, is a visual condition affecting all adults over the age of 45 years. In presbyopia, individuals lose the ability to focus on nearby objects, due to a lifelong growth and stiffening of the eye's crystalline lens. This leads to poor near visual performance and affects patients' quality of life. The objective of this thesis is aimed towards the correction of presbyopia and can be divided into four aims. First, we examined the characteristics and limitations of currently available strategies for the correction of presbyopia. A natural-view wavefront sensor was used to objectively measure the accommodative ability of patients implanted with an accommodative intraocular lens (IOL). Although these patients had little accommodative ability based on changes in power, pupil miosis and higher order aberrations led to an improvement in through-focus retinal image quality in some cases. To quantify the through-focus retinal image quality of accommodative and multifocal IOLs directly, an adaptive optics (AO) IOL metrology system was developed. Using this system, the impact of corneal aberrations in regard to presbyopia-correcting IOLs was assessed, providing an objective measure of through-focus retinal image quality and practical guidelines for patient selection. To improve upon existing multifocal designs, we investigated retinal image quality metrics for the prediction of through-focus visual performance. The preferred metric was based on the fidelity of an image convolved with an aberrated point spread function. Using this metric, we investigated the potential of higher order aberrations and pupil amplitude apodization to increase the depth of focus of the presbyopic eye. Thirdly, we investigated modified monovision, a novel binocular approach to presbyopia correction using a binocular AO vision simulator. In modified monovision, different magnitudes of defocus and spherical aberration are introduced to each eye, thereby taking advantage of the binocular visual system. Several experiments using the binocular AO vision simulator found modified monovision led to significant improvements in through-focus visual performance, binocular summation and stereoacuity, as compared to traditional monovision. Finally, we addressed neural factors, affecting visual performance in modified monovision, such as ocular dominance and neural plasticity. We found that pairing modified monovision with a vision training regimen may further improve visual performance beyond the limits set by optics via neural plasticity. This opens the door to an exciting new avenue of vision correction to accompany optical interventions. The research presented in this thesis offers important guidelines for the clinical and scientific communities. Furthermore, the techniques described herein may be applied to other fields of ophthalmology, such as childhood myopia progression.

  19. One-year eye-to-eye comparison of wavefront-guided versus wavefront-optimized laser in situ keratomileusis in hyperopes

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2014-01-01

    Background To compare wavefront (WF)-guided and WF-optimized laser in situ keratomileusis (LASIK) in hyperopes with respect to the parameters of safety, efficacy, predictability, refractive error, uncorrected distance visual acuity, corrected distance visual acuity, contrast sensitivity, and higher order aberrations. Methods Twenty-two eyes of eleven participants with hyperopia with or without astigmatism were prospectively randomized to receive WF-guided LASIK with the VISX CustomVue S4 IR or WF-optimized LASIK with the WaveLight Allegretto Eye-Q 400 Hz. LASIK flaps were created using the 150-kHz IntraLase iFS. Evaluations included measurement of uncorrected distance visual acuity, corrected distance visual acuity, <5% and <25% contrast sensitivity, and WF aberrometry. Patients also completed a questionnaire detailing symptoms on a quantitative grading scale. Results There were no statistically significant differences between the groups for any of the variables studied after 12 months of follow-up (all P>0.05). Conclusion This comparative case series of 11 subjects with hyperopia showed that WF-guided and WF-optimized LASIK had similar clinical outcomes at 12 months. PMID:25419115

  20. More Than Meets the Eye: Split-Second Social Perception

    PubMed Central

    Freeman, Jonathan B.; Johnson, Kerri L.

    2017-01-01

    Recent research suggests that visual perception of social categories is shaped not only by facial features but also by higher-order social cognitive processes (e.g., stereotypes, attitudes, goals). Building on neural computational models of social perception, we outline a perspective of how multiple bottom-up visual cues are flexibly integrated with a range of top-down processes to form perceptions, and we identify a set of key brain regions involved. During this integration, ‘hidden’ social category activations are often triggered which temporarily impact perception without manifesting in explicit perceptual judgments. Importantly, these hidden impacts and other aspects of the perceptual process predict downstream social consequences – from politicians’ electoral success to several evaluative biases – independently of the outcomes of that process. PMID:27050834

  1. Graph cuts for curvature based image denoising.

    PubMed

    Bae, Egil; Shi, Juan; Tai, Xue-Cheng

    2011-05-01

    Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.

  2. Blind motion image deblurring using nonconvex higher-order total variation model

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo

    2016-09-01

    We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.

  3. Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice.

    PubMed

    Dickson, P E; Cairns, J; Goldowitz, D; Mittleman, G

    2017-03-14

    Cognitive flexibility has traditionally been considered a frontal lobe function. However, converging evidence suggests involvement of a larger brain circuit which includes the cerebellum. Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological substrate through which the cerebellum may modulate higher cognitive functions, and it has been observed that cognitive inflexibility and cerebellar pathology co-occur in psychiatric disorders (e.g., autism, schizophrenia, addiction). However, the degree to which the cerebellum contributes to distinct forms of cognitive flexibility and rule learning is unknown. We tested lurcher↔wildtype aggregation chimeras which lose 0-100% of cerebellar Purkinje cells during development on a touchscreen-mediated attentional set-shifting task to assess the contribution of the cerebellum to higher and lower order rule learning and cognitive flexibility. Purkinje cells, the sole output of the cerebellar cortex, ranged from 0 to 108,390 in tested mice. Reversal learning and extradimensional set-shifting were impaired in mice with⩾95% Purkinje cell loss. Cognitive deficits were unrelated to motor deficits in ataxic mice. Acquisition of a simple visual discrimination and an attentional-set were unrelated to Purkinje cells. A positive relationship was observed between Purkinje cells and errors when exemplars from a novel, non-relevant dimension were introduced. Collectively, these data suggest that the cerebellum contributes to higher order cognitive flexibility, lower order cognitive flexibility, and attention to novel stimuli, but not the acquisition of higher and lower order rules. These data indicate that the cerebellar pathology observed in psychiatric disorders may underlie deficits involving cognitive flexibility and attention to novel stimuli. Copyright © 2016. Published by Elsevier Ltd.

  4. Art expertise modulates the emotional response to modern art, especially abstract: an ERP investigation

    PubMed Central

    Else, Jane E.; Ellis, Jason; Orme, Elizabeth

    2015-01-01

    Art is one of life’s great joys, whether it is beautiful, ugly, sublime or shocking. Aesthetic responses to visual art involve sensory, cognitive and visceral processes. Neuroimaging studies have yielded a wealth of information regarding aesthetic appreciation and beauty using visual art as stimuli, but few have considered the effect of expertise on visual and visceral responses. To study the time course of visual, cognitive and emotional processes in response to visual art we investigated the event-related potentials (ERPs) elicited whilst viewing and rating the visceral affect of three categories of visual art. Two groups, artists and non-artists viewed representational, abstract and indeterminate 20th century art. Early components, particularly the N1, related to attention and effort, and the P2, linked to higher order visual processing, was enhanced for artists when compared to non-artists. This effect was present for all types of art, but further enhanced for abstract art (AA), which was rated as having lowest visceral affect by the non-artists. The later, slow wave processes (500–1000 ms), associated with arousal and sustained attention, also show clear differences between the two groups in response to both type of art and visceral affect. AA increased arousal and sustained attention in artists, whilst it decreased in non-artists. These results suggest that aesthetic response to visual art is affected by both expertise and semantic content. PMID:27242497

  5. Quality of Vision in Eyes With Epiphora Undergoing Lacrimal Passage Intubation.

    PubMed

    Koh, Shizuka; Inoue, Yasushi; Ochi, Shintaro; Takai, Yoshihiro; Maeda, Naoyuki; Nishida, Kohji

    2017-09-01

    To investigate visual function and optical quality in eyes with epiphora undergoing lacrimal passage intubation. Prospective case series. Thirty-four eyes of 30 patients with lacrimal passage obstruction were enrolled. Before and 1 month after lacrimal passage intubation, functional visual acuity (FVA), higher-order aberrations (HOAs), lower tear meniscus, and tear clearance were assessed. An FVA measurement system was used to examine changes in continuous visual acuity (VA) over time, and visual function parameters such as FVA, visual maintenance ratio, and blink frequency were obtained. Sequential ocular HOAs were measured for 10 seconds after the blink using a wavefront sensor. Aberration data were analyzed in the central 4 mm for coma-like, spherical-like, and total HOAs. Fluctuation and stability indices of the total HOAs over time were calculated. Lower tear meniscus was assessed by anterior segment optical coherence tomography. After lacrimal passage intubation, visual function significantly improved, as indicated by improved FVA (P = .003) and visual maintenance ratio (P < .001). Blink frequency decreased significantly after treatment (P = .01). Optical quality significantly improved, as indicated by a decrease in coma-like aberrations (P = .003), spherical-like aberrations (P = .018), and total HOAs (P = .001). Stability index increased (P < .001) and fluctuation index decreased (P = .019), and tear meniscus dimension decreased (P < .001). Lacrimal passage intubation for eyes with epiphora significantly improved visual function and optical quality via patency of the lacrimal passage. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Visual improvement for bad handwriting based on Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2014-03-01

    A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.

  7. The neural mechanisms of word order processing revisited: electrophysiological evidence from Japanese.

    PubMed

    Wolff, Susann; Schlesewsky, Matthias; Hirotani, Masako; Bornkessel-Schlesewsky, Ina

    2008-11-01

    We present two ERP studies on the processing of word order variations in Japanese, a language that is suited to shedding further light on the implications of word order freedom for neurocognitive approaches to sentence comprehension. Experiment 1 used auditory presentation and revealed that initial accusative objects elicit increased processing costs in comparison to initial subjects (in the form of a transient negativity) only when followed by a prosodic boundary. A similar effect was observed using visual presentation in Experiment 2, however only for accusative but not for dative objects. These results support a relational account of word order processing, in which the costs of comprehending an object-initial word order are determined by the linearization properties of the initial object in relation to the linearization properties of possible upcoming arguments. In the absence of a prosodic boundary, the possibility for subject omission in Japanese renders it likely that the initial accusative is the only argument in the clause. Hence, no upcoming arguments are expected and no linearization problem can arise. A prosodic boundary or visual segmentation, by contrast, indicate an object-before-subject word order, thereby leading to a mismatch between argument "prominence" (e.g. in terms of thematic roles) and linear order. This mismatch is alleviated when the initial object is highly prominent itself (e.g. in the case of a dative, which can bear the higher-ranking thematic role in a two argument relation). We argue that the processing mechanism at work here can be distinguished from more general aspects of "dependency processing" in object-initial sentences.

  8. Visualizing second order tensor fields with hyperstreamlines

    NASA Technical Reports Server (NTRS)

    Delmarcelle, Thierry; Hesselink, Lambertus

    1993-01-01

    Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.

  9. Temporal Influence on Awareness

    DTIC Science & Technology

    1995-12-01

    43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and

  10. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2017-03-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  11. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes.

    PubMed

    Lisney, Thomas J; Stecyk, Karyn; Kolominsky, Jeffrey; Schmidt, Brian K; Corfield, Jeremy R; Iwaniuk, Andrew N; Wylie, Douglas R

    2013-05-01

    Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.

  12. Direction of an initial saccade depends on radiological expertise

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; McEntee, Mark F.; Evanoff, Michael E.; Brennan, Patrick C.; Mello-Thoms, Claudia R.

    2014-03-01

    Purpose: To evaluate the role of radiographic details in global impression of chest x-ray images viewed by experts in thoracic and non-thoracic domains. Materials and Methods: The study was approved by IRB. Five thoracic and five non-thoracic radiologists participated in two tachistoscopic (one low pass and one with the entire frequency spectrum, each lasting 270 ms) each containing 50 PA chest radiographs with 50% prevalence of pulmonary nodule. Eye movements were monitored in order to evaluate a pre-saccade shift of visual attention, saccade latency, decision time and the time to first fixation on a pulmonary nodule. Results: Thoracic radiologists showed significantly higher pre-saccadic shift of visual attention towards pulmonary nodules once using the full frequency spectrum (p < 0.05). An initial saccade orientation made by these radiologists on full resolution images correlated at significant level with their confidence ranking of pulmonary nodules (ρ = -0.387, p < 0.001). Conclusions: Thoracic radiologists benefited from high spatial frequency appearance during a rapid presentation of chest radiograph by allocating pre-saccade attention towards pulmonary nodules. This behavior correlated with a higher number of correct decisions, followed by higher confidence in the decisions made, and briefer reaction times.

  13. The pieces fit: Constituent structure and global coherence of visual narrative in RSVP.

    PubMed

    Hagmann, Carl Erick; Cohn, Neil

    2016-02-01

    Recent research has shown that comprehension of visual narrative relies on the ordering and timing of sequential images. Here we tested if rapidly presented 6-image long visual sequences could be understood as coherent narratives. Half of the sequences were correctly ordered and half had two of the four internal panels switched. Participants reported whether the sequence was correctly ordered and rated its coherence. Accuracy in detecting a switch increased when panels were presented for 1 s rather than 0.5 s. Doubling the duration of the first panel did not affect results. When two switched panels were further apart, order was discriminated more accurately and coherence ratings were low, revealing that a strong local adjacency effect influenced order and coherence judgments. Switched panels at constituent boundaries or within constituents were most disruptive to order discrimination, indicating that the preservation of constituent structure is critical to visual narrative grammar. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles

    PubMed Central

    Alsenaidy, Mohammad A.; Jain, Nishant K.; Kim, Jae H.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies. PMID:24659968

  15. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles.

    PubMed

    Alsenaidy, Mohammad A; Jain, Nishant K; Kim, Jae H; Middaugh, C Russell; Volkin, David B

    2014-01-01

    In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.

  16. Novel method of extracting motion from natural movies.

    PubMed

    Suzuki, Wataru; Ichinohe, Noritaka; Tani, Toshiki; Hayami, Taku; Miyakawa, Naohisa; Watanabe, Satoshi; Takeichi, Hiroshige

    2017-11-01

    The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Visual performance after conventional LASIK and wavefront-guided LASIK with iris-registration: results at 1 year

    PubMed Central

    Zhang, Jing; Zhou, Yue-Hua; Li, Rui; Tian, Lei

    2013-01-01

    AIM To compare visual performance of wavefront-guided laser in situ keratomileusis (LASIK) with iris-registration (Wg-LASIK group) and conventional LASIK (LASIK group) one year after surgery and analyze the correlation between wavefront aberrations and visual performance. METHODS Eight hundred and fifty-two myopic eyes of 430 patients were enrolled in this prospective study and divided into two groups: Wg-LASIK group (436 eyes) and LASIK group (416 eyes). A Wavescan Wavefront aberrometer was used to analyze Zernike coefficients and the root-mean-square (RMS) of higher order aberrations, and Optec 6500 visual function instrument was used to measure contrast sensitivity (CS) before and 3, 6, 12 months after surgery. RESULTS The mean spherical equivalent (SE) in Wg-LASIK group was significantly better than those in LASIK group one year after surgery (P=0.024). Wg-LASIK eyes showed better CS values than LASIK eyes at all spatial frequencies with and without glare after surgery (P all<0.01). Moreover, the increase of higher RMS (RMSh), coma, RMS3, RMS4, RMS5 in Wg-LASIK group were significantly lower than those in LASIK group 1 year after surgery (P all<0.05). The increase of coma, spherical aberration (SA), RMS3 and RMS4 in Wg-LASIK and coma and RMS3 in LASIK group were negatively correlated with reduction of contrast sensitivity 1 year after surgery. CONCLUSION A significant better visual performance is got in Wg-LASIK group compared with LASIK group 1 year after surgery, and the Wg-LASIK is particularly suitable for eyes with high-magnitude RMSh. PMID:23991386

  18. Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: Trifocal versus extended range of vision.

    PubMed

    Monaco, Gaspare; Gari, Mariangela; Di Censo, Fabio; Poscia, Andrea; Ruggi, Giada; Scialdone, Antonio

    2017-06-01

    To compare the visual outcomes and quality of vision of 2 new diffractive multifocal intraocular lenses (IOLs) with those of a monofocal IOL. Fatebenefratelli e Oftalmico Hospital, Milan, Italy. Prospective case series. Patients had bilateral cataract surgery with implantation of a trifocal IOL (Panoptix), an extended-range-of-vision IOL (Symfony), or a monofocal IOL (SN60WF). Postoperative examinations included assessing distance, intermediate, and near visual acuity; binocular defocus; intraocular and total aberrations; point-spread function (PSF); modulation transfer function (MTF); retinal straylight; and quality-of-vision (QoV) and spectacle-dependence questionnaires. Seventy-six patients (152 eyes) were assessed for study eligibility. Twenty patients (40 eyes) in each arm of the study (60 patients, 120 eyes) completed the outcome assessment. At the 4-month follow-up, the trifocal group had significantly better near visual acuity than the extended-range-of-vision group (P = .005). The defocus curve showed the trifocal IOL had better intermediate/near performance than the extended-range-of-vision IOL and both multifocal IOLs performed better than the monofocal IOL. Intragroup comparison of the total higher-order aberrations, PSF, MTF, and retinal straylight were not statistically different. The QoV questionnaire results showed no differences in dysphotopsia between the multifocal IOL groups; however, the results were significantly higher than in the monofocal IOL group. Both multifocal IOLs seemed to be good options for patients with intermediate-vision requirements, whereas the trifocal IOL might be better for patients with near-vision requirements. The significant perception of visual side effects indicates that patients still must be counseled about these effects before a multifocal IOL is implanted. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Emotional metacontrol of attention: Top-down modulation of sensorimotor processes in a robotic visual search task

    PubMed Central

    Cuperlier, Nicolas; Gaussier, Philippe

    2017-01-01

    Emotions play a significant role in internal regulatory processes. In this paper, we advocate four key ideas. First, novelty detection can be grounded in the sensorimotor experience and allow higher order appraisal. Second, cognitive processes, such as those involved in self-assessment, influence emotional states by eliciting affects like boredom and frustration. Third, emotional processes such as those triggered by self-assessment influence attentional processes. Last, close emotion-cognition interactions implement an efficient feedback loop for the purpose of top-down behavior regulation. The latter is what we call ‘Emotional Metacontrol’. We introduce a model based on artificial neural networks. This architecture is used to control a robotic system in a visual search task. The emotional metacontrol intervenes to bias the robot visual attention during active object recognition. Through a behavioral and statistical analysis, we show that this mechanism increases the robot performance and fosters the exploratory behavior to avoid deadlocks. PMID:28934291

  20. Decoding information about dynamically occluded objects in visual cortex

    PubMed Central

    Erlikhman, Gennady; Caplovitz, Gideon P.

    2016-01-01

    During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987

  1. The effect of synesthetic associations between the visual and auditory modalities on the Colavita effect.

    PubMed

    Stekelenburg, Jeroen J; Keetels, Mirjam

    2016-05-01

    The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400-550 ms and an occipitoparietal effect at 690-800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that-in a modality detection task-the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs.

  2. Reading Performance Is Enhanced by Visual Texture Discrimination Training in Chinese-Speaking Children with Developmental Dyslexia

    PubMed Central

    Meng, Xiangzhi; Lin, Ou; Wang, Fang; Jiang, Yuzheng; Song, Yan

    2014-01-01

    Background High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese. Methodology/Principal Findings To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia. Conclusion/Significance These results suggest that basic visual perceptual processing/learning and reading ability in Chinese might at least partially rely on overlapping mechanisms. PMID:25247602

  3. Mechanisms Underlying Development of Visual Maps and Receptive Fields

    PubMed Central

    Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara

    2008-01-01

    Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps. PMID:18558864

  4. Cerebral Visual Impairment in Children: A Longitudinal Case Study of Functional Outcomes beyond the Visual Acuities

    ERIC Educational Resources Information Center

    Lam, Fook Chang; Lovett, Fiona; Dutton, Gordon N.

    2010-01-01

    Damage to the areas of the brain that are responsible for higher visual processing can lead to severe cerebral visual impairment (CVI). The prognosis for higher cognitive visual functions in children with CVI is not well described. We therefore present our six-year follow-up of a boy with CVI and highlight intervention approaches that have proved…

  5. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing

    PubMed Central

    Harris, Joseph A.; McMahon, Alex R.; Woldorff, Marty G.

    2015-01-01

    Any information represented in the brain holds the potential to influence behavior. It is therefore of broad interest to determine the extent and quality of neural processing of stimulus input that occurs with and without awareness. The attentional blink is a useful tool for dissociating neural and behavioral measures of perceptual visual processing across conditions of awareness. The extent of higher-order visual information beyond basic sensory signaling that is processed during the attentional blink remains controversial. To determine what neural processing at the level of visual-object identification occurs in the absence of awareness, electrophysiological responses to images of faces and houses were recorded both within and outside of the attentional blink period during a rapid serial visual presentation (RSVP) stream. Electrophysiological results were sorted according to behavioral performance (correctly identified targets versus missed targets) within these blink and non-blink periods. An early index of face-specific processing (the N170, 140–220 ms post-stimulus) was observed regardless of whether the subject demonstrated awareness of the stimulus, whereas a later face-specific effect with the same topographic distribution (500–700 ms post-stimulus) was only seen for accurate behavioral discrimination of the stimulus content. The present findings suggest a multi-stage process of object-category processing, with only the later phase being associated with explicit visual awareness. PMID:23859644

  6. Tagging cortical networks in emotion: a topographical analysis

    PubMed Central

    Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087

  7. Microstimulation with Chronically Implanted Intracortical Electrodes

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas

    Stimulating microelectrodes that penetrate into the brain afford a means of accessing the basic functional units of the central nervous system. Microstimulation in the region of the cerebral cortex that subserve vision may be an alternative, or an adjunct, to a retinal prosthesis, and may be particularly attractive as a means of restoring a semblance of high-resolution central vision. There also is the intriguing possibility that such a prosthesis could convey higher order visual percepts, many of which are mediated by neural circuits in the secondary or "extra-striate" visual areas that surround the primary visual cortex. The technologies of intracortical stimulating microelectrodes and investigations of the effects of microstimulation on neural tissue have advanced to the point where a cortical-level prosthesis is at least feasible. The imperative of protecting neural tissue from stimulation-induced damage imposes constraints on the selection of stimulus parameters, as does the requirement that the stimulation not greatly affect the electrical excitability of the neurons that are to be activated. The latter is especially likely to occur when many adjacent microelectrodes are pulsed, as will be necessary in a visual prosthesis. However, data from animal studies indicates that these restrictions on stimulus parameter are compatible with those that can evoke visual percepts in humans and in experimental animals. These findings give cause to be optimistic about the prospects for realizing a visual prosthesis utilizing intracortical microstimulation.

  8. Guidance of retinal axons in mammals.

    PubMed

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.

    PubMed

    Young, Laura K; Love, Gordon D; Smithson, Hannah E

    2013-09-20

    Advances in ophthalmic instrumentation have allowed high order aberrations to be measured in vivo. These measurements describe the distortions to a plane wavefront entering the eye, but not the effect they have on visual performance. One metric for predicting visual performance from a wavefront measurement uses the visual Strehl ratio, calculated in the optical transfer function (OTF) domain (VSOTF) (Thibos et al., 2004). We considered how well such a metric captures empirical measurements of the effects of defocus, coma and secondary astigmatism on letter identification and on reading. We show that predictions using the visual Strehl ratio can be significantly improved by weighting the OTF by the spatial frequency band that mediates letter identification and further improved by considering the orientation of phase and contrast changes imposed by the aberration. We additionally showed that these altered metrics compare well to a cross-correlation-based metric. We suggest a version of the visual Strehl ratio, VScombined, that incorporates primarily those phase disruptions and contrast changes that have been shown independently to affect object recognition processes. This metric compared well to VSOTF for letter identification and was the best predictor of reading performance, having a higher correlation with the data than either the VSOTF or cross-correlation-based metric. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Visual and Phonological Similarity Effects in Verbal Immediate Serial Recall: A Test with Kanji Materials

    ERIC Educational Resources Information Center

    Saito, Satoru; Logie, Robert H.; Morita, Aiko; Law, Anna

    2008-01-01

    In a series of three experiments, native speakers of Japanese performed serial ordered written recall of visually presented Japanese kanji characters that varied systematically in visual and phonological similarity. Overall effects of phonological similarity were observed for retention of serial order under silent reading in Experiments 1 and 3…

  11. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  12. Peripheral Refraction Validity of the Shin-Nippon SRW5000 Autorefractor.

