Sample records for higher oxygen partial

  1. [Effects of gap junction blocking on the oxygen partial pressure in acupoints of the bladder meridian].

    PubMed

    Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying

    2010-12-01

    To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P < 0.01). (2) The oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P < 0.01). (3) The oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P < 0.01). In Cx43 heterozygote (HT) mice, the oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P < 0.05), while in the corresponding non-acupoints, this difference had no statistically significant (all P > 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.

  2. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    NASA Astrophysics Data System (ADS)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  3. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Parmigiani, F.; Shen, Z. X.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1991-02-01

    High-quality Bi2Sr2CaCu2O8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ~=0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure.

  4. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    PubMed

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.

  5. Effect of O 2 gas partial pressure on structures and dielectric characteristics of rf sputtered ZrO 2 thin films

    NASA Astrophysics Data System (ADS)

    Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.

    2007-08-01

    Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.

  6. Observation of decreasing resistivity of amorphous indium gallium zinc oxide thin films with an increasing oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Singh, Anup K.; Adhikari, Sonachand; Gupta, Rajeev; Deepak

    2017-01-01

    We have investigated the electrical resistivity behavior in amorphous indium gallium zinc oxide (a-IGZO) thin films. It is well known that resistivity increases as the film is deposited at a higher and higher oxygen partial pressure; we also record the same. However, in process we have discovered a remarkable region, in the oxygen deficient condition, that the resistivity shows an inverse behavior. This leads to the possibility that resistive films, suitable for thin film transistors, can also be obtained in oxygen deficient deposition conditions. Optical spectroscopic investigation could discern between a-IGZO films grown in oxygen deficient and oxygen rich conditions. The related resistivity behavior could be correlated to the presence of sub-bandgap states in films deposited in oxygen deficiency. These subgap states appear to be due to defects arising from local variations around the cations or oxygen atoms. The likely cause is an increase in Ga relative to In around O atom and the nature of cation-cation interaction when an oxygen atom is missing.

  7. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  8. Control of magnetization reversal in oriented strontium ferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  9. Partial oxidation of methane by pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2014-09-01

    Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.

  10. Changes in Oxygen Partial Pressure in the Vitreous Body and Arterial Blood of Rabbits Depending on Oxygen Concentration in Inspired Mixture.

    PubMed

    Amkhanitskaya, L I; Nikolaeva, G V; Sokolova, N A

    2015-07-01

    We demonstrated that the vitreous body of one-month-old rabbits becomes a "reservoir" for storage and accumulation of oxygen after exposure to additional oxygenation of the organism (O2 concentrations in inspired gas mixture were 40, 60, 85, and 99%). The higher was O2 concentration in inspired mixture, the higher was oxygen saturation of the blood and vitreous body. O2 concentration of 40% was relatively safe for eye tissues. O2 concentration >60% induced oxygen accumulation in the vitreous body, which can be a provoking factor for the development of oxygen-induced pathologies.

  11. Hyperoxia is Associated with Increased Mortality in Patients Treated with Mild Therapeutic Hypothermia after Sudden Cardiac Arrest

    PubMed Central

    Janz, David R.; Hollenbeck, Ryan D.; Pollock, Jeremy S.; McPherson, John A.; Rice, Todd W.

    2012-01-01

    Objective To determine if higher levels of partial pressure of arterial oxygen are associated with in-hospital mortality and poor neurologic status at hospital discharge in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Design Retrospective analysis of a prospective cohort study Patients A total of 170 consecutive patients treated with therapeutic hypothermia in the cardiovascular care unit of an academic tertiary care hospital. Interventions None. Measurements and Main Results Of 170 patients, 77 (45.2%) survived to hospital discharge. Survivors had a significantly lower maximum partial pressure of arterial oxygen(198 mmHg, IQR 152.5–282) measured in the first 24 hours following cardiac arrest compared to nonsurvivors (254 mmHg, IQR 172–363, p = .022). A multivariable analysis including age, time to return of spontaneous circulation, the presence of shock, bystander CPR, and initial rhythm revealed that higher levels of the partial pressure of arterial oxygen were significantly associated with increased in-hospital mortality (odds ratio 1.439, 95% confidence interval 1.028–2.015, p = 0.034) and poor neurologic status at hospital discharge (odds ratio 1.485, 95% confidence interval 1.032–2.136, p = 0.033). Conclusions Higher levels of the maximum measured partial pressure of arterial oxygen are associated with increased in-hospital mortality and poor neurologic status on hospital discharge in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. PMID:22971589

  12. Effects of oxygen on responses to heating in two lizard species sampled along an elevational gradient.

    PubMed

    DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N

    2017-08-01

    Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.

  13. A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets

    NASA Astrophysics Data System (ADS)

    Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian

    2018-04-01

    The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.

  14. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  15. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  16. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  17. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    PubMed

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  19. Methods and apparatus for reducing corrosion in refractory linings

    DOEpatents

    Poeppel, Roger B.; Greenberg, Sherman; Diercks, Dwight R.

    1987-01-01

    Methods and apparatus are provided for reducing corrosion in a refractory lining of a liquid-containing vessel used in direct steelmaking processes. The vessel operates at between about 1600.degree. C. and about 1800.degree. C. and an oxygen partial pressure of about 10.sup.-12 atmospheres, creating slag which is rich in FeO. The refractory lining includes a significant level of chromium oxide (Cr.sub.2 O.sub.3), and has small interconnected pores which may be filled with a gas mixture having a higher total pressure and oxygen partial pressure than the total pressure and oxygen partial pressure associted with the liquid against the lining of the vessel. The gas mixture is forced through the pores of the lining so that the pores are continuously filled with the mixture. In this manner, the gas mixture creates a blanket which increases the oxygen partial pressure at the lining enough to maintain the chromium in the lining in a selected valence state in which the chromium has decreased solubility in the FeO slag, thereby reducing corrosion by the FeO and increasing the useful life of the refractory lining.

  20. Phase development in the Bi 2Sr 2CaCu 2O y system . Effects of oxygen pressure

    NASA Astrophysics Data System (ADS)

    List, F. A.; Hsu, H.; Cavin, O. B.; Porter, W. D.; Hubbard, C. R.; Kroeger, D. M.

    1992-11-01

    Studies have been undertaken using thermal analysis, in conjunction with high-temperature and room temperature X-ray diffraction, fraction, to elucidate phase relationships during thermal processing of thick films of initially phase pure Bi 2Sr 2CaCu 2O y (2212) on silver substrates in various oxygen-containing atmospheres (0.001 to 100% O 2). Exothermic events on cooling at 10°C/min from a partially liquid state vary with oxygen partial pressure and can be grouped into three sets (I-III). Set I is prominent for 0.001% and 0.1% O 2 in the range of 740-775°C and is believed to be associated with the crystallization of a Cu-free ∼ Bi 5Sr 3Ca 1 oxide phase. Set II results from the crystallization of 2212; it is observed for p(O 2)≥1.0% in the temperature range 800-870°C. Set III appears for 21% and 100% O 2 in the temperature range 880-910°C, and its origin is not clear from the results of this study. Subsequent room temperature X-ray diffraction from these samples suggests that in general high oxygen partial pressures (100% O 2) tend to favor the formation of Bi 2Sr 2CuO 6 (2201), whereas low oxygen partial pressures (0.001-0.1% O 2) lead to the formation of a Cu-free, Bi-Sr-Ca oxide phase. The 2212 phase forms at this cooling rate predominantly for intermediate oxygen partial pressures (7.6-21% O 2). High-temperature X-ray diffraction during cooling (2°C/h) from the partially liquid state shows a pronounced dependence of the order of evolution of crystalline 2212 and 2201 phases on p(O 2). For an oxygen partial pressure of 1.0% the formation of 2212 precedes that of 2201, whereas for 0.01% O 2 2201 crystallizes at a higher temperature than 2212. The implications of these results pertaining to thermal processing of thick 2212 films are discussed.

  1. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Serra, J. L.

    2007-01-01

    T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.

  2. Simultaneous measurement of brain tissue oxygen partial pressure, temperature, and global oxygen consumption during hibernation, arousal, and euthermy in non-sedated and non-anesthetized Arctic ground squirrels.

    PubMed

    Ma, Yilong; Wu, Shufen

    2008-09-30

    This study reports an online temperature correction method for determining tissue oxygen partial pressure P(tO2) in the striatum and a novel simultaneous measurement of brain P(tO2) and temperature (T(brain)) in conjunction with global oxygen consumption V(O2) in non-sedated and non-anesthetized freely moving Arctic ground squirrels (AGS, Spermophilus parryii). This method fills an important research gap-the lack of a suitable method for physiologic studies of tissue P(O2) in hibernating or other cool-blooded species. P(tO2) in AGS brain during euthermy (21.22+/-2.06 mmHg) is significantly higher (P=0.016) than during hibernation (13.21+/-0.46 mmHg) suggests brain oxygenation in the striatum is normoxic during euthermy and hypoxic during hibernation. These results in P(tO2) are different from blood oxygen partial pressure P(aO2) in AGS, which are significantly lower during euthermy than during hibernation and are actually hypoxic during euthermy and normoxic during hibernation in our previous study. This intriguing difference between the P(O2) of brain tissue and blood during these two physiological states suggests that regional mechanisms in the brain play a role in maintaining tissue oxygenation and protect against hypoxia during hibernation.

  3. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  4. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  5. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  6. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  7. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  8. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  9. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  10. [Observation on changes of oxygen partial pressure in the deep tissues along the large intestine meridian during acupuncture in healthy subjects].

    PubMed

    Chen, Ming; Hu, Xiang-long; Wu, Zu-xing

    2010-06-01

    To observe changes of the partial oxygen pressure in the deep tissues along the Large Intestine Meridian (LIM) during acupuncture stimulation, so as to reveal the characteristics of energy metabolism in the tissues along the LIM. Thirty-one healthy volunteer subjects were enlisted in the present study. Partial oxygen pressure (POP) in the tissues (at a depth of about 1.5 cm) of acupoints Binao (LI 14), Shouwuli (LI 13), Shousanli (LI 10), 2 non-acupoints [the midpoints between Quchi (LI 11) and LI 14, and between Yangxi (LI 5) and LI 11) of the LIM, and 10 non-meridian points, 1.5-2.0 cm lateral and medial to each of the tested points of the LIM was detected before, during and after electroacupuncture (EA) stimulation of Hegu (LI 4) by using a tissue oxygen tension needle-like sensor. In normal condition, the POP values in the deep tissues along the LIM were significantly higher than those of the non-meridian control points on its bilateral sides. During and after EA of Hegu (LI 4), the POP levels decreased significantly in the deep tissues along the LIM in comparison with pre-EA (P < 0.01), and had no apparent changes in the non-meridian control points (P > 0.05). POP is significantly higher in the deep tissues along the LIM of healthy subjects under normal conditions, which can be downregulated by EA of Hegu (LI 4), suggesting an increase of both the utilization rate of oxygen and energy metabolism after EA.

  11. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro.

    PubMed

    Schoknecht, Karl; Berndt, Nikolaus; Rösner, Jörg; Heinemann, Uwe; Dreier, Jens P; Kovács, Richard; Friedman, Alon; Liotta, Agustin

    2017-09-07

    Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABA A antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH₂ ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  12. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  13. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671

  14. Chemical reactions and morphological stability at the Cu/Al2O3 interface.

    PubMed

    Scheu, C; Klein, S; Tomsia, A P; Rühle, M

    2002-10-01

    The microstructures of diffusion-bonded Cu/(0001)Al2O3 bicrystals annealed at 1000 degrees C at oxygen partial pressures of 0.02 or 32 Pa have been studied with various microscopy techniques ranging from optical microscopy to high-resolution transmission electron microscopy. The studies revealed that for both oxygen partial pressures a 20-35 nm thick interfacial CuAlO2 layer formed, which crystallises in the rhombohedral structure. However, the CuAlO2 layer is not continuous, but interrupted by many pores. In the samples annealed in the higher oxygen partial pressure an additional reaction phase with a needle-like structure was observed. The needles are several millimetres long, approximately 10 microm wide and approximately 1 microm thick. They consist of CuAlO2 with alternating rhombohedral and hexagonal structures. Solid-state contact angle measurements were performed to derive values for the work of adhesion. The results show that the adhesion is twice as good for the annealed specimen compared to the as-bonded sample.

  15. The Bohr Effect Is Not a Likely Promoter of Renal Preglomerular Oxygen Shunting

    PubMed Central

    Olgac, Ufuk; Kurtcuoglu, Vartan

    2016-01-01

    The aim of this study was to evaluate whether possible preglomerular arterial-to-venous oxygen shunting is affected by the interaction between renal preglomerular carbon dioxide and oxygen transport. We hypothesized that a reverse (venous-to-arterial) shunting of carbon dioxide will increase partial pressure of carbon dioxide and decrease pH in the arteries and thereby lead to increased oxygen offloading and consequent oxygen shunting. To test this hypothesis, we employed a segment-wise three-dimensional computational model of coupled renal oxygen and carbon dioxide transport, wherein coupling is achieved by shifting the oxygen-hemoglobin dissociation curve in dependence of local changes in partial pressure of carbon dioxide and pH. The model suggests that primarily due to the high buffering capacity of blood, there is only marginally increased acidity in the preglomerular vasculature compared to systemic arterial blood caused by carbon dioxide shunting. Furthermore, effects of carbon dioxide transport do not promote but rather impair preglomerular oxygen shunting, as the increase in acidity is higher in the veins compared to that in the arteries. We conclude that while substantial arterial-to-venous oxygen shunting might take place in the postglomerular vasculature, the net amount of oxygen shunted at the preglomerular vasculature appears to be marginal. PMID:27833564

  16. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  17. Electrolytic production of oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Some of the most promising approaches to extract oxygen from lunar resources involve electrochemical oxygen generation. In a concept called magma electrolysis, suitable oxides (silicates) which are molten at 1300 to 1500 C are then electrolyzed. Residual melt can be discarded after partial electrolysis. Alternatively, lunar soil may be dissolved in a molten salt and electrolyzed. In this approach, temperatures are lower and melt conductances higher, but electrolyte constituents need to be preserved. In a different approach ilmenite is reduced by hydrogen and the resulting water is electrolyzed.

  18. Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.

    PubMed

    Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix C

    2015-07-05

    Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.

  19. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  20. Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Kaushal, Ajay; Kaur, Davinder

    2011-06-01

    We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1- x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2-WO3 thin film electrode with higher VO2 content ( x ≥ 0.2). Increase of VO2 content in (WO3)1- x (VO2) x films leads to red shift in optical band gap.

  1. Ameliorating effects of fluorocarbon emulsion on sickle red blood cell-induced obstruction in an ex vivo vasculature.

    PubMed

    Kaul, D K; Liu, X; Nagel, R L

    2001-11-15

    In sickle cell (SS) vaso-occlusion, the culminating event is blockage of blood vessels by sickled red blood cells (SS RBCs). As shown in animal models, SS RBC-induced vaso-occlusion is often partial, allowing for a residual flow, hence oxygen delivery to partially occluded vessels could reduce vaso-occlusion. The efficacy of an oxygenated perflubron-based fluorocarbon emulsion (PFE) was tested for its anti-vaso-occlusive effects in the ex vivo mesocecum vasculature of the rat. Microvascular obstruction was induced by the infusion of deoxygenated SS RBCs into ex vivo preparations with or without pretreatment with platelet-activating factor (PAF). PAF induced enhanced SS RBC-endothelium interactions, leading to greater vaso-occlusion. Microvascular blockage resulted in increased peripheral resistance units (PRU). Deoxygenated SS RBCs caused a persistent 1.5-fold PRU increase in untreated preparations and approximately a 2-fold PRU increase in PAF-treated preparations. The greater PRU in PAF-treated preparations was caused by widespread adhesion and postcapillary blockage. Oxygenated PFE, but not deoxygenated PFE, resulted in PRU decreases to baseline values in both groups of experiments (with or without PAF). The PRU decrease caused by oxygenated PFE infusion was caused by unsickling of SS RBCs in partially occluded vessels, with no antiadhesive effect on already adherent SS RBCs as assessed by intravital microscopy. PFE had no effect on vascular tone. The efficacy of PFE appears to result from its greater capacity to dissolve oxygen (10-fold higher than plasma). The dislodgement of trapped SS RBCs and an increase in wall shear rates will help reverse the partial obstruction. Thus, oxygenated PFE is capable of reducing SS RBC-induced vaso-occlusion, and further development of this approach is advisable.

  2. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.

  3. Thin film devices used as oxygen partial pressure sensors

    NASA Technical Reports Server (NTRS)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  4. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  5. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  6. PH2O and simulated hypobaric hypoxia.

    PubMed

    Conkin, Johnny

    2011-12-01

    Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F1O2 < 0.209 at or near sea level pressure to match the ambient oxygen partial pressure (iso-PO2) of the target altitude. I conclude after a review of literature from investigators and manufacturers that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of oxygen (P1O2), which is substantial at higher altitude relative to sea level. Consequently, some devices claiming an equivalent HH experience under normobaric conditions would significantly overestimate the HH condition, especially when simulating altitudes above 10,000 ft (3048 m). At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient PO2 at sea level as at altitude. An approach to reduce the overestimation and standardize the operation is to at least provide machines that create the same P1O2 conditions at sea level as at the target altitude, a simple software upgrade.

  7. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  8. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  9. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    PubMed

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  10. A Low-Oxygenated Subpopulation of Pancreatic Islets Constitutes a Functional Reserve of Endocrine Cells

    PubMed Central

    Olsson, Richard; Carlsson, Per-Ola

    2011-01-01

    OBJECTIVE The blood perfusion of pancreatic islets is highly variable and tightly regulated by the blood glucose concentration. Thus, oxygen levels are considered crucial for islet metabolism and function. Although islet oxygenation has been extensively studied in vitro, little is known about it in vivo. The current study aimed to investigate the oxygenation of the endocrine pancreas in vivo. RESEARCH DESIGN AND METHODS The reductive metabolism of 2-nitroimidazoles, such as pimonidazole, has previously been extensively used in studies of oxygen metabolism both in vitro and in vivo. At tissue oxygen levels <10 mmHg, pimonidazole accumulates intracellularly and may thereafter be detected by means of immunohistochemistry. Islet oxygenation was investigated in normal, 60% partially pancreatectomized, as well as whole-pancreas–transplanted rats. Moreover, leucine-dependent protein biosynthesis was performed using autoradiography to correlate islet oxygenation with metabolic activity. RESULTS In vivo, 20–25% of all islets in normal rats showed low oxygenation (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low-oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Moreover, oxygenation was related to metabolism, since well-oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. CONCLUSIONS The current study suggests a novel subpopulation of dormant low-oxygenated islets, which seems to constitute a functional reserve of endocrine cells. This study establishes a novel perspective on the use of the endocrine pancreas in glucose homeostasis. PMID:21788581

  11. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  13. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  14. Computational model for oxygen transport and consumption in human vitreous.

    PubMed

    Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C

    2013-10-15

    Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.

  15. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  16. PP043. Oxidative stress in the maternal body also affects the fetus in preeclamptic women with fetal growth restriction.

    PubMed

    Watanabe, Kazushi; Iwasaki, Ai; Mori, Toshitaka; Kimura, Chiharu; Matsushita, Hiroshi; Shinohara, Koichi; Wakatsuki, Akihiko

    2013-04-01

    The purpose of the present study was to determine whether oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. We ∥@consecutively recruited 17 preeclamptic women with FGR, 16 preeclamptic women without FGR, and 16 healthy pregnant women with uncomplicated pregnancy. We measured concentrations of derivatives of reactive oxygen metabolites (d-ROMs) as a marker of oxygen free radicals in a maternal vein, umbilical artery, and umbilical vein. ∥@Maternal d-ROM levels were higher in preeclamptic groups compared to the control group. Umbilical artery and vein d-ROM levels were elevated in preeclamptic women with FGR compared to the control group. Umbilical artery d-ROM levels were significantly higher than in the vein in preeclamptic women with FGR, but not in those without FGR. Umbilical arterial blood pH was significantly lower in preeclamptic women with FGR. The partial pressure of oxygen (PaO2) in umbilical arterial blood tended to be lower in preeclamptic women with FGR (p=0.08). The partial pressure of carbon dioxide (PaCO2) in umbilical arterial blood was significantly higher in preeclamptic women with FGR. These results indicate that oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. Copyright © 2013. Published by Elsevier B.V.

  17. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  18. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  19. Fuel cell serves as oxygen level detector

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  20. Effects of hypobaria and hypoxia on seed germination of six plant species

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  1. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  2. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  3. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE PAGES

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...

    2017-06-29

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  4. Fluorite Ce0.8Sm0.2O2- δ porous layer coating to enhance the oxygen permeation behavior of a BaCo0.7Fe0.2Nb0.1O3- δ mixed conductor

    NASA Astrophysics Data System (ADS)

    Wang, Tai-he; Song, Wei-jia; Li, Rong; Zhen, Qiang

    2016-06-01

    Fluorite Ce0.8Sm0.2O2- δ (SDC) nanopowder with a crystallite size of 15 nm was synthesized by a co-precipitation method. An SDC porous layer was coated onto a BaCo0.7Fe0.2Nb0.1O3- δ (BCFN) mixed conductor to improve its oxygen transport behavior. The results show that the SDC-coated BCFN membrane exhibits a remarkably higher oxygen permeation flux ({J_{{O_2}}}) than the uncoated BCFN in the partial oxidation of coke oven gas (COG). The maximum {J_{{O_2}}} value of the SDC-coated BCFN is 18.28 mL·min-1·cm-2 under a COG/air flux of 177 mL·min-1/353 mL·min-1 at 875°C when the thickness of the BCFN membrane is 1 mm; this {J_{{O_2}}} value is 23% higher than that of the uncoated BCFN membrane. This enhancement is likely because of the higher oxygen ionic conductivity of SDC, which supplies oxygen vacancies and accelerates oxygen exchange on the membrane/coating layer/gas three-phase boundary.

  5. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    PubMed Central

    Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.

    2017-01-01

    In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving. PMID:28790955

  6. Measurement and Control of Oxygen Partial Pressure in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2014-01-01

    Recently the NASA Marshall Space Flight Center electrostatic levitation (ESL) laboratory has been upgraded to include an oxygen control system. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, at elevated temperatures, theoretically in the range from 10(exp -36) to 10(exp 0) bar. The role of active surface agents in liquid metals is fairly well known; however, published surface tension data typically has large scatter, which has been hypothesized to be caused by the presence of oxygen. The surface tension of metals is affected by even a small amount of adsorption of oxygen. It has even been shown that oxygen partial pressures may need to be as low as 10(exp -24) bar to avoid oxidation. While electrostatic levitation is done under high vacuum, oxide films or dissolved oxygen may have significant effects on materials properties, such as surface tension and viscosity. Therefore, the ability to measure and control the oxygen partial pressure within the chamber is highly desirable. The oxygen control system installed at MSFC contains a potentiometric sensor, which measures the oxygen partial pressure, and an oxygen ion pump. In the pump, a pulse-width modulated electric current is applied to yttrium-stabilized zirconia, resulting in oxygen transfer into or out of the system. Also part of the system is a control unit, which consists of temperature controllers for the sensor and pump, PID-based current loop for the ion pump, and a control algorithm. This system can be used to study the effects of oxygen on the thermophysical properties of metals, ceramics, glasses, and alloys. It can also be used to provide more accurate measurements by processing the samples at very low oxygen partial pressures. The oxygen control system will be explained in more detail and an overview of its use and limitations in an electrostatic levitator will be described. Some preliminary measurements have been made, and the results to date will be provided.

  7. [The effect of altered oxygen partial pressure on the resisitance to hypoxia and expression of oxygen-sensitive genes in Drosophila melanogaster].

    PubMed

    Berezovs'kyĭ, V Ia; Chaka, O H; Litovka, I H; Levashov, M I; Ianko, R V

    2014-01-01

    As a result of resistance test to hypoxia of Drosophilas melanogaster of Oregon strain, we identified a high resistance (Group II) and low resistance (Group III) subpopulations of flies. Flies from groups II and III were incubated in a constant normobaric hypoxia (Po2=62-64 mm Hg) for 10 generations. A highly resistant group (Group IV) were exposed to a shortterm anoxia (Po,=1,5 mm Hg, 5 min) every generation. Larvae from Groups II, III, and IV demonstrated significantly elevated levels of Sir and CG 14740 expression. Larvae from Group II had a significantly higher expression of CG 14740 compared to group III. The restitution time after exposure to anoxia was significantly reduced in Group II (on 31% of the control values) Our results suggest that long-term adaptation to low oxygen partial pressure of highly resistant Drosophila significantly reduces the time of restitution and increases the expression of Sir2 and CG14740 genes.

  8. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  9. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  10. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  11. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  12. Study on the intrinsic defects in ZnO by combing first-principle and thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Ma, Changmin; Liu, Tingyu; Chang, Qiuxiang

    2015-11-01

    In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy (VO), zinc interstitial (Zni) and zinc anti-site (ZnO) are decreasing, while it increases for zinc vacancy (VZn), oxygen interstitial (Oi) and oxygen anti-site (OZn). They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, VO or VZn have the lowest formation energies for whole Fermi level at special environment condition (such as at T = 300K, about PO2 = 10-10atm or T = 1500K, about PO2 = 104atm) and intrinsic p-type doping of ZnO is possible by VZn at these special conditions. Second, VO as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure (T = 1500K, PO2 = 10-10atm). According to our analysis, the VO could produce n-type doping in ZnO at these special conditions and change p-type ZnO to n-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.

  13. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  14. Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang

    2018-01-01

    We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.

  15. Classifying Acute Respiratory Distress Syndrome Severity: Correcting the Arterial Oxygen Partial Pressure to Fractional Inspired Oxygen at Altitude.

    PubMed

    Pérez-Padilla, Rogelio; Hernández-Cárdenas, Carmen Margarita; Lugo-Goytia, Gustavo

    2016-01-01

    In the well-known Berlin definition of acute respiratory distress syndrome (ARDS), there is a recommended adjustment for arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FIO2) at altitude, but without a reference as to how it was derived.

  16. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  17. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  18. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  19. A Double-Blinded, Randomized Comparison of Medetomidine-Tiletamine-Zolazepam and Dexmedetomidine-Tiletamine-Zolazepam Anesthesia in Free-Ranging Brown Bears (Ursus Arctos)

    PubMed Central

    Cattet, Marc; Zedrosser, Andreas; Stenhouse, Gordon B.; Küker, Susanne; Evans, Alina L.; Arnemo, Jon M.

    2017-01-01

    We compared anesthetic features, blood parameters, and physiological responses to either medetomidine-tiletamine-zolazepam or dexmedetomidine-tiletamine-zolazepam using a double-blinded, randomized experimental design during 40 anesthetic events of free-ranging brown bears (Ursus arctos) either captured by helicopter in Sweden or by culvert trap in Canada. Induction was smooth and predictable with both anesthetic protocols. Induction time, the need for supplemental drugs to sustain anesthesia, and capture-related stress were analyzed using generalized linear models, but anesthetic protocol did not differentially affect these variables. Arterial blood gases and acid-base status, and physiological responses were examined using linear mixed models. We documented acidemia (pH of arterial blood < 7.35), hypoxemia (partial pressure of arterial oxygen < 80 mmHg), and hypercapnia (partial pressure of arterial carbon dioxide ≥ 45 mmHg) with both protocols. Arterial pH and oxygen partial pressure were similar between groups with the latter improving markedly after oxygen supplementation (p < 0.001). We documented dose-dependent effects of both anesthetic protocols on induction time and arterial oxygen partial pressure. The partial pressure of arterial carbon dioxide increased as respiratory rate increased with medetomidine-tiletamine-zolazepam, but not with dexmedetomidine-tiletamine-zolazepam, demonstrating a differential drug effect. Differences in heart rate, respiratory rate, and rectal temperature among bears could not be attributed to the anesthetic protocol. Heart rate increased with increasing rectal temperature (p < 0.001) and ordinal day of capture (p = 0.002). Respiratory rate was significantly higher in bears captured by helicopter in Sweden than in bears captured by culvert trap in Canada (p < 0.001). Rectal temperature significantly decreased over time (p ≤ 0.05). Overall, we did not find any benefit of using dexmedetomidine-tiletamine-zolazepam instead of medetomidine-tiletamine-zolazepam in the anesthesia of brown bears. Both drug combinations appeared to be safe and reliable for the anesthesia of free-ranging brown bears captured by helicopter or by culvert trap. PMID:28118413

  20. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  1. Influence of oxygen partial pressure on the microstructural and magnetic properties of Er-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming

    2015-06-15

    Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less

  2. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOEpatents

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    2001-01-09

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  3. Neonatal oxidative stress depends on oxygen blood pressure in umbilical artery.

    PubMed

    Proietti, F; De Bernardo, G; Longini, M; Sordino, D; Scaramuzzini, G; Tataranno, M L; Belvisi, E; Bazzini, F; Perrone, S; Buonocore, G

    2016-01-01

    With advancing gestation, partial pressure of oxygen (pO2) and pH fall significantly. Hypoxia is a main factor inducing free radical generation and thereby oxidative stress (OS). Placental and fetal tissue response when oxygen becomes restricted is complex and partially known. We tested the hypothesis that changes in umbilical artery and vein blood gas concentrations modulate OS occurrence in the newborn. Seventy umbilical artery and vein plasma samples were collected from healthy term newborns immediately after delivery. F2 Isoprostanes (F2-Isop) were measured in all samples as reliable markers of lipid peroxidation. Significantly lower pCO2 and higher pO2 and pH were found in umbilical vein than in artery, as expected. A positive correlation was detected between pH and pO2 only in umbilical artery (p=0.019). F2-Isop levels were no different between artery and vein in cord blood. Significant correlations were found between F2-Isop and pCO2 (p=0.025) as well as between F2-Isop and pH in umbilical vein (p=0.027). F2-Isop correlated with pCO2 (p=0.007) as well as with pO2 values (p=0.005) in umbilical artery blood. Oxidative stress (OS) in newborns depends on oxygen concentrations in umbilical artery. OS biomarkers significantly correlate with pO2 and in umbilical artery but not in umbilical vein. In normoxic conditions fetal-maternal gas exchanges occurring in placenta re-establish normal higher oxygen levels in umbilical vein than artery, with a normal production of free radicals without any deleterious effects.

  4. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation

    PubMed Central

    Chawla, Sanjay; Natarajan, Girija; Shankaran, Seetha; Carper, Benjamin; Brion, Luc P.; Keszler, Martin; Carlo, Waldemar A.; Ambalavanan, Namasivayam; Gantz, Marie G.; Das, Abhik; Finer, Neil; Goldberg, Ronald N.; Cotten, C. Michael; Higgins, Rosemary D.

    2017-01-01

    Objectives To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates. Study design This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network’s Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 240/7 to 276/7 weeks’ gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation. Results Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/bronchopulmonary dysplasia (OR 3.27). Conclusions Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities. Trial registration ClinicalTrials.gov: NCT00233324. PMID:28600154

  5. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation.

    PubMed

    Chawla, Sanjay; Natarajan, Girija; Shankaran, Seetha; Carper, Benjamin; Brion, Luc P; Keszler, Martin; Carlo, Waldemar A; Ambalavanan, Namasivayam; Gantz, Marie G; Das, Abhik; Finer, Neil; Goldberg, Ronald N; Cotten, C Michael; Higgins, Rosemary D

    2017-10-01

    To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates. This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network's Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 24 0/7 to 27 6/7 weeks' gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation. Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/ bronchopulmonary dysplasia (OR 3.27). Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities. ClinicalTrials.gov: NCT00233324. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less

  7. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    PubMed

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  8. Methods and systems for fuel production in electrochemical cells and reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marina, Olga A.; Pederson, Larry R.

    Methods and systems for fuel, chemical, and/or electricity production from electrochemical cells are disclosed. A voltage is applied between an anode and a cathode of an electrochemical cell. The anode includes a metal or metal oxide electrocatalyst. Oxygen is supplied to the cathode, producing oxygen ions. The anode electrocatalyst is at least partially oxidized by the oxygen ions transported through an electrolyte from the cathode to the anode. A feed gas stream is supplied to the anode electrocatalyst, which is converted to a liquid fuel. The anode electrocatalyst is re-oxidized to higher valency oxides, or a mixture of oxide phases,more » by supplying the oxygen ions to the anode. The re-oxidation by the ions is controlled or regulated by the amount of voltage applied.« less

  9. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  10. Influence of oxygen partial pressure on the composition and orientation of strontium-doped lead zirconate titanate thin films.

    PubMed

    Sriram, S; Bhaskaran, M; du Plessis, J; Short, K T; Sivan, V P; Holland, A S

    2009-01-01

    The influence of oxygen partial pressure during the deposition of piezoelectric strontium-doped lead zirconate titanate thin films is reported. The thin films have been deposited by RF magnetron sputtering in an atmosphere of high purity argon and oxygen (in the ratio of 9:1), on platinum-coated silicon substrates (heated to 650 degrees C). The influence of oxygen partial pressure is studied to understand the manner in which the stoichiometry of the thin films is modified, and to understand the influence of stoichiometry on the perovskite orientation. This article reports on the results obtained from films deposited at oxygen partial pressures of 1-5 mTorr. The thin films have been studied using a combination of X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GA-XRD), and atomic force microscopy (AFM). XPS analysis highlights the marked influence of variations in oxygen pressure during sputtering, observed by variations in oxygen concentration in the thin films, and in some cases by the undesirable decrease in lead concentration in the thin films. GA-XRD is used to study the relative variations in perovskite peak intensities, and has been used to determine the deposition conditions to attain the optimal combination of stoichiometry and orientation. AFM scans show the marked influence of the oxygen partial pressure on the film morphology.

  11. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  12. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped Bi-2223 and Ag/Bi-2223 systems

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.

    1995-02-01

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 750 to 815°C and at oxygen partial pressures ranging from ∼ 0.02 to 0.2 atm should preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of the partial molar quantities ΔS¯( O2) andΔH¯( O2) indicate that the plateau regions in the plot of oxygen partial pressure versus oxygen stoichiometry ( x) can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm.

  13. Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters.

    PubMed

    Díaz, I; Pérez, S I; Ferrero, E M; Fdz-Polanco, M

    2011-02-01

    Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼ 20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkulov, O.V., E-mail: merkulov@ihim.uran.ru; Samigullin, R.R.; Markov, A.A.

    The electrical conductivity of SrFe{sub 1–x}Sn{sub x}O{sub 3–δ} (x=0.05, 0.10, 017) was measured by a four-probe dc technique in the partial oxygen pressure range of 10{sup –18}–0.5 atm at temperatures between 800 °Ð ÐŽ and 950 °Ð ÐŽ. The oxygen content in these oxides was measured under the same ambient conditions by means of coulometric titration. The thermodynamic analysis of oxygen nonstoichiometry data was carried out to determine the equilibrium constants for defect-formation reactions and to calculate the concentrations of ion and electron charge carriers. The partial contributions of oxygen ions, electrons and holes to charge transport were assessed, and the mobilitymore » of respective carriers was evaluated by an integral examination of the electrical conductivity and oxygen nonstoichiometry data. It has been found that the mobility of holes in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} varies in the range of ~0.005–0.04 cm{sup 2} V{sup −1} s{sup −1}, linearly increasing with the oxygen content and decreasing with increased tin concentration. The mobility of electron carriers was shown to be independent of the oxygen content. The average migration energy of an electron was estimated to be ~0.45 eV, with that of a hole being ~0.3 eV. - Highlights: • The conductivity and oxygen nonstoichiometry in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} were measured. • Tin substitution was found to affect insignificantly defect formation reactions. • The hole mobility was found to increase linearly with the oxygen content. • The hole mobility was found to be much higher than the electron mobility.« less

  16. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    PubMed

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  17. Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Ranjani; Benincosa, William; Riley, Jarrett

    This paper presents data on conversion of two different coals with a chemical looping oxygen carrier, CuO-Fe 2O 3-alumina, and over a range of conditions including steam and various levels of reduction of the oxygen carrier. Reactions of coal/steam/CuO-Fe 2O 3-alumina oxygen carrier and coal/steam/partially reduced CuO-Fe 2O 3-alumina oxygen carrier were investigated with Wyodak coal and Illinois #6 coal in a fluidized bed reactor. Temperature programmed reaction studies indicated that the oxygen carrier enhanced the steam gasification/combustion rates of both coals. Rates of gasification/combustion were higher with Wyodak coal (sub bituminous) than that with Illinois #6 coal (bituminous). Inmore » addition to the increase in reaction rates, the total moles of carbon that were gasified and combusted from coal/steam increased in the presence of the oxygen carrier. The reduced oxygen carrier promoted the water-gas shift reaction when reacted with synthesis gas in the presence of steam, but the reverse water gas shift reaction was observed when steam was not present. The partially reduced oxygen carrier enhanced the production of H 2 from coal/steam, which was different from the observations with un-reduced oxygen carrier. Water splitting reaction to produce H 2 was also observed with the reduced oxygen carrier. CuO-Fe 2O 3-alumina reacted with coal during the temperature ramp to 850 °C even in the absence of steam due to the chemical-looping oxygen uncoupling (CLOU) reaction. Here, the fourier transform infra-red (FTIR) analysis indicated the presence of volatile aromatics during the temperature ramp and these may have also contributed to the reactions with the oxygen carrier in the absence of steam. Increasing steam concentration had a negative effect on the CLOU reaction.« less

  18. Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier

    DOE PAGES

    Siriwardane, Ranjani; Benincosa, William; Riley, Jarrett; ...

    2016-10-06

    This paper presents data on conversion of two different coals with a chemical looping oxygen carrier, CuO-Fe 2O 3-alumina, and over a range of conditions including steam and various levels of reduction of the oxygen carrier. Reactions of coal/steam/CuO-Fe 2O 3-alumina oxygen carrier and coal/steam/partially reduced CuO-Fe 2O 3-alumina oxygen carrier were investigated with Wyodak coal and Illinois #6 coal in a fluidized bed reactor. Temperature programmed reaction studies indicated that the oxygen carrier enhanced the steam gasification/combustion rates of both coals. Rates of gasification/combustion were higher with Wyodak coal (sub bituminous) than that with Illinois #6 coal (bituminous). Inmore » addition to the increase in reaction rates, the total moles of carbon that were gasified and combusted from coal/steam increased in the presence of the oxygen carrier. The reduced oxygen carrier promoted the water-gas shift reaction when reacted with synthesis gas in the presence of steam, but the reverse water gas shift reaction was observed when steam was not present. The partially reduced oxygen carrier enhanced the production of H 2 from coal/steam, which was different from the observations with un-reduced oxygen carrier. Water splitting reaction to produce H 2 was also observed with the reduced oxygen carrier. CuO-Fe 2O 3-alumina reacted with coal during the temperature ramp to 850 °C even in the absence of steam due to the chemical-looping oxygen uncoupling (CLOU) reaction. Here, the fourier transform infra-red (FTIR) analysis indicated the presence of volatile aromatics during the temperature ramp and these may have also contributed to the reactions with the oxygen carrier in the absence of steam. Increasing steam concentration had a negative effect on the CLOU reaction.« less

  19. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    PubMed

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P <0.05). At the same time, there was no significant change in PcCO(2) ( P >0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  20. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Rolfe, Sara L. (Inventor); Schutte, Erick J. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01

  1. Cyclic catalytic upgrading of chemical species using metal oxide materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2010-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  2. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01

  3. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H.; Schutte, Erick J.; Rolfe, Sara L.

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  4. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  5. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  6. Oxygen partial pressure influenced structural and optical properties of DC magnetron sputtered ZrO{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondaiah, P.; Madhavi, V.; Uthanna, S.

    2013-02-05

    Thin films of zirconium oxide (ZrO{sub 2}) were deposited on (100) p-silicon and quartz substrates by sputtering of metallic zirconium target under different oxygen partial pressures in the range 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa. The effect of oxygen partial pressure on the structural and optical properties of the deposited films was systematically investigated. The deposition rate of the films decreased from 3.3 to 1.83 nm/min with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively. The X-ray diffraction profiles revealed that the films exhibit (111) refection of zirconium oxide in monoclinic phase.more » The optical band gap of the films increased from 5.62 to 5.80 eV and refractive index increased from 2.01 to 2.08 with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively.« less

  7. Computational analysis of aortic hemodynamics during total and partial extracorporeal membrane oxygenation and intra-aortic balloon pump support.

    PubMed

    Caruso, Maria Vittoria; Gramigna, Vera; Renzulli, Attilio; Fragomeni, Gionata

    2016-01-01

    The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A - total assistance - the whole flow delivered through the ECMO arterial cannula; Case B - partial assistance - flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Partial support is hemodynamically advisable.

  8. Equivalent air depth: fact or fiction.

    PubMed

    Berghage, T E; McCraken, T M

    1979-12-01

    In mixed-gas diving theory, the equivalent air depth (EAD) concept suggests that oxygen does not contribute to the total tissue gas tension and can therefore be disregarded in calculations of the decompression process. The validity of this assumption has been experimentally tested by exposing 365 rats to various partial pressures of oxygen for various lengths of time. If the EAD assumption is correct, under a constant exposure pressure each incremental change in the oxygen partial pressure would produce a corresponding incremental change in pressure reduction tolerance. Results of this study suggest that the EAD concept does not adequately describe the decompression advantages obtained from breathing elevated oxygen partial pressures. The authors suggest that the effects of breathing oxygen vary in a nonlinear fashion across the range from anoxia to oxygen toxicity, and that a simple inert gas replacement concept is no longer tenable.

  9. Densification and Electrical Properties of Zinc Oxide Varistors Microwave-Sintered Under Different Oxygen Partial Pressures

    NASA Astrophysics Data System (ADS)

    Lin, Cong; Wang, Bo; Xu, Zheng; Peng, Hu

    2012-11-01

    ZnO varistors were prepared by microwave sintering under different oxygen partial pressures. The temperature profile and the densification behavior in different atmospheres were investigated. It was found that the density of ZnO varistors during sintering was the key factor affecting the absorption of microwave energy. The electrical properties, including the nonlinear properties and capacitance-voltage ( C- V) characteristics, were also carefully studied. The results showed that the oxygen partial pressure has significant effects on the electrical properties of ZnO varistors by changing the concentration of defects through a series of reactions involving oxygen during sintering.

  10. Filterability of freshly-collected sickle erythrocytes under venous oxygen pressure without exposure to air.

    PubMed

    Shah, Siddharth; Acholonu, Rhonda Graves; Ohene-Frempong, Kwaku; Asakura, Toshio

    2015-12-01

    We previously found that blood samples collected from steady-state patients with sickle cell disease (SCD) without exposure to air contain a new type of reversibly sickled cells (RSCs) with blunt edges at a level of as high as 78%. Since partial oxygenation of once-deoxygenated sickled cells with pointy edges to near venous oxygen pressure generates similar sickled cells with blunt edges in vitro, we named them as partially oxygenated sickled cells (POSCs). On the other hand, partial deoxygenation of once-oxygenated SS cells to venous oxygen pressure generates partially deoxygenated sickled cells (PDSCs) with pointy edges. In this study, we obtained blood samples from 6 steady-state patients with SCD under venous oxygen pressure without exposure to air, subjected them to various oxygenation/deoxygenation/reoxygenation cycles, and studied their filterability through a membrane filter with pore diameter of 3μm, the theoretical minimum diameter of a capillary. Our results indicated that discocytes, POSCs with blunt edges, and irreversibly sickled cells could deform and pass through the filter, while PDSCs with pointy edges were rigid and could not. The filterability of SS cells seems to be related to the length and amount of deoxy-hemoglobin S fibers in the cells. Copyright © 2015. Published by Elsevier Inc.

  11. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  12. A defect model for UO2+x based on electrical conductivity and deviation from stoichiometry measurements

    NASA Astrophysics Data System (ADS)

    Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume

    2017-10-01

    Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.

  13. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1966-01-01

    Changes in the oxygen partial pressure of air over the range of 8 to 258 mm of Hg did not adversely affect the photosynthetic capacity of Chlorella pyrenoidosa. Gas exchange and growth measurements remained constant for 3-week periods and were similar to air controls (oxygen pressure of 160 mm of Hg). Oxygen partial pressures of 532 and 745 mm of Hg had an adverse effect on algal metabolism. Carbon dioxide consumption was 24% lower in the gas mixture containing oxygen at a pressure 532 mm of Hg than in the air control, and the growth rate was slightly reduced. Oxygen at a partial pressure of 745 mm of Hg decreased the photosynthetic rate 39% and the growth rate 37% over the corresponding rates in air. The lowered metabolic rates remained constant during 14 days of measurements, and the effect was reversible after this time. Substitution of helium or argon for the nitrogen in air had no effect on oxygen production, carbon dioxide consumption, or growth rate for 3-week periods. All measurements were made at a total pressure of 760 mm of Hg, and all gas mixtures were enriched with 2% carbon dioxide. Thus, the physiological functioning and reliability of a photosynthetic gas exchanger should not be adversely affected by: (i) oxygen partial pressures ranging from 8 to 258 mm of Hg; (ii) the use of pure oxygen at reduced total pressure (155 to 258 mm of Hg) unless pressure per se affects photosynthesis, or (iii) the inclusion of helium or argon in the gas environment (up to a partial pressure of 595 mm of Hg). PMID:5927028

  14. [Diagnostic importance of the alveolar-arterial oxygen gradient].