    PubMed

    Osuagwu, Uchechukwu Levi; Suheimat, Marwan; Wolffsohn, James S; Atchison, David A

    2016-10-01

    To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope.

  13. Metabolic alterations in patients with Parkinson disease and visual hallucinations.

    PubMed

    Boecker, Henning; Ceballos-Baumann, Andres O; Volk, Dominik; Conrad, Bastian; Forstl, Hans; Haussermann, Peter

    2007-07-01

    Visual hallucinations (VHs) occur frequently in advanced stages of Parkinson disease (PD). Which brain regions are affected in PD with VH is not well understood. To characterize the pattern of affected brain regions in PD with VH and to determine whether functional changes in PD with VH occur preferentially in visual association areas, as is suggested by the complex clinical symptomatology. Positron emission tomography measurements using fluorodeoxyglucose F 18. Between-group statistical analysis, accounting for the variance related to disease stage. University hospital. Patients Eight patients with PD and VH and 11 patients with PD without VH were analyzed. The presence of VH during the month before positron emission tomography was rated using the Neuropsychiatric Inventory subscale for VH (PD and VH, 4.63; PD without VH, 0.00; P < .002). Parkinson disease with VH, compared with PD without VH, was characterized by reduction in the regional cerebral metabolic rate for glucose consumption (P < .05, corrected for false discovery rate) in occipitotemporoparietal regions, sparing the occipital pole. No significant increase in regional glucose metabolism was detected in patients with PD and VH. The pattern of resting-state metabolic changes in regions of the dorsal and ventral visual streams, but not in primary visual cortex, in patients with PD and VH, is compatible with the functional roles of visual association areas in higher-order visual processing. These findings may help to further elucidate the functional mechanisms underlying VH in PD.

  14. High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.

    PubMed

    Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei

    2017-07-01

    Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.

  15. Fractal Analysis of Visual Search Activity for Mass Detection During Mammographic Screening

    DOE PAGES

    Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy; ...

    2017-02-21

    Purpose: The objective of this study was to assess the complexity of human visual search activity during mammographic screening using fractal analysis and to investigate its relationship with case and reader characteristics. Methods: The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus data for this study. The fractal dimension of the readers’ visual scanning patternsmore » was computed with the Minkowski–Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-based interaction ANOVA analysis was performed to study the association between fractal dimension, case pathology, breast density, and reader experience level. The consistency of the observed trends depending on gaze data representation was also examined. Results: Case pathology, breast density, reader experience level, and individual reader differences are all independent predictors of the visual scanning pattern complexity when screening for breast cancer. No higher order effects were found to be significant. Conclusions: Fractal characterization of visual search behavior during mammographic screening is dependent on case properties and image reader characteristics.« less

  16. Stochastic sensitivity of a bistable energy model for visual perception

    NASA Astrophysics Data System (ADS)

    Pisarchik, Alexander N.; Bashkirtseva, Irina; Ryashko, Lev

    2017-01-01

    Modern trends in physiology, psychology and cognitive neuroscience suggest that noise is an essential component of brain functionality and self-organization. With adequate noise the brain as a complex dynamical system can easily access different ordered states and improve signal detection for decision-making by preventing deadlocks. Using a stochastic sensitivity function approach, we analyze how sensitive equilibrium points are to Gaussian noise in a bistable energy model often used for qualitative description of visual perception. The probability distribution of noise-induced transitions between two coexisting percepts is calculated at different noise intensity and system stability. Stochastic squeezing of the hysteresis range and its transition from positive (bistable regime) to negative (intermittency regime) are demonstrated as the noise intensity increases. The hysteresis is more sensitive to noise in the system with higher stability.

  17. More Than Meets the Eye: Split-Second Social Perception.

    PubMed

    Freeman, Jonathan B; Johnson, Kerri L

    2016-05-01

    Recent research suggests that visual perception of social categories is shaped not only by facial features but also by higher-order social cognitive processes (e.g., stereotypes, attitudes, goals). Building on neural computational models of social perception, we outline a perspective of how multiple bottom-up visual cues are flexibly integrated with a range of top-down processes to form perceptions, and we identify a set of key brain regions involved. During this integration, 'hidden' social category activations are often triggered which temporarily impact perception without manifesting in explicit perceptual judgments. Importantly, these hidden impacts and other aspects of the perceptual process predict downstream social consequences - from politicians' electoral success to several evaluative biases - independently of the outcomes of that process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Origins of task-specific sensory-independent organization in the visual and auditory brain: neuroscience evidence, open questions and clinical implications.

    PubMed

    Heimler, Benedetta; Striem-Amit, Ella; Amedi, Amir

    2015-12-01

    Evidence of task-specific sensory-independent (TSSI) plasticity from blind and deaf populations has led to a better understanding of brain organization. However, the principles determining the origins of this plasticity remain unclear. We review recent data suggesting that a combination of the connectivity bias and sensitivity to task-distinctive features might account for TSSI plasticity in the sensory cortices as a whole, from the higher-order occipital/temporal cortices to the primary sensory cortices. We discuss current theories and evidence, open questions and related predictions. Finally, given the rapid progress in visual and auditory restoration techniques, we address the crucial need to develop effective rehabilitation approaches for sensory recovery. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yue; Xu, Ke; Jiang, Weilin

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  20. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  1. The Influence of the Aspheric Profiles for Transition Zone on Optical Performance of Human Eye After Conventional Ablation

    NASA Astrophysics Data System (ADS)

    Fang, L.

    2014-12-01

    The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.

  2. Biases in facial and vocal emotion recognition in chronic schizophrenia

    PubMed Central

    Dondaine, Thibaut; Robert, Gabriel; Péron, Julie; Grandjean, Didier; Vérin, Marc; Drapier, Dominique; Millet, Bruno

    2014-01-01

    There has been extensive research on impaired emotion recognition in schizophrenia in the facial and vocal modalities. The literature points to biases toward non-relevant emotions for emotional faces but few studies have examined biases in emotional recognition across different modalities (facial and vocal). In order to test emotion recognition biases, we exposed 23 patients with stabilized chronic schizophrenia and 23 healthy controls (HCs) to emotional facial and vocal tasks asking them to rate emotional intensity on visual analog scales. We showed that patients with schizophrenia provided higher intensity ratings on the non-target scales (e.g., surprise scale for fear stimuli) than HCs for the both tasks. Furthermore, with the exception of neutral vocal stimuli, they provided the same intensity ratings on the target scales as the HCs. These findings suggest that patients with chronic schizophrenia have emotional biases when judging emotional stimuli in the visual and vocal modalities. These biases may stem from a basic sensorial deficit, a high-order cognitive dysfunction, or both. The respective roles of prefrontal-subcortical circuitry and the basal ganglia are discussed. PMID:25202287

  3. Perceiver as polar planimeter: Direct perception of jumping, reaching, and jump-reaching affordances for the self and others.

    PubMed

    Thomas, Brandon J; Hawkins, Matthew M; Nalepka, Patrick

    2017-03-30

    Runeson (Scandanavian Journal of Psychology 18:172-179, 1977) suggested that the polar planimeter might serve as an informative model system of perceptual mechanism. The key aspect of the polar planimeter is that it registers a higher order property of the environment without computational mediation on the basis of lower order properties, detecting task-specific information only. This aspect was posited as a hypothesis for the perception of jumping and reaching affordances for the self and another person. The findings supported this hypothesis. The perception of reaching while jumping significantly differed from an additive combination of jump-without-reaching and reach-without-jumping perception. The results are consistent with Gibson's (The senses considered as perceptual systems, Houghton Mifflin, Boston, MA; Gibson, The senses considered as perceptual systems, Houghton Mifflin, Boston, MA, 1966; The ecological approach to visual perception, Houghton Mifflin, Boston, MA; Gibson, The ecological approach to visual perception, Houghton Mifflin, Boston, MA, 1979) theory of information-that aspects of the environment are specified by patterns in energetic media.

  4. Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning

    PubMed Central

    Yee, Meagan; Jones, Susan S.; Smith, Linda B.

    2012-01-01

    Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015

  5. High-chroma visual cryptography using interference color of high-order retarder films

    NASA Astrophysics Data System (ADS)

    Sugawara, Shiori; Harada, Kenji; Sakai, Daisuke

    2015-08-01

    Visual cryptography can be used as a method of sharing a secret image through several encrypted images. Conventional visual cryptography can display only monochrome images. We have developed a high-chroma color visual encryption technique using the interference color of high-order retarder films. The encrypted films are composed of a polarizing film and retarder films. The retarder films exhibit interference color when they are sandwiched between two polarizing films. We propose a stacking technique for displaying high-chroma interference color images. A prototype visual cryptography device using high-chroma interference color is developed.

  6. Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator.

    PubMed

    Brembs, B; Heisenberg, M

    2001-08-01

    Short-term memory in Drosophila melanogaster operant visual learning in the flight simulator is explored using patterns and colours as a compound stimulus. Presented together during training, the two stimuli accrue the same associative strength whether or not a prior training phase rendered one of the two stimuli a stronger predictor for the reinforcer than the other (no blocking). This result adds Drosophila to the list of other invertebrates that do not exhibit the robust vertebrate blocking phenomenon. Other forms of higher-order learning, however, were detected: a solid sensory preconditioning and a small second-order conditioning effect imply that associations between the two stimuli can be formed, even if the compound is not reinforced.

  7. Generative statistical modeling of left atrial appendage appearance to substantiate clinical paradigms for stroke risk stratification

    NASA Astrophysics Data System (ADS)

    Sanatkhani, Soroosh; Menon, Prahlad G.

    2018-03-01

    Left atrial appendage (LAA) is the source of 91% of the thrombi in patients with atrial arrhythmias ( 2.3 million US adults), turning this region into a potential threat for stroke. LAA geometries have been clinically categorized into four appearance groups viz. Cauliflower, Cactus, Chicken-Wing and WindSock, based on visual appearance in 3D volume visualizations of contrast-enhanced computed tomography (CT) imaging, and have further been correlated with stroke risk by considering clinical mortality statistics. However, such classification from visual appearance is limited by human subjectivity and is not sophisticated enough to address all the characteristics of the geometries. Quantification of LAA geometry metrics can reveal a more repeatable and reliable estimate on the characteristics of the LAA which correspond with stasis risk, and in-turn cardioembolic risk. We present an approach to quantify the appearance of the LAA in patients in atrial fibrillation (AF) using a weighted set of baseline eigen-modes of LAA appearance variation, as a means to objectify classification of patient-specific LAAs into the four accepted clinical appearance groups. Clinical images of 16 patients (4 per LAA appearance category) with atrial fibrillation (AF) were identified and visualized as volume images. All the volume images were rigidly reoriented in order to be spatially co-registered, normalized in terms of intensity, resampled and finally reshaped appropriately to carry out principal component analysis (PCA), in order to parametrize the LAA region's appearance based on principal components (PCs/eigen mode) of greyscale appearance, generating 16 eigen-modes of appearance variation. Our pilot studies show that the most dominant LAA appearance (i.e. reconstructable using the fewest eigen-modes) resembles the Chicken-Wing class, which is known to have the lowest stroke risk per clinical mortality statistics. Our findings indicate the possibility that LAA geometries with high risk of stroke are higher-order statistical variants of underlying lower risk shapes.

  8. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): Insights from histology, immunohistochemistry and microCT analysis.

    PubMed

    Steinhoff, Philip O M; Sombke, Andy; Liedtke, Jannis; Schneider, Jutta M; Harzsch, Steffen; Uhl, Gabriele

    2017-03-01

    Jumping spiders are known for their extraordinary cognitive abilities. The underlying nervous system structures, however, are largely unknown. Here, we explore and describe the anatomy of the brain in the jumping spider Marpissa muscosa (Clerck, 1757) by means of paraffin histology, X-ray microCT analysis and immunohistochemistry as well as three-dimensional reconstruction. In the prosoma, the CNS is a clearly demarcated mass that surrounds the esophagus. The anteriormost neuromere, the protocerebrum, comprises nine bilaterally paired neuropils, including the mushroom bodies and one unpaired midline neuropil, the arcuate body. Further ventrally, the synganglion comprises the cheliceral (deutocerebrum) and pedipalpal neuropils (tritocerebrum). Synapsin-immunoreactivity in all neuropils is generally strong, while allatostatin-immunoreactivity is mostly present in association with the arcuate body and the stomodeal bridge. The most prominent neuropils in the spider brain, the mushroom bodies and the arcuate body, were suggested to be higher integrating centers of the arthropod brain. The mushroom body in M. muscosa is connected to first and second order visual neuropils of the lateral eyes, and the arcuate body to the second order neuropils of the anterior median eyes (primary eyes) through a visual tract. The connection of both, visual neuropils and eyes and arcuate body, as well as their large size corroborates the hypothesis that these neuropils play an important role in cognition and locomotion control of jumping spiders. In addition, we show that the architecture of the brain of M. muscosa and some previously investigated salticids differs significantly from that of the wandering spider Cupiennius salei, especially with regard to structure and arrangement of visual neuropils and mushroom body. Thus, we need to explore the anatomical conformities and specificities of the brains of different spider taxa in order to understand evolutionary transformations of the arthropod brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Health Versus Appearance Versus Body Competence: A Content Analysis Investigating Frames of Health Advice in Women's Health Magazines.

    PubMed

    Aubrey, Jennifer Stevens; Hahn, Rachel

    2016-05-01

    The present study investigated the extent to which women's health magazines advise readers to adopt healthy behaviors in order to look good (appearance frame), in order to feel good (health frame), or in order to perform better (body competence frame). A content analysis of 5 years of the 6 highest circulating U.S. women's health magazines revealed a higher frequency of health frames (32.6%) than appearance frames (24.8%) overall, but when beauty/health hybrid magazines (i.e., Shape and Self) were examined separately, appearance frames (32.8%) outnumbered health frames (26.5%). Compared to appearance and health frames, body competence frames were underrepresented (13.3% in the full sample). The visual sexual objectification of female models in women's health magazines was also investigated. Appearance-framed articles (43.2%) were significantly more likely to visually depict women with a high degree of skin exposure than health-framed articles (17.4%), and appearance-framed articles (34.8%) were more likely to focus on individual body parts than health-framed articles (21.3%). In addition, despite the magazines' editorial focus on health, the most frequent category of products advertised was appearance-enhancing products. Results are discussed in light of self-determination theory (Deci & Ryan, 1985) and objectification theory (Fredrickson & Roberts, 1997).

  10. Detecting vortices in superconductors: Extracting one-dimensional topological singularities from a discretized complex scalar field

    DOE PAGES

    Phillips, Carolyn L.; Peterka, Tom; Karpeyev, Dmitry; ...

    2015-02-20

    In type II superconductors, the dynamics of superconducting vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter. Extracting their precise positions and motion from discretized numerical simulation data is an important, but challenging, task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces. However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale poorly to large-scale simulations, and do not easily enable isolating andmore » tracking individual vortices. In this paper, we present a method for exactly finding the vortex core lines from a complex order parameter field. With this method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher resolution than has previously been possible. Finally, by representing the field as the set of vortices, this method also massively reduces the data footprint of the simulations and provides the data structures for further analysis and feature tracking.« less

  11. Social modulation of associative fear learning by pheromone communication

    PubMed Central

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912

  12. Social modulation of associative fear learning by pheromone communication.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.

  13. Visual Literacy Standards in Higher Education: New Opportunities for Libraries and Student Learning

    ERIC Educational Resources Information Center

    Hattwig, Denise; Bussert, Kaila; Medaille, Ann; Burgess, Joanna

    2013-01-01

    Visual literacy is essential for 21st century learners. Across the higher education curriculum, students are being asked to use and produce images and visual media in their academic work, and they must be prepared to do so. The Association of College and Research Libraries has published the "Visual Literacy Competency Standards for Higher…

  14. Sleep deprivation accelerates delay-related loss of visual short-term memories without affecting precision.

    PubMed

    Wee, Natalie; Asplund, Christopher L; Chee, Michael W L

    2013-06-01

    Visual short-term memory (VSTM) is an important measure of information processing capacity and supports many higher-order cognitive processes. We examined how sleep deprivation (SD) and maintenance duration interact to influence the number and precision of items in VSTM using an experimental design that limits the contribution of lapses at encoding. For each trial, participants attempted to maintain the location and color of three stimuli over a delay. After a retention interval of either 1 or 10 seconds, participants reported the color of the item at the cued location by selecting it on a color wheel. The probability of reporting the probed item, the precision of report, and the probability of reporting a nonprobed item were determined using a mixture-modeling analysis. Participants were studied twice in counterbalanced order, once after a night of normal sleep and once following a night of sleep deprivation. Sleep laboratory. Nineteen healthy college age volunteers (seven females) with regular sleep patterns. Approximately 24 hours of total SD. SD selectively reduced the number of integrated representations that can be retrieved after a delay, while leaving the precision of object information in the stored representations intact. Delay interacted with SD to lower the rate of successful recall. Visual short-term memory is compromised during sleep deprivation, an effect compounded by delay. However, when memories are retrieved, they tend to be intact.

  15. Effects of Temporal Features and Order on the Apparent duration of a Visual Stimulus

    PubMed Central

    Bruno, Aurelio; Ayhan, Inci; Johnston, Alan

    2012-01-01

    The apparent duration of a visual stimulus has been shown to be influenced by its speed. For low speeds, apparent duration increases linearly with stimulus speed. This effect has been ascribed to the number of changes that occur within a visual interval. Accordingly, a higher number of changes should produce an increase in apparent duration. In order to test this prediction, we asked subjects to compare the relative duration of a 10-Hz drifting comparison stimulus with a standard stimulus that contained a different number of changes in different conditions. The standard could be static, drifting at 10 Hz, or mixed (a combination of variable duration static and drifting intervals). In this last condition the number of changes was intermediate between the static and the continuously drifting stimulus. For all standard durations, the mixed stimulus looked significantly compressed (∼20% reduction) relative to the drifting stimulus. However, no difference emerged between the static (that contained no changes) and the mixed stimuli (which contained an intermediate number of changes). We also observed that when the standard was displayed first, it appeared compressed relative to when it was displayed second with a magnitude that depended on standard duration. These results are at odds with a model of time perception that simply reflects the number of temporal features within an interval in determining the perceived passing of time. PMID:22461778

  16. Experimental investigation of the visual field dependency in the erect and supine positions

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.; Saucer, R. T.

    1972-01-01

    The increasing utilization of simulators in many fields, in addition to aeronautics and space, requires the efficient use of these devices. It seemed that personnel highly influenced by the visual scene would make desirable subjects, particularly for those simulators without sufficient motion cues. In order to evaluate this concept, some measure of the degree of influence of the visual field on the subject in necessary. As part of this undertaking, 37 male and female subjects, including eight test pilots, were tested for their visual field dependency or independency. A version of Witkin's rod and frame apparatus was used for the tests. The results showed that nearly all the test subjects exhibited some degree of field dependency, the degree varying from very high field dependency to nearly zero field dependency in a normal distribution. The results for the test pilots were scattered throughout a range similar to the results for the bulk of male subjects. The few female subjects exhibited a higher field dependency than the male subjects. The male subjects exhibited a greater field dependency in the supine position than in the erect position, whereas the field dependency of the female subjects changed only slightly.

  17. Aligning Where to See and What to Tell: Image Captioning with Region-Based Attention and Scene-Specific Contexts.

    PubMed

    Fu, Kun; Jin, Junqi; Cui, Runpeng; Sha, Fei; Zhang, Changshui

    2017-12-01

    Recent progress on automatic generation of image captions has shown that it is possible to describe the most salient information conveyed by images with accurate and meaningful sentences. In this paper, we propose an image captioning system that exploits the parallel structures between images and sentences. In our model, the process of generating the next word, given the previously generated ones, is aligned with the visual perception experience where the attention shifts among the visual regions-such transitions impose a thread of ordering in visual perception. This alignment characterizes the flow of latent meaning, which encodes what is semantically shared by both the visual scene and the text description. Our system also makes another novel modeling contribution by introducing scene-specific contexts that capture higher-level semantic information encoded in an image. The contexts adapt language models for word generation to specific scene types. We benchmark our system and contrast to published results on several popular datasets, using both automatic evaluation metrics and human evaluation. We show that either region-based attention or scene-specific contexts improves systems without those components. Furthermore, combining these two modeling ingredients attains the state-of-the-art performance.

  18. Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers.

    PubMed

    Nakajima, Masashi; Hiraoka, Takahiro; Yamamoto, Toshiya; Takagi, Seiu; Hirohara, Yoko; Oshika, Tetsuro; Mihashi, Toshifumi

    2016-01-01

    Several researchers have studied the longitudinal chromatic aberration (LCA) of eyes implanted with an intraocular lens (IOL). We investigated the LCA of eyes implanted with yellow-colored IOLs from three different manufacturers: Alcon Inc., HOYA Corp., and AMO Inc. The number of subjects was 11, 16, and 16, respectively. The LCA of eyes implanted with SN60WF and SN60AT (Alcon Inc.), and with XY-1 (HOYA Corp.), was the same as that of phakic eyes. The LCA of eyes with ZCB00V (AMO Inc.) was smaller than that of phakic eyes. The LCA of eyes implanted with Alcon's and HOYA's IOLs, but not the LCA of eyes implanted with AMO's IOLs, was positively correlated with the powers of the IOLs. We also performed simulations to verify the impacts of LCA on visual performance for 4-mm pupil diameter; the simulations were a polychromatic modulation transfer function (MTF) and a visual Strehl ratio computed on the basis of an optical transfer function (VSOTF). We concluded that the differences between the LCA of different manufacturers do not affect visual performances when some extent of higher-order aberration (HOA) exists. The smaller HOA of AMO IOLs may enhance visual performance.

  19. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    PubMed

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Visual efficiency among teenaged athletes and non-athletes

    PubMed Central

    Omar, Rokiah; Kuan, Yau Meng; Zuhairi, Nurul Atikah; Manan, Faudziah Abd; Knight, Victor Feizal

    2017-01-01

    AIM To compare visual efficiency, specifically accom-modation, vergence, and oculomotor functions among athletes and non-athletes. METHODS A cross-sectional study on sports vision screening was used to evaluate the visual skills of 214 elementary students (107 athletes, 107 non-athletes), aged between 13 and 16y. The visual screening assessed visual parameters such as ocular motor alignment, accommodation, and vergence functions. RESULTS Mean visual parameters were compared between age-group matched athletes (mean age 14.82±0.98y) and non-athletes (mean age 15.00±1.04y). The refractive errors of all participants were corrected to maximal attainable best corrected visual acuity of logMAR 0.0. Accommodation function assessment evaluated amplitude of accommodation and accommodation facility. Vergence functions measured the near point of convergence, vergence facility, and distance fusional vergence at break and recovery point. Ocular motor alignment was not statistically significant between both groups. Athletes had a statistically significant amplitude of accommodation for both the right eye (t=2.30, P=0.02) and the left eye (t=1.99, P=0.05). Conversely, non-athletes had better accommodation facility (t=-2.54, P=0.01) and near point of convergence (t=4.39, P<0.001) when compared to athletes. Vergence facility was found to be better among athletes (t=2.47, P=0.01). Nevertheless, non-athletes were significantly better for both distance negative and positive fusional vergence. CONCLUSION Although the findings are still inconclusive as to whether athletes had superior visual skills as compared to non-athletes, it remains important to identify and elucidate the key visual skills needed by athletes in order for them to achieve higher performance in their sports. PMID:28944208

  1. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Top-down modulation from inferior frontal junction to FEFs and intraparietal sulcus during short-term memory for visual features.