    PubMed

    Weinans, Marije A E; Drost-de Klerck, Amanda M; ter Maaten, Jan C

    2012-01-01

    The alveolar-arterial (A-a) oxygen gradient is the difference between the partial pressure of oxygen in the alveoli and the partial pressure of arterial oxygen and can be elevated in the case of pulmonary disease. We describe a 41-year-old patient with pneumonia who presented with abdominal pain, in whom calculation of the A-a gradient could have led to earlier diagnosis. The A-a oxygen gradient is mainly of diagnostic importance and the presented nomogram allows easy and quick interpretation. This might lead to a more frequent use of the A-a oxygen gradient in the future.

  15. Point Defect Structure of Cr203

    DTIC Science & Technology

    1987-10-01

    Calculation of Electron Hole Mobility ........................ 104 6.2.3 Construction of the Defect Concentration vs. Oxygen Pressure Diagram...1000’ to 16000C ............ 123 7.7 Calculated diffusion coefficient vs. oxygen partial pressure diagram for pure Cr203 at 1100 0 C...127 7.10 Calculated parabolic rate constant vs. oxygen partial pressure diagram for pure Cr203 at

  16. 46 CFR 39.40-5 - Operational requirements for vapor balancing-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks have partial bulkheads, the oxygen content of each area of that tank formed by each partial... vapor collection system must be tested prior to cargo transfer to ensure that the oxygen content in the vapor space does not exceed 8 percent by volume. The oxygen content of each tank must be measured at a...

  17. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  18. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  19. Pathophysiological effect of fat embolism in a canine model of pulmonary contusion.

    PubMed

    Elmaraghy, A W; Aksenov, S; Byrick, R J; Richards, R R; Schemitsch, E H

    1999-08-01

    The objective of this study was to determine the individual and combined effects of pulmonary contusion and fat embolism on the hemodynamics and pulmonary pathophysiology in a canine model of acute traumatic pulmonary injury. After a thoracotomy, twenty-one skeletally mature dogs were randomly assigned to one of three groups. Unilateral pulmonary contusion alone was produced in Group 1 (seven dogs); pulmonary contusion and fat embolism, in Group 2 (seven dogs); and fat embolism alone, in Group 3 (seven dogs). Pulmonary contusion was produced by standardized compression of the left lung with a piezoelectric force transducer. Fat embolism was produced by femoral and tibial reaming followed by pressurization of the intramedullary canals. Cardiac output, systolic blood pressure, peak airway pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, partial pressure of arterial oxygen, and partial pressure of carbon dioxide were monitored for all groups. From these data, several outcome parameters were calculated: total thoracic compliance, alveolar-arterial oxygen gradient, and ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration. All of the dogs were killed after eight hours, and tissue samples were obtained from the brain, kidneys, and lungs for histological analysis. Lung samples were assigned scores for pulmonary edema (the presence of fluid in the alveoli) and inflammation (the presence of neutrophils or hyaline membranes, or both). The percentage of the total area occupied by fat was determined. Pulmonary contusion alone caused a significant increase in the alveolar-arterial oxygen gradient but only after seven hours (p = 0.034). Fat embolism alone caused a significant transient decrease in systolic blood pressure (p = 0.001) and a significant transient increase in pulmonary arterial pressure (p = 0.01) and pulmonary capillary wedge pressure (p = 0.015). Fat embolism alone also caused a significant sustained decrease in the ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration (p = 0.0001) and a significant increase in the alveolar-arterial oxygen gradient (p = 0.0001). The combination of pulmonary contusion and fat embolism caused a significant transient increase in pulmonary capillary wedge pressure (p = 0.0013) as well as a significant sustained decrease in partial pressure of arterial oxygen (p = 0.0001) and a significant decrease in systolic blood pressure (p = 0.001) that lasted for an hour. Pulmonary contusion followed by fat embolism caused a significant increase in peak airway pressure (p = 0.015), alveolar-arterial oxygen gradient (p = 0.0001), and pulmonary arterial pressure (p = 0.01), and these effects persisted for five hours. Total thoracic compliance was decreased 6.4 percent by pulmonary contusion alone, 4.6 percent by fat embolism alone, and 23.5 percent by pulmonary contusion followed by fat embolism. The ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration was decreased 23.7 percent by pulmonary contusion alone, 52.3 percent by fat embolism alone, and 65.8 percent by pulmonary contusion followed by fat embolism. The mean pulmonary edema score was significantly higher with the combined injury than with either injury alone (p = 0.0001). None of the samples from the lungs demonstrated inflammation. Fat embolism combined with pulmonary contusion resulted in a significantly greater mean percentage of the area occupied by fat in the noncontused right lung than in the contused left lung (p = 0.001); however, no significant difference between the right and left lungs could be detected with fat embolism alone. The mean percentage of the glomerular and cerebral areas occupied by fat was greater with fat embolism combined with pulmonary contusion than with fat embolism alone (p = 0.0001 and p = 0.01, respectively). (ABSTRACT TRUNCATED)

  20. Evaluation of Nd:YAG laser on partial oxygen saturation of pulpal blood in anterior hypersensitive teeth.

    PubMed

    Birang, Reza; Kaviani, Naser; Mohammadpour, Mehdi; Abed, Ahmad Moghareh; Gutknecht, Norbert; Mir, Maziar

    2008-07-01

    Dentine hypersensitivity has of long been known to be a common clinical problem in dental practices. Lasers have recently come to play a prominent role in the treatment of this disorder. They might, however, cause dental pulp damage. This study was conducted to evaluate the effect of Nd:yttrium-aluminum-garnet (YAG) laser on partial oxygen saturation of pulpal blood in sensitive anterior teeth. In this clinical trial, 65 hypersensitive teeth were selected and randomly allocated to two groups. The study group involved Nd:YAG laser treatment, while no treatment was employed for the control group. Using a pulse oximetry system, evaluations were preformed of the partial oxygen saturation in the pulpal blood before, immediately after, 1 week after, and 1 month after the treatment. The results were analyzed using the SPSS software and repeated-measures analysis of variance and paired-samples t tests. The mean partial oxygen saturation of the blood was found to be 85.4% in the study group, which was not significantly different from that of the control group. No significant differences were observed in the control group between the means obtained from pretreatment and post-treatment intervals (P > 0.05). The Post-treatment partial oxygen saturation mean rose to 89.3% (P = 0.001) and remained constant throughout the following week after it. However, no significant differences were found between the pretreatment partial oxygen saturation mean and the same measurement 1 month after treatment (P = 0.702). Nd:YAG laser therapy for dentine desensitization of anterior teeth caused no persistent changes in the partial oxygen saturation of pulpal blood. It may, therefore, be concluded that the diffusion of heat induced by the Nd:YAG laser into the pulp within the limit of the desensitization parameters cause no irreversible damages in the dental pulp.

  1. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less

  2. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging.

    PubMed

    Zaharchuk, Greg; Busse, Reed F; Rosenthal, Guy; Manley, Geoffery T; Glenn, Orit A; Dillon, William P

    2006-08-01

    The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.

  3. Oxygen desaturations triggered by partial seizures: implications for cardiopulmonary instability in epilepsy

    NASA Technical Reports Server (NTRS)

    Blum, A. S.; Ives, J. R.; Goldberger, A. L.; Al-Aweel, I. C.; Krishnamurthy, K. B.; Drislane, F. W.; Schomer, D. L.

    2000-01-01

    PURPOSE: The occurrence of hypoxemia in adults with partial seizures has not been systematically explored. Our aim was to study in detail the temporal dynamics of this specific type of ictal-associated hypoxemia. METHODS: During long-term video/EEG monitoring (LTM), patients underwent monitoring of oxygen saturation using a digital Spo2 (pulse oximeter) transducer. Six patients (nine seizures) were identified with oxygen desaturations after the onset of partial seizure activity. RESULTS: Complex partial seizures originated from both left and right temporal lobes. Mean seizure duration (+/-SD) was 73 +/- 18 s. Mean Spo2 desaturation duration was 76 +/- 19 s. The onset of oxygen desaturation followed seizure onset with a mean delay of 43 +/- 16 s. Mean (+/-SD) Spo2 nadir was 83 +/- 5% (range, 77-91%), occurring an average of 35 +/- 12 s after the onset of the desaturation. One seizure was associated with prolonged and recurrent Spo2 desaturations. CONCLUSIONS: Partial seizures may be associated with prominent oxygen desaturations. The comparable duration of each seizure and its subsequent desaturation suggests a close mechanistic (possibly causal) relation. Spo2 monitoring provides an added means for seizure detection that may increase LTM yield. These observations also raise the possibility that ictal ventilatory dysfunction could play a role in certain cases of sudden unexpected death in epilepsy in adults with partial seizures.

  4. Positron beam study of indium tin oxide films on GaN

    NASA Astrophysics Data System (ADS)

    Cheung, C. K.; Wang, R. X.; Beling, C. D.; Djurisic, A. B.; Fung, S.

    2007-02-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 °C without oxygen and at 200 °C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 × 10-3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy.

  5. Correlation of magnetoelectric coupling in multiferroic BaTiO{sub 3}-BiFeO{sub 3} superlattices with oxygen vacancies and antiphase octahedral rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, Michael, E-mail: mlorenz@physik.uni-leipzig.de; Schwinkendorf, Peter; Grundmann, Marius

    2015-01-05

    Multiferroic (BaTiO{sub 3}-BiFeO{sub 3}) × 15 multilayer heterostructures show high magnetoelectric (ME) coefficients α{sub ME} up to 24 V/cm·Oe at 300 K. This value is much higher than that of a single-phase BiFeO{sub 3} reference film (α{sub ME} = 4.2 V/cm·Oe). We found clear correlation of ME coefficients with increasing oxygen partial pressure during growth. ME coupling is highest for lower density of oxygen vacancy-related defects. Detailed scanning transmission electron microscopy and selected area electron diffraction microstructural investigations at 300 K revealed antiphase rotations of the oxygen octahedra in the BaTiO{sub 3} single layers, which are an additional correlated defect structure of the multilayers.

  6. Temperature dependence of partial conductivities of the BaZr0.7Ce0.2Y0.1O3-δ proton conductor

    NASA Astrophysics Data System (ADS)

    Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.

    2017-10-01

    Partial conductivities are presented for BaZr0.7Ce0.2Y0.1O3-δ, an important proton conductor for protonic-ceramic fuel cells and membrane reactors. Atmospheric dependencies of impedance performed in humidified and dry O2, air, N2 and H2(10%)/N2(90%) in the temperature range 300-900 °C, supported by the modified emf method, confirm significant electron-hole and protonic contributions to transport. For very reducing and wet atmospheres, the conductivity is predominantly ionic, with a higher participation of protons with decreasing temperature and increasing water-vapour partial pressure (pH2O). From moderately reducing conditions of wet N2 to wet O2, however, the conductivity is considerably influenced by electron holes as revealed by a significant dependence of total conductivity on oxygen partial pressure (pO2). With higher pH2O, proton transport increases, with a concomitant decrease of holes and oxygen vacancies. However, the effect of pH2O is also influenced by temperature, with a greater protonic contribution at both lower temperature and pO2. Values of proton transport number tH ≈ 0.63 and electronic transport number th ≈ 0.37 are obtained at 600 °C for pH2O = 0.022 atm and pO2 = 0.2 atm, whereas tH ≈ 0.95 and th ≈ 0.05 for pO2 = 10-5 atm. A hydration enthalpy of -109 kJ mol-1 is obtained in the range 600-900 °C.

  7. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped and lead-free Bi-2212 systems

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Maroni, V. A.

    1996-02-01

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made on lead-doped and lead-free Bi 2- zPb zSr 2Ca 1Cu 2O x superconducting ceramics in the temperature range ≈ 700-815°C by means of an oxygen-titration techique that employs an yttria-stabilized zirconia electrolyte. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Thermodynamic assessments of the partial molar quantities Δ overlineH(O 2) and Δ overlineS(O 2) for lead-doped Bi-2212 and lead-free Bi-2212 indicate that the solid-state decomposition of these bismuth cuprates at low oxygen partial pressure can be represented by the diphasic CuOCu 2O system.

  8. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    PubMed Central

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  9. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    PubMed

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  10. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    PubMed

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  11. Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Kuang, A.; Smith, P. J.; Crispi, M. L.; Musgrave, M. E.

    1999-01-01

    Growth of Arabidopsis thaliana (L.) Heynh. in decreasing oxygen partial pressures revealed a linear decrease in seed production below 15 kPa, with a complete absence of seed production at 2.5 kPa oxygen. This control of plant reproduction by oxygen had previously been attributed to an oxygen effect on the partitioning between vegetative and reproductive growth. However, plants grown in a series of decreasing oxygen concentrations produced progressively smaller embryos that had stopped developing at progressively younger stages, suggesting instead that their growth is limited by oxygen. Internal oxygen concentrations of buds, pistils, and developing siliques of Brassica rapa L. and siliques of Arabidopsis were measured using a small-diameter glass electrode that was moved into the structures using a micromanipulator. Oxygen partial pressures were found to be lowest in the developing perianth (11.1 kPa) and pistils (15.2 kPa) of the unopened buds. Pollination reduced oxygen concentration inside the pistils by 3 kPa after just 24 h. Inside Brassica silique locules, partial pressures of oxygen averaged 12.2 kPa in darkness, and increased linearly with increasing light levels to 16.2 kPa. Measurements inside Arabidopsis siliques averaged 6.1 kPa in the dark and rose to 12.2 kPa with light. Hypoxia in these microenvironments is postulated to be the point of control of plant reproduction by oxygen.

  12. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  13. Cerebral hemodynamics at altitude: effects of hyperventilation and acclimatization on cerebral blood flow and oxygenation.

    PubMed

    Sanborn, Matthew R; Edsell, Mark E; Kim, Meeri N; Mesquita, Rickson; Putt, Mary E; Imray, Chris; Yow, Heng; Wilson, Mark H; Yodh, Arjun G; Grocott, Mike; Martin, Daniel S

    2015-06-01

    Alterations in cerebral blood flow (CBF) and cerebral oxygenation are implicated in altitude-associated diseases. We assessed the dynamic changes in CBF and peripheral and cerebral oxygenation engendered by ascent to altitude with partial acclimatization and hyperventilation using a combination of near-infrared spectroscopy, transcranial Doppler ultrasound, and diffuse correlation spectroscopy. Peripheral (Spo2) and cerebral (Scto2) oxygenation, end-tidal carbon dioxide (ETCO2), and cerebral hemodynamics were studied in 12 subjects using transcranial Doppler and diffuse correlation spectroscopy (DCS) at 75 m and then 2 days and 7 days after ascending to 4559 m above sea level. After obtaining baseline measurements, subjects hyperventilated to reduce baseline ETCO2 by 50%, and a further set of measurements were obtained. Cerebral oxygenation and peripheral oxygenation showed a divergent response, with cerebral oxygenation decreasing at day 2 and decreasing further at day 7 at altitude, whereas peripheral oxygenation decreased on day 2 before partially rebounding on day 7. Cerebral oxygenation decreased after hyperventilation at sea level (Scto2 from 68.8% to 63.5%; P<.001), increased after hyperventilation after 2 days at altitude (Scto2 from 65.6% to 69.9%; P=.001), and did not change after hyperventilation after 7 days at altitude (Scto2 from 62.2% to 63.3%; P=.35). An intensification of the normal cerebral hypocapnic vasoconstrictive response occurred after partial acclimatization in the setting of divergent peripheral and cerebral oxygenation. This may help explain why hyperventilation fails to improve cerebral oxygenation after partial acclimatization as it does after initial ascent. The use of DCS is feasible at altitude and provides a direct measure of CBF indices with high temporal resolution. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  14. Thermodynamic and nonstoichiometric behavior of the lead-doped Bi-2223 system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.

    1994-12-01

    Electromotive force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 700 to 815°C and at oxygen partial pressures ranging from ∼0.02 to 0.2 atm should tend to preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of partial molar quantities indicate that the plateau regions can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm. Long-duration post anneals of silver-clad Bi-2223 filaments at 825°C and an oxygen partial pressure of 0.075 atm eliminated Bi-2212 intergrowths with a concomitant increase in the superconducting transition sharpness.

  15. Effect of oxygen supply on the size of implantable islet-containing encapsulation devices.

    PubMed

    Papas, Klearchos K; Avgoustiniatos, Efstathios S; Suszynski, Thomas M

    2016-03-01

    Beta-cell replacement therapy is a promising approach for the treatment of diabetes but is currently limited by the human islet availability and by the need for systemic immunosuppression. Tissue engineering approaches that will enable the utilization of islets or β-cells from alternative sources (such as porcine islets or human stem cell derived beta cells) and minimize or eliminate the need for immunosuppression have the potential to address these critical limitations. However, tissue engineering approaches are critically hindered by the device size (similar to the size of a large flat screen television) required for efficacy in humans. The primary factor dictating the device size is the oxygen availability to islets to support their viability and function (glucose-stimulated insulin secretion [GSIS]). GSIS is affected (inhibited) at a much higher oxygen partial pressure [pO2] than that of viability (e.g. 10 mmHg as opposed to 0.1 mmHg). Enhanced oxygen supply (higher pO2) than what is available in vivo at transplant sites can have a profound effect on the required device size (potentially reduce it to the size of a postage stamp). This paper summarizes key information on the effect of oxygen on islet viability and function within immunoisolation devices and describes the potential impact of enhanced oxygen supply to devices in vivo on device size reduction.

  16. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Modeling of the oxygen reduction reaction for dense LSM thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Liu, Jian; Yu, Yang

    In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less

  18. Modeling of the oxygen reduction reaction for dense LSM thin films

    DOE PAGES

    Yang, Tao; Liu, Jian; Yu, Yang; ...

    2017-10-17

    In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less

  19. Growth of electronically distinct manganite thin films by modulating cation stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sangkyun; Lee, Joonhyuk; Ahn, Eunyoung

    Nd 1-xSr xMnO 3 (NSMO) is a well-known manganite due to close connection between structure, transport, magnetism, and chemistry. Thus, it would be an ideal system to study modification of physical properties by external stimuli including control of stoichiometry in growth. In this work, we show that abrupt change of electronic and magnetic properties can be achieved by subtle change of oxygen partial pressure in pulsed laser deposition. Interestingly, the pressure indeed modulates cation stoichiometry. We clearly observed that the films grown at 150 mTorr and higher showed clear insulator to metal transition and stronger magnetism, commonly found in lessmore » hole doping, while the films grown at 130 mTorr and lower showed insulating behavior and weak magnetism. From soft x-ray spectroscopic methods, we clearly observed the compositional difference in those thin films. This result is further supported by scattering of lighter elements in high oxygen partial pressure but not by anion deficiency in growth.« less

  20. Growth of electronically distinct manganite thin films by modulating cation stoichiometry

    DOE PAGES

    Ryu, Sangkyun; Lee, Joonhyuk; Ahn, Eunyoung; ...

    2017-06-26

    Nd 1-xSr xMnO 3 (NSMO) is a well-known manganite due to close connection between structure, transport, magnetism, and chemistry. Thus, it would be an ideal system to study modification of physical properties by external stimuli including control of stoichiometry in growth. In this work, we show that abrupt change of electronic and magnetic properties can be achieved by subtle change of oxygen partial pressure in pulsed laser deposition. Interestingly, the pressure indeed modulates cation stoichiometry. We clearly observed that the films grown at 150 mTorr and higher showed clear insulator to metal transition and stronger magnetism, commonly found in lessmore » hole doping, while the films grown at 130 mTorr and lower showed insulating behavior and weak magnetism. From soft x-ray spectroscopic methods, we clearly observed the compositional difference in those thin films. This result is further supported by scattering of lighter elements in high oxygen partial pressure but not by anion deficiency in growth.« less

  1. Increased lung inflammation with oxygen supplementation in tracheotomized spontaneously breathing rabbits: an experimental prospective randomized study.

    PubMed

    Machado, Humberto S; Nunes, Catarina S; Sá, Paula; Couceiro, Antonio; da Silva, Álvaro Moreira; Águas, Artur

    2014-01-01

    Mechanical ventilation is a well-known trigger for lung inflammation. Research focuses on tidal volume reduction to prevent ventilator-induced lung injury. Mechanical ventilation is usually applied with higher than physiological oxygen fractions. The purpose of this study was to investigate the after effect of oxygen supplementation during a spontaneous ventilation set up, in order to avoid the inflammatory response linked to mechanical ventilation. A prospective randomised study using New Zealand rabbits in a university research laboratory was carried out. Rabbits (n = 20) were randomly assigned to 4 groups (n = 5 each group). Groups 1 and 2 were submitted to 0.5 L/min oxygen supplementation, for 20 or 75 minutes, respectively; groups 3 and 4 were left at room air for 20 or 75 minutes. Ketamine/xylazine was administered for induction and maintenance of anaesthesia. Lungs were obtained for histological examination in light microscopy. All animals survived the complete experiment. Procedure duration did not influence the degree of inflammatory response. The hyperoxic environment was confirmed by blood gas analyses in animals that were subjected to oxygen supplementation, and was accompanied with lower mean respiratory rates. The non-oxygen supplemented group had lower mean oxygen arterial partial pressures and higher mean respiratory rates during the procedure. All animals showed some inflammatory lung response. However, rabbits submitted to oxygen supplementation showed significant more lung inflammation (Odds ratio = 16), characterized by more infiltrates and with higher cell counts; the acute inflammatory response cells was mainly constituted by eosinophils and neutrophils, with a relative proportion of 80 to 20% respectively. This cellular observation in lung tissue did not correlate with a similar increase in peripheral blood analysis. Oxygen supplementation in spontaneous breathing is associated with an increased inflammatory response when compared to breathing normal room air. This inflammatory response was mainly constituted with polymorphonuclear cells (eosinophils and neutrophils). As confirmed in all animals by peripheral blood analyses, the eosinophilic inflammatory response was a local organ event.

  2. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT.

    PubMed

    Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E

    2010-11-01

    Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (<0.1 T) in vivo. R(2) measurements can be achieved efficiently using the Carr-Purcell-Meiboom-Gill pulse sequence. In this work, alveolar oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.