    PubMed

    Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark

    2013-11-01

    Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.

  3. Developmental visual perception deficits with no indications of prosopagnosia in a child with abnormal eye movements.

    PubMed

    Gilaie-Dotan, Sharon; Doron, Ravid

    2017-06-01

    Visual categories are associated with eccentricity biases in high-order visual cortex: Faces and reading with foveally-biased regions, while common objects and space with mid- and peripherally-biased regions. As face perception and reading are among the most challenging human visual skills, and are often regarded as the peak achievements of a distributed neural network supporting common objects perception, it is unclear why objects, which also rely on foveal vision to be processed, are associated with mid-peripheral rather than with a foveal bias. Here, we studied BN, a 9 y.o. boy who has normal basic-level vision, abnormal (limited) oculomotor pursuit and saccades, and shows developmental object and contour integration deficits but with no indication of prosopagnosia. Although we cannot infer causation from the data presented here, we suggest that normal pursuit and saccades could be critical for the development of contour integration and object perception. While faces and perhaps reading, when fixated upon, take up a small portion of central visual field and require only small eye movements to be properly processed, common objects typically prevail in mid-peripheral visual field and rely on longer-distance voluntary eye movements as saccades to be brought to fixation. While retinal information feeds into early visual cortex in an eccentricity orderly manner, we hypothesize that propagation of non-foveal information to mid and high-order visual cortex critically relies on circuitry involving eye movements. Limited or atypical eye movements, as in the case of BN, may hinder normal information flow to mid-eccentricity biased high-order visual cortex, adversely affecting its development and consequently inducing visual perceptual deficits predominantly for categories associated with these regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Upright face-preferential high-gamma responses in lower-order visual areas: evidence from intracranial recordings in children

    PubMed Central

    Matsuzaki, Naoyuki; Schwarzlose, Rebecca F.; Nishida, Masaaki; Ofen, Noa; Asano, Eishi

    2015-01-01

    Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli. PMID:25579446

  5. Fourier analysis algorithm for the posterior corneal keratometric data: clinical usefulness in keratoconus.

    PubMed

    Sideroudi, Haris; Labiris, Georgios; Georgantzoglou, Kimon; Ntonti, Panagiota; Siganos, Charalambos; Kozobolis, Vassilios

    2017-07-01

    To develop an algorithm for the Fourier analysis of posterior corneal videokeratographic data and to evaluate the derived parameters in the diagnosis of Subclinical Keratoconus (SKC) and Keratoconus (KC). This was a cross-sectional, observational study that took place in the Eye Institute of Thrace, Democritus University, Greece. Eighty eyes formed the KC group, 55 eyes formed the SKC group while 50 normal eyes populated the control group. A self-developed algorithm in visual basic for Microsoft Excel performed a Fourier series harmonic analysis for the posterior corneal sagittal curvature data. The algorithm decomposed the obtained curvatures into a spherical component, regular astigmatism, asymmetry and higher order irregularities for averaged central 4 mm and for each individual ring separately (1, 2, 3 and 4 mm). The obtained values were evaluated for their diagnostic capacity using receiver operating curves (ROC). Logistic regression was attempted for the identification of a combined diagnostic model. Significant differences were detected in regular astigmatism, asymmetry and higher order irregularities among groups. For the SKC group, the parameters with high diagnostic ability (AUC > 90%) were the higher order irregularities, the asymmetry and the regular astigmatism, mainly in the corneal periphery. Higher predictive accuracy was identified using diagnostic models that combined the asymmetry, regular astigmatism and higher order irregularities in averaged 3and 4 mm area (AUC: 98.4%, Sensitivity: 91.7% and Specificity:100%). Fourier decomposition of posterior Keratometric data provides parameters with high accuracy in differentiating SKC from normal corneas and should be included in the prompt diagnosis of KC. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  6. Sedation of Patients With Disorders of Consciousness During Neuroimaging: Effects on Resting State Functional Brain Connectivity.

    PubMed

    Kirsch, Muriëlle; Guldenmund, Pieter; Ali Bahri, Mohamed; Demertzi, Athena; Baquero, Katherine; Heine, Lizette; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Di Perri, Carol; Ziegler, Erik; Brichant, Jean-François; Soddu, Andrea; Bonhomme, Vincent; Laureys, Steven

    2017-02-01

    To reduce head movement during resting state functional magnetic resonance imaging, post-coma patients with disorders of consciousness (DOC) are frequently sedated with propofol. However, little is known about the effects of this sedation on the brain connectivity patterns in the damaged brain essential for differential diagnosis. In this study, we aimed to assess these effects. Using resting state functional magnetic resonance imaging 3T data obtained over several years of scanning patients for diagnostic and research purposes, we employed a seed-based approach to examine resting state connectivity in higher-order (default mode, bilateral external control, and salience) and lower-order (auditory, sensorimotor, and visual) resting state networks and connectivity with the thalamus, in 20 healthy unsedated controls, 8 unsedated patients with DOC, and 8 patients with DOC sedated with propofol. The DOC groups were matched for age at onset, etiology, time spent in DOC, diagnosis, standardized behavioral assessment scores, movement intensities, and pattern of structural brain injury (as assessed with T1-based voxel-based morphometry). DOC were associated with severely impaired resting state network connectivity in all but the visual network. Thalamic connectivity to higher-order network regions was also reduced. Propofol administration to patients was associated with minor further decreases in thalamic and insular connectivity. Our findings indicate that connectivity decreases associated with propofol sedation, involving the thalamus and insula, are relatively small compared with those already caused by DOC-associated structural brain injury. Nonetheless, given the known importance of the thalamus in brain arousal, its disruption could well reflect the diminished movement obtained in these patients. However, more research is needed on this topic to fully address the research question.

  7. Aspheric photorefractive keratectomy for myopia and myopic astigmatism with the SCHWIND AMARIS laser: 2 years postoperative outcomes

    PubMed Central

    Aslanides, Ioannis M.; Padroni, Sara; Arba-Mosquera, Samuel

    2012-01-01

    Purpose To evaluate mid-term refractive outcomes and higher order aberrations of aspheric PRK for low, moderate and high myopia and myopic astigmatism with the AMARIS excimer laser system (SCHWIND eye-tech-solutions GmbH, Kleinostheim, Germany). Methods This prospective longitudinal study evaluated 80 eyes of 40 subjects who underwent aspheric PRK. Manifest refractive spherical equivalent (MRSE) of up to −10.00 diopters (D) at the spectacle plane with cylinder up to 3.25 was treated. Refractive outcomes and corneal wavefront data (6 mm pupil to the 7th Zernike order) were evaluated out to 2 years postoperatively. Statistical significance was indicated by P < 0.05. Results The mean manifest spherical equivalent refraction (MRSE) was −4.77 ± 2.45 (range, −10.00 D to −0.75 D) preoperatively and −0.12 ± 0.35 D (range, −1.87 D to +0.75 D) postoperatively (P < 0.0001). Postoperatively, 91% (73/80) of eyes had an MRSE within ±0.50 D of the attempted. No eyes lost one or more lines of corrected distance visual acuity (CDVA) and CDVA increased by one or more lines in 26% (21/80) of eyes. Corneal trefoil and corneal higher order aberration root mean square did not statistically change postoperatively compared to preoperatively (P > 0.05, both cases). There was a statistical increase in postoperative coma (+0.12 μm) and spherical aberration (+0.14 μm) compared to preoperatively (P < 0.001, both cases). Conclusion Aspheric PRK provides excellent visual and refractive outcomes with induction in individual corneal aberrations but not overall corneal aberrations.

  8. A prospective, contralateral eye study comparing thin-flap LASIK (sub-Bowman keratomileusis) with photorefractive keratectomy.

    PubMed

    Slade, Stephen G; Durrie, Daniel S; Binder, Perry S

    2009-06-01

    To determine the differences in the visual results, pain response, biomechanical effect, quality of vision, and higher-order aberrations, among other parameters, in eyes undergoing either photorefractive keratectomy (PRK) or thin-flap LASIK/sub-Bowman keratomileusis (SBK; intended flap thickness of +/-100 microm and 8.5-mm diameter) at 1, 3, and 6 months after surgery. A contralateral eye pilot study. Fifty patients (100 eyes) were enrolled at 2 sites. The mean preoperative spherical refraction was -3.66 diopters (D) and the mean cylinder was -0.66 D for all eyes. Eyes in the PRK group underwent 8.5-mm ethanol-assisted PRK, whereas in eyes in the SBK group, an 8.5-mm, (intended) 100-microm flap was created with a 60-kHz IntraLase femtosecond laser (Advanced Medical Optics, Santa Ana, CA). All eyes underwent a customized laser ablation using an Alcon LADARVision 4000 CustomCornea excimer laser (Alcon Laboratories, Fort Worth, TX). Preoperative and postoperative tests included best spectacle-corrected visual acuity, uncorrected visual acuity (UCVA), corneal topography, wavefront aberrometry, retinal image quality, and contrast sensitivity. Patients completed subjective questionnaires at each visit. One- and 3-month UCVA results showed a statistically significant difference: SBK, 88% 20/20 or better vs. 48% 20/20 or better for PRK. At 6 months, UCVA was 94% 20/20 or better for PRK and 92% for SBK. At 1 and 3 months, the SBK group had lower higher-order aberrations (coma and spherical aberration; P

  9. Short Term Reproducibility of a High Contrast 3-D Isotropic Optic Nerve Imaging Sequence in Healthy Controls.

    PubMed

    Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A

    2016-02-27

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  10. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    NASA Astrophysics Data System (ADS)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  11. Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2011-09-01

    To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Higher-order aberrations of lenticular opacities.

    PubMed

    Sachdev, Nisha; Ormonde, Susan E; Sherwin, Trevor; McGhee, Charles N J

    2004-08-01

    To measure and quantify higher-order aberrations induced by different types of lenticular opacities. Department of Ophthalmology, University of Auckland, and Department of Ophthalmology, Auckland Public Hospital, Auckland, New Zealand. Patients with lenticular opacities were recruited from outpatient clinics of a major tertiary referral center for ophthalmology. Patients were included if they had clinically evident, mild to moderate lenticular opacity with no coexisting ocular pathology. Patients were examined using standard preoperative techniques with additional assessment by wavefront aberrometry (Zywave, Bausch & Lomb) and Scheimpflug photography (EAS-1000, Nidek). For comparison, 20 eyes of 10 subjects with no lenticular opacity (control group) were recruited and assessed in an identical manner. Thirty persons were recruited and 40 eyes assessed, 20 with lenticular opacities. Ten eyes had predominantly cortical opacification, and 10 had mainly nuclear opacification. In eyes with predominantly cortical opacification, the mean logMAR uncorrected visual acuity (UCVA) was 0.5 +/- 0.2 (SD) (6/18 Snellen equivalent) and the mean logMAR best spectacle-corrected visual acuity (BSCVA), 0.2 +/- 0.2 (6/9). Analysis of aberrometry data for a 6.0 mm pupil in this group revealed an increase in coma of cosine phase (Z(3), P =.06) and tetrafoil of cosine phase (Z(4), P =.07) compared to eyes in the control group. Eyes with predominantly nuclear opacification had a mean logMAR UCVA of 0.7 +/- 0.2 (6/30) and a logMAR BSCVA of 0.4 +/- 0.2 (6/15). Aberrometry data for this cohort for a 6.0 mm pupil showed a statistically greater amount of spherical aberration (Z(4)(0), P =.001) and tetrafoil of cosine phase (Z(4), P =.005; Z(4)(-4), P =.004). This pilot study suggests that different types of early lenticular opacities induce different wavefront aberration profiles. Predominantly cortical opacification produced an increase in coma and nuclear opacification induced an increase in spherical aberration compared to eyes without opacities. Both types of lenticular opacities also induced a higher amount of tetrafoil. This could explain the significant visual symptoms in patients with early cataract and relatively good high-contrast Snellen acuity.

  13. 3D T2-weighted and Gd-EOB-DTPA-enhanced 3D T1-weighted MR cholangiography for evaluation of biliary anatomy in living liver donors.

    PubMed

    Cai, Larry; Yeh, Benjamin M; Westphalen, Antonio C; Roberts, John; Wang, Zhen J

    2017-03-01

    To investigate whether the addition of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced 3D T1-weighted MR cholangiography (T1w-MRC) to 3D T2-weighted MRC (T2w-MRC) improves the confidence and diagnostic accuracy of biliary anatomy in living liver donors. Two abdominal radiologists retrospectively and independently reviewed pre-operative MR studies in 58 consecutive living liver donors. The second-order bile duct visualization on T1w- and T2w-MRC images was rated on a 4-point scale. The readers also independently recorded the biliary anatomy and their diagnostic confidence using (1) combined T1w- and T2w-MRC, and (2) T2w-MRC. In the 23 right lobe donors, the biliary anatomy at imaging and the imaging-predicted number of duct orifices at surgery were compared to intra-operative findings. T1w-MRC had a higher proportion of excellent visualization than T2w-MRC, 66% vs. 45% for reader 1 and 60% vs. 31% for reader 2. The median confidence score for biliary anatomy diagnosis was significantly higher with combined T1w- and T2w-MRC than T2w-MRC alone for both readers (Reader 1: 3 vs. 2, p < 0.001; Reader 2: 3 vs. 1, p < 0.001). Compared to intra-operative findings, the accuracy of imaging-predicted number of duct orifices using combined T1w-and T2w-MRC was significantly higher than that using T2w-MRC alone (p = 0.034 for reader 1, p = 0.0082 for reader 2). The addition of Gd-EOB-DTPA-enhanced 3D T1w-MRC to 3D T2w-MRC improves second-order bile duct visualization and increases the confidence in biliary anatomy diagnosis and the accuracy in the imaging-predicted number of duct orifices acquired during right lobe harvesting.

  14. Implications of differences of echoic and iconic memory for the design of multimodal displays

    NASA Astrophysics Data System (ADS)

    Glaser, Daniel Shields

    It has been well documented that dual-task performance is more accurate when each task is based on a different sensory modality. It is also well documented that the memory for each sense has unequal durations, particularly visual (iconic) and auditory (echoic) sensory memory. In this dissertation I address whether differences in sensory memory (e.g. iconic vs. echoic) duration have implications for the design of a multimodal display. Since echoic memory persists for seconds in contrast to iconic memory which persists only for milliseconds, one of my hypotheses was that in a visual-auditory dual task condition, performance will be better if the visual task is completed before the auditory task than vice versa. In Experiment 1 I investigated whether the ability to recall multi-modal stimuli is affected by recall order, with each mode being responded to separately. In Experiment 2, I investigated the effects of stimulus order and recall order on the ability to recall information from a multi-modal presentation. In Experiment 3 I investigated the effect of presentation order using a more realistic task. In Experiment 4 I investigated whether manipulating the presentation order of stimuli of different modalities improves humans' ability to combine the information from the two modalities in order to make decision based on pre-learned rules. As hypothesized, accuracy was greater when visual stimuli were responded to first and auditory stimuli second. Also as hypothesized, performance was improved by not presenting both sequences at the same time, limiting the perceptual load. Contrary to my expectations, overall performance was better when a visual sequence was presented before the audio sequence. Though presenting a visual sequence prior to an auditory sequence lengthens the visual retention interval, it also provides time for visual information to be recoded to a more robust form without disruption. Experiment 4 demonstrated that decision making requiring the integration of visual and auditory information is enhanced by reducing workload and promoting a strategic use of echoic memory. A framework for predicting Experiment 1-4 results is proposed and evaluated.

  15. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    PubMed Central

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444

  16. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    PubMed

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.

  17. Alcohol consumption and visual impairment in a rural Northern Chinese population.

    PubMed

    Li, Zhijian; Xu, Keke; Wu, Shubin; Sun, Ying; Song, Zhen; Jin, Di; Liu, Ping

    2014-12-01

    To investigate alcohol drinking status and the association between drinking patterns and visual impairment in an adult population in northern China. Cluster sampling was used to select samples. The protocol consisted of an interview, pilot study, visual acuity (VA) testing and a clinical examination. Visual impairment was defined as presenting VA worse than 20/60 in any eye. Drinking patterns included drinking quantity (standard drinks per week) and frequency (drinking days in the past week). Information on alcohol consumption was obtained from 8445 subjects, 963 (11.4%) of whom reported consuming alcohol. In multivariate analysis, alcohol consumption was significantly associated with older age (p < 0.001), male sex (p < 0.001), and higher education level (p < 0.01). Heavy intake (>14 drinks/week) was associated with higher odds of visual impairment. However, moderate intake (>1-14 drinks/week) was significantly associated with lower odds (adjusted odds ratio, OR, 0.7, 95% confidence interval, CI, 0.5-1.0) of visual impairment (p = 0.03). Higher drinking frequency was significantly associated with higher odds of visual impairment. Multivariate analysis showed that older age, male sex, and higher education level were associated with visual impairment among current drinkers. Age- and sex-adjusted ORs for the association of cataract and alcohol intake showed that higher alcohol consumption was not significantly associated with an increased prevalence of cataract (OR 1.2, 95% CI 0.4-3.6), whereas light and moderate alcohol consumption appeared to reduce incidence of cataract. Drinking patterns were associated with visual impairment. Heavy intake had negative effects on distance vision; meanwhile, moderate intake had a positive effect on distance vision.

  18. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer.

    PubMed

    Ashtiani, Matin N; Kheradpisheh, Saeed R; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the "entry" level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal advantage of the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to the computational constraints (the visual system processes higher spatial frequencies more slowly, and categorization in finer levels depends more on these higher spatial frequencies).

  19. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer

    PubMed Central

    Ashtiani, Matin N.; Kheradpisheh, Saeed R.; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the “entry” level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal advantage of the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to the computational constraints (the visual system processes higher spatial frequencies more slowly, and categorization in finer levels depends more on these higher spatial frequencies). PMID:28790954

  20. Recognition of Risk Information - Adaptation of J. Bertin's Orderable Matrix for social communication

    NASA Astrophysics Data System (ADS)

    Ishida, Keiichi

    2018-05-01

    This paper aims to show capability of the Orderable Matrix of Jacques Bertin which is a visualization method of data analyze and/or a method to recognize data. That matrix can show the data by replacing numbers to visual element. As an example, using a set of data regarding natural hazard rankings for certain metropolitan cities in the world, this paper describes how the Orderable Matrix handles the data set and show characteristic factors of this data to understand it. Not only to see a kind of risk ranking of cities, the Orderable Matrix shows how differently danger concerned cities ones and others are. Furthermore, we will see that the visualized data by Orderable Matrix allows us to see the characteristics of the data set comprehensively and instantaneously.

  1. Is the straddle effect in contrast perception limited to second-order spatial vision?

    PubMed Central

    Graham, Norma V.; Wolfson, S. Sabina

    2018-01-01

    Previous work on the straddle effect in contrast perception (Foley, 2011; Graham & Wolfson, 2007; Wolfson & Graham, 2007, 2009) has used visual patterns and observer tasks of the type known as spatially second-order. After adaptation of about 1 s to a grid of Gabor patches all at one contrast, a second-order test pattern composed of two different test contrasts can be easy or difficult to perceive correctly. When the two test contrasts are both a bit less (or both a bit greater) than the adapt contrast, observers perform very well. However, when the two test contrasts straddle the adapt contrast (i.e., one of the test contrasts is greater than the adapt contrast and the other is less), performance drops dramatically. To explain this drop in performance—the straddle effect—we have suggested a contrast-comparison process. We began to wonder: Are second-order patterns necessary for the straddle effect? Here we show that the answer is “no”. We demonstrate the straddle effect using spatially first-order visual patterns and several different observer tasks. We also see the effect of contrast normalization using first-order visual patterns here, analogous to our prior findings with second-order visual patterns. We did find one difference between first- and second-order tasks: Performance in the first-order tasks was slightly lower. This slightly lower performance may be due to slightly greater memory load. For many visual scenes, the important quantity in human contrast processing may not be monotonic with physical contrast but may be something more like the unsigned difference between current contrast and recent average contrast. PMID:29904790

  2. Functional Magnetic Resonance Imaging to Assess the Neurobehavioral Impact of Dysphotopsia with Multifocal Intraocular Lenses.

    PubMed

    Rosa, Andreia M; Miranda, Ângela C; Patrício, Miguel; McAlinden, Colm; Silva, Fátima L; Murta, Joaquim N; Castelo-Branco, Miguel

    2017-09-01

    To investigate the association between dysphotopsia and neural responses in visual and higher-level cortical regions in patients who recently received multifocal intraocular lens (IOL) implants. Cross-sectional study. Thirty patients 3 to 4 weeks after bilateral cataract surgery with diffractive IOL implantation and 15 age- and gender-matched control subjects. Functional magnetic resonance imaging (fMRI) was performed when participants viewed low-contrast grating stimuli. A light source surrounded the stimuli in half of the runs to induce disability glare. Visual acuity, wavefront analysis, Quality of Vision (QoV) questionnaire, and psychophysical assessment were performed. Cortical activity (blood oxygen level dependent [BOLD] signal) in the primary visual cortex and in higher-level brain areas, including the attention network. When viewing low-contrast stimuli under glare, patients showed significant activation of the effort-related attention network in the early postoperative period, involving the frontal, middle frontal, parietal frontal, and postcentral gyrus (multisubject random-effects general linear model (GLM), P < 0.03). In contrast, controls showed only relative deactivation (due to lower visibility) of visual areas (occipital lobe and middle occipital gyrus, P < 0.03). Patients also had relatively stronger recruitment of cortical areas involved in learning (anterior cingulate gyrus), task planning, and solving (caudate body). Patients reporting greater symptoms induced by dysphotic symptoms showed significantly increased activity in several regions in frontoparietal circuits, as well as cingulate gyrus and caudate nucleus (q < 0.05). We found no correlation between QoV questionnaire scores and optical properties (total and higher order aberration, modulation transfer function, and Strehl ratio). This study shows the association between patient-reported subjective difficulties and fMRI outcomes, independent of optical parameters and psychophysical performance. The increased activity of cortical areas dedicated to attention (frontoparietal circuits), to learning and cognitive control (cingulate), and to task goals (caudate) likely represents the beginning of the neuroadaptation process to multifocal IOLs. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Using an Iterative Fourier Series Approach in Determining Orbital Elements of Detached Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2007-12-01

    We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.

  4. The hippocampus and visual perception

    PubMed Central

    Lee, Andy C. H.; Yeung, Lok-Kin; Barense, Morgan D.

    2012-01-01

    In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe (MTL). Instead, these studies point toward a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates. PMID:22529794

  5. Visual mismatch negativity and categorization.

    PubMed

    Czigler, István

    2014-07-01

    Visual mismatch negativity (vMMN) component of event-related potentials is elicited by stimuli violating the category rule of stimulus sequences, even if such stimuli are outside the focus of attention. Category-related vMMN emerges to colors, and color-related vMMN is sensitive to language-related effects. A higher-order perceptual category, bilateral symmetry is also represented in the memory processes underlying vMMN. As a relatively large body of research shows, violating the emotional category of human faces elicits vMMN. Another face-related category sensitive to the violation of regular presentation is gender. Finally, vMMN was elicited to the laterality of hands. As results on category-related vMMN show, stimulus representation in the non-conscious change detection system is fairly complex, and it is not restricted to the registration of elementary perceptual regularities.

  6. Visualization and Quality Control Web Tools for CERES Products

    NASA Astrophysics Data System (ADS)

    Mitrescu, C.; Doelling, D.; Chu, C.; Mlynczak, P.