  3. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  4. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  5. The Effect of Oxygen Partial Pressure on Microstructure and Properties of Fe40Al Alloy Sintered under Vacuum

    PubMed Central

    Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika

    2015-01-01

    This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015

  6. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    PubMed

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  7. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives.

    PubMed

    Wang, Qiong; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marac; Theron, Michaël

    2015-07-01

    Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.

  8. SYNTHESIS OF PARTIAL-OXYGENATED HYDROCARBONS USING PHOTOCATALYSIS IN A LAMINAR FALLING FILM SLURRY REACTOR

    EPA Science Inventory

    The search for "Green" alternative processes for the oxidation of hydrocarbons selectively to partial oxygenates has been the subject of intense chemical research for many years. The USEPA is currently investigating an alternative synthesis pathway for the production of alcoho...

  9. SYNTHESIS OF PARTIALLY-OXYGENATED HYDROCARBONS USING PHOTOCATALYSIS IN A LAMINAR FALLING FILM SLURRY REACTOR

    EPA Science Inventory

    The search for "Green" alternative processes for the oxidation of hydrocarbons selectively to partial oxygenates has been the subject of intense chemical research for many years. The USEPA is currently investigating an alternative synthesis pathway for the production of alcoho...

  10. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Poulsen, H. F.; Andersen, N. H.; Lebech, B.

    1991-02-01

    We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.

  11. Assessment of temporal and spatial water quality in international Gomishan Lagoon, Iran, using multivariate analysis.

    PubMed

    Basatnia, Nabee; Hossein, Seyed Abbas; Rodrigo-Comino, Jesús; Khaledian, Yones; Brevik, Eric C; Aitkenhead-Peterson, Jacqueline; Natesan, Usha

    2018-04-29

    Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO 2 ), nitrate (NO 3 ), biological oxygen demand (BOD), phosphate (PO 4 ), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran). Results indicated that nutrient concentration and the dissolved oxygen gradient were the most significant parameters in the lagoon water quality heterogeneity. Additionally, anoxia at the bottom of the lagoon in sediments and re-suspension of the sediments were the main factors affecting internal nutrient loading. To validate the models, R 2 , RMSECV, and RPDCV were used. The PLS model was stronger than the other models. Also, classification analysis of the Gomishan Lagoon identified two hydrological zones: (i) a North Zone characterized by higher water exchange, higher dissolved oxygen and lower salinity and nutrients, and (ii) a Central and South Zone with high residence time, higher nutrient concentrations, lower dissolved oxygen, and higher salinity. A recommendation for the management of coastal lagoons, specifically the Gomishan Lagoon, to decrease or eliminate nutrient loadings is discussed and should be transferred to policy makers, the scientific community, and local inhabitants.

  12. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    PubMed

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Randomised controlled crossover trial of the effect on PtCO2 of oxygen-driven versus air-driven nebulisers in severe chronic obstructive pulmonary disease.

    PubMed

    Edwards, Llifon; Perrin, Kyle; Williams, Mathew; Weatherall, Mark; Beasley, Richard

    2012-11-01

    The comparative safety of oxygen versus air-driven nebulised bronchodilators in patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) is uncertain. A randomised controlled trial was performed to assess the effect on the arterial partial pressure of carbon dioxide of nebulised bronchodilator driven with oxygen versus air in stable severe COPD. In an open label randomised study, 18 subjects with stable severe COPD attended on 2 days to receive nebulised bronchodilator therapy driven by air or oxygen. Subjects received 5 mg salbutamol and 0.5 mg ipratropium bromide by nebulisation over 15 min, then, after 5 min, 5 mg salbutamol nebulised over 15 min, followed by 15 min of observation. Transcutaneous carbon dioxide tension (PtCO(2)) and oxygen saturations were recorded at 5 min intervals during the study. The primary outcome was the PtCO(2) after the completion of the second bronchodilator treatment. PtCO(2) was higher with nebulised bronchodilator therapy delivered by oxygen, but decreased back to the level associated with air nebulisation 15 min after completion of the second nebulised dose. One subject experienced an increase in PtCO(2) of 11 mm Hg after the first bronchodilator nebulisation driven by oxygen. The mean PtCO(2) difference between the oxygen and air groups after the second nebulisation was 3.1 mm Hg (95% CI 1.6 to 4.5, p<0.001). Nebulisers driven with oxygen result in significantly higher levels of PtCO(2) than those driven with air in patients with severe COPD. The study was registered on the Australian New Zealand Clinical Trials Registry (ACTRN12610000080022).

  14. Oxygen dependency of germinating Brassica seeds

    NASA Astrophysics Data System (ADS)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  15. Circulatory oxygen transport in the water flea Daphnia magna.

    PubMed

    Bäumer, C; Pirow, R; Paul, R J

    2002-05-01

    To determine the contribution of circulatory convection to tissue oxygen supply in animals of Daphnia magna, heart rate ( f(H)), in-vivo Hb oxygen-saturation ( S(Hb)) and NADH fluorescence intensity ( I(NADH)) as a measure of the tissue oxygenation state were simultaneously measured using digital motion analysis, microabsorption spectroscopy and fluorescence microscopy. In addition, the relationship between stroke volume and body size was established. Groups of differently sized animals (small: 1.4-1.6 mm, medium: 2.7-2.9 mm, large: 3.3 mm) with either low (Hb-poor) or high Hb concentration (Hb-rich) in the hemolymph were exposed to a gradual decrease in ambient oxygen partial pressure ( P(O2amb)) between normoxia and anoxia. In all groups, f(H) increased in response to progressive hypoxia. The hypoxic maximum in f(H) was highest in medium-sized Hb-poor animals, whereas perfusion rate increased continuously with increasing body size in Hb-poor and Hb-rich animals. The P(O2amb) at which Hb in the heart region was half-saturated (in-vivo P(50)) was higher in medium-sized (Hb-poor: 3.2 kPa, Hb-rich: 2.0 kPa) than in small (Hb-poor: 2.1 kPa, Hb-rich: 1.5 kPa) and large animals (Hb-poor: 1.9 kPa). The in-vivo P(50) was always lower in Hb-rich than in Hb-poor animals. The I(NADH) indicated an impairment of tissue oxygenation starting at higher critical P(O2amb) with increasing body size and with lower Hb concentration. Model calculations suggest that at the respective critical P(O2amb), circulatory convection delivers less than half of the oxygen demand in Hb-poor animals. In contrast, in Hb-rich animals, the contribution of circulatory convection to tissue oxygen supply at respective critical P(O2amb) was much greater due to the higher concentration of Hb.

  16. Sickling of red blood cells through rapid oxygen exchange in microfluidic drops.

    PubMed

    Abbyad, Paul; Tharaux, Pierre-Louis; Martin, Jean-Louis; Baroud, Charles N; Alexandrou, Antigoni

    2010-10-07

    We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.

  17. Simple method to enhance positive bias stress stability of In-Ga-Zn-O thin-film transistors using a vertically graded oxygen-vacancy active layer.

    PubMed

    Park, Ji Hoon; Kim, Yeong-Gyu; Yoon, Seokhyun; Hong, Seonghwan; Kim, Hyun Jae

    2014-12-10

    We proposed a simple method to deposit a vertically graded oxygen-vacancy active layer (VGA) to enhance the positive bias stress (PBS) stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). We deposited a-IGZO films by sputtering (target composition; In2O3:Ga2O3:ZnO = 1:1:1 mol %), and the oxygen partial pressure was varied during deposition so that the front channel of the TFTs was fabricated with low oxygen partial pressure and the back channel with high oxygen partial pressure. Using this method, we were able to control the oxygen vacancy concentration of the active layer so that it varied with depth. As a result, the turn-on voltage shift following a 10 000 s PBS of optimized VGA TFT was drastically improved from 12.0 to 5.6 V compared with a conventional a-IGZO TFT, without a significant decrease in the field effect mobility. These results came from the self-passivation effect and decrease in oxygen-vacancy-related trap sites of the VGA TFTs.

  18. Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Maroni, V. A.

    1996-02-01

    A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.

  19. Oxygen Exposure Resulting in Arterial Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in Acute Respiratory Distress Syndrome.

    PubMed

    Aggarwal, Neil R; Brower, Roy G; Hager, David N; Thompson, B Taylor; Netzer, Giora; Shanholtz, Carl; Lagakos, Adrian; Checkley, William

    2018-04-01

    High fractions of inspired oxygen may augment lung damage to exacerbate lung injury in patients with acute respiratory distress syndrome. Participants enrolled in Acute Respiratory Distress Syndrome Network trials had a goal partial pressure of oxygen in arterial blood range of 55-80 mm Hg, yet the effect of oxygen exposure above this arterial oxygen tension range on clinical outcomes is unknown. We sought to determine if oxygen exposure that resulted in a partial pressure of oxygen in arterial blood above goal (> 80 mm Hg) was associated with worse outcomes in patients with acute respiratory distress syndrome. Longitudinal analysis of data collected in these trials. Ten clinical trials conducted at Acute Respiratory Distress Syndrome Network hospitals between 1996 and 2013. Critically ill patients with acute respiratory distress syndrome. None. We defined above goal oxygen exposure as the difference between the fraction of inspired oxygen and 0.5 whenever the fraction of inspired oxygen was above 0.5 and when the partial pressure of oxygen in arterial blood was above 80 mm Hg. We then summed above goal oxygen exposures in the first five days to calculate a cumulative above goal oxygen exposure. We determined the effect of a cumulative 5-day above goal oxygen exposure on mortality prior to discharge home at 90 days. Among 2,994 participants (mean age, 51.3 yr; 54% male) with a study-entry partial pressure of oxygen in arterial blood/fraction of inspired oxygen that met acute respiratory distress syndrome criteria, average cumulative above goal oxygen exposure was 0.24 fraction of inspired oxygen-days (interquartile range, 0-0.38). Participants with above goal oxygen exposure were more likely to die (adjusted interquartile range odds ratio, 1.20; 95% CI, 1.11-1.31) and have lower ventilator-free days (adjusted interquartile range mean difference of -0.83; 95% CI, -1.18 to -0.48) and lower hospital-free days (adjusted interquartile range mean difference of -1.38; 95% CI, -2.09 to -0.68). We observed a dose-response relationship between the cumulative above goal oxygen exposure and worsened clinical outcomes for participants with mild, moderate, or severe acute respiratory distress syndrome, suggesting that the observed relationship is not primarily influenced by severity of illness. Oxygen exposure resulting in arterial oxygen tensions above the protocol goal occurred frequently and was associated with worse clinical outcomes at all levels of acute respiratory distress syndrome severity.

  20. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  1. Operation and testing of Mark 10 Mod 3 underwater breathing apparatus

    NASA Technical Reports Server (NTRS)

    Milwee, W. I., Jr.

    1972-01-01

    Performance tests on a closed circuit, mixed gas underwater breathing apparatus are reported. The equipment is designed to provide a minimum diving duration of four hours at 1500 ft below sea surface; it senses oxygen partial pressure in the breathing gas mix and controls oxygen content of the breathing gas within narrow limits about a preset value. The breathing circuit subsystem provides respirable gas to the diver and removes carbon dioxide and moisture from the expired gas. Test results indicate undesirable variations in oxygen partial pressure with oxygen addition and insufficient carbon dioxide absorption.

  2. Partial melting of the Allende (CV3) meteorite - Implications for origins of basaltic meteorites

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Mittlefehldt, D. W.; Jones, J. H.

    1991-01-01

    Eucrites and angrites are distinct types of basaltic meteorites whose origins are poorly known. Experiments in which samples of the Allende (CV3) carbonaceous chondrite were partially melted indicate that partial melts can resemble either eucrites or angrites, depending only on the oxygen fugacity. Melts are eucritic if this variable is below that of the iron-wuestite buffer or angritic if above it. With changing pressure, the graphite-oxygen redox reaction can produce oxygen fugacities that are above or below those of the iron-wuestite buffer. Therefore, a single, homogeneous, carbonaceous planetoid greater than 110 kilometers in radius could produce melts of drastically different composition, depending on the depth of melting.

  3. Deposition and characterization of vanadium oxide based thin films for MOS device applications

    NASA Astrophysics Data System (ADS)

    Rakshit, Abhishek; Biswas, Debaleen; Chakraborty, Supratic

    2018-04-01

    Vanadium Oxide films are deposited on Si (100) substrate by reactive RF-sputtering of a pure Vanadium metallic target in an Argon-Oxygen plasma environment. The ratio of partial pressures of Argon to Oxygen in the sputtering-chamber is varied by controlling their respective flow rates and the resultant oxide films are obtained. MOS Capacitor based devices are then fabricated using the deposited oxide films. High frequency Capacitance-Voltage (C-V) and gate current-gate voltage (I-V) measurements reveal a significant dependence of electrical characteristics of the deposited films on their sputtering deposition parameters mainly, the relative content of Argon/Oxygen in the plasma chamber. A noteworthy change in the electrical properties is observed for the films deposited under higher relative oxygen content in the plasma atmosphere. Our results show that reactive sputtering serves as an indispensable deposition-setup for fabricating vanadium oxide based MOS devices tailor-made for Non-Volatile Memory (NVM) applications.

  4. A DFT+U study of A-site and B-site substitution in BaFeO3-δ.

    PubMed

    Baiyee, Zarah Medina; Chen, Chi; Ciucci, Francesco

    2015-09-28

    BaFeO3-δ (BFO)-based perovskites have emerged as cheap and effective oxygen electrocatalysts for oxygen reduction reaction at high temperatures. The BFO cubic phase facilitates a high oxygen deficiency and is commonly stabilised by partial substitution. Understanding the electronic mechanisms of substitution and oxygen deficiency is key to rational material design, and can be realised through DFT analysis. In this work an in-depth first principle DFT+U study is undertaken to determine site distinctive characteristics for 12.5%, Y, La and Ce substitutions in BFO. In particular, it is shown that B-site doped structures exhibit a lower energy cost for oxygen vacancy formation relative to A site doping and pristine BFO. This is attributed to the stabilisation of holes in the oxygen sub-lattice and increased covalency of the Fe-O bonds of the FeO6 octahedra in B-site-substituted BFO. Charge analysis shows that A-site substitution amounts to donor doping and consequently impedes the accommodation of other donors (i.e. oxygen vacancies). However, A-site substitution may also exhibit a higher electronic conductivity due to less lattice distortion for oxygen deficiency compared to B-site doped structures. Furthermore, analysis of the local structural effects provides physical insight into stoichiometric expansions observed for this material.

  5. Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Rodríguez-Reyes, Juan Carlos F.; Friend, Cynthia M.; Madix, Robert J.

    2012-08-01

    Benzyl alcohol has received substantial attention as a probe molecule to test the selectivity and efficiency of novel metallic gold catalysts. Herein, the mechanisms of benzyl alcohol oxidation on a gold surface covered with atomic oxygen are elucidated; the results show direct correspondence to the reaction on gold-based catalysts. The selective, partial oxidation of benzyl alcohol to benzaldehyde is achieved with low oxygen surface concentrations and takes place through dehydrogenation of the alcohol to form benzaldehyde via a benzyloxy (C6H5-CH2O) intermediate. While in this case atomic oxygen plays solely a dehydrogenating role, at higher concentrations it leads to the formation of intermediates from benzaldehyde, producing benzoic acid and CO2. Facile ester (benzyl benzoate) formation also occurs at low oxygen concentrations, which indicates that benzoic acid is not a precursor of further oxidation of the ester; instead, the ester is produced by the coupling of adsorbed benzyloxy and benzaldehyde. Key to the high selectivity seen at low oxygen concentrations is the fact that the production of the aldehyde (and esters) is kinetically favored over the production of benzoic acid.

  6. [Daytime hypercapnia in patients with obstructive sleep apnea hypopnea syndrome in Han and Uygur nationality].

    PubMed

    He, Z M; Jiang, X L; Da, Piliqing; Ye, Z; Li, J P; Zhang, Q L; Chen, Y; Shi, J; Li, M; Han, F

    2016-11-29

    Objective: To evaluate the incidence and factors related to daytime hypercapnia in Han and Uygur patients with obstructive sleep apnea hypopnea syndrome (OSAHS). Methods: There were 221 patients with OSAHS (include 179 Han patients and 42 Uygur patients) in Sleep Center of Department of Respiratory and Critical Care Medicine of Karamay Central Hospital from 2015, Jan to Dec. All the patients underwent polysomnography (PSG), nocturnal oximetry, daytime blood gas analysis, pulmonary function test and Mouth occlusion pressure (P 0.1 ) results were recorded. The features of hypercapnia was analyzed for patients with OSAHS, and linear regression analysis was used to evaluate the arterial carbon dioxide partial pressure (PaCO 2 ) levels and related factors. Results: Daytime hypercapnia occurred in 16.7% (37/221) of the 221 patients with OSAHS. Compare with no hypercapnia groups, the body mass [(31.6±5.6) vs (27.9±1.7) kg/m 2 ], sleep apnea index (AHI) [(40.9±26.3) vs (32.2±20.1) times/h], the percentage of time spent at oxygen saturation below 90 (SIT 90 ) [(38.6±31.9)% vs (23.9±23.6)%], P 0.1 [(3.08±2.86) vs (2.03±1.20) mmHg, 1 mmHg=0.133 kPa] were higher in hypercapnia groups, but the mean nocturnal arterial oxygen saturation (MSaO 2 ) [(86.0±15.5)% vs (92.0±3.0)%], the nadir arterial oxygen saturation (LSaO 2 ) [(68.9±13.0)% vs (75.3±9.9)%] and arterial partial pressure of oxygen (PaO 2 ) [(74.5±23.0) vs (86.1±14.8) were lower in hypercapnia groups (all P <0.05). Compare with Han patients with OSAHS, MSaO 2 and LSaO 2 was lower, PaCO 2 and P 0.1 was higher in Uygur patients (all P <0.05). Conclusions: Uygur OSAHS patients with hypercapnia have a higher daytime PaCO 2 than the Han counterparts. BMI, AHI, MSaO 2 , P 0.1 level are all related with daytime hypercapnia in OSAHS.

  7. Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing

    Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less

  8. Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer

    DOE PAGES

    Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing; ...

    2017-05-20

    Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less

  9. Metabolic disregulation in obese adolescents with sleep-disordered breathing before and after weight loss.

    PubMed

    Van Hoorenbeeck, K; Franckx, H; Debode, P; Aerts, P; Ramet, J; Van Gaal, L F; Desager, K N; De Backer, W A; Verhulst, S L

    2013-07-01

    Sleep-disordered breathing (SDB) is prevalent in obesity. Weight loss is one of the most effective treatment options. The aim was to assess the association of SDB and metabolic disruption before and after weight loss. Obese adolescents were included when entering an in-patient weight loss program. Fasting blood analysis was performed at baseline and after 4-6 months. Sleep screening was done at baseline and at follow-up in case of baseline SDB. 224 obese adolescents were included. Median age was 15.5 years (10.1-18.0) and mean BMI z-score was 2.74 ± 0.42. About 30% had SDB at baseline (N = 68). High-density lipoprotein (HDL)-cholesterol was associated with mean nocturnal oxygen saturation () (partial r = 0.21; P = 0.002). Aspartate aminotransferase (ASAT) and alanine aminotransferase were related with oxygen desaturation index (partial r = -0.15; P = 0.03 and partial r = -0.15; P = 0.02), but this became insignificant after correction for sex. After weight loss, 24% had residual SDB. Linear regression showed an association between ASAT and (partial r = -0.34; P = 0.002). There were no significant correlations between improvements in laboratory measurements and sleep parameters. HDL-cholesterol improved in relation with the decrease in BMI z-score. SDB at baseline was associated with higher levels of liver enzymes and lower HDL-cholesterol concentration. Improvements in sleep parameters were not associated with improvements in laboratory measurements. Copyright © 2013 The Obesity Society.

  10. Impaired Muscle Oxygenation and Elevated Exercise Blood Pressure in Hypertensive Patients: Links With Vascular Stiffness.

    PubMed

    Dipla, Konstantina; Triantafyllou, Areti; Koletsos, Nikolaos; Papadopoulos, Stavros; Sachpekidis, Vasileios; Vrabas, Ioannis S; Gkaliagkousi, Eugenia; Zafeiridis, Andreas; Douma, Stella

    2017-08-01

    This study examined in vivo (1) skeletal muscle oxygenation and microvascular function, at rest and during handgrip exercise, and (2) their association with macrovascular function and exercise blood pressure (BP), in newly diagnosed, never-treated patients with hypertension and normotensive individuals. Ninety-one individuals (51 hypertensives and 40 normotensives) underwent office and 24-hour ambulatory BP, arterial stiffness, and central aortic BP assessment, followed by a 5-minute arterial occlusion and a 3-minute submaximal handgrip exercise. Changes in muscle oxygenated and deoxygenated hemoglobin and tissue oxygen saturation were continuously monitored by near-infrared spectroscopy and beat-by-beat BP by Finapres. Hypertensives had higher ( P <0.001) central aortic BP and pulse wave velocity versus normotensives and exhibited (1) a blunted tissue oxygen saturation response during occlusion, with slower ( P =0.006) deoxygenation rate, suggesting reduced muscle oxidative capacity, and (2) a slower reoxygenation rate and blunted hyperemic response ( P <0.05), showing reduced microvascular reactivity. Muscle oxygenation responses were correlated with aortic systolic and pulse pressure and augmentation index ( P <0.05; age and body mass index (BMI) adjusted). When exercising at the same submaximal intensity, hypertensives required a significantly greater ( P <0.001) increase in BP for achieving similar muscle oxygenation levels as normotensives. This response was correlated with the magnitude of microvascular hyperemia and aortic BP. In conclusion, nontreated patients with hypertension exhibit prominent reductions in in vivo indices of skeletal muscle oxidative capacity, suggestive of mitochondrial dysfunction, and blunted muscle microvascular reactivity. These dysfunctions were associated with higher aortic systolic BP and arterial stiffness. Dysregulations in muscle oxygen delivery/utilization and microvascular stiffness, in hypertensive patients, partially contribute to their exaggerated BP during exercise. © 2017 American Heart Association, Inc.

  11. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  12. Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta-analysis on higher versus lower PEEP for patients with ARDS.