    2014-12-01

    The CERES project continues to provide the scientific community a wide variety of satellite-derived data products. The flagship products TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. These datasets encompass a wide range of temporal and spatial resolutions, suited to specific applications. We thus offer time resolutions that range from instantaneous to monthly means, with spatial resolutions that range from 20-km footprint to global scales. The 14-year record is mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. CERES products are also used by the remote sensing community for their climatological studies. In the last years however, our CERES products had been used by an even broader audience, like the green energy, health and environmental research communities, and others. Because of that, the CERES project has implemented a now well-established web-oriented Ordering and Visualization Tool (OVT), which is well into its fifth year of development. In order to help facilitate a comprehensive quality control of CERES products, the OVT Team began introducing a series of specialized functions. These include the 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and other specialized scientific application capabilities. Over time increasingly higher order temporal and spatial resolution products are being made available to the public through the CERES OVT. These high-resolution products require accessing the existing long-term archive - thus the reading of many very large netCDF or HDF files that pose a real challenge to the task of near instantaneous visualization. An overview of the CERES OVT basic functions and QC capabilities as well as future steps in expanding its capabilities will be presented at the meeting.

  7. Higher-order scene statistics of breast images

    NASA Astrophysics Data System (ADS)

    Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.

    2009-02-01

    Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.

  8. Top-down signal transmission and global hyperconnectivity in auditory-visual synesthesia: Evidence from a functional EEG resting-state study.

    PubMed

    Brauchli, Christian; Elmer, Stefan; Rogenmoser, Lars; Burkhard, Anja; Jäncke, Lutz

    2018-01-01

    Auditory-visual (AV) synesthesia is a rare phenomenon in which an auditory stimulus induces a "concurrent" color sensation. Current neurophysiological models of synesthesia mainly hypothesize "hyperconnected" and "hyperactivated" brains, but differ in the directionality of signal transmission. The two-stage model proposes bottom-up signal transmission from inducer- to concurrent- to higher-order brain areas, whereas the disinhibited feedback model postulates top-down signal transmission from inducer- to higher-order- to concurrent brain areas. To test the different models of synesthesia, we estimated local current density, directed and undirected connectivity patterns in the intracranial space during 2 min of resting-state (RS) EEG in 11 AV synesthetes and 11 nonsynesthetes. AV synesthetes demonstrated increased parietal theta, alpha, and lower beta current density compared to nonsynesthetes. Furthermore, AV synesthetes were characterized by increased top-down signal transmission from the superior parietal lobe to the left color processing area V4 in the upper beta frequency band. Analyses of undirected connectivity revealed a global, synesthesia-specific hyperconnectivity in the alpha frequency band. The involvement of the superior parietal lobe even during rest is a strong indicator for its key role in AV synesthesia. By demonstrating top-down signal transmission in AV synesthetes, we provide direct support for the disinhibited feedback model of synesthesia. Finally, we suggest that synesthesia is a consequence of global hyperconnectivity. Hum Brain Mapp 39:522-531, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Detecting effects of donepezil on visual selective attention using signal detection parameters in Alzheimer's disease.

    PubMed

    Foldi, Nancy S; White, Richard E C; Schaefer, Lynn A

    2005-05-01

    Attentional function is impaired in Alzheimer's disease (AD). Moreover, attention is mediated by acetylcholine. But, despite the widespread use of acetylcholinesterase inhibitors (AChE-I) to augment available acetylcholine in AD, measures of attentional function have not been used to assess the drug response. We hypothesized that as cholinergic augmentation impacts directly on the attentional system, higher-order measures of visual selective attention would be sensitive to effects of treatment using an AChE-I (donepezil hydrochloride). We also sought to determine whether these attentional measures were more sensitive to treatment than other measures of cognitive function. Seventeen patients with AD (8 untreated, 9 treated with donepezil) were contrasted on performance of a selective cancellation task. Two signal detection parameters were used as outcome measures: decision strategy (beta, beta) and discriminability (d-prime, d'). Standard screening and cognitive domain measures of vigilance, language, memory, and executive function were also contrasted. Treated patients judged stimuli more conservatively (p = 0.29) by correctly endorsing targets and rejecting false alarms. They also discriminated targets from distractors more easily (p = 0.58). The screening and neuropsychological measures failed to differentiate the groups. Higher-order attentional measures captured the effects of donepezil treatment in small groups of patients with AD. The results suggest that cholinergic availability may directly affect the attentional system, and that these selective attention measures are sensitive markers to detect treatment response. Copyright 2005 John Wiley & Sons, Ltd.

  10. Conscious Vision Proceeds from Global to Local Content in Goal-Directed Tasks and Spontaneous Vision.

    PubMed

    Campana, Florence; Rebollo, Ignacio; Urai, Anne; Wyart, Valentin; Tallon-Baudry, Catherine

    2016-05-11

    The reverse hierarchy theory (Hochstein and Ahissar, 2002) makes strong, but so far untested, predictions on conscious vision. In this theory, local details encoded in lower-order visual areas are unconsciously processed before being automatically and rapidly combined into global information in higher-order visual areas, where conscious percepts emerge. Contingent on current goals, local details can afterward be consciously retrieved. This model therefore predicts that (1) global information is perceived faster than local details, (2) global information is computed regardless of task demands during early visual processing, and (3) spontaneous vision is dominated by global percepts. We designed novel textured stimuli that are, as opposed to the classic Navon's letters, truly hierarchical (i.e., where global information is solely defined by local information but where local and global orientations can still be manipulated separately). In line with the predictions, observers were systematically faster reporting global than local properties of those stimuli. Second, global information could be decoded from magneto-encephalographic data during early visual processing regardless of task demands. Last, spontaneous subjective reports were dominated by global information and the frequency and speed of spontaneous global perception correlated with the accuracy and speed in the global task. No such correlation was observed for local information. We therefore show that information at different levels of the visual hierarchy is not equally likely to become conscious; rather, conscious percepts emerge preferentially at a global level. We further show that spontaneous reports can be reliable and are tightly linked to objective performance at the global level. Is information encoded at different levels of the visual system (local details in low-level areas vs global shapes in high-level areas) equally likely to become conscious? We designed new hierarchical stimuli and provide the first empirical evidence based on behavioral and MEG data that global information encoded at high levels of the visual hierarchy dominates perception. This result held both in the presence and in the absence of task demands. The preferential emergence of percepts at high levels can account for two properties of conscious vision, namely, the dominance of global percepts and the feeling of visual richness reported independently of the perception of local details. Copyright © 2016 the authors 0270-6474/16/365200-14$15.00/0.

  11. Visual training improves perceptual grouping based on basic stimulus features.

    PubMed

    Kurylo, Daniel D; Waxman, Richard; Kidron, Rachel; Silverstein, Steven M

    2017-10-01

    Training on visual tasks improves performance on basic and higher order visual capacities. Such improvement has been linked to changes in connectivity among mediating neurons. We investigated whether training effects occur for perceptual grouping. It was hypothesized that repeated engagement of integration mechanisms would enhance grouping processes. Thirty-six participants underwent 15 sessions of training on a visual discrimination task that required perceptual grouping. Participants viewed 20 × 20 arrays of dots or Gabor patches and indicated whether the array appeared grouped as vertical or horizontal lines. Across trials stimuli became progressively disorganized, contingent upon successful discrimination. Four visual dimensions were examined, in which grouping was based on similarity in luminance, color, orientation, and motion. Psychophysical thresholds of grouping were assessed before and after training. Results indicate that performance in all four dimensions improved with training. Training on a control condition, which paralleled the discrimination task but without a grouping component, produced no improvement. In addition, training on only the luminance and orientation dimensions improved performance for those conditions as well as for grouping by color, on which training had not occurred. However, improvement from partial training did not generalize to motion. Results demonstrate that a training protocol emphasizing stimulus integration enhanced perceptual grouping. Results suggest that neural mechanisms mediating grouping by common luminance and/or orientation contribute to those mediating grouping by color but do not share resources for grouping by common motion. Results are consistent with theories of perceptual learning emphasizing plasticity in early visual processing regions.

  12. A Sensemaking Visualization Tool with Military Doctrinal Elements

    DTIC Science & Technology

    2008-06-01

    LeadUnderstand CDR / Staff ART / Science In short, we need to develop an integrated approach for the understanding (framing) and visualizing, describing...directing, assessing, and reframing of unified operations. Staff Running Estimates t ff i i Visualize CDR / Staff ART / Science •Planning guidance...Planning guidance •Cdr ’s Intent Describe CDR / Staff ART / Science •Plans & Orders •Preparation •Plans & Orders •Preparation •Execution WF

  13. Higher integrity of the motor and visual pathways in long-term video game players.

    PubMed

    Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.

  14. Higher integrity of the motor and visual pathways in long-term video game players

    PubMed Central

    Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance. PMID:25805981

  15. Differentiating Visual from Response Sequencing during Long-term Skill Learning.

    PubMed

    Lynch, Brighid; Beukema, Patrick; Verstynen, Timothy

    2017-01-01

    The dual-system model of sequence learning posits that during early learning there is an advantage for encoding sequences in sensory frames; however, it remains unclear whether this advantage extends to long-term consolidation. Using the serial RT task, we set out to distinguish the dynamics of learning sequential orders of visual cues from learning sequential responses. On each day, most participants learned a new mapping between a set of symbolic cues and responses made with one of four fingers, after which they were exposed to trial blocks of either randomly ordered cues or deterministic ordered cues (12-item sequence). Participants were randomly assigned to one of four groups (n = 15 per group): Visual sequences (same sequence of visual cues across training days), Response sequences (same order of key presses across training days), Combined (same serial order of cues and responses on all training days), and a Control group (a novel sequence each training day). Across 5 days of training, sequence-specific measures of response speed and accuracy improved faster in the Visual group than any of the other three groups, despite no group differences in explicit awareness of the sequence. The two groups that were exposed to the same visual sequence across days showed a marginal improvement in response binding that was not found in the other groups. These results indicate that there is an advantage, in terms of rate of consolidation across multiple days of training, for learning sequences of actions in a sensory representational space, rather than as motoric representations.

  16. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  17. Visual hallucinations are associated with hyperconnectivity between the amygdala and visual cortex in people with a diagnosis of schizophrenia.

    PubMed

    Ford, Judith M; Palzes, Vanessa A; Roach, Brian J; Potkin, Steven G; van Erp, Theo G M; Turner, Jessica A; Mueller, Bryon A; Calhoun, Vincent D; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G; Preda, Adrian; McEwen, Sarah C; Mathalon, Daniel H

    2015-01-01

    While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Visual Hallucinations Are Associated With Hyperconnectivity Between the Amygdala and Visual Cortex in People With a Diagnosis of Schizophrenia

    PubMed Central

    Ford, Judith M.; Palzes, Vanessa A.; Roach, Brian J.; Potkin, Steven G.; van Erp, Theo G. M.; Turner, Jessica A.; Mueller, Bryon A.; Calhoun, Vincent D.; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G.; Preda, Adrian; McEwen, Sarah C.; Mathalon, Daniel H.

    2015-01-01

    Introduction: While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. Methods: We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Results: Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. Conclusions: VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. PMID:24619536

  19. Detecting delay in visual feedback of an action as a monitor of self recognition.

    PubMed

    Hoover, Adria E N; Harris, Laurence R

    2012-10-01

    How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.

  20. Neuromorphic VLSI vision system for real-time texture segregation.

    PubMed

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  1. Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret.

    PubMed

    Yu, Chunxiu; Sellers, Kristin K; Radtke-Schuller, Susanne; Lu, Jinghao; Xing, Lei; Ghukasyan, Vladimir; Li, Yuhui; Shih, Yen-Yu I; Murrow, Richard; Fröhlich, Flavio

    2016-01-01

    The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior (LP)-pulvinar complex and its structural and functional connectivity with area 17 [primary visual cortex (V1)]. We found reciprocal anatomical connections between the lateral part of the LP nucleus of the LP-pulvinar complex (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and the supragranular, granular and infragranular layers of V1 by recording multiunit activity and local field potentials. Coherence was strongest between LPl and the supragranular V1, with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band being dominated by the infragranular V1 and multiple frequency bands that were most pronounced in the supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from those in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between LPl and the layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behaviour, and a template for identifying the activity dynamics of other thalamo-cortical feedback loops. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. The role of cognitive and visual abilities as predictors in the Multifactorial Model of Driving Safety.

    PubMed

    Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher

    2012-03-01

    The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The Attentional Field Revealed by Single-Voxel Modeling of fMRI Time Courses

    PubMed Central

    DeYoe, Edgar A.

    2015-01-01

    The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospatial attention from single-voxel, fMRI time courses. Briefly, this technique involves first estimating a voxel's population receptive field (pRF) and then “drifting” attention through the pRF such that the modulation of the voxel's fMRI time course reflects the spatial topography of attention. The topography of the attentional field (AF) is then estimated using a time-course modeling procedure. Notably, we are able to make these measurements in many visual areas including smaller, higher order areas, thus enabling a more comprehensive comparison of attentional mechanisms throughout the full hierarchy of human visual cortex. Using this technique, we show that the AF scales with eccentricity and varies across visual areas. We also show that voxels in multiple visual areas exhibit suppressive attentional effects that are well modeled by an AF having an enhancing Gaussian center with a suppressive surround. These findings provide extensive, quantitative neurophysiological data for use in modeling the psychological effects of visuospatial attention. PMID:25810532

  4. The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds

    PubMed Central

    Martin, Graham R.

    2014-01-01

    Birds show interspecific variation both in the size of the fields of individual eyes and in the ways that these fields are brought together to produce the total visual field. Variation is found in the dimensions of all main parameters: binocular region, cyclopean field and blind areas. There is a phylogenetic signal with respect to maximum width of the binocular field in that passerine species have significantly broader field widths than non-passerines; broadest fields are found among crows (Corvidae). Among non-passerines, visual fields show considerable variation within families and even within some genera. It is argued that (i) the main drivers of differences in visual fields are associated with perceptual challenges that arise through different modes of foraging, and (ii) the primary function of binocularity in birds lies in the control of bill position rather than in the control of locomotion. The informational function of binocular vision does not lie in binocularity per se (two eyes receiving slightly different information simultaneously about the same objects from which higher-order depth information is extracted), but in the contralateral projection of the visual field of each eye. Contralateral projection ensures that each eye receives information from a symmetrically expanding optic flow-field from which direction of travel and time to contact targets can be extracted, particularly with respect to the control of bill position. PMID:24395967

  5. The role of the human pulvinar in visual attention and action: evidence from temporal-order judgment, saccade decision, and antisaccade tasks.

    PubMed

    Arend, Isabel; Machado, Liana; Ward, Robert; McGrath, Michelle; Ro, Tony; Rafal, Robert D

    2008-01-01

    The pulvinar nucleus of the thalamus has been considered as a key structure for visual attention functions (Grieve, K.L. et al. (2000). Trends Neurosci., 23: 35-39; Shipp, S. (2003). Philos. Trans. R. Soc. Lond. B Biol. Sci., 358(1438): 1605-1624). During the past several years, we have studied the role of the human pulvinar in visual attention and oculomotor behaviour by testing a small group of patients with unilateral pulvinar lesions. Here we summarize some of these findings, and present new evidence for the role of this structure in both eye movements and visual attention through two versions of a temporal-order judgment task and an antisaccade task. Pulvinar damage induces an ipsilesional bias in perceptual temporal-order judgments and in saccadic decision, and also increases the latency of antisaccades away from contralesional targets. The demonstration that pulvinar damage affects both attention and oculomotor behaviour highlights the role of this structure in the integration of visual and oculomotor signals and, more generally, its role in flexibly linking visual stimuli with context-specific motor responses.

  6. Gender-specific effects of emotional modulation on visual temporal order thresholds.

    PubMed

    Liang, Wei; Zhang, Jiyuan; Bao, Yan

    2015-09-01

    Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.

  7. Visualization of medical data based on EHR standards.

    PubMed

    Kopanitsa, G; Hildebrand, C; Stausberg, J; Englmeier, K H

    2013-01-01

    To organize an efficient interaction between a doctor and an EHR the data has to be presented in the most convenient way. Medical data presentation methods and models must be flexible in order to cover the needs of the users with different backgrounds and requirements. Most visualization methods are doctor oriented, however, there are indications that the involvement of patients can optimize healthcare. The research aims at specifying the state of the art of medical data visualization. The paper analyzes a number of projects and defines requirements for a generic ISO 13606 based data visualization method. In order to do so it starts with a systematic search for studies on EHR user interfaces. In order to identify best practices visualization methods were evaluated according to the following criteria: limits of application, customizability, re-usability. The visualization methods were compared by using specified criteria. The review showed that the analyzed projects can contribute knowledge to the development of a generic visualization method. However, none of them proposed a model that meets all the necessary criteria for a re-usable standard based visualization method. The shortcomings were mostly related to the structure of current medical concept specifications. The analysis showed that medical data visualization methods use hardcoded GUI, which gives little flexibility. So medical data visualization has to turn from a hardcoded user interface to generic methods. This requires a great effort because current standards are not suitable for organizing the management of visualization data. This contradiction between a generic method and a flexible and user-friendly data layout has to be overcome.

  8. Identifying Functional Neighborhoods within the Cell Nucleus: Proximity Analysis of Early S-Phase Replicating Chromatin Domains to Sites of Transcription, RNA Polymerase II, HP1γ, Matrin 3 and SAF-A

    PubMed Central

    Malyavantham, Kishore S; Bhattacharya, Sambit; Barbeitos, Marcos; Mukherjee, Lopamudra; Xu, Jinhui; Fackelmayer, Frank O; Berezney, Ronald

    2009-01-01

    Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1γ, nascent transcript sites (TS), active DNA replicating sites in early S phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture. PMID:18618731

  9. Visions of visualization aids: Design philosophy and experimental results

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1990-01-01

    Aids for the visualization of high-dimensional scientific or other data must be designed. Simply casting multidimensional data into a two- or three-dimensional spatial metaphor does not guarantee that the presentation will provide insight or parsimonious description of the phenomena underlying the data. Indeed, the communication of the essential meaning of some multidimensional data may be obscured by presentation in a spatially distributed format. Useful visualization is generally based on pre-existing theoretical beliefs concerning the underlying phenomena which guide selection and formatting of the plotted variables. Two examples from chaotic dynamics are used to illustrate how a visulaization may be an aid to insight. Two examples of displays to aid spatial maneuvering are described. The first, a perspective format for a commercial air traffic display, illustrates how geometric distortion may be introduced to insure that an operator can understand a depicted three-dimensional situation. The second, a display for planning small spacecraft maneuvers, illustrates how the complex counterintuitive character of orbital maneuvering may be made more tractable by removing higher-order nonlinear control dynamics, and allowing independent satisfaction of velocity and plume impingement constraints on orbital changes.

  10. Transcranial focused ultrasound stimulation of human primary visual cortex

    NASA Astrophysics Data System (ADS)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  11. Enhanced and bilateralized visual sensory processing in the ventral stream may be a feature of normal aging.

    PubMed

    De Sanctis, Pierfilippo; Katz, Richard; Wylie, Glenn R; Sehatpour, Pejman; Alexopoulos, George S; Foxe, John J

    2008-10-01

    Evidence has emerged for age-related amplification of basic sensory processing indexed by early components of the visual evoked potential (VEP). However, since these age-related effects have been incidental to the main focus of these studies, it is unclear whether they are performance dependent or alternately, represent intrinsic sensory processing changes. High-density VEPs were acquired from 19 healthy elderly and 15 young control participants who viewed alphanumeric stimuli in the absence of any active task. The data show both enhanced and delayed neural responses within structures of the ventral visual stream, with reduced hemispheric asymmetry in the elderly that may be indicative of a decline in hemispheric specialization. Additionally, considerably enhanced early frontal cortical activation was observed in the elderly, suggesting frontal hyper-activation. These age-related differences in early sensory processing are discussed in terms of recent proposals that normal aging involves large-scale compensatory reorganization. Our results suggest that such compensatory mechanisms are not restricted to later higher-order cognitive processes but may also be a feature of early sensory-perceptual processes.

  12. Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision.

    PubMed

    Cheney, Frank; Thibos, Larry; Bradley, Arthur

    2015-01-01

    We examined the effect of transverse chromatic aberration (TCA) on detection acuity for white-light interference fringes seen in Maxwellian view at various orientations and locations in the visual field. A circular patch (3.5° diameter, 3.2 log Trolands) of nominally high-contrast fringes was produced on the retina by a commercial instrument (the Lotmar Visometer, Haag Streit) mounted on a gimbal for controlled positioning of the stimulus in the visual field from 0° to 35° eccentricity. Detection acuity for white light fringes for all meridians and eccentricities ≥15° was maximum when fringes were oriented parallel to the visual meridian line. This meridional effect disappeared when a narrow-band filter was used to eliminate TCA. The meridional effect also disappeared when the interferometric stimulator was displaced laterally to align the instrument with the eye's local achromatic axis. Modelling confirmed that TCA is the major factor responsible for white-light meridional bias, with minor contribution arising from higher-order monochromatic aberrations and neural factors. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  13. Update on visual function and choroidal-retinal thickness alterations in Parkinson's disease.

    PubMed

    Obis, J; Satue, M; Alarcia, R; Pablo, L E; Garcia-Martin, E

    2018-05-01

    Parkinson's disease (PD) is a neurodegenerative process that affects 7.5 million people around the world. Since 2004, several studies have demonstrated changes in various retinal layers in PD using optical coherence tomography (OCT). However, there are some discrepancies in the results of those studies. Some of them have correlated retinal thickness with the severity or duration of the disease, demonstrating that OCT measurements may be an innocuous and easy biomarker for PD progression. Other studies have demonstrated visual dysfunctions since early phases of the disease. Lastly, the most recent studies that use Swept Source OCT technology, have found choroidal thickness increase in PD patients and provide new information related to the retinal degenerative process in this disease. The aim of this paper is to review the literature on OCT and PD, in order to determine the altered retinal and choroidal parameters in PD and their possible clinical usefulness, and also the visual dysfunctions with higher impact in these patients. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. The predictive mind and the experience of visual art work

    PubMed Central

    Kesner, Ladislav

    2014-01-01

    Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person’s mindset, which determines what top–down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art. PMID:25566111

  15. The predictive mind and the experience of visual art work.

    PubMed

    Kesner, Ladislav

    2014-01-01

    Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.

  16. Visual coding with a population of direction-selective neurons.

    PubMed

    Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas

    2015-10-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.

  17. Visual coding with a population of direction-selective neurons

    PubMed Central

    Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas

    2015-01-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471

  18. Clinical outcomes of small incision lenticule extraction versus femtosecond laser-assisted LASIK for myopia: a Meta-analysis

    PubMed Central

    Yan, Huan; Gong, Li-Yan; Huang, Wei; Peng, Yan-Li

    2017-01-01

    AIM To evaluate the possible differences in visual quality between small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK) for myopia. METHODS A Meta-analysis was performed. Patients were from previously reported comparative studies treated with SMILE versus FS-LASIK. The PubMed, EMBASE, Cochrane, Web of Science and Chinese databases (i.e. WANFANG and CNKI) were searched in Nov. of 2016 using RevMan 5.1 version software. The differences in visual acuity, aberration and biomechanical effects within six months postoperatively were showed. Twenty-seven studies including 4223 eyes were included. RESULTS No significant differences were observed between SMILE and FS-LASIK in terms of the proportion of eyes that lost one or more lines of corrected distance visual acuity after surgery (P=0.14), the proportion of eyes achieving an uncorrected distance visual acuity of 20/20 or better (P=0.43), the final refractive spherical equivalent (P=0.89), the refractive spherical equivalent within ±1.00 diopter of the target values (P=0.80), vertical coma (P=0.45) and horizontal coma (P=0.06). Compared with the FS-LASIK group, total higher-order aberration (P<0.001) and spherical aberration (P<0.001) were higher and the decrease in corneal hysteresis (P=0.0005) and corneal resistance factor (P=0.02) were lower in the SMILE group. CONCLUSION SMILE and FS-LASIK are comparable in efficacy, safety and predictability for correcting myopia. However, the aberration in the SMILE group is superior to that in the FS-LASIK group, and the loss of biomechanical effects may occur less frequently after SMILE than after FS-LASIK. PMID:28944205

  19. Influence of automatic word reading on motor control.

    PubMed

    Gentilucci, M; Gangitano, M

    1998-02-01

    We investigated the possible influence of automatic word reading on processes of visuo-motor transformation. Six subjects were required to reach and grasp a rod on whose visible face the word 'long' or 'short' was printed. Word reading was not explicitly required. In order to induce subjects to visually analyse the object trial by trial, object position and size were randomly varied during the experimental session. The kinematics of the reaching component was affected by word presentation. Peak acceleration, peak velocity, and peak deceleration of arm were higher for the word 'long' with respect to the word 'short'. That is, during the initial movement phase subjects automatically associated the meaning of the word with the distance to be covered and activated a motor program for a farther and/or nearer object position. During the final movement phase, subjects modified the braking forces (deceleration) in order to correct the initial error. No effect of the words on the grasp component was observed. These results suggest a possible influence of cognitive functions on motor control and seem to contrast with the notion that the analyses executed in the ventral and dorsal cortical visual streams are different and independent.