    PubMed

    Kasenda, Benjamin; Sauerbrei, Willi; Royston, Patrick; Mercat, Alain; Slutsky, Arthur S; Cook, Deborah; Guyatt, Gordon H; Brochard, Laurent; Richard, Jean-Christophe M; Stewart, Thomas E; Meade, Maureen; Briel, Matthias

    2016-09-08

    A recent individual patient data (IPD) meta-analysis suggested that patients with moderate or severe acute respiratory distress syndrome (ARDS) benefit from higher positive end-expiratory pressure (PEEP) ventilation strategies. However, thresholds for continuous variables (eg, hypoxaemia) are often arbitrary and linearity assumptions in regression approaches may not hold; the multivariable fractional polynomial interaction (MFPI) approach can address both problems. The objective of this study was to apply the MFPI approach to investigate interactions between four continuous patient baseline variables and higher versus lower PEEP on clinical outcomes. Pooled data from three randomised trials in intensive care identified by a systematic review. 2299 patients with acute lung injury requiring mechanical ventilation. Higher (N=1136) versus lower PEEP (N=1163) ventilation strategy. Prespecified outcomes included mortality, time to death and time-to-unassisted breathing. We examined the following continuous baseline characteristics as potential effect modifiers using MFPI: PaO2/FiO2 (arterial partial oxygen pressure/ fraction of inspired oxygen), oxygenation index, respiratory system compliance (tidal volume/(inspiratory plateau pressure-PEEP)) and body mass index (BMI). We found that for patients with PaO2/FiO2 below 150 mm Hg, but above 100 mm Hg or an oxygenation index above 12 (moderate ARDS), higher PEEP reduces hospital mortality, but the beneficial effect appears to level off for patients with very severe ARDS. Patients with mild ARDS (PaO2/FiO2 above 200 mm Hg or an oxygenation index below 10) do not seem to benefit from higher PEEP and might even be harmed. For patients with a respiratory system compliance above 40 mL/cm H2O or patients with a BMI above 35 kg/m(2), we found a trend towards reduced mortality with higher PEEP, but there is very weak statistical confidence in these findings. MFPI analyses suggest a nonlinear effect modification of higher PEEP ventilation by PaO2/FiO2 and oxygenation index with reduced mortality for some patients suffering from moderate ARDS. CRD42012003129. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Two-Photon Antenna-Core Oxygen Probe with Enhanced Performance

    PubMed Central

    2015-01-01

    Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods’ potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells. PMID:24848643

  14. Alteration of striatal dopamine levels under various partial pressure of oxygen in pre-convulsive and convulsive phases in freely-moving rats.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude

    2014-02-01

    The purpose of this study was to investigate the change in the striatal dopamine (DA) level in freely-moving rat exposed to different partial pressure of oxygen (from 1 to 5 ATA). Some works have suggested that DA release by the substantia nigra pars compacta (SNc) neurons in the striatum could be disturbed by hyperbaric oxygen (HBO) exposure, altering therefore the basal ganglia activity. Such changes could result in a change in glutamatergic and GABAergic control of the dopaminergic neurons into the SNc. Such alterations could provide more information about the oxygen-induced seizures observed at 5 ATA in rat. DA-sensitive electrodes were implanted into the striatum under general anesthesia. After 1 week rest, awaked rats were exposed to oxygen-nitrogen mixture at a partial pressure of oxygen of 1, 2, 3, 4 and 5 ATA. DA level was monitored continuously (every 3 min) by in vivo voltammetry before and during HBO exposure. HBO induced a decrease in DA level in relationship to the increase in partial pressure of oxygen from 1 ATA to 4 ATA (-15 % at 1 ATA, -30 % at 2 ATA, -40 % at 3 ATA, -45 % at 4 ATA), without signs of oxygen toxicity. At 5 ATA, DA level strongly decreases (-75 %) before seizure which occurred after 27 min ± 7 HBO exposure. After the epileptic seizure the decrease in DA level disappeared. These changes and the biphasic effect of HBO were discussed in function of HBO action on neurochemical regulations of the nigro striatal pathway.

  15. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Prolonged partial cardiopulmonary bypass in rats.

    PubMed

    Alexander, B; Al Ani, H R

    1983-07-01

    Membrane oxygenators have been shown to be atraumatic during cardiopulmonary bypass. A novel design for a membrane tubing oxygenator originated in this laboratory was used for prolonged partial supportive cardiopulmonary bypass in lambs and displayed excellent biocompatability characteristics. This was miniaturized, to result in a prime volume of 12 ml, in order to investigate the feasibility of prolonged partial supportive cardiopulmonary bypass in rats. The performance of this miniaturized circuit over perfusion periods up to 6 hr is described, with particular reference to hematological changes.

  17. Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells.

    PubMed

    Trepiana, Jenifer; Meijide, Susana; Navarro, Rosaura; Hernández, M Luisa; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2017-08-01

    Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial pressure (21% O 2 ). However, the oxygen concentrations in the liver and cancer cells are far from this value. In the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metalloproteinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and Hep3B (deleted), were cultured (6-30 days) under atmospheric (21%) and more physiological (8%) pO 2 . Results showed that after long-term culturing at 8% versus 21% O 2 , the cellular proliferation rate and the steady-state levels of mitochondrial O 2 - were unaffected. However, the intracellular basal ROS levels were higher independently of the characteristics of the cell line. Moreover, the lower pO 2 was associated with lower glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2. This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion. HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-term culturing of human hepatoma cells at a low, more physiological pO 2 induces antioxidant adaptations that could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient O 2 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  19. Geometric asymmetry driven Janus micromotors

    NASA Astrophysics Data System (ADS)

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S-1 and S-2. See DOI: 10.1039/c4nr02393e

  20. Variable range hopping in ZnO films

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Ghosh, Subhasis

    2018-04-01

    We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.

  1. Structural and electrical properties of sputter deposited ZnO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-05-01

    The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.

  2. Diffusion coefficients of oxygen and hemoglobin measured by facilitated oxygen diffusion through hemoglobin solutions.

    PubMed

    Bouwer, S T; Hoofd, L; Kreuzer, F

    1997-03-07

    Diffusion coefficients of oxygen (DO2) and hemoglobin (DHb) were obtained from measuring the oxygen flux through thin layers of hemoglobin solutions at 20 degrees C. The liquid layers were supported by a membrane and not soaked in any filter material. Oxygen fluxes were measured from the changes in oxygen partial pressure in the gas phases at both sides of the layer. A mathematical treatment is presented for correct evaluation of the measurements. Measurements were done for bovine and for human hemoglobin. Hemoglobin concentrations (CHb) were between 11 and 42 g/dl, which covers the concentrations in the erythrocyte. Both DO2 and DHb could be fitted to the empirical equation D = D0(1-CHb/C1)10-CHb/C2. The following parameters were obtained: DO = 1.80 x 10(-9) m2/s, C1 = 100 g/dl, C2 = 119 g/dl, for oxygen and D0 = 7.00 x 10(-11) m2/s, C1 = 46 g/dl, C2 = 128 g/dl, for hemoglobin. No difference between the diffusion coefficients of bovine or human hemoglobin was found. The diffusion coefficients of hemoglobin were higher than most values reported in the literature, probably because in this study the mobility of hemoglobin was not hindered by surrounding filter material.

  3. Oxygen binding to partially nitrosylated hemoglobin.

    PubMed

    Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia

    2013-09-01

    Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.

    2017-04-01

    The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.

  5. Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).

    PubMed

    Lannig, Gisela; Cherkasov, Anton S; Pörtner, Hans-O; Bock, Christian; Sokolova, Inna M

    2008-04-01

    Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can have detrimental effects on oysters (Crassostrea virginica). During acute warming from 20 to 28 degrees C (4 degrees C/48 h) standard metabolic rate (SMR) rose in control and cadmium-exposed (50 microg Cd2+/l) animals, with a consistently higher SMR in Cd-exposed oysters. Additionally, Cd-exposed oysters showed a stronger temperature-dependent decrease in hemolymph oxygen partial pressures. This observation indicates that the effect of temperature on aerobic metabolism was exacerbated due to the additional Cd stress. The oxygen delivery systems could not provide enough oxygen to cover Cd-induced elevated metabolic demands at high temperatures. Interestingly, cardiac performance (measured as the heart rate and hemolymph supply to tissues) rose to a similar extent in control and Cd-exposed oysters with warming indicating that cardiac output was unable to compensate for elevated energy demand in Cd-exposed oysters. Together with the literature data on metal-induced reduction of ventilatory capacity, these findings suggest that synergistic effects of elevated temperatures and cadmium exposure led to oxygen limitation by impaired performance in oxygen supply through ventilation and circulation. Overall, cadmium exposure resulted in progressive hypoxemia in oysters at high temperatures, suggesting that the thermal tolerance window is narrowed in marine ectotherms inhabiting polluted areas compared with pristine environments.

  6. New electrolyte may increase life of polarographic oxygen sensors

    NASA Technical Reports Server (NTRS)

    Albright, C. F.

    1967-01-01

    Electrolyte increases life on oxygen sensors in a polarograph used for measuring the partial pressure of oxygen in a gas mixture. It consists of a solution of lithium chloride, dimethyl acetamide and water.

  7. Multiscale modeling and experimental interpretation of perovskite oxide materials in thermochemical energy storage and conversion for application in concentrating solar power

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.

    Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy storage in CSP plants are presented. Comparisons of sweep gas and vacuum pumping reduction as well as hot storage conditions indicate that solar-to-electric efficiencies are higher for sweep gas reduction system at equivalent values of energy storage if the energy parasitics of commercially available devices are considered. However, if vacuum pump efficiency between 15% and 30% can be achieved, the reduction methods will be approximately equal. Reducing condition oxygen partial pressures below 10-3 bar for sweep gas reduction and 10-2 bar for vacuum pumping reduction result in large electrical parasitics, which significantly reduce solar-to-electric efficiency. A model based interpretation of experimental measurements made for perovskite redox cycling using sweep gas in a packed bed is presented. The model indicates that long reduction times for equilibrating perovskites with low oxygen partial pressure sweep gas, compared to reoxidation, are primarily due to the oxygen carrying capacity of high purity sweep gas and not surface kinetic limitations. Therefore, achieving rapid reduction in the limited receiver residence time will be controlled by the quantity of sweep gas introduced. Effective kinetic parameters considering surface reaction and radial particle diffusion are fit to the experimental data. Variable order rate expressions without significant particle radial diffusion limitations are shown to be capable of representing the reduction and oxidation data. Modeling of a particle reduction receiver using continuous flow of perovskite solid and sweep gas in counter-flow configuration has identified issues with managing the oxygen evolved by the solid as well as sweep gas flow rates. Introducing sweep gas quantities necessary for equilibrating the solid with oxygen partial pressures below 10-2 are shown to result in gas phase velocities above the entrainment velocity of 500 um particles. Receiver designs with considerations for gas management are investigated and the results indicate that degrees of reduction corresponding to only oxygen partial pressures of 10-2 bar are attained. Numerical investigation into perovskite thermochemical energy storage indicates that achieving high levels of reduction through sweep gas or vacuum pumping to lower gas phase oxygen partial pressure below 10-2 bar display issues with parasitic energy consumption and gas phase management. Therefore, focus on material development should place a premium on thermal reduction and reduction by shifting oxygen partial pressure between ambient and 10-2 bar. Such a material would enable the development of a system with high solar-to-electric efficiencies and degrees of reduction which are attainable in realistic component geometries.

  8. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  9. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients.

    PubMed

    Winkler, Maren Kl; Dengler, Nora; Hecht, Nils; Hartings, Jed A; Kang, Eun J; Major, Sebastian; Martus, Peter; Vajkoczy, Peter; Woitzik, Johannes; Dreier, Jens P

    2017-05-01

    Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.

  10. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  11. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  12. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    PubMed

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  13. Stabilization of polar Mn3O4(001) film on Ag(001): Interplay between kinetic and structural stability

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Barman, Sukanta; Menon, Krishnakumar S. R.

    2017-10-01

    Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10-8 mbar < P(O2) ≤ 5 × 10-7 mbar, different surface structures are detected and beyond this thickness a constant evolution of apparent p(2 × 2) structure have been observed due to the coexistence of p(2 × 1) and c(2 × 2) structures. Similar apparent p(2 × 2) structure has also observed by the oxidation of Ag(001)-supported MnO(001) surface. Our study also shows that the substrate temperature during growth plays a crucial role in determining the final structure of the polar Mn3O4 film and as a consequence of that a strong interplay between structural and kinetic stability in the Mn3O4 film has been observed. Further, stripe-like LEED pattern has been observed from the Mn3O4(001) surface, for the film grown at higher oxygen partial pressure (> 5 × 10-7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.

  14. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    PubMed

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  15. The π-Electron Delocalization in 2-Oxazolines Revisited: Quantification and Comparison with Its Analogue in Esters

    PubMed Central

    Fimberger, Martin; Luef, Klaus P.; Payerl, Claudia; Fischer, Roland C.; Stelzer, Franz; Kállay, Mihály; Wiesbrock, Frank

    2015-01-01

    The single crystal X-ray analysis of the ester-functionalized 2-oxazoline, methyl 3-(4,5-dihydrooxazol-2-yl)propanoate, revealed π-electron delocalization along the N–C–O segment in the 2-oxazoline pentacycle to significant extent, which is comparable to its counterpart along the O–C–O segment in the ester. Quantum chemical calculations based on the experimental X-ray geometry of the molecule supported the conjecture that the N–C–O segment has a delocalized electronic structure similar to an ester group. The calculated bond orders were 1.97 and 1.10 for the N=C and C–O bonds, and the computed partial charges for the nitrogen and oxygen atoms of −0.43 and −0.44 were almost identical. In the ester group, the bond orders were 1.94 and 1.18 for the C–O bonds, while the partial charges of the oxygen atom are −0.49 and −0.41, which demonstrates the similar electronic structure of the N–C–O and O–C–O segments. In 2-oxazolines, despite the higher electronegativity of the oxygen atom (compared to the nitrogen atom), the charges of the hetero atoms oxygen and nitrogen are equalized due to the delocalization, and it also means that a cationic attack on the nitrogen is possible, enabling regioselectivity during the initiation of the cationic ring-opening polymerization of 2-oxazoline monomers, which is a prerequisite for the synthesis of materials with well-defined structures. PMID:28184258

  16. Comparison of Arterial Oxygenation Following Head-Down and Head-Up Laparoscopic Surgery.

    PubMed

    Imani, Farsad; Shirani Amniyeh, Fatemeh; Bastan Hagh, Ehsan; Khajavi, Mohammad Reza; Samimi, Saghar; Yousefshahi, Fardin

    2017-12-01

    Regarding the role of gas entry in abdomen and cardiorespiratory effects, the ability of anesthesiologists would be challenged in laparoscopic surgeries. Considering few studies in this area and the relevance of the subject, this study was performed to compare the arterial oxygen alterations before operation in comparison with after surgery between laparoscopic cholecystectomy and ovarian cystectomy. In this prospective cohort, 70 consecutive women aged from 20 to 60 years who were candidate for laparoscopic cholecystectomy (n = 35) and ovarian cystectomy (n = 35) with reverse (20 degrees) and direct (30 degrees) Trendelenburg positions, respectively, with ASA class I or II were enrolled. After intubation and before operation, for the first time, the arterial blood gas from radial artery in supine position was obtained for laboratory assessment. Then, the second blood sample was collected from radial artery in supine position and sent to the lab to be assessed with the same device after 30 minutes from surgery termination. The measured variables from arterial blood gas were arterial partial pressure of oxygen (PaO 2 ) and Oxygen saturation (SpO 2 ) alterations. Total PaO 2 was higher in the first measurement. The higher values of PaO 2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.060) and multivariate analysis (P = 0.654). Furthermore, higher values of SpO 2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.412) and multivariate analysis (P = 0.984). In general, based on the results of this study, the values of PaO 2 in cholecystectomy (upward) were not significantly higher than the values in cystectomy (downward) in laparoscopic surgeries when measured 30 minutes after surgery.

  17. Comparison of Arterial Oxygenation Following Head-Down and Head-Up Laparoscopic Surgery

    PubMed Central

    Imani, Farsad; Shirani Amniyeh, Fatemeh; Bastan Hagh, Ehsan; Khajavi, Mohammad Reza; Samimi, Saghar; Yousefshahi, Fardin

    2017-01-01

    Background Regarding the role of gas entry in abdomen and cardiorespiratory effects, the ability of anesthesiologists would be challenged in laparoscopic surgeries. Considering few studies in this area and the relevance of the subject, this study was performed to compare the arterial oxygen alterations before operation in comparison with after surgery between laparoscopic cholecystectomy and ovarian cystectomy. Methods In this prospective cohort, 70 consecutive women aged from 20 to 60 years who were candidate for laparoscopic cholecystectomy (n = 35) and ovarian cystectomy (n = 35) with reverse (20 degrees) and direct (30 degrees) Trendelenburg positions, respectively, with ASA class I or II were enrolled. After intubation and before operation, for the first time, the arterial blood gas from radial artery in supine position was obtained for laboratory assessment. Then, the second blood sample was collected from radial artery in supine position and sent to the lab to be assessed with the same device after 30 minutes from surgery termination. The measured variables from arterial blood gas were arterial partial pressure of oxygen (PaO2) and Oxygen saturation (SpO2) alterations. Results Total PaO2 was higher in the first measurement. The higher values of PaO2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.060) and multivariate analysis (P = 0.654). Furthermore, higher values of SpO2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.412) and multivariate analysis (P = 0.984). Conclusions In general, based on the results of this study, the values of PaO2 in cholecystectomy (upward) were not significantly higher than the values in cystectomy (downward) in laparoscopic surgeries when measured 30 minutes after surgery. PMID:29696125

  18. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  19. Optical conductivity of partially oxidized graphene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir

    2015-07-07

    We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less

  20. Preflight studies on tolerance of pocket mice to oxygen and heat. IV - Observations on the brain

    NASA Technical Reports Server (NTRS)

    Bailey, O. T.; Ordy, J. M.; Haymaker, W.

    1975-01-01

    Experiments designed to ascertain the effects of oxygen at 8, 10, and 12 psi partial pressure on the brains of pocket mice (Perognathus longimembris) were carried out at room temperature (24 C, 75 F) and at 32 C (90 F). The animals exposed to 8-12 psi at 32 C had been in earlier KO2 oxygen tests. Five animals exposed either to 10 or 12 psi (517 mm or 620 mm Hg) O2 partial pressure at 32 C died during the course of the tests, possibly as a consequence of injury sustained by the earlier O2 partial pressure testing. Autopsy was not carried out. In the other 36 exposed animals, no pathological changes were observed in the brain. It is thus highly probable that oxygen pressures at the hyperbaric levels to which the pocket mice would be exposed during the Apollo XVII mission would not result in any lesions in the brain.

  1. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear.

    PubMed

    Del Castillo, Luis F; da Silva, Ana R Ferreira; Hernández, Saul I; Aguilella, M; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2015-01-01

    We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. Copyright © 2014. Published by Elsevier Espana.

  2. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  4. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  5. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  6. Combined Hyperbaric Oxygen Partial Pressure at 1.4 Bar with Infrared Radiation: A Useful Tool To Improve Tissue Hypoxemia?

    PubMed

    Dünnwald, Tobias; Held, Julia; Balan, Petru; Pecher, Otto; Zeiger, Thomas; Hartig, Frank; Mur, Erich; Weiss, Günter; Schobersberger, Wolfgang

    2018-06-13

    Tissue hypoxia contributes to the pathogenesis of several acute and chronic diseases. Hyperbaric oxygen therapy (HBO) and whole-body warming using low-temperature infrared technology (LIT) are techniques that might improve hypoxemia. Combining HBO and LIT as hyperbaric oxygen therapy combined with low-temperature infrared radiation (HBOIR) might be an approach that results in positive synergistic effects on oxygenation. LIT increases blood flow and could reduce HBO-induced vasoconstriction, and hyperoxia could compensate for the increased metabolic oxygen requirements mediated by LIT. Both LIT and HBO increase the oxygen diffusion distance in the tissues. HBOIR at 0.5 bar has been shown to be safe and feasible. However, physiological responses and the safety of HBOIR at an increased oxygen (O2) partial pressure of 1.4 bar or 2.4 atmospheres absolute (ATA) still need to be determined. The hope is that should HBOIR at an increased oxygen partial pressure of 1.4 bar be safe, future studies to examine its efficacy in patients with clinical conditions, which include peripheral arterial disease (PAD) or wound healing disorders, will follow. The results of pilot studies have shown that HBOIR at an overload pressure is safe and well tolerated in healthy participants but can generate moderate cardiovascular changes and an increase in body temperature. From the findings of this pilot study, due to its potential synergistic effects, HBOIR could be a promising tool for the treatment of human diseases associated with hypoxemia.

  7. A determination of the oxygen non-stoichiometry of the oxygen storage material YBaMn{sub 2}O{sub 5+δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana

    2015-10-15

    The A-site ordered double-perovskite oxide, YBaMn{sub 2}O{sub 5+δ}, has been of recent interest for possible application as an oxygen storage material. In the present study, the oxygen non-stoichiometry of YBaMn{sub 2}O{sub 5+δ} has been determined as a function of pO{sub 2} at 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that this perovskite oxide has three distinct phases on oxidation/reduction with δ≈0, 0.5 and 1. The stabilities of the YBaMn{sub 2}O{sub 5+δ} phases span a wide range of oxygen partial pressures (∼10{sup −20}≤pO{sub 2}(atm)≤∼1 ) depending on temperature. The phases interconvert at higher pO{submore » 2} values at higher temperatures. The partial molar free energies (Δμ{sub O}) corresponding to the oxidation of YBaMn{sub 2}O{sub 5} to YBaMn{sub 2}O{sub 5.5} and of YBaMn{sub 2}O{sub 5.5} to YBaMn{sub 2}O{sub ∼6} were determined. The value of Δμ{sub O} in both oxidation steps becomes less negative with increasing temperature. At some T and pO{sub 2} conditions, YBaMn{sub 2}O{sub 5+δ} is unstable with respect to decomposition to BaMnO{sub 3−δ} and YMnO{sub 3}. This instability is anticipated from the previous studies of the synthesis of YBaMn{sub 2}O{sub 5+δ} but is more apparent in the present experiments which are necessarily slow in order to achieve equilibrium with respect to the oxygen content. - Highlights: • Determination of the oxygen non-stoichiometry of YBaMn{sub 2}O{sub 5+δ} as a function of pO{sub 2} and T. • Establishments of pO{sub 2} ranges of stability of O{sub 5} and O{sub 5.5} at 650 °C, 700 °C and 750 °C. • Discovery of the kinetic instability of YBaMn{sub 2}O{sub 5+δ} with respect to decomposition to BaMnO{sub 3}−{sub x} and YMnO{sub 3}. • Evaluation of the thermodynamics of the oxidation of YBaMnO{sub 5}.« less

  8. Computational Model for Tumor Oxygenation Applied to Clinical Data on Breast Tumor Hemoglobin Concentrations Suggests Vascular Dilatation and Compression.