  20. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  1. Rapid, generalized adaptation to asynchronous audiovisual speech

    PubMed Central

    Van der Burg, Erik; Goodbourn, Patrick T.

    2015-01-01

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. PMID:25716790

  2. A novel three-dimensional tool for teaching human neuroanatomy.

    PubMed

    Estevez, Maureen E; Lindgren, Kristen A; Bergethon, Peter R

    2010-01-01

    Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first-year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color-coded physical models of the periventricular structures, while the control group re-examined 2D brain cross-sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F₁(,)₈₅ = 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ² = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Copyright © 2010 American Association of Anatomists.

  3. A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy

    PubMed Central

    Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.

    2011-01-01

    Three-dimensional (3-D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3-D neuroanatomy to first-year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2-D methods. Then, during laboratory review, the experimental group constructed 3-D color-coded physical models of the periventricular structures, while the control group re-examined 2-D brain cross-sections. At the end of the course, 2-D and 3-D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2-D or 3-D visualization, only the scores for the 3-D questions were significantly higher in the experimental group (F1,85 = 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3-D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3-D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3-D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. PMID:20939033

  4. Fragmented Perception: Slower Space-Based but Faster Object-Based Attention in Recent-Onset Psychosis with and without Schizophrenia

    PubMed Central

    Smid, Henderikus G. O. M.; Bruggeman, Richard; Martens, Sander

    2013-01-01

    Background Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered. Method Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects. Results Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group. Conclusions deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory. PMID:23536901

  5. Fragmented perception: slower space-based but faster object-based attention in recent-onset psychosis with and without Schizophrenia.

    PubMed

    Smid, Henderikus G O M; Bruggeman, Richard; Martens, Sander

    2013-01-01

    Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered. Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects. Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group. deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory.

  6. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.

    PubMed

    Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong

    2018-02-01

    The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.

  7. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa

    PubMed Central

    Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin

    2011-01-01

    How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544

  8. Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe.

    PubMed

    Lange, Eckart; Hehl-Lange, Sigrid; Brewer, Mark J

    2008-11-01

    The provision of green space is increasingly being perceived as an important factor for quality of life. However, green spaces often face high developmental pressure. The main objective of this study is to investigate a prospective approach to green space planning by combining three-dimensional (3D) visualization of green space scenarios and survey techniques to facilitate improved participation of the public. Aside from the 'Status quo', scenarios 'Agriculture', 'Recreation', 'Nature conservation' and 'Wind turbines' are visualized in three dimensions. In order to test responses, a survey was conducted both in print format and on the Internet. Overall, 49 different visualizations that belong to one of the scenarios were available in the survey and were rated according to the perceived esthetic, recreational and ecological values. The highest rated scenes include vegetation elements such as meadows with orchards, single trees, shrubs or forest. The least attractive scenes are those where buildings are highly dominant or where there are no vegetation elements. Based on the ratings for the individual images and on the corresponding scenarios, our study shows that there is high potential for improving the existing landscape. All suggested changes are either rated about equal to or considerably higher than the status quo, with the scenario 'Nature conservation' receiving the highest scores.

  9. Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers

    PubMed Central

    Nakajima, Masashi; Hiraoka, Takahiro; Yamamoto, Toshiya; Takagi, Seiu; Hirohara, Yoko; Oshika, Tetsuro

    2016-01-01

    Several researchers have studied the longitudinal chromatic aberration (LCA) of eyes implanted with an intraocular lens (IOL). We investigated the LCA of eyes implanted with yellow-colored IOLs from three different manufacturers: Alcon Inc., HOYA Corp., and AMO Inc. The number of subjects was 11, 16, and 16, respectively. The LCA of eyes implanted with SN60WF and SN60AT (Alcon Inc.), and with XY-1 (HOYA Corp.), was the same as that of phakic eyes. The LCA of eyes with ZCB00V (AMO Inc.) was smaller than that of phakic eyes. The LCA of eyes implanted with Alcon’s and HOYA’s IOLs, but not the LCA of eyes implanted with AMO’s IOLs, was positively correlated with the powers of the IOLs. We also performed simulations to verify the impacts of LCA on visual performance for 4-mm pupil diameter; the simulations were a polychromatic modulation transfer function (MTF) and a visual Strehl ratio computed on the basis of an optical transfer function (VSOTF). We concluded that the differences between the LCA of different manufacturers do not affect visual performances when some extent of higher-order aberration (HOA) exists. The smaller HOA of AMO IOLs may enhance visual performance. PMID:27258141

  10. A magnetoencephalography study of multi-modal processing of pain anticipation in primary sensory cortices.

    PubMed

    Gopalakrishnan, R; Burgess, R C; Plow, E B; Floden, D P; Machado, A G

    2015-09-24

    Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas the auditory cortex displayed delayed processing. In addition, during pain anticipation, the visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Visual event-related potentials to biological motion stimuli in autism spectrum disorders

    PubMed Central

    Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy

    Purpose: The objective of this study was to assess the complexity of human visual search activity during mammographic screening using fractal analysis and to investigate its relationship with case and reader characteristics. Methods: The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus data for this study. The fractal dimension of the readers’ visual scanning patternsmore » was computed with the Minkowski–Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-based interaction ANOVA analysis was performed to study the association between fractal dimension, case pathology, breast density, and reader experience level. The consistency of the observed trends depending on gaze data representation was also examined. Results: Case pathology, breast density, reader experience level, and individual reader differences are all independent predictors of the visual scanning pattern complexity when screening for breast cancer. No higher order effects were found to be significant. Conclusions: Fractal characterization of visual search behavior during mammographic screening is dependent on case properties and image reader characteristics.« less

  13. The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems.

    PubMed

    Charman, W Neil

    2006-06-01

    The history of measurements of ocular aberration is briefly reviewed and recent work using much-improved aberrometers and large samples of eyes is summarized. When on-axis, higher-order, monochromatic aberrations are averaged, undercorrected, positive, fourth-order spherical aberration dominates; other Zernike wavefront aberration coefficients have average values near zero. Individually, however, many eyes show substantial amounts of third-order and other fourth-order aberrations; the value of these varies idiosyncratically about zero. Most normal eyes show only small amounts of axial monochromatic aberration for photopic pupils up to around 3 mm; the limits to retinal image quality are then usually set by diffraction, uncorrected or imperfectly corrected spherocylindrical refractive error, accommodation error, and chromatic aberration. Longitudinal chromatic aberration varies very little across the population. With larger mesopic and scotopic pupils, monochromatic aberration plays a more important optical role, but overall visual performance is increasingly dominated by neural factors. Some remaining problems in measuring and modeling the eye's optical performance are discussed.

  14. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.

    PubMed

    Al-Zeraid, Ferial M; Osuagwu, Uchechukwu L

    2016-03-22

    Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, -3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser-enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61% of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from -0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0.19 μm (P = 0.004), 0.21 ± 0.09 μm (P < 0.0001) and 0.77 ± 0.27 μm (P < 0.0001), six months postoperatively. The change in spherical aberration after the procedure increased with an increase in the degree of preoperative myopia. Wavefront-guided IntraLASIK offers a safe and effective option for vision and visual function improvement in astigmatism. Although, reduction of HOA is possible in a few eyes, spherical-like aberrations are increased in majority of the treated eyes.

  15. Distinct neural markers of TVA-based visual processing speed and short-term storage capacity parameters.

    PubMed

    Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin

    2014-08-01

    An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. [Nursing Experience of Using Mirror Visual Feedback for a Schizophrenia Patient With Visual Hallucinations].

    PubMed

    Lan, Shu-Ling; Chen, Yu-Chi; Chang, Hsiu-Ju

    2018-06-01

    The aim of this paper was to describe the nursing application of mirror visual feedback in a patient suffering from long-term visual hallucinations. The intervention period was from May 15th to October 19th, 2015. Using the five facets of psychiatric nursing assessment, several health problems were observed, including disturbed sensory perceptions (prominent visual hallucinations) and poor self-care (e.g. limited abilities to self-bathe and put on clothing). Furthermore, "caregiver role strain" due to the related intense care burden was noted. After building up a therapeutic interpersonal relationship, the technique of brain plasticity and mirror visual feedback were performed using multiple nursing care methods in order to help the patient suppress her visual hallucinations by enhancing a different visual stimulus. We also taught her how to cope with visual hallucinations in a proper manner. The frequency and content of visual hallucinations were recorded to evaluate the effects of management. The therapeutic plan was formulated together with the patient in order to boost her self-confidence, and a behavior contract was implemented in order to improve her personal hygiene. In addition, psychoeducation on disease-related topics was provided to the patient's family, and they were encouraged to attend relevant therapeutic activities. As a result, her family became less passive and negative and more engaged in and positive about her future. The crisis of "caregiver role strain" was successfully resolved. The current experience is hoped to serve as a model for enhancing communication and cooperation between family and staff in similar medical settings.

  17. Neural correlates of auditory short-term memory in rostral superior temporal cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2014-01-01

    Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448

  18. Cognitive penetration of early vision in face perception.

    PubMed

    Cecchi, Ariel S

    2018-06-13

    Cognitive and affective penetration of perception refers to the influence that higher mental states such as beliefs and emotions have on perceptual systems. Psychological and neuroscientific studies appear to show that these states modulate the visual system at the visuomotor, attentional, and late levels of processing. However, empirical evidence showing that similar consequences occur in early stages of visual processing seems to be scarce. In this paper, I argue that psychological evidence does not seem to be either sufficient or necessary to argue in favour of or against the cognitive penetration of perception in either late or early vision. In order to do that we need to have recourse to brain imaging techniques. Thus, I introduce a neuroscientific study and argue that it seems to provide well-grounded evidence for the cognitive penetration of early vision in face perception. I also examine and reject alternative explanations to my conclusion. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images.

    PubMed

    Raghavendra, U; Gudigar, Anjan; Maithri, M; Gertych, Arkadiusz; Meiburger, Kristen M; Yeong, Chai Hong; Madla, Chakri; Kongmebhol, Pailin; Molinari, Filippo; Ng, Kwan Hoong; Acharya, U Rajendra

    2018-04-01

    Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Image statistics underlying natural texture selectivity of neurons in macaque V4

    PubMed Central

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko

    2015-01-01

    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  1. Visualization of Microfloral Metabolism for Marine Waste Recycling

    PubMed Central

    Ogura, Tatsuki; Hoshino, Reona; Date, Yasuhiro; Kikuchi, Jun

    2016-01-01

    Marine biomass including fishery products are precious protein resources for human foods and are an alternative to livestock animals in order to reduce the virtual water problem. However, a large amount of marine waste can be generated from fishery products and it is not currently recycled. We evaluated the metabolism of digested marine waste using integrated analytical methods, under anaerobic conditions and the fertilization of abandoned agricultural soils. Dynamics of fish waste digestion revealed that samples of meat and bony parts had similar dynamics under anaerobic conditions in spite of large chemical variations in input marine wastes. Abandoned agricultural soils fertilized with fish waste accumulated some amino acids derived from fish waste, and accumulation of l-arginine and l-glutamine were higher in plant seedlings. Therefore, we have proposed an analytical method to visualize metabolic dynamics for recycling of fishery waste processes. PMID:26828528

  2. Imag(in)ing the University: Visual Sociology and Higher Education

    ERIC Educational Resources Information Center

    Metcalfe, Amy Scott

    2012-01-01

    This study examines the potential of visual sociology to expand our knowledge of higher education through the use of visual data sources and methods of analysis. Photographs and archival material form the basis of the study. The images were analyzed as being part of the initiation and fulfillment stages of the social construction of collective…

  3. Optimizing Visually-Assisted Listening Comprehension

    ERIC Educational Resources Information Center

    Kashani, Ahmad Sabouri; Sajjadi, Samad; Sohrabi, Mohammad Reza; Younespour, Shima

    2011-01-01

    The fact that visual aids such as pictures or graphs can lead to greater comprehension by language learners has been well established. Nonetheless, the order of presenting visuals to listeners is left unattended. This study examined listening comprehension from a strategy of introducing visual information, either prior to or during an audio…

  4. Visual Discourse in Scientific Conference Papers: A Genre-based Study.

    ERIC Educational Resources Information Center

    Rowley-Jolivet, Elizabeth

    2002-01-01

    Investigates the role of visual communication in a spoken research genre: the scientific research paper. Analyzes 2,048 visuals projected during 90 papers given at five international conferences in three fields (Geology, medicine, physics), in order to bring out the recurrent features of the visual dimension. (Author/VWL)

  5. The company they keep: Background similarity influences transfer of aftereffects from second- to first-order stimuli

    PubMed Central

    Qian, Ning; Dayan, Peter

    2013-01-01

    A wealth of studies has found that adapting to second-order visual stimuli has little effect on the perception of first-order stimuli. This is physiologically and psychologically troubling, since many cells show similar tuning to both classes of stimuli, and since adapting to first-order stimuli leads to aftereffects that do generalize to second-order stimuli. Focusing on high-level visual stimuli, we recently proposed the novel explanation that the lack of transfer arises partially from the characteristically different backgrounds of the two stimulus classes. Here, we consider the effect of stimulus backgrounds in the far more prevalent, lower-level, case of the orientation tilt aftereffect. Using a variety of first- and second-order oriented stimuli, we show that we could increase or decrease both within- and cross-class adaptation aftereffects by increasing or decreasing the similarity of the otherwise apparently uninteresting or irrelevant backgrounds of adapting and test patterns. Our results suggest that similarity between background statistics of the adapting and test stimuli contributes to low-level visual adaptation, and that these backgrounds are thus not discarded by visual processing but provide contextual modulation of adaptation. Null cross-adaptation aftereffects must also be interpreted cautiously. These findings reduce the apparent inconsistency between psychophysical and neurophysiological data about first- and second-order stimuli. PMID:23732217

  6. High School Teachers' Perspectives on Supporting Students with Visual Impairments toward Higher Education: Access, Barriers, and Success

    ERIC Educational Resources Information Center

    Reed, Maureen; Curtis, Kathryn

    2011-01-01

    The objective of the study presented here was to understand the experiences of teachers in assisting students with visual impairments in making the transition to higher education. The teachers reported barriers in high school that affect students' access to and success in higher education. Furthermore, institutions of higher education provided…

  7. Higher heritabilities for gait components than for overall gait scores may improve mobility in ducks.

    PubMed

    Duggan, Brendan M; Rae, Anne M; Clements, Dylan N; Hocking, Paul M

    2017-05-02

    Genetic progress in selection for greater body mass and meat yield in poultry has been associated with an increase in gait problems which are detrimental to productivity and welfare. The incidence of suboptimal gait in breeding flocks is controlled through the use of a visual gait score, which is a subjective assessment of walking ability of each bird. The subjective nature of the visual gait score has led to concerns over its effectiveness in reducing the incidence of suboptimal gait in poultry through breeding. The aims of this study were to assess the reliability of the current visual gait scoring system in ducks and to develop a more objective method to select for better gait. Experienced gait scorers assessed short video clips of walking ducks to estimate the reliability of the current visual gait scoring system. Kendall's coefficients of concordance between and within observers were estimated at 0.49 and 0.75, respectively. In order to develop a more objective scoring system, gait components were visually scored on more than 4000 pedigreed Pekin ducks and genetic parameters were estimated for these components. Gait components, which are a more objective measure, had heritabilities that were as good as, or better than, those of the overall visual gait score. Measurement of gait components is simpler and therefore more objective than the standard visual gait score. The recording of gait components can potentially be automated, which may increase accuracy further and may improve heritability estimates. Genetic correlations were generally low, which suggests that it is possible to use gait components to select for an overall improvement in both economic traits and gait as part of a balanced breeding programme.

  8. “To see or not to see: that is the question.” The “Protection-Against-Schizophrenia” (PaSZ) model: evidence from congenital blindness and visuo-cognitive aberrations

    PubMed Central

    Landgraf, Steffen; Osterheider, Michael

    2013-01-01

    The causes of schizophrenia are still unknown. For the last 100 years, though, both “absent” and “perfect” vision have been associated with a lower risk for schizophrenia. Hence, vision itself and aberrations in visual functioning may be fundamental to the development and etiological explanations of the disorder. In this paper, we present the “Protection-Against-Schizophrenia” (PaSZ) model, which grades the risk for developing schizophrenia as a function of an individual's visual capacity. We review two vision perspectives: (1) “Absent” vision or how congenital blindness contributes to PaSZ and (2) “perfect” vision or how aberrations in visual functioning are associated with psychosis. First, we illustrate that, although congenitally blind and sighted individuals acquire similar world representations, blind individuals compensate for behavioral shortcomings through neurofunctional and multisensory reorganization. These reorganizations may indicate etiological explanations for their PaSZ. Second, we demonstrate that visuo-cognitive impairments are fundamental for the development of schizophrenia. Deteriorated visual information acquisition and processing contribute to higher-order cognitive dysfunctions and subsequently to schizophrenic symptoms. Finally, we provide different specific therapeutic recommendations for individuals who suffer from visual impairments (who never developed “normal” vision) and individuals who suffer from visual deterioration (who previously had “normal” visual skills). Rather than categorizing individuals as “normal” and “mentally disordered,” the PaSZ model uses a continuous scale to represent psychiatrically relevant human behavior. This not only provides a scientific basis for more fine-grained diagnostic assessments, earlier detection, and more appropriate therapeutic assignments, but it also outlines a trajectory for unraveling the causes of abnormal psychotic human self- and world-perception. PMID:23847557

  9. Peripheral refraction and higher-order aberrations with cycloplegia and fogging lenses using the BHVI-EyeMapper

    PubMed Central

    Bakaraju, Ravi Chandra; Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Thomas, Varghese; Holden, Brien Anthony

    2015-01-01

    Purpose To determine if a fogging lens ameliorates accommodative effects driven by the closed-view design of the BHVI-EyeMapper (EM) instrument. We compared cycloplegic refraction and higher-order aberration measurements of the EM with those obtained with a fogging lens. Methods Twenty-six, young, participants (15F, 25 ± 5 years, range: 18–35 years, SE: +0.25 D and −3.50 D) with good ocular health were recruited. Five independent measurements of on- and off-axis refraction and higher-order aberrations were recorded across the horizontal visual field, under two conditions: non-cycloplegic measurements with +1.00 D fogging lens and cycloplegia, always in the same sequence. The contralateral eye was occluded during the measurements. Two drops of 1% Tropicamide delivered within 5 min facilitated cycloplegic measurements. All participants were refracted 30 min after installation of the second drop. Results Mean spherical equivalent measures of the non-cycloplegic condition were significantly more myopic than their cycloplegic counterparts (p < 0.05); approximately by 0.50 D centrally, increasing to 1.00 D towards the periphery. The horizontal astigmatic component, J180, demonstrated small but statistically significant differences between the test conditions. Differences were predominant for eccentricities greater than 30°, in both nasal and temporal meridians. The oblique astigmatic component, J45, was not significantly different between the test conditions. The primary spherical aberration coefficient C(4, 0) was significantly less positive for the non-cycloplegic state than its cycloplegic counterpart. This result held true across the entire horizontal visual field. The horizontal coma and trefoil coefficients C(3, 1) and C(3, 3) were not significantly different between the two conditions. Conclusions The use of +1.00 D fogging lens without cycloplegia did not provide complete relaxation of accommodation. The discrepancies between cycloplegic and non-cycloplegic EM measurements were found to be more pronounced for peripheral field angles than central measures, for both M and J180 components. PMID:26190684

  10. Peripheral refraction and higher-order aberrations with cycloplegia and fogging lenses using the BHVI-EyeMapper.

    PubMed

    Bakaraju, Ravi Chandra; Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Thomas, Varghese; Holden, Brien Anthony

    2016-01-01

    To determine if a fogging lens ameliorates accommodative effects driven by the closed-view design of the BHVI-EyeMapper (EM) instrument. We compared cycloplegic refraction and higher-order aberration measurements of the EM with those obtained with a fogging lens. Twenty-six, young, participants (15F, 25±5 years, range: 18-35 years, SE: +0.25 D and -3.50 D) with good ocular health were recruited. Five independent measurements of on- and off-axis refraction and higher-order aberrations were recorded across the horizontal visual field, under two conditions: non-cycloplegic measurements with +1.00 D fogging lens and cycloplegia, always in the same sequence. The contralateral eye was occluded during the measurements. Two drops of 1% Tropicamide delivered within 5 min facilitated cycloplegic measurements. All participants were refracted 30 min after installation of the second drop. Mean spherical equivalent measures of the non-cycloplegic condition were significantly more myopic than their cycloplegic counterparts (p<0.05); approximately by 0.50 D centrally, increasing to 1.00 D towards the periphery. The horizontal astigmatic component, J180, demonstrated small but statistically significant differences between the test conditions. Differences were predominant for eccentricities greater than 30°, in both nasal and temporal meridians. The oblique astigmatic component, J45, was not significantly different between the test conditions. The primary spherical aberration coefficient C(4, 0) was significantly less positive for the non-cycloplegic state than its cycloplegic counterpart. This result held true across the entire horizontal visual field. The horizontal coma and trefoil coefficients C(3, 1) and C(3, 3) were not significantly different between the two conditions. The use of +1.00 D fogging lens without cycloplegia did not provide complete relaxation of accommodation. The discrepancies between cycloplegic and non-cycloplegic EM measurements were found to be more pronounced for peripheral field angles than central measures, for both M and J180 components. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  11. Perceptibility curve test for digital radiographs before and after correction for attenuation and correction for attenuation and visual response.

    PubMed

    Li, G; Welander, U; Yoshiura, K; Shi, X-Q; McDavid, W D

    2003-11-01

    Two digital image processing methods, correction for X-ray attenuation and correction for attenuation and visual response, have been developed. The aim of the present study was to compare digital radiographs before and after correction for attenuation and correction for attenuation and visual response by means of a perceptibility curve test. Radiographs were exposed of an aluminium test object containing holes ranging from 0.03 mm to 0.30 mm with increments of 0.03 mm. Fourteen radiographs were exposed with the Dixi system (Planmeca Oy, Helsinki, Finland) and twelve radiographs were exposed with the F1 iOX system (Fimet Oy, Monninkylä, Finland) from low to high exposures covering the full exposure ranges of the systems. Radiographs obtained from the Dixi and F1 iOX systems were 12 bit and 8 bit images, respectively. Original radiographs were then processed for correction for attenuation and correction for attenuation and visual response. Thus, two series of radiographs were created. Ten viewers evaluated all the radiographs in the same random order under the same viewing conditions. The object detail having the lowest perceptible contrast was recorded for each observer. Perceptibility curves were plotted according to the mean of observer data. The perceptibility curves for processed radiographs obtained with the F1 iOX system are higher than those for originals in the exposure range up to the peak, where the curves are basically the same. For radiographs exposed with the Dixi system, perceptibility curves for processed radiographs are higher than those for originals for all exposures. Perceptibility curves show that for 8 bit radiographs obtained from the F1 iOX system, the contrast threshold was increased in processed radiographs up to the peak, while for 12 bit radiographs obtained with the Dixi system, the contrast threshold was increased in processed radiographs for all exposures. When comparisons were made between radiographs corrected for attenuation and corrected for attenuation and visual response, basically no differences were found. Radiographs processed for correction for attenuation and correction for attenuation and visual response may improve perception, especially for 12 bit originals.