    PubMed

    Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko

    2016-01-01

    We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors.

  9. Computational Model for Tumor Oxygenation Applied to Clinical Data on Breast Tumor Hemoglobin Concentrations Suggests Vascular Dilatation and Compression

    PubMed Central

    Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko

    2016-01-01

    We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors. PMID:27547939

  10. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge.

    PubMed

    Ramos, I; Fdz-Polanco, M

    2013-07-01

    A well-functioning pilot reactor treating sewage sludge at approximately 4.4 NL/m(3)/d of oxygen supply and 18d of hydraulic retention time (HRT) was subjected to a hydraulic overload to investigate whether oxygen benefits successful operation in stressful circumstances. Only a mild imbalance was caused, which was overcome without deterioration in the digestion performance. Volatile solids (VS) removal was 45% and 43% at 18 and 14 d of HRT, respectively. Biogas productivity remained around 546 NmL/gVS, but it was slightly higher during the period of imbalance. Thereafter, similar performances were achieved. Under anaerobic conditions, VS removal and biogas productivity were respectively 41% and 525 NmL/gVS, hydrogen partial pressure rose, and acetic acid formation became less favourable. Oxygen seemed to form a more stable digestion system, which meant increased ability to deal successfully with overloads. Additionally, it improved the biogas quality; methane concentration was negligibly lower, while hydrogen sulphide and oxygen remained around 0.02 and 0.03%v/v, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Partially autoionizing states of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    Certain Rydberg states and an intershell transition of atomic oxygen were shown to partially autoionize, and to produce emission spectra competitive with autoionization. These states are forbidden to autoionize on the basis of LS coupling; but they were observed both in emission spectroscopy and in photoelectron spectroscopy. The results explain an unidentified structure in the 584 Angstrom He I atomic O spectrum observed by previous investigators.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Y.F.; Thomas, K.M.

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved inmore » the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.« less

  13. Effect of Electroacupuncture on Transcutaneous Oxygen Partial Pressure During Hyperbaric Oxygen Therapy in Healthy Individuals.

    PubMed

    Qu, Lan; Ye, Yong; Li, Chunfeng; Gao, Guangkai

    2015-01-01

    The goal of hyperbaric oxygen therapy (HBOT) is to increase the oxygen (O₂) supply to the body significantly. Because of the toxic side effects and complications of hyperbaric oxygen (HBO₂), the environmental pressure and treatment time must be restricted. The research team hypothesized that other therapies administered during HBOT could safely improve the value of the arterial oxygen partial pressure (PaO₂) during HBOT and improve its therapeutic effect. The study intended to investigate whether electroacupuncture (EA) while receiving HBOT had a greater effect for healthy individuals than HBOT or EA alone or EA combined with normobaric pure oxygen (pure O₂). The research team designed a randomized, controlled trial. The study was performed in the Department of Hyperbaric Medicine at the No. 401 Hospital of the People's Liberation Army in Qingdao, China. A total of 81 volunteers were recruited. After thorough physical examination and laboratory testing, 21 volunteers were excluded from the study. Participants included 60 healthy volunteers. Participants were randomly assigned to 1 of 4 groups of 15 participants each: (1) an HBOT group, (2) an EA group, (3) an EA During HBOT group, and (4) an EA Combined With Pure O₂group. Because at the current technology level a blood gas analyzer cannot test PaO₂during HBOT, transcutaneous oxygen partial pressure (PtcO₂) of the participants was tested instead. Before, during, and after EA, variations in PtcO₂were monitored in each group. For the EA During HBOT group, (1) the increase in PtcO₂during EA was significantly greater than that observed for the other 3 groups (P > .05). The EA During HBOT method provided improvements in the efficacy, safety, and tolerability of HBOT, and the study's results partially demonstrated the accuracy of the research team's hypothesis that EA therapy applied during HBOT could safely improve the value of PtcO₂(PaO₂) during HBOT and produce a greater therapeutic effect.

  14. Hydrogenase activity in the thermophile mastigocladus laminosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benemann, J.R.; Miyamoto, K.; Hallenbeck, P.C.

    Hydrogenase activity in the thermophilic cyanobacterium, Mastigocladus laminosus was studied both in vivo and in vitro. In vivo hydrogen consumption required oxygen but not light, was about ten-fold higher than in mesophilic cyanobacteria, and was relatively insensitive to carbon monoxide. H/sub 2/-supported acetylene reduction in reductant-limited cultures was a light-dependent, but O/sub 2/-independent reaction. In vitro hydrogen evolution was unaffected by carbon monoxide, and this activity could be partially purified using a procedure developed for Anabaena cylindrica.

  15. Oxygen partial pressure effects on metabolic rate and behavior of tethered flying locusts.

    PubMed

    Rascón, Brenda; Harrison, Jon F

    2005-11-01

    Resting insects are extremely tolerant of hypoxia. However, oxygen requirements increase dramatically during flight. Does the critical atmospheric P (O)(2) (P(c)) increase strongly during flight, or does increased tracheal conductance allow even flying insects to possess large safety margins for oxygen delivery? We tested the effect of P(O)(2) on resting and flying CO(2) emission, as well as on flight behavior and vertical force production in flying locusts, Schistocerca americana. The P(c) for CO(2) emission of resting animals was less than 1 kPa, similar to prior studies. The P(c) for flight bout duration was between 10 and 21 kPa, the P(c) for vertical force production was between 3 and 5 kPa, and the P(c) for CO(2) emission was between 10 and 21 kPa. Our study suggests that the P(c) for steady-state oxygen consumption is between 10 and 21 kPa (much higher than for resting animals), and that tracheal oxygen stores allowed brief flights in 5 and 10 kPa P(O)(2) atmospheres to occur. Thus, P(c) values strongly increased during flight, consistent with the hypothesis that the excess oxygen delivery capacity observed in resting insects is substantially reduced during flight.

  16. Differences in mortality based on worsening ratio of partial pressure of oxygen to fraction of inspired oxygen corrected for immune system status and respiratory support.

    PubMed

    Miles, Lachlan F; Bailey, Michael; Young, Paul; Pilcher, David V

    2012-03-01

    To define the relationship between worsening oxygenation status (worst PaO(2)/FiO(2) ratio in the first 24 hours after intensive care unit admission) and mortality in immunosuppressed and immunocompetent ICU patients in the presence and absence of mechanical ventilation. Retrospective cohort study. Data were extracted from the Australian and New Zealand Intensive Care Society Adult Patient Database. Adult patients admitted to 129 ICUs in Australasia, 2000-2010. In hospital and ICU mortality; relationship between mortality and declining PaO(2)/FiO(2) ratio by ventilation status and immune status. 457 750 patient records were analysed. Worsening oxygenation status was associated with increasing mortality in all groups. Higher mortality was seen in immunosuppressed patients than immunocompetent patients. After multivariate analysis, in mechanically ventilated patients, declining PaO(2)/FiO(2) ratio in the first 24 hours of ICU admission was associated with a more rapidly rising mortality rate in immunosuppressed patients than non-immunosuppressed patients. Immunosuppression did not affect the relationship between oxygenation status and mortality in non-ventilated patients. Immunosuppression increases the risk of mortality with progressively worsening oxygenation status, but only in the presence of mechanical ventilation. Further research into the impact of mechanical ventilation in immunosuppressed patients is required.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Robaee, M.S.; Krishna, M.G.; Rao, K.N.

    Single layer films of CeO{sub 2} have been deposited both by conventional electron beam evaporation and ion assisted deposition with oxygen and argon ions. A broad beam Kaufman ion source (3 cm diam) has been used to generate the ions. A systematic study has been made on optical properties such as refractive index, extinction coefficient and inhomogeneity of the films as a function of: (1) oxygen partial pressure in the range 1{times}10{sup {minus}4} to 1{times}10{sup {minus}5} mbar. (2) Incidence of oxygen ions with energy in the range 300--700 eV and current density in the range 50--220 {mu}A/cm{sup 2}. (3) Incidencemore » of mixed argon and oxygen ions of different ratios. The refractive index of the films deposited under the influence of ion bombardment showed higher indices than the conventionally evaporated films. The maximum index obtained with an oxygen ion bombardment was 2.3 at an ion energy of 600 eV and current density of 220 {mu}A/cm{sup 2}. The bombardment of the films with a mixed argon--oxygen (25% Ar) ion beam of the same energy and current density was found to further increase the refractive index. The extinction coefficient in both cases was negligible.« less

  18. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  19. Exposure to high concentrations of inspired oxygen does not worsen lung injury after cardiac arrest.

    PubMed

    Elmer, Jonathan; Wang, Bo; Melhem, Samer; Pullalarevu, Raghavesh; Pullalarevu, Raghevesh; Vaghasia, Nishit; Buddineni, Jaya; Rosario, Bedda L; Doshi, Ankur A; Callaway, Clifton W; Dezfulian, Cameron

    2015-03-10

    Post-cardiac arrest patients are often exposed to 100% oxygen during cardiopulmonary resuscitation and the early post-arrest period. It is unclear whether this contributes to development of pulmonary dysfunction or other patient outcomes. We performed a retrospective cohort study including post-arrest patients who survived and were mechanically ventilated at least 24 hours after return of spontaneous circulation. Our primary exposure of interest was inspired oxygen, which we operationalized by calculating the area under the curve of the fraction of inspired oxygen (FiO₂AUC) for each patient over 24 hours. We collected baseline demographic, cardiovascular, pulmonary and cardiac arrest-specific covariates. Our main outcomes were change in the respiratory subscale of the Sequential Organ Failure Assessment score (SOFA-R) and change in dynamic pulmonary compliance from baseline to 48 hours. Secondary outcomes were survival to hospital discharge and Cerebral Performance Category at discharge. We included 170 patients. The first partial pressure of arterial oxygen (PaO₂):FiO₂ ratio was 241 ± 137, and 85% of patients had pulmonary failure and 55% had cardiovascular failure at presentation. Higher FiO₂AUC was not associated with change in SOFA-R score or dynamic pulmonary compliance from baseline to 48 hours. However, higher FiO₂AUC was associated with decreased survival to hospital discharge and worse neurological outcomes. This was driven by a 50% decrease in survival in the highest quartile of FiO₂AUC compared to other quartiles (odds ratio for survival in the highest quartile compared to the lowest three quartiles 0.32 (95% confidence interval 0.13 to 0.79), P = 0.003). Higher exposure to inhaled oxygen in the first 24 hours after cardiac arrest was not associated with deterioration in gas exchange or pulmonary compliance after cardiac arrest, but was associated with decreased survival and worse neurological outcomes.

  20. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  1. [Treatment of acute respiratory distress syndrome using pressure and volume controlled ventilation with lung protective strategy].

    PubMed

    Ge, Ying; Wan, Yong; Wang, Da-qing; Su, Xiao-lin; Li, Jun-ying; Chen, Jing

    2004-07-01

    To investigate the significance and effect of pressure controlled ventilation (PCV) as well as volume controlled ventilation (VCV) by lung protective strategy on respiratory mechanics, blood gas analysis and hemodynamics in patients with acute respiratory distress syndrome (ARDS). Fifty patients with ARDS were randomly divided into PCV and VCV groups with permissive hypercapnia and open lung strategy. Changes in respiratory mechanics, blood gas analysis and hemodynamics were compared between two groups. Peak inspiration pressure (PIP) in PCV group was significantly lower than that in VCV group, while mean pressure of airway (MPaw) was significantly higher than that in VCV after 24 hours mechanical ventilation. After 24 hours mechanical ventilation, there were higher central venous pressure (CVP) and slower heart rate (HR) in two groups, CVP was significantly higher in VCV compared with PCV, and PCV group had slower HR than VCV group, the two groups had no differences in mean blood pressure (MBP) at various intervals. All patients showed no ventilator-induced lung injury. Arterial blood oxygenations were obviously improved in two groups after 24 hours mechanical ventilation, PCV group had better partial pressure of oxygen in artery (PaO2) than VCV group. Both PCV and VCV can improve arterial blood oxygenations, prevent ventilator-induced lung injury, and have less disturbance in hemodynamic parameters. PCV with lung protective ventilatory strategy should be early use for patients with ARDS.

  2. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    PubMed

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  3. Operational considerations in monitoring oxygen levels at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1985-01-01

    Laboratory monitoring of the level of oxygen in sample gas mixtures is a process which can be performed with accurate and repeatable results. Operations at the National Transonic Facility require the storage and pumping of large volumes of liquid nitrogen. To protect against the possibility of a fault resulting in a localized oxygen deficient atmosphere, the facility is equipped with a monitoring system with an array of sensors. During the early operational stages, the system produced recurrent alarms, none of which could be traced to a true oxygen deficiency. A thorough analysis of the system was undertaken with primary emphasis placed on the sensor units. These units sense the partial pressure of oxygen which, after signal conditioning, is presented as a % by volume indication at the system output. It was determined that many of the problems experienced were due to a lack of proper accounting for the partial pressure/% by volume relationship, with a secondary cause being premature sensor failure. Procedures were established to consider atmospherically induced partial pressure variations. Sensor rebuilding techniques were examined, and those elements contributing to premature sensor failure were identified. The system now operates with a high degree of confidence and reliability.

  4. Oxidation of SiC Fiber-Reinforced SiC Matrix Composites with a BN Interphase

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Boyd, Meredith K.

    2010-01-01

    SiC-fiber reinforced SiC matrix composites with a BN interphase were oxidized in reduced oxygen partial pressures of oxygen to simulate the environment for hypersonic vehicle leading edge applications. The constituent fibers as well as composite coupons were oxidized in oxygen partial pressures ranging from 1000 ppm O2 to 5% O2 balance argon. Exposure temperatures ranged from 816 C to 1353 C (1500 F to 2450 F). The oxidation kinetics of the coated fibers were monitored by thermogravimetric analysis (TGA). An initial rapid transient weight gain was observed followed by parabolic kinetics. Possible mechanisms for the transient oxidation are discussed. One edge of the composite coupon seal coat was ground off to simulate damage to the composite which allowed oxygen ingress to the interior of the composite. Oxidation kinetics of the coupons were characterized by scanning electron microscopy since the weight changes were minimal. It was found that sealing of the coupon edge by silica formation occurred. Differences in the amount and morphology of the sealing silica as a function of time, temperature and oxygen partial pressure are discussed. Implications for use of these materials for hypersonic vehicle leading edge materials are summarized.

  5. Quadriceps oxygenation during isometric exercise in sailing.

    PubMed

    Vogiatzis, I; Tzineris, D; Athanasopoulos, D; Georgiadou, O; Geladas, N

    2008-01-01

    The aim of the present study was to investigate why blood lactate after prolonged quadriceps contraction during hiking is only marginally increased. Eight sailors performed five 3-min hiking bouts interspersed with 5-s recovery periods. Whole body oxygen uptake, heart rate and lactate were recorded, along with continuous-wave near-infrared spectroscopy measures of quadriceps oxygenation. The time for 50% re-oxygenation was also assessed as an indication of the degree of localized oxygen delivery stress. Hiking elicited a significant (p = 0.001) increase in mean (+/- SD) heart rate (124 +/- 10 beats . min (-1)) which was accompanied by a disproportionately low oxygen uptake (12 +/- 2 ml.kg(-1).min(-1)). Lactate was significantly (p = 0.001) increased throughout hiking manoeuvres, though post-exercise it remained low (3.2 +/- 0.9 mmol.l(-1)). During the hiking bouts mean quadriceps oxygenation was significantly (p = 0.001) reduced compared to baseline (by 33 +/- 5%), indicating an imbalance between muscle oxygen accessibility and oxygen demand. During rest intervals quadriceps oxygenation was partially restored. After the end of the final bout the time for 50 % re-oxygenation was only 8 +/- 2 s, whereas recovery of quadriceps oxygenation and oxygen uptake was completed within 3 min. We conclude that the observed low lactate could be attributed to the small oxygen and energy deficits during hiking as the muscles' oxygen accessibility is presumably partially restored during the brief rest intervals.

  6. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    PubMed Central

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  7. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme

    PubMed Central

    Zhang, Junshe; Haribal, Vasudev; Li, Fanxing

    2017-01-01

    We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171

  8. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    PubMed

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  9. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  10. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.

    2010-10-15

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case ofmore » the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.« less

  11. Detection of resting state functional connectivity using partial correlation analysis: A study using multi-distance and whole-head probe near-infrared spectroscopy.

    PubMed

    Sakakibara, Eisuke; Homae, Fumitaka; Kawasaki, Shingo; Nishimura, Yukika; Takizawa, Ryu; Koike, Shinsuke; Kinoshita, Akihide; Sakurada, Hanako; Yamagishi, Mika; Nishimura, Fumichika; Yoshikawa, Akane; Inai, Aya; Nishioka, Masaki; Eriguchi, Yosuke; Matsuoka, Jun; Satomura, Yoshihiro; Okada, Naohiro; Kakiuchi, Chihiro; Araki, Tsuyoshi; Kan, Chiemi; Umeda, Maki; Shimazu, Akihito; Uga, Minako; Dan, Ippeita; Hashimoto, Hideki; Kawakami, Norito; Kasai, Kiyoto

    2016-11-15

    Multichannel near-infrared spectroscopy (NIRS) is a functional neuroimaging modality that enables easy-to-use and noninvasive measurement of changes in blood oxygenation levels. We developed a clinically-applicable method for estimating resting state functional connectivity (RSFC) with NIRS using a partial correlation analysis to reduce the influence of extraneural components. Using a multi-distance probe arrangement NIRS, we measured resting state brain activity for 8min in 17 healthy participants. Independent component analysis was used to extract shallow and deep signals from the original NIRS data. Pearson's correlation calculated from original signals was significantly higher than that calculated from deep signals, while partial correlation calculated from original signals was comparable to that calculated from deep (cerebral-tissue) signals alone. To further test the validity of our method, we also measured 8min of resting state brain activity using a whole-head NIRS arrangement consisting of 17 cortical regions in 80 healthy participants. Significant RSFC between neighboring, interhemispheric homologous, and some distant ipsilateral brain region pairs was revealed. Additionally, females exhibited higher RSFC between interhemispheric occipital region-pairs, in addition to higher connectivity between some ipsilateral pairs in the left hemisphere, when compared to males. The combined results of the two component experiments indicate that partial correlation analysis is effective in reducing the influence of extracerebral signals, and that NIRS is able to detect well-described resting state networks and sex-related differences in RSFC. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    PubMed

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Osmotic phenomena in application for hyperbaric oxygen treatment.

    PubMed

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.

  14. Analysis of the CO 2 Chemisorption in Li 5FeO 4, a New High Temperature CO 2 Captor Material. Effect of the CO 2 and O 2 Partial Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-García, Hugo A.; Sanchez-Camacho, Pedro; Duan, Yuhua

    Pentalithium ferrite (Li 5FeO 4) was tested in this paper as possible CO 2 captor, both by theoretical calculations and experimental measurements. The pristine Li 5FeO 4 compound with orthorhombic structure was synthesized via solid-state reaction and it was structural and microstructurally characterized. Later, sample was heat-treated at temperatures from room temperature to 900 °C under different CO 2 or CO 2–O 2 atmospheres. Li 5FeO 4 exhibits excellent CO 2 chemisorption abilities with a capture capacity about 12.9 mmol/g, which is outstanding in comparison to other previously reported ceramic captors. This material is able to react with CO 2more » from 200 °C to approximately 715 °C showing a high kinetic of reaction even at CO 2 partial pressure values as low as 0.2. Finally and additionally, results suggest that oxygen addition does enhance the CO 2 chemisorption on Li 5FeO 4 at temperatures below 700 °C, although oxygen addition seems to favor the desorption process at higher temperatures.« less

  15. Analysis of the CO 2 Chemisorption in Li 5FeO 4, a New High Temperature CO 2 Captor Material. Effect of the CO 2 and O 2 Partial Pressures

    DOE PAGES

    Lara-García, Hugo A.; Sanchez-Camacho, Pedro; Duan, Yuhua; ...

    2017-01-23

    Pentalithium ferrite (Li 5FeO 4) was tested in this paper as possible CO 2 captor, both by theoretical calculations and experimental measurements. The pristine Li 5FeO 4 compound with orthorhombic structure was synthesized via solid-state reaction and it was structural and microstructurally characterized. Later, sample was heat-treated at temperatures from room temperature to 900 °C under different CO 2 or CO 2–O 2 atmospheres. Li 5FeO 4 exhibits excellent CO 2 chemisorption abilities with a capture capacity about 12.9 mmol/g, which is outstanding in comparison to other previously reported ceramic captors. This material is able to react with CO 2more » from 200 °C to approximately 715 °C showing a high kinetic of reaction even at CO 2 partial pressure values as low as 0.2. Finally and additionally, results suggest that oxygen addition does enhance the CO 2 chemisorption on Li 5FeO 4 at temperatures below 700 °C, although oxygen addition seems to favor the desorption process at higher temperatures.« less

  16. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    PubMed Central

    Querejeta, Nausika; Plaza, Marta G.; Rubiera, Fernando; Pevida, Covadonga

    2016-01-01

    The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications. PMID:28773488

  17. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    USGS Publications Warehouse

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  18. Multivariate analysis of prognostic factors for idiopathic sudden sensorineural hearing loss treated with adjuvant hyperbaric oxygen therapy.

    PubMed

    Xie, Shaobing; Qiang, Qingfen; Mei, Lingyun; He, Chufeng; Feng, Yong; Sun, Hong; Wu, Xuewen

    2018-01-01

    The objective of this study is to evaluate possible prognostic factors of idiopathic sudden sensorineural hearing loss (ISSNHL) treated with adjuvant hyperbaric oxygen therapy (HBOT) using univariate and multivariate analyses. From January 2008 to October 2016, records of 178 ISSNHL patients treated with auxiliary hyperbaric oxygen therapy were reviewed to assess hearing recovery and evaluate associated prognostic factors (gender, age, localization, initial hearing threshold, presence of tinnitus, vertigo, ear fullness, hypertension, diabetes, onset of HBOT, number of HBOT, and audiogram), by using univariate and multivariate analyses. The overall recovery rate was 37.1%, including complete recovery (19.7%) and partial recovery (17.4%). According to multivariate analysis, later onset of HBOT and higher initial hearing threshold were associated with a poor prognosis in ISSNHL patients treated with HBOT. HBOT is a safe and beneficial adjuvant therapy for ISSNHL patients. 20 sessions of HBOT is possibly enough to show its therapeutic effect. Earlier HBOT onset and lower initial hearing threshold is associated with favorable hearing recovery.

  19. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    PubMed

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a buoyancy organ.

  20. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    PubMed

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  1. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2016-08-10

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  2. Oxygen interaction with hexagonal OsB 2 at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less

  3. Topical oxygen emulsion: a novel wound therapy.

    PubMed

    Davis, Stephen C; Cazzaniga, Alejandro L; Ricotti, Carlos; Zalesky, Paul; Hsu, Li-Chien; Creech, Jeffrey; Eaglstein, William H; Mertz, Patricia M

    2007-10-01

    To investigate the use of a topical oxygen emulsion (TOE), consisting of a supersaturated oxygen suspension using perfluorocarbon components, on second-degree burns and partial-thickness wounds. Oxygen is a required substance for various aspects of wound repair, and increased oxygen tension in a wound has been shown to stimulate phagocytosis and to reduce the incidence of wound infection. Second-degree burns and partial-thickness wounds were created on the backs of specific pathogen-free pigs. Wounds were then randomly assigned to 1 of the following treatment groups: TOE, TOE vehicle, or air-exposed control. Wounds were assessed for complete epithelialization using a salt-split technique. The TOE was able to significantly (P = .001) enhance the rate of epithelialization compared with both vehicle and untreated control. These data suggest that topical oxygen may be beneficial for acute and burn wounds. The results obtained from this double-blind, control, in vivo study demonstrate that TOE can significantly enhance the rate of epithelialization of partial-thickness excisional wounds and second-degree burns. These findings could have considerable clinical implications for patients with surgical and burn wounds by providing functional skin at an earlier date to act as a barrier against environmental factors, such as bacteria invasion. Other types of wounds may also benefit from this therapy (eg, chronic wounds and surgical incisions). Additional studies, including clinical studies, are warranted.

  4. Investigation of Redox Metal Oxides for Carbonaceous Fuel Conversion and CO2 Capture

    NASA Astrophysics Data System (ADS)

    Galinsky, Nathan Lee

    The chemical looping combustion (CLC) process uses metal oxides, also referred to as oxygen carriers, in a redox scheme for conversion of carbonaceous fuels into a concentrated stream of CO2 and steam while also producing heat and electricity. The unique redox scheme of CLC allows CO2 capture with minimal energy penalty. The CLC process performance greatly depends on the oxygen carrier that is chosen. To date, more than 1000 oxygen carriers have been developed for chemical-looping processes using metal oxides containing first-row transition metals. Oxygen carriers are typically mixed with an inert ceramic support to improve their overall mechanical stability and recyclability. This study focuses on design of (i) iron oxide oxygen carriers for conversion of gaseous carbonaceous fuels and (ii) development of perovskite CaMnO 3-d with improved stability and redox properties for conversion of solid fuels. Iron oxide is cheap and environmentally benign. However, it suffers from low activity with carbonaceous fuels due partially to the low ionic conductivity of iron oxides. In order to address the low activity of iron-oxide-based oxygen carriers, support addition has been shown to lower the energy barrier of oxygen anion transport within the oxygen carrier. This work adds a mixed-ionic-and-electronic-conductor (MIEC) support to iron oxide to help facilitate O2- transport inside the lattice of iron oxide. The MIEC-supported iron oxide is compared to commonly used supports including TiO2 and Al2O 3 and the pure ionic conductor support yttria-stabilized zirconia (YSZ) for conversion of different carbonaceous fuels and hydrogen. Results show that the MIEC-supported iron oxide exhibits up to 70 times higher activity than non-MIEC-supported iron oxides for methane conversion. The MIEC supported iron oxide also shows good recyclability with only minor agglomeration and carbon formation observed. The effect of support-iron oxide synergies is further investigated to understand other physical and chemical properties that lead to highly active and recyclable oxygen carriers. Perovskite and fluorite-structured MIEC supports are tested for conversion of methane. The perovskite supported iron oxides exhibit higher activity and stability resulting from the high mixed conductivity of the support. Fluorite-structured CeO2 oxygen carriers deactivated by 75% after 10 redox cycles. This deactivation was attributed to agglomeration of iron oxide. The agglomeration was determined to occur due to Fe x+ transport during the oxidation step leading to high content of Fe on the surface of the oxygen carrier. Besides the MIEC supports, inert MgAl2O4 supported iron oxide is observed to activate in methane. The activation is attributed to carbon formation causing physical degradation of the oxygen carrier and leading to higher surface area and porosity. To achieve high activity with solid fuels, chemical looping with oxygen uncoupling (CLOU) is commonly used. This process uses oxygen carriers with high PO2 that allows the oxygen carrier to release a portion of their lattice oxygen as gaseous oxygen. In turn, the gaseous oxygen can react with solid fuel particles at a higher rate than the lattice oxygen. CaMnO 3 perovskite oxygen carriers offer high potential for CLOU. However, pure CaMnO3 suffers from long-term recyclability and sulfur poisoning. Addition of A-site (Ba and Sr) and B-site (Fe, Ni, Co, Al, and V) dopants are used to improve the performance of the base CaMnO3 oxygen carrier. Sr (A-site) and Fe (B-site) exhibit high compatibility with the base perovskite structure. Both dopants observe oxygen uncoupling properties up to 200°C below that of pure CaMnO3. Additionally, the doped structures also exhibit higher stability at high temperatures (>1000°C) and during redox cycles. The doped oxygen carriers also demonstrate significantly improved activity for coal char conversion.

  5. Effect of Six Days of Staging on Physiologic Adjustments and Acute Mountain Sickness During Ascent to 4300 Meters

    DTIC Science & Technology

    2009-01-01

    respiratory alkalosis due to hyperventilation that was partially compensated for by increased excretion of HCO3 to maintain a normal pH following...carbon dioxide; RER, respiratory exchange quotient; Sao2, arterial oxygen saturation; Paco2, partial pressure of capillary-arterialized carbon dioxide...dioxide production; E=O2, ventilatory equivalent for oxygen; E=CO2, ventilatory equivalent for carbon dioxide; RER, respiratory exchange quotient

  6. Methanol partial oxidation on Ag(111) from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Yoo, Jong Suk; Nørskov, Jens K.

    In this work, we examine the thermochemistry and kinetics of the partial oxidation of methanol to formaldehyde on silver surfaces. Periodic density functional theory calculations employing the BEEF-vdW functional are used to identify the most stable phases of the silver surface under relevant reaction conditions and the reaction energetics are obtained on these surfaces. The calculated binding energies and transition state energies are used as input in a mean-field microkinetic model providing the reaction kinetics on silver surfaces under different reaction conditions. Our results show that, under conditions pertaining to methanol partial oxidation, oxygen is present at low concentrations andmore » it plays a critical role in the catalytic reaction. Surface oxygen promotes the reaction by activating the OH bond in methanol, thus forming a methoxy intermediate, which can react further to form formaldehyde. Finally, the dissociation of molecular oxygen is identified as the most critical step.« less

  7. Methanol partial oxidation on Ag(111) from first principles

    DOE PAGES

    Aljama, Hassan; Yoo, Jong Suk; Nørskov, Jens K.; ...

    2016-10-26

    In this work, we examine the thermochemistry and kinetics of the partial oxidation of methanol to formaldehyde on silver surfaces. Periodic density functional theory calculations employing the BEEF-vdW functional are used to identify the most stable phases of the silver surface under relevant reaction conditions and the reaction energetics are obtained on these surfaces. The calculated binding energies and transition state energies are used as input in a mean-field microkinetic model providing the reaction kinetics on silver surfaces under different reaction conditions. Our results show that, under conditions pertaining to methanol partial oxidation, oxygen is present at low concentrations andmore » it plays a critical role in the catalytic reaction. Surface oxygen promotes the reaction by activating the OH bond in methanol, thus forming a methoxy intermediate, which can react further to form formaldehyde. Finally, the dissociation of molecular oxygen is identified as the most critical step.« less

  8. Method for forming bismuth-based superconducting ceramics

    DOEpatents

    Maroni, Victor A.; Merchant, Nazarali N.; Parrella, Ronald D.

    2005-05-17

    A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815.degree. C. and about 835.degree. C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.

  9. The change of steel surface chemistry regarding oxygen partial pressure and dew point

    NASA Astrophysics Data System (ADS)

    Norden, Martin; Blumenau, Marc; Wuttke, Thiemo; Peters, Klaus-Josef

    2013-04-01

    By investigating the surface state of a Ti-IF, TiNb-IF and a MnCr-DP after several series of intercritical annealing, the impact of the annealing gas composition on the selective oxidation process is discussed. On behalf of the presented results, it can be concluded that not the general oxygen partial pressure in the annealing furnace, which is a result of the equilibrium reaction of water and hydrogen, is the main driving force for the selective oxidation process. It is shown that the amounts of adsorbed gases at the strip surface and the effective oxygen partial pressure resulting from the adsorbed gases, which is mainly dependent on the water content of the annealing furnace, is driving the selective oxidation processes occurring during intercritical annealing. Thus it is concluded, that for industrial applications the dew point must be the key parameter value for process control.

  10. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  11. Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).

    PubMed

    Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R

    2016-03-14

    We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.

  12. [The effects of oxygen partial pressure changes on the osteometric markers of the bone tissue in rats].

    PubMed

    Berezovs'kyĭ, V Ia; Zamors'ka, T M; Ianko, R V

    2013-01-01

    Our purpose was to investigate the oxygen partial pressure changes on the osteometric and biochemical markers of bone tissue in rats. It was shown that breathing of altered gas mixture did not change the mass, general length, sagittal diameter and density thigh-bones in 12-month Wistar male-rats. The dosed normobaric hypoxia increased the activity of alkaline phosphatase and decreased the activity of tartrate-resistant acid phosphatase. At the same time normobaric hyperoxia with 40 and 90% oxygen conversely decreased the activity of alkaline phosphatase and increased the activity of tartrate-resistant acid phosphatase.

  13. Effect of lung-protective ventilation with lower tidal volumes on clinical outcomes among patients undergoing surgery: a meta-analysis of randomized controlled trials.

    PubMed

    Gu, Wan-Jie; Wang, Fei; Liu, Jing-Chen

    2015-02-17

    In anesthetized patients undergoing surgery, the role of lung-protective ventilation with lower tidal volumes is unclear. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of this ventilation strategy on postoperative outcomes. We searched electronic databases from inception through September 2014. We included RCTs that compared protective ventilation with lower tidal volumes and conventional ventilation with higher tidal volumes in anesthetized adults undergoing surgery. We pooled outcomes using a random-effects model. The primary outcome measures were lung injury and pulmonary infection. We included 19 trials (n=1348). Compared with patients in the control group, those who received lung-protective ventilation had a decreased risk of lung injury (risk ratio [RR] 0.36, 95% confidence interval [CI] 0.17 to 0.78; I2=0%) and pulmonary infection (RR 0.46, 95% CI 0.26 to 0.83; I2=8%), and higher levels of arterial partial pressure of carbon dioxide (standardized mean difference 0.47, 95% CI 0.18 to 0.75; I2=65%). No significant differences were observed between the patient groups in atelectasis, mortality, length of hospital stay, length of stay in the intensive care unit or the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen. Anesthetized patients who received ventilation with lower tidal volumes during surgery had a lower risk of lung injury and pulmonary infection than those given conventional ventilation with higher tidal volumes. Implementation of a lung-protective ventilation strategy with lower tidal volumes may lower the incidence of these outcomes. © 2015 Canadian Medical Association or its licensors.

  14. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    PubMed Central

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  15. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    PubMed

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Relationship of structure and function of the avian respiratory system to disease susceptibility.

    PubMed

    Fedde, M R

    1998-08-01

    The avian respiratory system exchanges oxygen and carbon dioxide between the gas and the blood utilizing a relatively small, rigid, flow-through lung, and a system of air sacs that act as bellows to move the gas through the lung. Gas movement through the paleopulmonic parabronchi, the main gas exchanging bronchi, in the lung is in the same direction during both inspiration and expiration, i.e., from the mediodorsal secondary bronchi to the medioventral secondary bronchi. During inspiration, acceleration of the gas at the segmentum accelerans of the primary bronchus increases gas velocity so it does not enter the medioventral secondary bronchi. During expiration, airway resistance is increased in he intrapulmonary primary bronchus because of dynamic compression causing gas to enter the mediodorsal secondary bronchi. Reduction in air flow velocity may decrease the efficiency of this aerodynamic valving and thereby decrease the efficiency of gas exchange. The convective gas flow in the avian parabronchus is orientated at a 90 degree angle with respect to the parabronchial blood flow; hence, the cross-current designation of this gas exchanger. With this design, the partial pressure of oxygen in the blood leaving the parabronchus can be higher than that in the gas exiting this structure, giving the avian lung a high gas exchange efficacy. The relationship of the partial pressure of oxygen in the moist inspired gas to that in the blood leaving the lung is dependent on he rate of ventilation. A low ventilation rate may produce a ow oxygen partial pressure in part of the parabronchus, thereby inducing hypoxic vasoconstriction in the pulmonary arterioles supplying this region. Inhaled foreign particles are removed by nasal mucociliary action, by escalator in the trachea, primary bronchi, and secondary bronchi. Small particles that enter parabronchi appear to be phagocytized by the epithelial cells in eh atria and infundibulum. These particles can e transported to interstitial macrophages but the disposition of the particles from this site is unknown. The predominant site of respiratory infections in the caudal air sacs, compared to other parts of the respiratory system, can be explained by the gas flow pathway and the mechanisms present in the parabronchi for particle removal.

  17. Toxicology

    NASA Technical Reports Server (NTRS)

    Macewen, J. W.

    1973-01-01

    Oxygen toxicity is examined, including the effects of oxygen partial pressure variations on toxicity and oxygen effects on ozone and nitrogen dioxide toxicity. Toxicity of fuels and oxidizers, such as hydrazines, are reported. Carbon monoxide, spacecraft threshold limit values, emergency exposure limits, spacecraft contaminants, and water quality standards for space missions are briefly summarized.

  18. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    PubMed

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  19. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  20. Effect of oxygen partial pressure on oxidation of Mo-metal

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  1. Endothelial microvesicles in hypoxic hypoxia diseases.

    PubMed

    Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing

    2018-05-29

    Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE PAGES

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.; ...

    2016-01-19

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  3. Characterization and Expression of the Lucina pectinata Oxygen and Sulfide Binding Hemoglobin Genes

    PubMed Central

    López-Garriga, Juan; Cadilla, Carmen L.

    2016-01-01

    The clam Lucina pectinata lives in sulfide-rich muds and houses intracellular symbiotic bacteria that need to be supplied with hydrogen sulfide and oxygen. This clam possesses three hemoglobins: hemoglobin I (HbI), a sulfide-reactive protein, and hemoglobin II (HbII) and III (HbIII), which are oxygen-reactive. We characterized the complete gene sequence and promoter regions for the oxygen reactive hemoglobins and the partial structure and promoters of the HbI gene from Lucina pectinata. We show that HbI has two mRNA variants, where the 5’end had either a sequence of 96 bp (long variant) or 37 bp (short variant). The gene structure of the oxygen reactive Hbs is defined by having 4-exons/3-introns with conservation of intron location at B12.2 and G7.0 and the presence of pre-coding introns, while the partial gene structure of HbI has the same intron conservation but appears to have a 5-exon/ 4-intron structure. A search for putative transcription factor binding sites (TFBSs) was done with the promoters for HbII, HbIII, HbI short and HbI long. The HbII, HbIII and HbI long promoters showed similar predicted TFBSs. We also characterized MITE-like elements in the HbI and HbII gene promoters and intronic regions that are similar to sequences found in other mollusk genomes. The gene expression levels of the clam Hbs, from sulfide-rich and sulfide-poor environments showed a significant decrease of expression in the symbiont-containing tissue for those clams in a sulfide-poor environment, suggesting that the sulfide concentration may be involved in the regulation of these proteins. Gene expression evaluation of the two HbI mRNA variants indicated that the longer variant is expressed at higher levels than the shorter variant in both environments. PMID:26824233

  4. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs.

    PubMed

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply.

  5. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    PubMed Central

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  6. Moderate hyperventilation during intravenous anesthesia increases net cerebral lactate efflux.

    PubMed

    Grüne, Frank; Kazmaier, Stephan; Sonntag, Hans; Stolker, Robert Jan; Weyland, Andreas

    2014-02-01

    Hyperventilation is known to decrease cerebral blood flow (CBF) and to impair cerebral metabolism, but the threshold in patients undergoing intravenous anesthesia is unknown. The authors hypothesized that reduced CBF associated with moderate hyperventilation might impair cerebral aerobic metabolism in patients undergoing intravenous anesthesia. Thirty male patients scheduled for coronary surgery were included in a prospective, controlled crossover trial. Measurements were performed under fentanyl-midazolam anesthesia in a randomized sequence aiming at partial pressures of carbon dioxide of 30 and 50 mmHg. Endpoints were CBF, blood flow velocity in the middle cerebral artery, and cerebral metabolic rates for oxygen, glucose, and lactate. Global CBF was measured using a modified Kety-Schmidt technique with argon as inert gas tracer. CBF velocity of the middle cerebral artery was recorded by transcranial Doppler sonography. Data were presented as mean (SD). Two-sided paired t tests and one-way ANOVA for repeated measures were used for statistical analysis. Moderate hyperventilation significantly decreased CBF by 60%, blood flow velocity by 41%, cerebral oxygen delivery by 58%, and partial pressure of oxygen of the jugular venous bulb by 45%. Cerebral metabolic rates for oxygen and glucose remained unchanged; however, net cerebral lactate efflux significantly increased from -0.38 (2.18) to -2.41(2.43) µmol min 100 g. Moderate hyperventilation, when compared with moderate hypoventilation, in patients with cardiovascular disease undergoing intravenous anesthesia increased net cerebral lactate efflux and markedly reduced CBF and partial pressure of oxygen of the jugular venous bulb, suggesting partial impairment of cerebral aerobic metabolism at clinically relevant levels of hypocapnia.

  7. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2

    PubMed Central

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-01-01

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO2 powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO2 films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO2 up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO2. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model. PMID:28773351

  8. Atomic oxygen protective coating with resistance to undercutting at defect sites

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1994-01-01

    Structures composed at least partially of an organic substrate may be protected from oxidation by applying a catalyst onto said substrate for promoting the combination of atomic oxygen to molecular oxygen. The structure may also be protected by applying both a catalyst and an atomic oxygen shielding layer onto the substrate. The structures to be protected include spacecraft surfaces.

  9. Changes of oxygen content in facial skin before and after cigarette smoking.

    PubMed

    Fan, Guo-Biao; Wu, Pei-Lan; Wang, Xue-Min

    2012-11-01

    Cigarette smoking not only causes systemic health problems, but may also be an underlying cause of premature skin aging. Cigarette smokers frequently have morphological changes in facial skin that may be attributed to reduced oxygen in this region. The purpose of this study was to measure the oxygen content in facial skin before and after smoking. Twenty-five volunteers participated in this study. Changes in oxygen content of the facial skin were measured before and after 30 min of cigarette smoking. Skin temperature and oxygen content were evaluated in the periorbital and periolar regions. There was a significant increase in temperature after smoking. The oxy hemoglobin and partial pressure of oxygen decreased in both the periocular and perioral areas after smoking. There were no changes in deoxy hemoglobin and partial pressure of carbon dioxide at these areas. Significant changes were seen in temperature and oxygen content after only 30 min of smoking. The results from this study suggest that alterations in the skin temperature and oxygen content in facial skin after smoking may be an underlying cause of premature skin aging. © 2011 John Wiley & Sons A/S.

  10. Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function.

    PubMed

    Komatsu, Hirotake; Kang, Dongyang; Medrano, Leonard; Barriga, Alyssa; Mendez, Daniel; Rawson, Jeffrey; Omori, Keiko; Ferreri, Kevin; Tai, Yu-Chong; Kandeel, Fouad; Mullen, Yoko

    2016-02-12

    Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    PubMed Central

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style. PMID:26758742

  12. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface.

    PubMed

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  13. Mechanical Integrity of Flexible In-Zn-Sn-O Film for Flexible Transparent Electrode

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Oh, Se-In; Choa, Sung-Hoon

    2013-05-01

    The mechanical integrity of transparent In-Zn-Sn-O (IZTO) films is investigated using outer/inner bending, stretching, and twisting tests. Amorphous IZTO films are grown using a pulsed DC magnetron sputtering system with an IZTO target on a polyimide substrate at room temperature. Changes in the optical and electrical properties of IZTO films depend on the oxygen partial pressure applied during the film deposition process. In the case of 3% oxygen partial pressure, the IZTO films exhibit s resistivity of 8.3×10-4 Ω cm and an optical transmittance of 86%. The outer bending test shows that the critical bending radius decreases from 10 to 7.5 mm when the oxygen partial pressure is increased from 1 to 3%. The inner bending test reveals that the critical bending radius of all IZTO films is 3.5 mm regardless of oxygen partial pressure. The IZTO films also show excellent mechanical reliability in the bending fatigue tests of more than 10,000 cycles. In the uniaxial stretching tests, the electrical resistance of the IZTO film does not change until a strain of 2.4% is reached. The twisting tests demonstrate that the electrical resistance of IZTO films remains unchanged up to 25°. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison with already reported crystallized indium tin oxide (ITO) films.

  14. Nonflammable organic-base paint for oxygen-rich atmospheres

    NASA Technical Reports Server (NTRS)

    Harwell, R. J.; Key, C. F.; Krupnick, A. C.

    1971-01-01

    New paint formulations, which combine aqueous latex paints with inorganic pigments and additives, produce coatings that are self-extinguishing in pure oxygen at pressures up to twice the partial pressure of atmospheric oxygen. A paint formulation in percent by weight is given and the properties of resultant coatings are discussed.

  15. Reclaimed wastewater quality enhancement by oxygen injection during transportation.

    PubMed

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2011-01-01

    In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O(2) has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.

  16. Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus.