  12. Subjective visual perception: from local processing to emergent phenomena of brain activity.

    PubMed

    Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K

    2014-05-05

    The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.

  13. Subjective visual perception: from local processing to emergent phenomena of brain activity

    PubMed Central

    Panagiotaropoulos, Theofanis I.; Kapoor, Vishal; Logothetis, Nikos K.

    2014-01-01

    The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness. PMID:24639588

  14. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study

    PubMed Central

    Limoli, Paolo Giuseppe; Limoli, Celeste; Vingolo, Enzo Maria; Scalinci, Sergio Zaccaria; Nebbioso, Marcella

    2016-01-01

    Background The aim of this research was to study the overall restoration effect on residual retinal cells through surgically grafted autologous cells onto the surrounding tissue, choroid and retina in order to produce a constant secretion of growth factors (GFs) in dry age-related macular degeneration (AMD) patients. Results 6 months after surgery, several values were statistically significant in the group with higher RTA. Also patient compliance analysis (PCA) in relation to functional change perception appeared to be very good. Methods Thirty-six eyes of 25 patients (range 64-84 years of age) affected by dry AMD were included in study, and divided in two groups by spectral domain-optical coherence tomography (SD-OCT): group A with retinal thickness average (RTA) less than 250 microns (μm) and group B with RTA equal to or more than 250 μm. Adipocytes, adipose-derived stem cells from the stromal-vascular fraction, and platelets from platelet-rich plasma were implanted in the suprachoroidal space. Particularly, the following parameters were evaluated: best corrected visual acuity (BCVA) for far and near distance, retinal thickness maps, scotopic and photopic electroretinogram (ERG), and microperimetry (MY). All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Conclusions The available set of GFs allowed biological retinal neuroenhancement. After 6 months it improved visual performance (VP), but the increase was better if RTA recorded by OCT was higher, probably in relation to the presence of areas with greater cellularity. PMID:27391437

  15. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study.

    PubMed

    Limoli, Paolo Giuseppe; Limoli, Celeste; Vingolo, Enzo Maria; Scalinci, Sergio Zaccaria; Nebbioso, Marcella

    2016-07-26

    The aim of this research was to study the overall restoration effect on residual retinal cells through surgically grafted autologous cells onto the surrounding tissue, choroid and retina in order to produce a constant secretion of growth factors (GFs) in dry age-related macular degeneration (AMD) patients. 6 months after surgery, several values were statistically significant in the group with higher RTA. Also patient compliance analysis (PCA) in relation to functional change perception appeared to be very good. Thirty-six eyes of 25 patients (range 64-84 years of age) affected by dry AMD were included in study, and divided in two groups by spectral domain-optical coherence tomography (SD-OCT): group A with retinal thickness average (RTA) less than 250 microns (µm) and group B with RTA equal to or more than 250 µm. Adipocytes, adipose-derived stem cells from the stromal-vascular fraction, and platelets from platelet-rich plasma were implanted in the suprachoroidal space. Particularly, the following parameters were evaluated: best corrected visual acuity (BCVA) for far and near distance, retinal thickness maps, scotopic and photopic electroretinogram (ERG), and microperimetry (MY). All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). The available set of GFs allowed biological retinal neuroenhancement. After 6 months it improved visual performance (VP), but the increase was better if RTA recorded by OCT was higher, probably in relation to the presence of areas with greater cellularity.

  16. Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism

    PubMed Central

    Minshew, Nancy J.; Luna, Beatriz; Sweeney, John A.

    2010-01-01

    Objective To investigate the functional integrity of cerebellar and frontal system in autism using oculomotor paradigms. Background Cerebellar and neocortical systems models of autism have been proposed. Courchesne and colleagues have argued that cognitive deficits such as shifting attention disturbances result from dysfunction of vermal lobules VI and VII. Such a vermal deficit should be associated with dysmetric saccadic eye movements because of the major role these areas play in guiding the motor precision of saccades. In contrast, neocortical models of autism predict intact saccade metrics, but impairments on tasks requiring the higher cognitive control of saccades. Methods A total of 26 rigorously diagnosed nonmentally retarded autistic subjects and 26 matched healthy control subjects were assessed with a visually guided saccade task and two volitional saccade tasks, the oculomotor delayed-response task and the antisaccade task. Results Metrics and dynamic of the visually guided saccades were normal in autistic subjects, documenting the absence of disturbances in cerebellar vermal lobules VI and VII and in automatic shifts of visual attention. Deficits were demonstrated on both volitional saccade tasks, indicating dysfunction in the circuitry of prefrontal cortex and its connections with the parietal cortex, and associated cognitive impairments in spatial working memory and in the ability to voluntarily suppress context-inappropriate responses. Conclusions These findings demonstrate intrinsic neocortical, not cerebellar, dysfunction in autism, and parallel deficits in higher order cognitive mechanisms and not in elementary attentional and sensorimotor systems in autism. PMID:10102406

  17. Anatomical Coupling between Distinct Metacognitive Systems for Memory and Visual Perception

    PubMed Central

    McCurdy, Li Yan; Maniscalco, Brian; Metcalfe, Janet; Liu, Ka Yuet; de Lange, Floris P.; Lau, Hakwan

    2015-01-01

    A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one’s confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain. PMID:23365229

  18. How low can you go? Changing the resolution of novel complex objects in visual working memory according to task demands

    PubMed Central

    Allon, Ayala S.; Balaban, Halely; Luria, Roy

    2014-01-01

    In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026

  19. Coordinates of Human Visual and Inertial Heading Perception.

    PubMed

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.

  20. Coordinates of Human Visual and Inertial Heading Perception

    PubMed Central

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results. PMID:26267865

  1. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism.

    PubMed

    Cantiani, Chiara; Choudhury, Naseem A; Yu, Yan H; Shafer, Valerie L; Schwartz, Richard G; Benasich, April A

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD.

  2. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism

    PubMed Central

    Cantiani, Chiara; Choudhury, Naseem A.; Yu, Yan H.; Shafer, Valerie L.; Schwartz, Richard G.; Benasich, April A.

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD. PMID:27560378

  3. Wave aberrations in rhesus monkeys with vision-induced ametropias

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  4. Transitions between central and peripheral vision create spatial/temporal distortions: a hypothesis concerning the perceived break of the curveball.

    PubMed

    Shapiro, Arthur; Lu, Zhong-Lin; Huang, Chang-Bing; Knight, Emily; Ennis, Robert

    2010-10-13

    The human visual system does not treat all parts of an image equally: the central segments of an image, which fall on the fovea, are processed with a higher resolution than the segments that fall in the visual periphery. Even though the differences between foveal and peripheral resolution are large, these differences do not usually disrupt our perception of seamless visual space. Here we examine a motion stimulus in which the shift from foveal to peripheral viewing creates a dramatic spatial/temporal discontinuity. The stimulus consists of a descending disk (global motion) with an internal moving grating (local motion). When observers view the disk centrally, they perceive both global and local motion (i.e., observers see the disk's vertical descent and the internal spinning). When observers view the disk peripherally, the internal portion appears stationary, and the disk appears to descend at an angle. The angle of perceived descent increases as the observer views the stimulus from further in the periphery. We examine the first- and second-order information content in the display with the use of a three-dimensional Fourier analysis and show how our results can be used to describe perceived spatial/temporal discontinuities in real-world situations. The perceived shift of the disk's direction in the periphery is consistent with a model in which foveal processing separates first- and second-order motion information while peripheral processing integrates first- and second-order motion information. We argue that the perceived distortion may influence real-world visual observations. To this end, we present a hypothesis and analysis of the perception of the curveball and rising fastball in the sport of baseball. The curveball is a physically measurable phenomenon: the imbalance of forces created by the ball's spin causes the ball to deviate from a straight line and to follow a smooth parabolic path. However, the curveball is also a perceptual puzzle because batters often report that the flight of the ball undergoes a dramatic and nearly discontinuous shift in position as the ball nears home plate. We suggest that the perception of a discontinuous shift in position results from differences between foveal and peripheral processing.

  5. Effect of an auditory feedback substitution, tactilo-kinesthetic, or visual feedback on kinematics of pouring water from kettle into cup.

    PubMed

    Portnoy, Sigal; Halaby, Orli; Dekel-Chen, Dotan; Dierick, Frédéric

    2015-11-01

    Pouring hot water from a kettle into a cup may prove a hazardous task, especially for the elderly or the visually-impaired. Individuals with deteriorating eyesight may endanger their hands by performing this task with both hands, relaying on tactilo-kinesthetic feedback (TKF). Auditory feedback (AF) may allow them to perform the task singlehandedly, thereby reducing the risk for injury. However since relying on an AF is not intuitive and requires practice, we aimed to determine if AF supplied during the task of pouring water can be used naturally as visual feedback (VF) following practice. For this purpose, we quantified, in young healthy sighted subjects (n = 20), the performance and kinematics of pouring water in the presence of three isolated feedbacks: visual, tactilo-kinesthetic, or auditory. There were no significant differences between the weights of spilled water in the AF condition compared to the TKF condition in the first, fifth or thirteenth trials. The subjectively-reported difficulty levels of using the TKF and the AF were significantly reduced between the first and thirteenth trials for both TKF (p = 0.01) and AF (p = 0.001). Trunk rotation during the first trial using the TKF was significantly lower than the trunk rotation while using VF. Also, shoulder adduction during the first trial using the TKF was significantly higher than the shoulder adduction while using the VF. During the AF trials, the median travel distance of the tip of the kettle was significantly reduced in the first trials so that in the thirtieth trial it did not differ significantly from the median travel distance during the thirtieth trial using TKF and VF. The maximal velocity of the tip of the kettle was constant for each of the feedback conditions but was higher in 10 cm s(-1) using VF than TKF, which was higher in 10 cm s(-1) from using AF. The smoothness of movement of the TKF and AF conditions, expressed by the normalized jerk score (NJSM), was one and two orders of magnitude higher from the VF, respectively. The median NJSM then decreased significantly by the fifth trial. Monitoring in-house activity via motion capture and classification of movements, i.e. liquid pouring, can assist with daily activities via AF. As a built-in feature in a smart home, this task-specific AF may prevent burn injuries of the visually-impaired. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. The organization and dissolution of semantic-conceptual knowledge: is the 'amodal hub' the only plausible model?

    PubMed

    Gainotti, Guido

    2011-04-01

    In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Consciousness of the first order in blindsight

    PubMed Central

    Sahraie, Arash; Hibbard, Paul B.; Trevethan, Ceri T.; Ritchie, Kay L.; Weiskrantz, Lawrence

    2010-01-01

    At suprathreshold levels, detection and awareness of visual stimuli are typically synonymous in nonclinical populations. But following postgeniculate lesions, some patients may perform above chance in forced-choice detection paradigms, while reporting not to see the visual events presented within their blind field. This phenomenon, termed “blindsight,” is intriguing because it demonstrates a dissociation between detection and perception. It is possible, however, for a blindsight patient to have some “feeling” of the occurrence of an event without seeing per se. This is termed blindsight type II to distinguish it from the type I, defined as discrimination capability in the total absence of any acknowledged awareness. Here we report on a well-studied patient, D.B., whose blindsight capabilities have been previously documented. We have found that D.B. is capable of detecting visual patterns defined by changes in luminance (first-order gratings) and those defined by contrast modulation of textured patterns (textured gratings; second-order stimuli) while being aware of the former but reporting no awareness of the latter. We have systematically investigated the parameters that could lead to visual awareness of the patterns and show that mechanisms underlying the subjective reports of visual awareness rely primarily on low spatial frequency, first-order spatial components of the image. PMID:21078979

  8. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    PubMed

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  9. Surfing a spike wave down the ventral stream.

    PubMed

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  10. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    PubMed

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  11. Influence of Near-Segment Positioning in a Rotationally Asymmetric Multifocal Intraocular Lens.

    PubMed

    Song, In Seok; Yoon, Sam Young; Kim, Jae Yong; Kim, Myoung Joon; Tchah, Hungwon

    2016-04-01

    To compare visual performance and higher order aberrations (HOAs) based on the position of the near segment in eyes with rotationally asymmetric multifocal intraocular lenses (IOLs). Asymmetric multifocal IOLs (Lentis Mplus LS-313; Oculentis Optikgeräte GmbH, Wetzlar, Germany) were implanted with the near segment positioned either inferiorly, superiorly, or temporally. Uncorrected distance (UDVA), intermediate (UIVA), and near (UNVA) visual acuity, corrected distance visual acuity (CDVA), and distance-corrected intermediate (DCIVA) and near (DCNVA) visual acuity, contrast sensitivity, HOAs, and subjective symptom questionnaires were compared at 1 month postoperatively. Forty-five eyes from 45 patients were evaluated (n = 25, 9, and 11 eyes in the inferior, superior, and temporal groups, respectively). No significant differences in UDVA, UIVA, UNVA, CDVA, DCIVA, or DCNVA were found between the three groups (P > .05). The temporal group showed the best results in UDVA, CDVA, and DCNVA, but the inferior group showed the best results in DCIVA and UNVA and the superior group showed the best results in UIVA. Contrast sensitivity and the subjective symptom questionnaire also did not demonstrate any significant differences (P > .05). Total HOA and spherical aberration did not demonstrate any statistically significant differences (P > .05), but vertical coma and horizontal coma demonstrated significant differences based on near segment position (P < .001). The position of the near segment in eyes with rotationally asymmetric multifocal IOLs demonstrates no significant effect on visual performance. Copyright 2016, SLACK Incorporated.

  12. Removal and Repositioning of Intracorneal Ring Segments: Improving Corneal Topography and Clinical Outcomes in Keratoconus and Ectasia.

    PubMed

    Chan, Kahei; Hersh, Peter S

    2017-02-01

    To evaluate the efficacy of removal and relocation of intracorneal ring segments for improving outcomes in treatment of keratoconus and corneal ectasia. This is a retrospective case series conducted at a cornea and refractive surgery subspecialty practice setting. Patients with previous insertion of 2 intracorneal ring segments underwent surgical removal and repositioning of segments because of unsatisfactory visual and topographic outcomes. The principal outcomes included uncorrected and corrected visual acuities, manifest refraction, topography-derived maximum keratometry (Kmax), inferior-superior topography power difference (I - S), and higher-order aberration profile derived from wavefront analysis. Three patients are presented in this case series. Uncorrected visual acuity improved in all eyes by an average of 2.75 lines. Corrected visual acuity improved in 2 eyes and remained unchanged in 1 eye. Refractive astigmatism decreased in all patients by an average of 2.50 D. Kmax decreased by an average of 1.43 D. All patients had improvement in the I - S value with a mean decrease of 5.13 D. Topography-guided repositioning and/or replacement of corneal ring segments can result in improved topographic, optical, and visual outcomes in patients in whom the initial result is suboptimal. In these cases, a single segment repositioned beneath the cone resulted in an improved outcome. Analysis of corneal topography can guide the surgeon in treatment planning and can suggest patients in whom such an effort will be rewarded with better results.

  13. Effect of Varied Computer Based Presentation Sequences on Facilitating Student Achievement.

    ERIC Educational Resources Information Center

    Noonen, Ann; Dwyer, Francis M.

    1994-01-01

    Examines the effectiveness of visual illustrations in computer-based education, the effect of order of visual presentation, and whether screen design affects students' use of graphics and text. Results indicate that order of presentation and choice of review did not influence student achievement; however, when given a choice, students selected the…

  14. Jensen's Use of the Hick Paradigm: Visual Attention and Order Effects.

    ERIC Educational Resources Information Center

    Kranzler, John H.; And Others

    1988-01-01

    The effects of retinal displacement on reaction time and parameters within the Hick Paradigm were studied, using 80 university students. Focus was on the effects of practice, order, and visual attention. The effect of retinal displacement was of no practical or theoretical importance in the context of Jensen's research. (SLD)

  15. Optical and Biometric Characteristics of Anisomyopia in Human Adults

    PubMed Central

    Tian, Yibin; Tarrant, Janice; Wildsoet, Christine F.

    2011-01-01

    Purpose To investigate the role of higher order optical aberrations and thus retinal image degradation in the development of myopia, through the characterization of anisomyopia in human adults in terms of their optical and biometric characteristics. Methods The following data were collected from both eyes of fifteen young adult anisometropic myopes and sixteen isometropic myopes: subjective and objective refractive errors, corneal power and shape, monochromatic optical aberrations, anterior chamber depth, lens thickness, vitreous chamber depth, and best corrected visual acuity. Monochromatic aberrations were analyzed in terms of their higher order components, and further analyzed in terms of 31 optical quality metrics. Interocular differences for the two groups (anisomyopes vs. isomyopes) were compared and the relationship between measured ocular parameters and refractive errors also analyzed across all eyes. Results As expected, anisomyopes and isomyopes differed significantly in terms of interocular differences in vitreous chamber depth, axial length and refractive error. However, interocular differences in other optical properties showed no significant intergroup differences. Overall, higher myopia was associated with deeper anterior and vitreous chambers, higher astigmatism, more prolate corneas, and more positive spherical aberration. Other measured optical and biometric parameters were not significantly correlated with spherical refractive error, although some optical quality metrics and corneal astigmatism were significantly correlated with refractive astigmatism. Conclusions An optical cause for anisomyopia related to increased higher order aberrations is not supported by our data. Corneal shape changes and increased astigmatism in more myopic eyes may be a by-product of the increased anterior chamber growth in these eyes; likewise, the increased positive spherical aberration in more myopic eyes may be a product of myopic eye growth. PMID:21797915

  16. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task.

    PubMed

    Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.

  17. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task

    PubMed Central

    Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536

  18. Associations among visual acuity and vision- and health-related quality of life among patients in the multicenter uveitis steroid treatment trial.

    PubMed

    Frick, Kevin D; Drye, Lea T; Kempen, John H; Dunn, James P; Holland, Gary N; Latkany, Paul; Rao, Narsing A; Sen, H Nida; Sugar, Elizabeth A; Thorne, Jennifer E; Wang, Robert C; Holbrook, Janet T

    2012-03-01

    To evaluate the associations between visual acuity and self-reported visual function; visual acuity and health-related quality of life (QoL) metrics; a summary measure of self-reported visual function and health-related QoL; and individual domains of self-reported visual function and health-related QoL in patients with uveitis. Best-corrected visual acuity, vision-related functioning as assessed by the NEI VFQ-25, and health-related QoL as assessed by the SF-36 and EuroQoL EQ-5D questionnaires were obtained at enrollment in a clinical trial of uveitis treatments. Multivariate regression and Spearman correlations were used to evaluate associations between visual acuity, vision-related function, and health-related QoL. Among the 255 patients, median visual acuity in the better-seeing eyes was 20/25, the vision-related function score indicated impairment (median, 60), and health-related QoL scores were within the normal population range. Better visual acuity was predictive of higher visual function scores (P ≤ 0.001), a higher SF-36 physical component score, and a higher EQ-5D health utility score (P < 0.001). The vision-specific function score was predictive of all general health-related QoL (P < 0.001). The correlations between visual function score and general quality of life measures were moderate (ρ = 0.29-0.52). The vision-related function score correlated positively with visual acuity and moderately positively with general QoL measures. Cost-utility analyses relying on changes in generic healthy utility measures will be more likely to detect changes when there are clinically meaningful changes in vision-related function, rather than when there are only changes in visual acuity. (ClinicalTrials.gov number, NCT00132691.).

  19. A Randomized Trial Examining Three Strategies for Supporting Health Insurance Decisions among the Uninsured.

    PubMed

    Politi, Mary C; Kaphingst, Kimberly A; Liu, Jingxia Esther; Perkins, Hannah; Furtado, Karishma; Kreuter, Matthew W; Shacham, Enbal; McBride, Timothy

    2016-10-01

    The Affordable Care Act allows uninsured individuals to select health insurance from numerous private plans, a challenging decision-making process. This study examined the effectiveness of strategies to support health insurance decisions among the uninsured. Participants (N = 343) from urban, suburban, and rural areas were randomized to 1 of 3 conditions: 1) a plain language table; 2) a visual condition where participants chose what information to view and in what order; and 3) a narrative condition. We administered measures assessing knowledge (true/false responses about key features of health insurance), confidence in choices (uncertainty subscale of the Decisional Conflict Scale), satisfaction (items from the Health Information National Trends Survey), preferences for insurance features (measured on a Likert scale from not at all important to very important), and plan choice. Although we did not find significant differences in knowledge, confidence in choice, or satisfaction across condition, participants across conditions made value-consistent choices, selecting plans that aligned with their preferences for key insurance features. In addition, those with adequate health literacy skills as measured by the Rapid Estimate of Adult Literacy in Medicine-Short Form (REALM-SF) had higher knowledge overall ([Formula: see text] = 6.1 v. 4.8, P < 0.001) and preferred the plain language table to the visual (P = 0.04) and visual to narrative (P = 0.0002) conditions, while those with inadequate health literacy skills showed no preference for study condition. A similar pattern was seen for those with higher subjective numeracy skills and higher versus lower education with regard to health insurance knowledge. Individuals with higher income felt less confident in their choices ([Formula: see text] = 28.7 v. 10.0, where higher numbers indicate less confidence/more uncertainty; P = 0.004). Those developing materials about the health insurance marketplace to support health insurance decisions might consider starting with plain language tables, presenting health insurance terminology in context, and organizing information according to ways the uninsured might use and value insurance features. Individuals with limited health literacy and numeracy skills and those with lower education face unique challenges selecting health insurance and weighing tradeoffs between cost and coverage. © The Author(s) 2015.

  20. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.

    2012-01-01

    Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014

  1. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    PubMed

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.

  2. An Expanded Framework for Biomolecular Visualization in the Classroom: Learning Goals and Competencies

    ERIC Educational Resources Information Center

    Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R. P.; Franzen, Margaret A.; Craig, Paul A.

    2017-01-01

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list…

  3. Comparison of visual results and higher-order aberrations after small incision lenticule extraction (SMILE): high myopia vs. mild to moderate myopia.

    PubMed

    Jin, Hong-Ying; Wan, Ting; Wu, Fang; Yao, Ke

    2017-07-06

    To compare the refractive results and higher-order aberrations (HOAs) after small incision lenticule extraction (SMILE) in high myopia and mild to moderate myopia patients. This prospective study included 165 eyes (86 patients) undergoing SMILE. According to the preoperative spherical equivalent (SE), treated eyes were divided into two groups: the high myopia group (more than -6.0 D, group-H) and the mild to moderate group (less than -6.0 D, group-M). Follow-up intervals were at 1 day, 10 days, 1 month and 3 months postoperatively. We obtained the following parameters: uncorrected (UDVA) and corrected distance visual acuity (CDVA), SE, efficacy and safety index, and HOAs. Preoperative SE was -7.16 ± 0.93 D in group-H and -4.34 ± 0.97 D in group-M. At 3 months postoperatively, the SE in group-H and group-M was -0.20 ± 0.37 D and 0.01 ± 0.19 D (t = - 4.11, P<0.05), respectively. It was found that 77% and 98% had an UDVA of 20/20, 98% and 99% had a CDVA of 20/20 in group-H and group-M, respectively, while 87% and 95% had a SE within ±0.5 D and ±1.0 D in group-H, and 98% and 100% in group-M. The efficacy indexes were 0.98 ± 0.18 in group-H and 1.05 ± 0.10 in group-M (t = - 3.084, p < 0.05). The safety indexes were 1.06 ± 0.09 and 1.06 ± 0.09 (t = 0.153, p > 0.05), respectively. There were significant increases in total HOAs, 3 rd -order coma, and 4 th -order spherical aberrations. SMILE is an effective and safe surgery for correcting myopia. But the target correction amount in high myopia patients should be adjusted to avoid undercorrection and acquired more satisfaction. SMILE induced increases of HOAs. ChiTrial registration number: ChiCTR-OON-16009164 . Retrospectively registered: 06.September.2016.

  4. To See or Not to See: Analyzing Difficulties in Geometry from the Perspective of Visual Perception

    ERIC Educational Resources Information Center

    Gal, Hagar; Linchevski, Liora

    2010-01-01

    In this paper, we consider theories about processes of visual perception and perception-based knowledge representation (VPR) in order to explain difficulties encountered in figural processing in junior high school geometry tasks. In order to analyze such difficulties, we take advantage of the following perspectives of VPR: (1) Perceptual…

  5. The Impact of Visualizations in Promoting Informed Natural Resource Decisions

    ERIC Educational Resources Information Center

    Turner, Sheldon

    2013-01-01

    The research in this dissertation was conducted in order to understand the ways in which scientific visualizations can influence the decision process of non-scientists. A wide variety of classical and novel methods were used in order to capture and analyze the decision process. Data were collected from non-scientists through role-play interviews…

  6. 77 FR 5291 - Thermo Tech Technologies Inc., T.V.G. Technologies Ltd., and Visual Frontier, Inc.; Order of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Thermo Tech Technologies Inc., T.V.G. Technologies Ltd., and Visual Frontier, Inc.; Order of Suspension of Trading January 31, 2012. It appears to... is a lack of current and accurate information concerning the securities of T.V.G. Technologies Ltd...

  7. The retention and disruption of color information in human short-term visual memory.

    PubMed

    Nemes, Vanda A; Parry, Neil R A; Whitaker, David; McKeefry, Declan J

    2012-01-27

    Previous studies have demonstrated that the retention of information in short-term visual perceptual memory can be disrupted by the presentation of masking stimuli during interstimulus intervals (ISIs) in delayed discrimination tasks (S. Magnussen & W. W. Greenlee, 1999). We have exploited this effect in order to determine to what extent short-term perceptual memory is selective for stimulus color. We employed a delayed hue discrimination paradigm to measure the fidelity with which color information was retained in short-term memory. The task required 5 color normal observers to discriminate between spatially non-overlapping colored reference and test stimuli that were temporally separated by an ISI of 5 s. The points of subjective equality (PSEs) on the resultant psychometric matching functions provided an index of performance. Measurements were made in the presence and absence of mask stimuli presented during the ISI, which varied in hue around the equiluminant plane in DKL color space. For all reference stimuli, we found a consistent mask-induced, hue-dependent shift in PSE compared to the "no mask" conditions. These shifts were found to be tuned in color space, only occurring for a range of mask hues that fell within bandwidths of 29-37 deg. Outside this range, masking stimuli had little or no effect on measured PSEs. The results demonstrate that memory masking for color exhibits selectivity similar to that which has already been demonstrated for other visual attributes. The relatively narrow tuning of these interference effects suggests that short-term perceptual memory for color is based on higher order, non-linear color coding. © ARVO

  8. The effort to close the gap: Tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping

    PubMed Central

    Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.

    2014-01-01

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674

  9. Characterizing visual asymmetries in contrast perception using shaded stimuli.

    PubMed

    Chacón, José; Castellanos, Miguel Ángel; Serrano-Pedraza, Ignacio

    2015-01-01

    Previous research has shown a visual asymmetry in shaded stimuli where the perceived contrast depended on the polarity of their dark and light areas (Chacón, 2004). In particular, circles filled out with a top-dark luminance ramp were perceived with higher contrast than top-light ones although both types of stimuli had the same physical contrast. Here, using shaded stimuli, we conducted four experiments in order to find out if the perceived contrast depends on: (a) the contrast level, (b) the type of shading (continuous vs. discrete) and its degree of perceived three-dimensionality, (c) the orientation of the shading, and (d) the sign of the perceived contrast alterations. In all experiments the observers' tasks were to equate the perceived contrast of two sets of elements (usually shaded with opposite luminance polarity), in order to determine the subjective equality point. Results showed that (a) there is a strong difference in perceived contrast between circles filled out with luminance ramp top-dark and top-light that is similar for different contrast levels; (b) we also found asymmetries in contrast perception with different shaded stimuli, and this asymmetry was not related with the perceived three-dimensionality but with the type of shading, being greater for continuous-shading stimuli; (c) differences in perceived contrast varied with stimulus orientation, showing the maximum difference on vertical axis with a left bias consistent with the bias found in previous studies that used visual-search tasks; and (d) asymmetries are consistent with an attenuation in perceived contrast that is selective for top-light vertically-shaded stimuli.

  10. Young Public’s Awareness to Refractive Error Deficiency

    PubMed Central

    Aldebasi, Yousef

    2011-01-01

    Background: Visual impairment due to uncorrected refractive error affects 200 – 250 million people in the world. Uncorrected vision represents the 2nd or the 3rd blinding condition in many developing countries. The importance of awareness in dealing with this problem has been shown to reduce the risks of blindness and improve the quality of vision. Methods: Survey questionnaires have been distributed to 2500 randomly selected people from 6 different locations in Riyadh area between late 2003 and early 2004. Only 2039 data sheets (58% female and 42% male) have been analyzed; the remaining 461 data sheets were cancelled whether for biased responses or for ages those were outside the limited range (15–45 years). The questionnaire was designed to show responses according to three levels of education: basic, intermediate and high. Results: 8% of the sample individuals wear spectacle. Of these, 2/3 acknowledges the importance of wearing spectacles. For those who don’t, intellect is a determining factor in how people consider optical correction (21% of basic intellectual backgrounds only think it is important to wear glasses against some 40% of higher intellect). Most of the other results showed the effect of education in increasing the level of awareness in vision related questions. People with higher education are more aware than those with basic intellect in acknowledging: visual symptoms that need care (37% against only 26%), presbyopia condition (23% against 11%), urgency to seek eye care (85% against 29%), factors aggravating refractive errors in children (45% against 29%). Knowledge about the different forms of optical correction showed higher preference for spectacles against both contact lenses and refractive surgery. Conclusion: There is an overall tendency to show that the general public is not aware about most of the problems that concern their visual health. This is even more so in those with basic intellectual levels. In order to reduce the impact of visual problems related to ignorance in society, certain steps directed towards the general public should be undertaken, such as information through media and publicity, public education, screenings for ametropia in schools and at work, government subsidies of optical equipments etc. PMID:22489225

  11. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  12. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  13. Real-time echocardiogram transmission protocol based on regions and visualization modes.

    PubMed

    Cavero, Eva; Alesanco, Álvaro; García, José

    2014-09-01

    This paper proposes an Echocardiogram Transmission Protocol (ETP) for real-time end-to-end transmission of echocardiograms over IP networks. The ETP has been designed taking into account the echocardiogram characteristics of each visualized region, encoding each region according to its data type, visualization characteristics and diagnostic importance in order to improve the coding and thus the transmission efficiency. Furthermore, each region is sent separately and different error protection techniques can be used for each region. This leads to an efficient use of resources and provides greater protection for those regions with more clinical information. Synchronization is implemented for regions that change over time. The echocardiogram composition is different for each device. The protocol is valid for all echocardiogram devices thanks to the incorporation of configuration information which includes the composition of the echocardiogram. The efficiency of the ETP has been proved in terms of the number of bits sent with the proposed protocol. The codec and transmission rates used for the regions of interest have been set according to previous recommendations. Although the saving in the codified bits depends on the video composition, a coding gain higher than 7% with respect to without using ETP has been achieved.

  14. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society.

    PubMed

    Tsubota, Kazuo; Yokoi, Norihiko; Shimazaki, Jun; Watanabe, Hitoshi; Dogru, Murat; Yamada, Masakazu; Kinoshita, Shigeru; Kim, Hyo-Myung; Tchah, Hung-Won; Hyon, Joon Young; Yoon, Kyung-Chul; Seo, Kyoung Yul; Sun, Xuguang; Chen, Wei; Liang, Lingyi; Li, Mingwu; Liu, Zuguo

    2017-01-01

    For the last 20 years, a great amount of evidence has accumulated through epidemiological studies that most of the dry eye disease encountered in daily life, especially in video display terminal (VDT) workers, involves short tear film breakup time (TFBUT) type dry eye, a category characterized by severe symptoms but minimal clinical signs other than short TFBUT. An unstable tear film also affects the visual function, possibly due to the increase of higher order aberrations. Based on the change in the understanding of the types, symptoms, and signs of dry eye disease, the Asia Dry Eye Society agreed to the following definition of dry eye: "Dry eye is a multifactorial disease characterized by unstable tear film causing a variety of symptoms and/or visual impairment, potentially accompanied by ocular surface damage." The definition stresses instability of the tear film as well as the importance of visual impairment, highlighting an essential role for TFBUT assessment. This paper discusses the concept of Tear Film Oriented Therapy (TFOT), which evolved from the definition of dry eye, emphasizing the importance of a stable tear film. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Restoration of vision after transplantation of photoreceptors.

    PubMed

    Pearson, R A; Barber, A C; Rizzi, M; Hippert, C; Xue, T; West, E L; Duran, Y; Smith, A J; Chuang, J Z; Azam, S A; Luhmann, U F O; Benucci, A; Sung, C H; Bainbridge, J W; Carandini, M; Yau, K-W; Sowden, J C; Ali, R R

    2012-05-03

    Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.

  16. Neural Signatures of Stimulus Features in Visual Working Memory—A Spatiotemporal Approach

    PubMed Central

    Jackson, Margaret C.; Klein, Christoph; Mohr, Harald; Shapiro, Kimron L.; Linden, David E. J.

    2010-01-01

    We examined the neural signatures of stimulus features in visual working memory (WM) by integrating functional magnetic resonance imaging (fMRI) and event-related potential data recorded during mental manipulation of colors, rotation angles, and color–angle conjunctions. The N200, negative slow wave, and P3b were modulated by the information content of WM, and an fMRI-constrained source model revealed a progression in neural activity from posterior visual areas to higher order areas in the ventral and dorsal processing streams. Color processing was associated with activity in inferior frontal gyrus during encoding and retrieval, whereas angle processing involved right parietal regions during the delay interval. WM for color–angle conjunctions did not involve any additional neural processes. The finding that different patterns of brain activity underlie WM for color and spatial information is consistent with ideas that the ventral/dorsal “what/where” segregation of perceptual processing influences WM organization. The absence of characteristic signatures of conjunction-related brain activity, which was generally intermediate between the 2 single conditions, suggests that conjunction judgments are based on the coordinated activity of these 2 streams. PMID:19429863

  17. Laser Vision Correction with Q Factor Modification for Keratoconus Management.

    PubMed

    Pahuja, Natasha Kishore; Shetty, Rohit; Sinha Roy, Abhijit; Thakkar, Maithil Mukesh; Jayadev, Chaitra; Nuijts, Rudy Mma; Nagaraja, Harsha

    2017-04-01

    To evaluate the outcomes of corneal laser ablation with Q factor modification for vision correction in patients with progressive keratoconus. In this prospective study, 50 eyes of 50 patients were divided into two groups based on Q factor (>-1 in Group I and ≤-1 in Group II). All patients underwent a detailed ophthalmic examination including uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), subjective acceptance and corneal topography using the Pentacam. The topolyzer was used to measure the corneal asphericity (Q). Ablation was performed based on the preoperative Q values and thinnest pachymetry to obtain a target of near normal Q. This was followed by corneal collagen crosslinking to stabilize the progression. Statistically significant improvement (p ≤ 0.05) was noticed in refractive, topographic, and Q values posttreatment in both groups. The improvement in higher-order aberrations and total aberrations were statistically significant in both groups; however, the spherical aberration showed statistically significant improvement only in Group II. Ablation based on the preoperative Q and pachymetry for a near normal postoperative Q value appears to be an effective method to improve the visual acuity and quality in patients with keratoconus.

  18. A New Look to a Classic Issue: Reasoning and Academic Achievement at Secondary School

    PubMed Central

    Gómez-Veiga, Isabel; Vila Chaves, José O.; Duque, Gonzalo; García Madruga, Juan A.

    2018-01-01

    Higher-order thinking abilities such as abstract reasoning and meaningful school learning occur sequentially. The fulfillment of these tasks demands that people activate and use all of their working memory resources in a controlled and supervised way. The aims of this work were: (a) to study the interplay between two new reasoning measures, one mathematical (Cognitive Reflection Test) and the other verbal (Deductive Reasoning Test), and a third classical visuo-spatial reasoning measure (Raven Progressive Matrices Test); and (b) to investigate the relationship between these measures and academic achievement. Fifty-one 4th grade secondary school students participated in the experiment and completed the three reasoning tests. Academic achievement measures were the final numerical scores in seven basic subjects. The results demonstrated that cognitive reflection, visual, and verbal reasoning are intimately related and predicts academic achievement. This work confirms that abstract reasoning constitutes the most important higher-order cognitive ability that underlies academic achievement. It also reveals the importance of dual processes, verbal deduction and metacognition in ordinary teaching and learning at school. PMID:29643823

  19. Improved reconstruction and sensing techniques for personnel screening in three-dimensional cylindrical millimeter-wave portal scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.

    2011-05-01

    The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less

  20. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation?

    PubMed

    Censor, N

    2013-10-10

    In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. A New Look to a Classic Issue: Reasoning and Academic Achievement at Secondary School.

    PubMed

    Gómez-Veiga, Isabel; Vila Chaves, José O; Duque, Gonzalo; García Madruga, Juan A

    2018-01-01

    Higher-order thinking abilities such as abstract reasoning and meaningful school learning occur sequentially. The fulfillment of these tasks demands that people activate and use all of their working memory resources in a controlled and supervised way. The aims of this work were: (a) to study the interplay between two new reasoning measures, one mathematical (Cognitive Reflection Test) and the other verbal (Deductive Reasoning Test), and a third classical visuo-spatial reasoning measure (Raven Progressive Matrices Test); and (b) to investigate the relationship between these measures and academic achievement. Fifty-one 4th grade secondary school students participated in the experiment and completed the three reasoning tests. Academic achievement measures were the final numerical scores in seven basic subjects. The results demonstrated that cognitive reflection, visual, and verbal reasoning are intimately related and predicts academic achievement. This work confirms that abstract reasoning constitutes the most important higher-order cognitive ability that underlies academic achievement. It also reveals the importance of dual processes, verbal deduction and metacognition in ordinary teaching and learning at school.

  2. Zinc histochemistry reveals circuit refinement and distinguishes visual areas in the developing ferret cerebral cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2013-09-01

    A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.

  3. Frames as visual links between paintings and the museum environment: an analysis of statistical image properties

    PubMed Central

    Redies, Christoph; Groß, Franziska

    2013-01-01

    Frames provide a visual link between artworks and their surround. We asked how image properties change as an observer zooms out from viewing a painting alone, to viewing the painting with its frame and, finally, the framed painting in its museum environment (museum scene). To address this question, we determined three higher-order image properties that are based on histograms of oriented luminance gradients. First, complexity was measured as the sum of the strengths of all gradients in the image. Second, we determined the self-similarity of histograms of the orientated gradients at different levels of spatial analysis. Third, we analyzed how much gradient strength varied across orientations (anisotropy). Results were obtained for three art museums that exhibited paintings from three major periods of Western art. In all three museums, the mean complexity of the frames was higher than that of the paintings or the museum scenes. Frames thus provide a barrier of complexity between the paintings and their exterior. By contrast, self-similarity and anisotropy values of images of framed paintings were intermediate between the images of the paintings and the museum scenes, i.e., the frames provided a transition between the paintings and their surround. We also observed differences between the three museums that may reflect modified frame usage in different art periods. For example, frames in the museum for 20th century art tended to be smaller and less complex than in the two other two museums that exhibit paintings from earlier art periods (13th–18th century and 19th century, respectively). Finally, we found that the three properties did not depend on the type of reproduction of the paintings (photographs in museums, scans from books or images from the Google Art Project). To the best of our knowledge, this study is the first to investigate the relation between frames and paintings by measuring physically defined, higher-order image properties. PMID:24265625

  4. How task demands shape brain responses to visual food cues.

    PubMed

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Visual detail about the body modulates tactile localisation biases.

    PubMed

    Margolis, Aaron N; Longo, Matthew R

    2015-02-01

    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini et al. (Neuropsychologia 49:1194-1201, 2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought.

  6. Eyetracking Metrics in Young Onset Alzheimer’s Disease: A Window into Cognitive Visual Functions

    PubMed Central

    Pavisic, Ivanna M.; Firth, Nicholas C.; Parsons, Samuel; Rego, David Martinez; Shakespeare, Timothy J.; Yong, Keir X. X.; Slattery, Catherine F.; Paterson, Ross W.; Foulkes, Alexander J. M.; Macpherson, Kirsty; Carton, Amelia M.; Alexander, Daniel C.; Shawe-Taylor, John; Fox, Nick C.; Schott, Jonathan M.; Crutch, Sebastian J.; Primativo, Silvia

    2017-01-01

    Young onset Alzheimer’s disease (YOAD) is defined as symptom onset before the age of 65 years and is particularly associated with phenotypic heterogeneity. Atypical presentations, such as the clinic-radiological visual syndrome posterior cortical atrophy (PCA), often lead to delays in accurate diagnosis. Eyetracking has been used to demonstrate basic oculomotor impairments in individuals with dementia. In the present study, we aim to explore the relationship between eyetracking metrics and standard tests of visual cognition in individuals with YOAD. Fifty-seven participants were included: 36 individuals with YOAD (n = 26 typical AD; n = 10 PCA) and 21 age-matched healthy controls. Participants completed three eyetracking experiments: fixation, pro-saccade, and smooth pursuit tasks. Summary metrics were used as outcome measures and their predictive value explored looking at correlations with visuoperceptual and visuospatial metrics. Significant correlations between eyetracking metrics and standard visual cognitive estimates are reported. A machine-learning approach using a classification method based on the smooth pursuit raw eyetracking data discriminates with approximately 95% accuracy patients and controls in cross-validation tests. Results suggest that the eyetracking paradigms of a relatively simple and specific nature provide measures not only reflecting basic oculomotor characteristics but also predicting higher order visuospatial and visuoperceptual impairments. Eyetracking measures can represent extremely useful markers during the diagnostic phase and may be exploited as potential outcome measures for clinical trials. PMID:28824534

  7. Eyetracking Metrics in Young Onset Alzheimer's Disease: A Window into Cognitive Visual Functions.

    PubMed

    Pavisic, Ivanna M; Firth, Nicholas C; Parsons, Samuel; Rego, David Martinez; Shakespeare, Timothy J; Yong, Keir X X; Slattery, Catherine F; Paterson, Ross W; Foulkes, Alexander J M; Macpherson, Kirsty; Carton, Amelia M; Alexander, Daniel C; Shawe-Taylor, John; Fox, Nick C; Schott, Jonathan M; Crutch, Sebastian J; Primativo, Silvia

    2017-01-01

    Young onset Alzheimer's disease (YOAD) is defined as symptom onset before the age of 65 years and is particularly associated with phenotypic heterogeneity. Atypical presentations, such as the clinic-radiological visual syndrome posterior cortical atrophy (PCA), often lead to delays in accurate diagnosis. Eyetracking has been used to demonstrate basic oculomotor impairments in individuals with dementia. In the present study, we aim to explore the relationship between eyetracking metrics and standard tests of visual cognition in individuals with YOAD. Fifty-seven participants were included: 36 individuals with YOAD ( n  = 26 typical AD; n  = 10 PCA) and 21 age-matched healthy controls. Participants completed three eyetracking experiments: fixation, pro-saccade, and smooth pursuit tasks. Summary metrics were used as outcome measures and their predictive value explored looking at correlations with visuoperceptual and visuospatial metrics. Significant correlations between eyetracking metrics and standard visual cognitive estimates are reported. A machine-learning approach using a classification method based on the smooth pursuit raw eyetracking data discriminates with approximately 95% accuracy patients and controls in cross-validation tests. Results suggest that the eyetracking paradigms of a relatively simple and specific nature provide measures not only reflecting basic oculomotor characteristics but also predicting higher order visuospatial and visuoperceptual impairments. Eyetracking measures can represent extremely useful markers during the diagnostic phase and may be exploited as potential outcome measures for clinical trials.

  8. Multiscale Enaction Model (MEM): the case of complexity and “context-sensitivity” in vision

    PubMed Central

    Laurent, Éric

    2014-01-01

    I review the data on human visual perception that reveal the critical role played by non-visual contextual factors influencing visual activity. The global perspective that progressively emerges reveals that vision is sensitive to multiple couplings with other systems whose nature and levels of abstraction in science are highly variable. Contrary to some views where vision is immersed in modular hard-wired modules, rather independent from higher-level or other non-cognitive processes, converging data gathered in this article suggest that visual perception can be theorized in the larger context of biological, physical, and social systems with which it is coupled, and through which it is enacted. Therefore, any attempt to model complexity and multiscale couplings, or to develop a complex synthesis in the fields of mind, brain, and behavior, shall involve a systematic empirical study of both connectedness between systems or subsystems, and the embodied, multiscale and flexible teleology of subsystems. The conceptual model (Multiscale Enaction Model [MEM]) that is introduced in this paper finally relates empirical evidence gathered from psychology to biocomputational data concerning the human brain. Both psychological and biocomputational descriptions of MEM are proposed in order to help fill in the gap between scales of scientific analysis and to provide an account for both the autopoiesis-driven search for information, and emerging perception. PMID:25566115

  9. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  10. Prevalence and Causes of Visual Impairment and Blindness in Shanxi Province, China.

    PubMed

    Li, Tong; Du, Liping; Du, Lingzhen

    2015-01-01

    To estimate the prevalence and causes of visual impairment and blindness in Shanxi Province, China. Data were obtained from the Second National Sampling Survey of Disability conducted in 2006. Blindness and visual impairment were defined as best corrected visual acuity <3/60 and <6/18, respectively, in the better-seeing eye. Standardized ophthalmologic examinations were administered to participants aged 0-80 years in 2006. Visual acuity (VA) was measured using a Standard Logarithmic Visual Acuity E chart (Snellen) for subjects aged 7 years and older. Participants younger than 7 years were examined using special experiments or the Childhood Graphical Visual Chart. The prevalence of visual impairment and blindness in Shanxi was estimated to be 0.6% (466/75,016) among persons up to 80 years old. The prevalence in rural areas (0.7%; 351/48,137) was significantly higher than that in urban areas (0.4%; 115/26,879) and was higher in females (0.8%; 298/36,933) than in males (0.4%; 168/38,083). The most common cause of visual impairment and blindness was cataract (44.9%), followed by retinopathy and choroidopathy (12.5%), hereditary and developmental disorders (10.3%), corneal disease (5.2%), and refractive error (4.9%). Prevalences of visual impairment and blindness in women and in rural areas were higher than in men and urban areas, and increased with age. Cataract was the most prevalent cause of visual impairment and blindness. Based on the findings from this study, we suggest that provision of support and welfare services should be organized.

  11. Effects of subclinical footpad dermatitis and emotional arousal on surface foot temperature recorded with infrared thermography in turkey toms (Meleagris gallopavo).

    PubMed

    Moe, R O; Bohlin, J; Flø, A; Vasdal, G; Erlandsen, H; Guneriussen, E; Sjökvist, E C; Stubsjøen, S M

    2018-04-17

    Footpad dermatitis is a condition that causes lesions on the plantar surface of the footpads in growing turkeys. Potential inflammatory processes and pain associated with increasing severity of footpad dermatitis raise animal welfare concerns. This study investigated whether the temperature of the plantar surface of the foot (the footpads and the entire plantar foot including interdigital membranes) assessed with infrared thermography reflects severity of mild footpad dermatitis as assessed with a Visual Analogue Scale in 80 turkey toms at 10 weeks of age. In order to study effects of a potential emotional arousal due to the testing procedures, effects of sequential testing order and duration of handling of the turkeys was included in the model. Footpad temperatures were significantly lower than foot temperatures (P < 0.001, R2 = 0.57, -3.36°C ± 0.28°C), and higher visual analogue scale scores were anti-correlated with footpad (-0.06°C ± 0.037°C) and foot temperatures (-0.07°C ± 0.066°C). Furthermore, a negative association between footpad temperature and handling time (-0.02 ± 0.0227, P = 0.048), and a non-linear association between foot and footpad temperatures and sequential testing order, were found (P<0.001). The results indicate that severity of mild footpad dermatitis as scored visually was associated with the temperatures of the plantar surface of the foot and footpads, and that thermal imaging therefore represents a novel tool for the reliable and non-invasive early detection of subclinical foot pathologies in turkeys. The association was negative, and the findings therefore indicate that potential inflammatory processes in the epidermis at this early stage of footpad dermatitis are negligible, and/or that the hyperkeratosis of the surface keratin shielded heat emission from the footpads. The associations between surface temperatures, handling time, and sequential testing order suggest an emotional arousal in response to the experimental procedures, and these factors need to be considered when applying infrared thermography in future studies of leg health in turkeys.

  12. Developing an Interactive Data Visualization Tool to Assess the Impact of Decision Support on Clinical Operations.

    PubMed

    Huber, Timothy C; Krishnaraj, Arun; Monaghan, Dayna; Gaskin, Cree M

    2018-05-18

    Due to mandates from recent legislation, clinical decision support (CDS) software is being adopted by radiology practices across the country. This software provides imaging study decision support for referring providers at the point of order entry. CDS systems produce a large volume of data, providing opportunities for research and quality improvement. In order to better visualize and analyze trends in this data, an interactive data visualization dashboard was created using a commercially available data visualization platform. Following the integration of a commercially available clinical decision support product into the electronic health record, a dashboard was created using a commercially available data visualization platform (Tableau, Seattle, WA). Data generated by the CDS were exported from the data warehouse, where they were stored, into the platform. This allowed for real-time visualization of the data generated by the decision support software. The creation of the dashboard allowed the output from the CDS platform to be more easily analyzed and facilitated hypothesis generation. Integrating data visualization tools into clinical decision support tools allows for easier data analysis and can streamline research and quality improvement efforts.

  13. Visualizing Clonal Evolution in Cancer.

    PubMed

    Krzywinski, Martin

    2016-06-02

    Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer instability and evolution. Krzywinski discusses how to present clone evolution plots in order to visualize temporal, phylogenetic, and spatial aspects of a tumor in a single static image. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Clinical outcome and higher order aberrations after bilateral implantation of an extended depth of focus intraocular lens.

    PubMed

    Pilger, Daniel; Homburg, David; Brockmann, Tobias; Torun, Necip; Bertelmann, Eckart; von Sonnleithner, Christoph

    2018-04-01

    The purpose of this study was to assess the clinical outcome after a bilateral implantation of an extended depth of focus intraocular lens in comparison to a monofocal intraocular lens. Department of Ophthalmology, Charité-Medical University Berlin, Germany. A total of 60 eyes of 30 patients were enrolled in this prospective, single-center study. The cataract patients underwent phacoemulsification with bilateral implantation of a TECNIS ® Symfony (Abbott Medical Optics, Santa Ana, CA, USA, 15 patients) or a TECNIS Monofocal ZCB00 (Abbott Medical Optics, Santa Ana, CA, USA, 15 patients). Postoperative evaluations were performed after 1 and 3 months, including visual acuities at far, intermediate, and near distance. Mesopic, scotopic vision, and contrast sensitivity were investigated. Aberrometry was performed using an iTrace aberrometer with a pupil scan size of 5.0 mm. After 3 months, the TECNIS Symfony group reached an uncorrected visual acuity at far distance of -0.02 logMAR compared to -0.06 logMAR in the TECNIS Monofocal group ( p = 0.03). Regarding the uncorrected vision at intermediate and near distance the following values were obtained: intermediate visual acuity -0.13 versus 0.0 logMAR (TECNIS Symfony vs TECNIS Monofocal, p = 0.001) and near visual acuity 0.11 versus 0.26 logMAR (TECNIS Symfony vs TECNIS Monofocal, p = 0.001). Low-contrast visual acuities were 0.27 versus 0.20 logMar (TECNIS Symfony vs TECNIS Monofocal, p = 0.023). The TECNIS Symfony intraocular lens can be considered an appropriate alternative to multifocal intraocular lenses because of good visual results at far, intermediate, and near distance as well as in low-contrast vision.

  15. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    PubMed Central

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps. PMID:19936926

  16. Rapid, generalized adaptation to asynchronous audiovisual speech.

    PubMed

    Van der Burg, Erik; Goodbourn, Patrick T

    2015-04-07

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors.

    PubMed

    Potier, Simon; Mitkus, Mindaugas; Bonadonna, Francesco; Duriez, Olivier; Isard, Pierre-François; Dulaurent, Thomas; Mentek, Marielle; Kelber, Almut

    2017-01-01

    Birds with larger eyes are predicted to have higher spatial resolution because of their larger retinal image. Raptors are well known for their acute vision, mediated by their deep central fovea. Because foraging strategies may demand specific visual adaptations, eye size and fovea may differ between species with different foraging ecology. We tested whether predators (actively hunting mobile prey) and carrion eaters (eating dead prey) from the order Accipitriformes differ in eye size, foveal depth, and retinal thickness using spectral domain optical coherence tomography and comparative phylogenetic methods. We found that (1) all studied predators (except one) had a central and a temporal fovea, but all carrion eaters had only the central fovea; (2) eye size scaled with body mass both in predators and carrion eaters; (3) predators had larger eyes relative to body mass and a thicker retina at the edge of the fovea than carrion eaters, but there was no difference in the depth of the central fovea between the groups. Finally, we found that (4) larger eyes generally had a deeper central fovea. These results suggest that the visual system of raptors within the order Accipitriformes may be highly adapted to the foraging strategy, except for the foveal depth, which seems mostly dependent upon the eye size. © 2017 S. Karger AG, Basel.

  18. Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.

    PubMed

    Yoon, Seog Joon; Guo, Zhi; Dos Santos Claro, Paula C; Shevchenko, Elena V; Huang, Libai

    2016-07-26

    Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of ∼125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 ± 0.2) × 10(-2) cm(2) s(-1) has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with Förster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.

  19. A Developmental Approach to Machine Learning?

    PubMed Central

    Smith, Linda B.; Slone, Lauren K.

    2017-01-01

    Visual learning depends on both the algorithms and the training material. This essay considers the natural statistics of infant- and toddler-egocentric vision. These natural training sets for human visual object recognition are very different from the training data fed into machine vision systems. Rather than equal experiences with all kinds of things, toddlers experience extremely skewed distributions with many repeated occurrences of a very few things. And though highly variable when considered as a whole, individual views of things are experienced in a specific order – with slow, smooth visual changes moment-to-moment, and developmentally ordered transitions in scene content. We propose that the skewed, ordered, biased visual experiences of infants and toddlers are the training data that allow human learners to develop a way to recognize everything, both the pervasively present entities and the rarely encountered ones. The joint consideration of real-world statistics for learning by researchers of human and machine learning seems likely to bring advances in both disciplines. PMID:29259573

  20. Visual Perception and Visual-Motor Integration in Very Preterm and/or Very Low Birth Weight Children: A Meta-Analysis

    ERIC Educational Resources Information Center

    Geldof, C. J. A.; van Wassenaer, A. G.; de Kieviet, J. F.; Kok, J. H.; Oosterlaan, J.

    2012-01-01

    A range of neurobehavioral impairments, including impaired visual perception and visual-motor integration, are found in very preterm born children, but reported findings show great variability. We aimed to aggregate the existing literature using meta-analysis, in order to provide robust estimates of the effect of very preterm birth on visual…

  1. How Is the Serial Order of a Visual Sequence Represented? Insights from Transposition Latencies

    ERIC Educational Resources Information Center

    Hurlstone, Mark J.; Hitch, Graham J.

    2018-01-01

    A central goal of research on short-term memory (STM) over the past 2 decades has been to identify the mechanisms that underpin the representation of serial order, and to establish whether these mechanisms are the same across different modalities and domains (e.g., verbal, visual, spatial). A fruitful approach to addressing this question has…

  2. Time- and Space-Order Effects in Timed Discrimination of Brightness and Size of Paired Visual Stimuli

    ERIC Educational Resources Information Center

    Patching, Geoffrey R.; Englund, Mats P.; Hellstrom, Ake

    2012-01-01

    Despite the importance of both response probability and response time for testing models of choice, there is a dearth of chronometric studies examining systematic asymmetries that occur over time- and space-orders in the method of paired comparisons. In this study, systematic asymmetries in discriminating the magnitude of paired visual stimuli are…

  3. Prediction, events, and the advantage of Agents: The processing of semantic roles in visual narrative

    PubMed Central

    Cohn, Neil; Paczynski, Martin

    2013-01-01

    Agents consistently appear prior to Patients in sentences, manual signs, and drawings, and Agents are responded to faster when presented in visual depictions of events. We hypothesized that this “Agent advantage” reflects Agents’ role in event structure. We investigated this question by manipulating the depictions of Agents and Patients in preparatory actions in a wordless visual narrative. We found that Agents elicited a greater degree of predictions regarding upcoming events than Patients, that Agents are viewed longer than Patients, independent of serial order, and that visual depictions of actions are processed more quickly following the presentation of an Agent versus a Patient. Taken together these findings support the notion that Agents initiate the building of event representation. We suggest that Agent First orders facilitate the interpretation of events as they unfold and that the saliency of Agents within visual representations of events is driven by anticipation of upcoming events. PMID:23959023

  4. Evaluation of a visual layering methodology for colour coding control room displays.

    PubMed

    Van Laar, Darren; Deshe, Ofer

    2002-07-01

    Eighteen people participated in an experiment in which they were asked to search for targets on control room like displays which had been produced using three different coding methods. The monochrome coding method displayed the information in black and white only, the maximally discriminable method contained colours chosen for their high perceptual discriminability, the visual layers method contained colours developed from psychological and cartographic principles which grouped information into a perceptual hierarchy. The visual layers method produced significantly faster search times than the other two coding methods which did not differ significantly from each other. Search time also differed significantly for presentation order and for the method x order interaction. There was no significant difference between the methods in the number of errors made. Participants clearly preferred the visual layers coding method. Proposals are made for the design of experiments to further test and develop the visual layers colour coding methodology.

  5. Perceptual Learning Improves Adult Amblyopic Vision Through Rule-Based Cognitive Compensation

    PubMed Central

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2014-01-01

    Purpose. We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Methods. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Results. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). Conclusions. The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation. PMID:24550359

  6. Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation.

    PubMed

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A; Levi, Dennis M; Yu, Cong

    2014-04-01

    We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation.

  7. Visual areas become less engaged in associative recall following memory stabilization.

    PubMed

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; Fernández, Guillén; Jensen, Ole

    2008-04-15

    Numerous studies have focused on changes in the activity in the hippocampus and higher association areas with consolidation and memory stabilization. Even though perceptual areas are engaged in memory recall, little is known about how memory stabilization is reflected in those areas. Using magnetoencephalography (MEG) we investigated changes in visual areas with memory stabilization. Subjects were trained on associating a face to one of eight locations. The first set of associations ('stabilized') was learned in three sessions distributed over a week. The second set ('labile') was learned in one session just prior to the MEG measurement. In the recall session only the face was presented and subjects had to indicate the correct location using a joystick. The MEG data revealed robust gamma activity during recall, which started in early visual cortex and propagated to higher visual and parietal brain areas. The occipital gamma power was higher for the labile than the stabilized condition (time=0.65-0.9 s). Also the event-related field strength was higher during recall of labile than stabilized associations (time=0.59-1.5 s). We propose that recall of the spatial associations prior to memory stabilization involves a top-down process relying on reconstructing learned representations in visual areas. This process is reflected in gamma band activity consistent with the notion that neuronal synchronization in the gamma band is required for visual representations. More direct synaptic connections are formed with memory stabilization, thus decreasing the dependence on visual areas.

  8. A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.

    PubMed

    Pratesi, Andrea; Cecchi, Francesca; Beani, Elena; Sgandurra, Giuseppina; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo

    2015-09-07

    The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics. The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random. We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way. The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

  9. 7 Key Challenges for Visualization in Cyber Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Endert, Alexander; Kidwell, Dan

    In this paper we present seven challenges, informed by two user studies, to be considered when developing a visualization for cyber security purposes. Cyber security visualizations must go beyond isolated solutions and “pretty picture” visualizations in order to make impact to users. We provide an example prototype that addresses the challenges with a description of how they are met. Our aim is to assist in increasing utility and adoption rates for visualization capabilities in cyber security.

  10. Preclinical medical students’ understandings of academic and medical professionalism: visual analysis of mind maps

    PubMed Central

    Rees, Charlotte E

    2017-01-01

    Introduction Several studies have begun to explore medical students’ understandings of professionalism generally and medical professionalism specifically. Despite espoused relationships between academic (AP) and medical professionalism (MP), previous research has not yet investigated students’ conceptualisations of AP and MP and the relationships between the two. Objectives The current study, based on innovative visual analysis of mind maps, therefore aims to contribute to the developing literature on how professionalism is understood. Methods We performed a multilayered analysis of 98 mind maps from 262 first-year medical students, including analysing textual and graphical elements of AP, MP and the relationships between AP and MP. Results The most common textual attributes of AP were learning, lifestyle and personality, while attributes of MP were knowledge, ethics and patient-doctor relations. Images of books, academic caps and teachers were used most often to represent AP, while images of the stethoscope, doctor and red cross were used to symbolise MP. While AP-MP relations were sometimes indicated through co-occurring text, visual connections and higher-order visual metaphors, many students struggled to articulate the relationships between AP and MP. Conclusions While the mind maps’ textual attributes shared similarities with those found in previous research, suggesting the universality of some professionalism attributes, our study provides new insights into students’ conceptualisations of AP, MP and AP-MP relationships. We encourage medical educators to help students develop their understandings of AP, MP and AP-MP relationships, plus consider the feasibility and value of mind maps as a source of visual data for medical education research. PMID:28821520

  11. Estimation of carbon emission from peatland fires using Landsat-8 OLI imagery in Siak District, Riau Province

    NASA Astrophysics Data System (ADS)

    Aisyah Fadhillah Hafni, Dinda; Syaufina, Lailan; Puspaningsih, Nining; Prasasti, Indah

    2018-05-01

    The study was conducted in three land cover conditions (secondary peat forest, shrub land, and palm plantation) that were burned in the Siak District, Riau Province, Indonesia year 2015. Measurement and calculation carbon emission from soil and vegetation of peatland should be done accurately to be implemented on climate change mitigation or greenhouse gases mitigation. The objective of the study was to estimate the carbon emission caused peatland fires in the Siak District, Riau Province, Indonesia year 2015. Estimated carbon emissions were performed using visual method and digital method. The visual method was a method that uses on-screen digitization assisted by hotspot data, the presence of smoke, and fire suppression data. The digital method was a method that uses the Normalized Burn Ratio (NBR) index. The estimated carbon emissions were calculated using the equation that was developed from IPCC 2006 in Verified Carbon Standard 2015. The results showed that the estimation of carbon emissions from fires from above the peat soil surface were higher than the carbon emissions from the peat soil. Carbon emissions above the peat soil surface of 1376.51 ton C/ha were obtained by visual method while 3984.33 ton C/ha were obtained by digital method. Peatland carbon emissions of 6.6 x 10-4 ton C/ha were obtained by visual method, whereas 2.84 x 10-3 ton C/ha was obtained by digital method. Visual method and digital method using remote sensing must be combined and developed in order to carbon emission values will be more accurate.

  12. When apperceptive agnosia is explained by a deficit of primary visual processing.

    PubMed

    Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta

    2014-03-01

    Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. TOPOGRAPHICALLY GUIDED LASIK FOR MYOPIA USING THE NIDEK CXII CUSTOMIZED ASPHERIC TREATMENT ZONE (CATZ)

    PubMed Central

    Waring, George; Dougherty, Paul J.; Chayet, Arturo; Fischer, Jeffery; Fant, Barbara; Stevens, Gary; Bains, Harkaran S.

    2007-01-01

    Purpose To assess the efficacy, predictability, and safety of topography-guided laser in situ keratomileusis (LASIK) for the surgical correction of low to moderate myopia with astigmatism using the Nidek CXIII excimer laser equipped with the customized aspheric treatment zone (CATz) algorithm. Methods In a multicenter US Food and Drug Administration study of topography-guided LASIK, 4 centers enrolled 135 eyes with manifest refraction sphere that ranged from −0.50 to −7.00 D (mean, −3.57 ± 1.45) with up to −4.00 D of astigmatism (mean, −1.02 ± 0.64 D). The intended outcome was plano in all eyes. Refractive outcomes and higher-order aberrations were analyzed preoperatively and postoperatively. Patient satisfaction was assessed using both the validated Refractive Status and Vision Profile (RSVP) questionnaire and a questionnaire designed for this study. Six-month postoperative outcomes are reported here. Results By 6 months postoperatively, the manifest refraction spherical equivalent (MRSE) for all eyes was −0.09 ± 0.31 D. Six months postoperatively, 116 of 131 eyes (88.55%) had an uncorrected visual acuity of 20/20 or better, and 122 of 131 eyes (93.13%) had a MRSE within ±0.50 D. Distance best spectacle-corrected visual acuity (BSCVA) increased by 2 or more lines in 21 of 131 eyes (19.01%), and no eyes lost 2 lines or more of BSCVA. The total ocular higher-order aberrations root-mean-square increased by 0.04 μm postoperatively. Patients reported significantly fewer night driving and glare and halo symptoms postoperatively than preoperatively. Conclusions Nidek CXIII CATz treatment of myopia with astigmatism is safe, efficacious, and predictable, and it reduces patient symptoms associated with night driving and glare and halo symptoms. PMID:18427614

  14. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    PubMed

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  15. Neural Substrates for Judgment of Self-Agency in Ambiguous Situations

    PubMed Central

    Fukushima, Hirokata; Goto, Yurie; Maeda, Takaki; Kato, Motoichiro; Umeda, Satoshi

    2013-01-01

    The sense of agency is the attribution of oneself as the cause of one’s own actions and their effects. Accurate agency judgments are essential for adaptive behaviors in dynamic environments, especially in conditions of uncertainty. However, it is unclear how agency judgments are made in ambiguous situations where self-agency and non-self-agency are both possible. Agency attribution is thus thought to require higher-order neurocognitive processes that integrate several possibilities. Furthermore, neural activity specific to self-attribution, as compared with non-self-attribution, may reflect higher-order critical operations that contribute to constructions of self-consciousness. Based on these assumptions, the present study focused on agency judgments under ambiguous conditions and examined the neural correlates of this operation with functional magnetic resonance imaging. Participants performed a simple but demanding agency-judgment task, which required them to report on whether they attributed their own action as the cause of a visual stimulus change. The temporal discrepancy between the participant’s action and the visual events was adaptively set to be maximally ambiguous for each individual on a trial-by-trial basis. Comparison with results for a control condition revealed that the judgment of agency was associated with activity in lateral temporo-parietal areas, medial frontal areas, the dorsolateral prefrontal area, and frontal operculum/insula regions. However, most of these areas did not differentiate between self- and non-self-attribution. Instead, self-attribution was associated with activity in posterior midline areas, including the precuneus and posterior cingulate cortex. These results suggest that deliberate self-attribution of an external event is principally associated with activity in posterior midline structures, which is imperative for self-consciousness. PMID:23977268

  16. Comparison of 2 wavefront-guided excimer lasers for myopic laser in situ keratomileusis: one-year results.

    PubMed

    Yu, Charles Q; Manche, Edward E

    2014-03-01

    To compare laser in situ keratomileusis (LASIK) outcomes between 2 wavefront-guided excimer laser systems in the treatment of myopia. University eye clinic, Palo Alto, California, USA. Prospective comparative case series. One eye of patients was treated with the Allegretto Wave Eye-Q system (small-spot scanning laser) and the fellow eye with the Visx Star Customvue S4 IR system (variable-spot scanning laser). Evaluations included measurement of uncorrected visual acuity, corrected visual acuity, and wavefront aberrometry. One hundred eyes (50 patients) were treated. The mean preoperative spherical equivalent (SE) refraction was -3.89 diopters (D) ± 1.67 (SD) and -4.18 ± 1.73 D in the small-spot scanning laser group and variable-spot scanning laser group, respectively. There were no significant differences in preoperative higher-order aberrations (HOAs) between the groups. Twelve months postoperatively, all eyes in the small-spot scanning laser group and 92% in the variable-spot scanning laser group were within ±0.50 D of the intended correction (P = .04). At that time, the small-spot scanning laser group had significantly less spherical aberration (0.12 versus 0.15) (P = .04) and significantly less mean total higher-order root mean square (0.33 μm versus 0.40 μm) (P = .01). Subjectively, patients reported that the clarity of night and day vision was significantly better in the eye treated with the small-spot scanning laser. The predictability and self-reported clarity of vision of wavefront-guided LASIK were better with the small-spot scanning laser. Eyes treated with the small-spot scanning laser had significantly fewer HOAs. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Social inequalities in blindness and visual impairment: A review of social determinants

    PubMed Central

    Ulldemolins, Anna Rius; Lansingh, Van C; Valencia, Laura Guisasola; Carter, Marissa J; Eckert, Kristen A

    2012-01-01

    Health inequities are related to social determinants based on gender, socioeconomic status, ethnicity, race, living in a specific geographic region, or having a specific health condition. Such inequities were reviewed for blindness and visual impairment by searching for studies on the subject in PubMed from 2000 to 2011 in the English and Spanish languages. The goal of this article is to provide a current review in understanding how inequities based specifically on the aforementioned social determinants on health influence the prevalence of visual impairment and blindness. With regards to gender inequality, women have a higher prevalence of visual impairment and blindness, which cannot be only reasoned based on age or access to service. Socioeconomic status measured as higher income, higher educational status, or non-manual occupational social class was inversely associated with prevalence of blindness or visual impairment. Ethnicity and race were associated with visual impairment and blindness, although there is general confusion over this socioeconomic position determinant. Geographic inequalities and visual impairment were related to income (of the region, nation or continent), living in a rural area, and an association with socioeconomic and political context was suggested. While inequalities related to blindness and visual impairment have rarely been specifically addressed in research, there is still evidence of the association of social determinants and prevalence of blindness and visual impairment. Additional research should be done on the associations with intermediary determinants and socioeconomic and political context. PMID:22944744

  18. The Influence of Manifest Strabismus and Stereoscopic Vision on Non-Verbal Abilities of Visually Impaired Children

    ERIC Educational Resources Information Center

    Gligorovic, Milica; Vucinic, Vesna; Eskirovic, Branka; Jablan, Branka

    2011-01-01

    This research was conducted in order to examine the influence of manifest strabismus and stereoscopic vision on non-verbal abilities of visually impaired children aged between 7 and 15. The sample included 55 visually impaired children from the 1st to the 6th grade of elementary schools for visually impaired children in Belgrade. RANDOT stereotest…

  19. The Effect of Gender and Level of Vision on the Physical Activity Level of Children and Adolescents with Visual Impairment

    ERIC Educational Resources Information Center

    Aslan, Ummuhan Bas; Calik, Bilge Basakci; Kitis, Ali

    2012-01-01

    This study was planned in order to determine physical activity levels of visually impaired children and adolescents and to investigate the effect of gender and level of vision on physical activity level in visually impaired children and adolescents. A total of 30 visually impaired children and adolescents (16 low vision and 14 blind) aged between…

  20. School Starters' Vision--An Educational Approach

    ERIC Educational Resources Information Center

    Wilhelmsen, Gunvor B

    2016-01-01

    Although good visual capacity is essential for children's learning, we have limited understanding of the various visual functions among school starters. In order to extend this knowledge, a small-scale study was undertaken involving 24 preschool children age 5-6 years who completed a test battery originally designed for visual impairment…

Top