    PubMed

    Turko, Andy J; Cooper, Chris A; Wright, Patricia A

    2012-11-15

    The skin-breathing amphibious fish Kryptolebias marmoratus experiences rapid environmental changes when moving between water- and air-breathing, but remodelling of respiratory morphology is slower (~1 week). We tested the hypotheses that (1) there is a trade-off in respiratory function of gills displaying aquatic versus terrestrial morphologies and (2) rapidly increased gill ventilation is a mechanism to compensate for reduced aquatic respiratory function. Gill surface area, which varied inversely to the height of the interlamellar cell mass, was increased by acclimating fish for 1 week to air or low ion water, or decreased by acclimating fish for 1 week to hypoxia (~20% dissolved oxygen saturation). Fish were subsequently challenged with acute hypoxia, and gill ventilation or oxygen uptake was measured. Fish with reduced gill surface area increased ventilation at higher dissolved oxygen levels, showed an increased critical partial pressure of oxygen and suffered impaired recovery compared with brackish water control fish. These results indicate that hyperventilation, a rapid compensatory mechanism, was only able to maintain oxygen uptake during moderate hypoxia in fish that had remodelled their gills for land. Thus, fish moving between aquatic and terrestrial habitats may benefit from cutaneously breathing oxygen-rich air, but upon return to water must compensate for a less efficient branchial morphology (mild hypoxia) or suffer impaired respiratory function (severe hypoxia).

  17. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    NASA Astrophysics Data System (ADS)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  18. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations for fire safety in space habitats

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Aoki, A.

    Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (<40 kPa), the required partial pressure of oxygen increased dramatically, then ignition was eventually not achieved at pressures less than 20 kPa under the conditions studied here. The findings suggest that it might be difficult to satisfy safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical effect, such as a weak convective thermal removal from ignitable domain (near the hot surface) to the ambient of atmosphere, and the other is chemical effect which causes so-called "explosion peninsula" as a result of depleting radical consumption due to third-body recombination reaction. Further studies are necessary to determine the controlling factor on the observed flammable trend in depressurized conditions.

  19. Graphene oxide papers with high water adsorption capacity for air dehumidification.

    PubMed

    Liu, Renlong; Gong, Tao; Zhang, Kan; Lee, Changgu

    2017-08-29

    Graphene oxide (GO) has shown a high potential to adsorb and store water molecules due to the oxygen-containing functional groups on its hydrophilic surface. In this study, we characterized the water absorbing properties of graphene oxide in the form of papers. We fabricated three kinds of graphene oxide papers, two with rich oxygen functional groups and one with partial chemical reduction, to vary the oxygen/carbon ratio and found that the paper with high oxygen content has higher moisture adsorption capability. For the GO paper with reduction, the overall moisture absorbance was reduced. However, the absorbance at high humidity was significantly improved due to direct formation of multilayer water vapor in the system, which derived from the weak interaction between the adsorbent and the adsorbate. To demonstrate one application of GO papers as a desiccant, we tested grape fruits with and without GO paper. The fruits with a GO paper exhibited longer-term preservation with delayed mold gathering because of desiccation effect from the paper. Our results suggest that GO will find numerous practical applications as a desiccant and is a promising material for moisture desiccation and food preservation.

  20. Thin-film nano-thermogravimetry applied to praseodymium-cerium oxide films at high temperatures

    NASA Astrophysics Data System (ADS)

    Schröder, Sebastian; Fritze, Holger; Bishop, Sean; Chen, Di; Tuller, Harry L.

    2018-05-01

    High precision measurements of oxygen nonstoichiometry δ in thin film metal oxides MaOb±δ at elevated temperatures and controlled oxygen partial pressures pO2 are reported with the aid of resonant microbalances. The resonant microbalances applied here consisted of y-cut langasite (La3Ga5SiO14) and CTGS (Ca3TaGa3Si2O14) piezoelectric resonators, operated in the thickness shear mode at ˜5 MHz. Measurements of variations in δ of Pr0.1Ce0.9O2-δ (PCO) films are reported for the oxygen partial pressure range from 10-8 bar to 0.2 bar at 700 °C, and these results were found to be in good agreement with previously reported oxygen nonstoichiometry δ data derived from chemical capacitance studies. The PCO thin-films were deposited via pulsed laser deposition on both sides of the resonators, whose series resonance frequency was tracked, converted into mass changes and, finally, into nonstoichiometry. The nonstoichiometry was observed to reach a plateau as the oxygen partial pressure dropped below about 10-5 bar, the behavior being attributed to the full reduction of Pr to the trivalent state. These resonators enable stable operation up to temperatures above 1000 °C, thereby maintaining high mass resolution suitable for determining oxygen nonstoichiometry variations in thin films deposited on such resonators. For the given experimental conditions, a mass resolution of ˜50 ng was achieved at 700 °C with the CTGS resonator.

  1. Mixed ionic and electronic conducting membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Cui, Hengdong

    Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.

  2. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  3. Effect of reducing inspired oxygen concentration on oxygenation parameters during general anaesthesia in horses in lateral or dorsal recumbency.

    PubMed

    Uquillas, E; Dart, C M; Perkins, N R; Dart, A J

    2018-01-01

    To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency. Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery. During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided. During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency. © 2017 Australian Veterinary Association.

  4. STRUCTURE AND PHYSICAL PROPERTIES OF SOLID AND LIQUID VANADIUM PENTOXIDE.

    DTIC Science & Technology

    The electrical resistivity of near-stoichiometric crystalline V2O5 was measured as a function of crystal orientation and oxygen partial pressure from...25C to 300C. Conductivity is insensitive to ambient atmosphere. The activation energy for conduction is 0.20 ev. Molten V2O5 , however, is...sensitive to oxygen partial pressure. Its conductivity is proportional to P-O2 to the -1/6th power. Anomalously high electrical resistivity was observed for glassy V2O5 films. (Author)

  5. Advances in Probes and Methods for Clinical EPR Oximetry

    PubMed Central

    Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan

    2015-01-01

    EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217

  6. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  7. The structural phase diagram and oxygen equilibrium partial pressure of YBa 2Cu 3O 6+ x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Andersen, N. H.; Lebech, B.; Poulsen, H. F.

    1990-12-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.

  8. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    PubMed

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  9. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.

    PubMed

    Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G

    2010-05-15

    Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.

  10. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  11. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury.

    PubMed

    Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G

    2016-09-01

    To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.

  12. Gd Ba Cu O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.

    2006-06-01

    Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).

  13. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  14. Zero added oxygen for high quality sputtered ITO: A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    The authors demonstrate mobilities of >45 cm{sup 2}/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO{sub 2}, instead of the more conventional 8–10 wt. %, and had varying ZrO{sub 2} content from 0 to 3 wt. %, with a subsequent reduction in In{sub 2}O{sub 3} content. These films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions.more » However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. This result is attributed to the reduced concentration of SnO{sub 2}. The addition of ZrO{sub 2} yielded the highest mobilities at >55 cm{sup 2}/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  15. Structure of liquid tricalcium aluminate

    NASA Astrophysics Data System (ADS)

    Drewitt, James W. E.; Barnes, Adrian C.; Jahn, Sandro; Kohn, Simon C.; Walter, Michael J.; Novikov, Alexey N.; Neuville, Daniel R.; Fischer, Henry E.; Hennet, Louis

    2017-02-01

    The atomic-scale structure of aerodynamically levitated and laser-heated liquid tricalcium aluminate (Ca3Al2O6 ) was measured at 2073(30) K by using the method of neutron diffraction with Ca isotope substitution (NDIS). The results enable the detailed resolution of the local coordination environment around calcium and aluminum atoms, including the direct determination of the liquid partial structure factor, SCaCa(Q ) , and partial pair distribution function, gCaCa(r ) . Molecular dynamics (MD) simulation and reverse Monte Carlo (RMC) refinement methods were employed to obtain a detailed atomistic model of the liquid structure. The composition Ca3Al2O6 lies at the CaO-rich limit of the CaO:Al2O3 glass-forming system. Our results show that, although significantly depolymerized, liquid Ca3Al2O6 is largely composed of AlO4 tetrahedra forming an infinite network with a slightly higher fraction of bridging oxygen atoms than expected for the composition. Calcium-centered polyhedra exhibit a wide distribution of four- to sevenfold coordinated sites, with higher coordinated calcium preferentially bonding to bridging oxygens. Analysis of the MD configuration reveals the presence of ˜10 % unconnected AlO4 monomers and Al2O7 dimers in the liquid. As the CaO concentration increases, the number of these isolated units increases, such that the upper value for the glass-forming composition of CaO:Al2O3 liquids could be described in terms of a percolation threshold at which the glass can no longer support the formation of an infinitely connected AlO4 network.

  16. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance

    PubMed Central

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B.; Carbonell, Felix; Mendola, Janine D.

    2016-01-01

    Abstract Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects. PMID:26415043

  17. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    PubMed

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.

  18. [Effects of combined natural hirudin and hyperbaric oxygen therapy on survival of transplanted random-pattern skin flap in rats].

    PubMed

    Cai, Jieyun; Lin, Bojie; Pan, Xinyuan; Cui, Jia; Pradhan, Rohan; Yin, Guoqian

    2018-04-01

    To investigate the effect of natural hirudin combined with hyperbaric oxygen therapy on the survival of transplanted random-pattern skin flap in rats. A random-pattern skin flap in size of 10.0 cm×2.5 cm was elevated on the dorsum of 72 Sprague Dawley rats. Then the 72 rats were randomly divided into 4 groups ( n =18) according to the therapy method. At immediate and within 4 days after operation, the rats were treated with normal saline injection in control group, normal saline injection combined with hyperbaric oxygen treatment in hyperbaric oxygen group, the natural hirudin injection in natural hirudin group, and the natural hirudin injection combined with hyperbaric oxygen treatment in combined group. The flap survival was observed after operation, and survival rate was evaluated at 6 days after operation. The skin samples were collected for histological analysis, microvessel density (MVD) measurement, and evaluation of tumor necrosis factor α (TNF-α) expression level by the immunohistochemical staining at 2 and 4 days after operation. Partial necrosis occurred in each group after operation, and the flap in combined group had the best survival. The survival rate of flap was significantly higher in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group, and in combined group than in hyperbaric oxygen group and natural hirudin group ( P <0.05). There was no significant difference between hyperbaric oxygen group and natural hirudin group ( P >0.05). At 2 days, more microvascular structure was observed in hyperbaric oxygen group, natural hirudin group, and combined group in comparison with control group; while plenty of inflammatory cells infiltration in all groups. At 4 days, the hyperbaric oxygen group, natural hirudin group, and the combined group still showed more angiogenesis. Meanwhile, there was still infiltration of inflammatory cells in control group, inflammatory cells in the other groups were significantly reduced when compared with at 2 days. At 2 days, the MVD was significantly higher in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group ( P <0.05); the expression of TNF-α was significantly lower in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group ( P <0.05). There was no significant difference in above indexes between hyperbaric oxygen group, natural hirudin group, and combined group ( P >0.05). At 4 days, the MVD was significantly higher in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group, in natural hirudin group and combined group than in hyperbaric oxygen group ( P <0.05). The expression of TNF-α was significantly lower in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group, in combined group than in natural hirudin group and hyperbaric oxygen group ( P <0.05). Hyperbaric oxygen and natural hirudin therapy after random-pattern skin flap transplantation can improve the survival of flaps. Moreover, combined therapy is seen to exhibit significant synergistic effect. This effect maybe related to promotion of angiogenesis and the reduction of inflammation response.

  19. Oxygen Effect on the Properties of Epitaxial (110) La0.7Sr0.3MnO3 by Defect Engineering.

    PubMed

    Rasic, Daniel; Sachan, Ritesh; Temizer, Namik K; Prater, John; Narayan, Jagdish

    2018-06-20

    The multiferroic properties of mixed valence perovskites such as lanthanum strontium manganese oxide (La 0.7 Sr 0.3 MnO 3 ) (LSMO) demonstrate a unique dependence on oxygen concentration, thickness, strain, and orientation. To better understand the role of each variable, a systematic study has been performed. In this study, epitaxial growth of LSMO (110) thin films with thicknesses ∼15 nm are reported on epitaxial magnesium oxide (111) buffered Al 2 O 3 (0001) substrates. Four LSMO films with changing oxygen concentration have been investigated. The oxygen content in the films was controlled by varying the oxygen partial pressure from 1 × 10 -4 to 1 × 10 -1 Torr during deposition and subsequent cooldown. X-ray diffraction established the out-of-plane and in-plane plane matching to be (111) MgO ∥ (0001) Al 2 O 3 and ⟨11̅0⟩ MgO ∥ ⟨101̅0⟩ Al 2 O 3 for the buffer layer with the substrate, and an out-of-plane lattice matching of (110) LSMO ∥ (111) MgO for the LSMO layer. For the case of the LSMO growth on MgO, a novel growth mode has been demonstrated, showing that three in-plane matching variants are present: (i) ⟨11̅0⟩ LSMO ∥ ⟨11̅0⟩ MgO , (ii) ⟨11̅0⟩ LSMO ∥ ⟨101̅⟩ MgO , and (iii) ⟨11̅0⟩ LSMO ∥ ⟨01̅1⟩ MgO . The atomic resolution scanning transmission electron microscopy (STEM) images were taken of the interfaces that showed a thin, ∼2 monolayer intermixed phase while high-angle annular dark field (HAADF) cross-section images revealed 4/5 plane matching between the film and the buffer and similar domain sizes between different samples. Magnetic properties were measured for all films and the gradual decrease in saturation magnetization is reported with decreasing oxygen partial pressure during growth. A systematic increase in the interplanar spacing was observed by X-ray diffraction of the films with lower oxygen concentration, indicating the decrease in the lattice constant in the plane due to the point defects. Samples demonstrated an insulating behavior for samples grown under low oxygen partial pressure and semiconducting behavior for the highest oxygen partial pressures. Magnetotransport measurements showed ∼36.2% decrease in electrical resistivity with an applied magnetic field of 10 T at 50 K and ∼1.3% at room temperature for the highly oxygenated sample.

  20. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    PubMed

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673

  1. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  2. [Metabolism of rat liver in the electrostatic field and in the faraday cage before and after hepatectomy (author's transl)].

    PubMed

    Klingenberg, H G; Möse, J R; Fischer, G; Porta, J; Sadjak, A

    1975-10-01

    Investigations were performed with the aim of establishing the influence of various environmental conditions (such as steady field conditions, climatized laboratories, Faraday's cage) on a number of enzymic activities in the rat (including glutamic oxaloacetic tic transaminase, glutamic pyruvic transaminase, lactic dehydrogenase, gamma-glutamyl transpeptidase, acid phosphatase), as well as the serum concentrations of triglycerides, the oxygen consumption of hepatic parenchyma cells, and the influence on the incorporation of 3H-thymidine (following partial hepatectomy). In the steady field, the activities of the cytoplasmic enzymes (GOT, GPT, LDH) were higher then under Faraday conditions. The same applies both to the hepatic oxygen consumption and to the neutral fat serum levels. The control values always remained within the range of the results obtained under steady field or Faraday conditions. In the structure-linked enzymes (gamma-glutamyl transpeptidase, acid phosphatase) the results were not uniform. Following partial hepatectomy, and under steady field conditions, the serum triglyceride concentrations showed a less pronounced drop than they did in the controls. Under selected environmental conditions, the results obtained lie within the physiological range. The present findings, therefore, do not permit definite conclusions to be drawn on favourable or unfavourable effects exerted by the different types of electroclimates.

  3. Study program to develop and evaluate die and container materials for the growth of silicon ribbons. [for development of low cost solar cells

    NASA Technical Reports Server (NTRS)

    Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.

    1979-01-01

    The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.

  4. Oxygen monitor for semi-closed rebreathers: design and use for estimating metabolic oxygen consumption

    NASA Astrophysics Data System (ADS)

    Clarke, John R.; Southerland, David

    1999-07-01

    Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.

  5. Effects of changing body position on oxygenation and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.

    PubMed

    Braun, Christina; Trim, Cynthia M; Eggleston, Randy B

    2009-01-01

    To investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine. Prospective, randomized experimental study. Twelve Quarter Horse foals, age of 5.4 +/-0.9 months and weighing 222 +/- 48 kg. Foals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute(-1) was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (f(R)), inspired fraction of oxygen (FIO(2)), and end-tidal carbon dioxide (PE'CO(2)) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO(2)), arterial partial pressure of carbon dioxide (PaCO(2))] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO(2)/FIO(2) were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was alpha = 0.05. All values are presented as least square means +/- SE. Values at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 +/- 14.4 mmHg before hoisting to 92 +/- 11.6 mmHg after hoisting (p = 0.0013). The PaO(2)/FIO(2) ratio decreased from 275 +/- 30 to 175 +/- 24 (p = 0.0055). End-tidal carbon dioxide decreased significantly from 48.7 +/- 1.6 to 44.5 +/- 1.2 mmHg (p = 0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting. Hoisting decreased PaO(2) in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO(2) measurement is necessary to detect early changes.

  6. Oxidation Behavior of GRCop-84 Copper Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2002-01-01

    NASA's goal of safe, affordable space transportation calls for increased reliability and lifetimes of launch vehicles, and significant reductions of launch costs. The areas targeted for enhanced performance in the next generation of reusable launch vehicles include combustion chambers and nozzle ramps; therefore, the search is on for suitable liner materials for these components. GRCop-84 (Cu-8Cr-4Nb), an advanced copper alloy developed at the NASA Glenn Research Center in conjunction with Case Western Reserve University, is a candidate. The current liner of the Space Shuttle Main Engine is another copper alloy, NARloy-Z (Cu-3Ag-0.1Zr). It provides a benchmark against which to compare the properties of candidate successors. The thermomechanical properties of GRCop-84 have been shown to be superior, and its physical properties comparable, to those of NARloy-Z. However, environmental durability issues control longevity in this application: because copper oxide scales are not highly protective, most copper alloys are quickly consumed in oxygen environments at elevated temperatures. In consequence, NARloy-Z and most other copper alloys are prone to blanching, a degradation process that occurs through cycles of oxidation-reduction as the oxide is repeatedly formed and removed because of microscale fluctuations in the oxygen-hydrogen fuel systems of rocket engines. The Space Shuttle Main Engine lining typically degraded by blanching-induced hot spots that lead to surface roughening, pore formation, and coolant leakage. Therefore, resistance to oxidation and blanching are key requirements for second-generation reusable launch vehicle liners. The rocket engine ambient includes H2 (fuel) and H2O (combustion product) and is, hence, under reduced oxygen partial pressures. Accordingly, our studies were expanded to include oxygen partial pressures as low as 322 parts per million (ppm) at the temperatures likely to be experienced in service. A comparison of 10-hr weight gains of GRCop-84, NARloy-Z, and pure copper in 0.032, 2.2, and 100 percent oxygen from 550 to 750 C is shown. In 2.2 vol% and higher oxygen content, GRCop-84 oxidation was slower than that of NARloy-Z or Cu, but that advantage was lost or diminished in 322-ppm O2. Over longer (50-hr) exposures in 1.0 atm O2, however, the advantage of GRCop-84 increased significantly, its oxidation rate becoming approximately 10 times slower than those of Cu and NARloy-Z from 500 to 700 C. Weight gains were moderate and the kinetics parabolic for all three materials in 2.2 vol% and higher oxygen content; however, in 322-ppm O2, the scales were nonprotective below about 650 C, as reflected in linear kinetics and large weight gains. The superior oxidation resistance of GRCop-84 is likely related to the kinetics of extra oxygen consumption to form the additional oxides of Cr and Nb detected beneath the GRCop-84 oxide layer. While we continue to evaluate the blanching resistance of GRCop-84 in other tests, these oxidation results indicate that GRCop-84 is suitable as a reusable launch vehicle liner, and in applications where it is desired to use a copper alloy but without the risk of oxidative failure. Three bar charts comparing overall specific weight gains by each of the three materials studied. The top chart is for oxidation in 1.0 atm of oxygen, the middle is for 2.2% oxygen (balance argon), and the bottom is for 0.0322% oxygen. GRCop-84 outperforms the other two materials, showing the least weight gain in nearly all cases.

  7. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.

    2011-01-01

    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  8. Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Yuan, Chao; Wang, Jun-Qiao; Liang, Er-Jun; Chao, Ming-Ju

    2013-08-01

    Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 °C, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values <= 8.5 mol% each exhibit basically ionic conduction while those for Co content values >= 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 × 105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.

  9. Gettering capsule for removing oxygen from liquid lithium systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Breitwieser, R.

    1973-01-01

    Capsule consisting of tantalum shell lined with tantalum screen and partially filled with lithium and pieces of yttrium is immersed in hot lithium stream. Oxygen is removed from stream by being absorbed by gettering capsule. Oxygen passes through capsule wall and into lithium inside capsule where it reacts with yttrium to form Y2O3.

  10. Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties.

    PubMed

    Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj

    2013-06-20

    A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.

    PubMed

    Stolper, Daniel A; Keller, C Brenhin

    2018-01-18

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  12. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts

    NASA Astrophysics Data System (ADS)

    Stolper, Daniel A.; Keller, C. Brenhin

    2018-01-01

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  13. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less

  14. Study on the intrinsic defects in tin oxide with first-principles method

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  15. Detomidine and the combination of detomidine and MK-467, a peripheral alpha-2 adrenoceptor antagonist, as premedication in horses anaesthetized with isoflurane.

    PubMed

    Pakkanen, Soile Ae; Raekallio, Marja R; Mykkänen, Anna K; Salla, Kati M; de Vries, Annemarie; Vuorilehto, Lauri; Scheinin, Mika; Vainio, Outi M

    2015-09-01

    To investigate MK-467 as part of premedication in horses anaesthetized with isoflurane. Experimental, crossover study with a 14 day wash-out period. Seven healthy horses. The horses received either detomidine (20 μg kg(-1) IV) and butorphanol (20 μg kg(-1) IV) alone (DET) or with MK-467 (200 μg kg(-1) IV; DET + MK) as premedication. Anaesthesia was induced with ketamine (2.2 mg kg(-1) ) and midazolam (0.06 mg kg(-1) ) IV and maintained with isoflurane. Heart rate (HR), mean arterial pressure (MAP), end-tidal isoflurane concentration, end-tidal carbon dioxide tension, central venous pressure, fraction of inspired oxygen (FiO2 ) and cardiac output were recorded. Blood samples were taken for blood gas analysis and to determine plasma drug concentrations. The cardiac index (CI), systemic vascular resistance (SVR), ratio of arterial oxygen tension to inspired oxygen (Pa O2 /FiO2 ) and tissue oxygen delivery (DO2 ) were calculated. Repeated measures anova was applied for HR, CI, MAP, SVR, lactate and blood gas variables. The Student's t-test was used for pairwise comparisons of drug concentrations, induction times and the amount of dobutamine administered. Significance was set at p < 0.05. The induction time was shorter, reduction in MAP was detected, more dobutamine was given and HR and CI were higher after DET+MK, while SVR was higher with DET. Arterial oxygen tension and Pa O2 /FiO2 (40 minutes after induction), DO2 and venous partial pressure of oxygen (40 and 60 minutes after induction) were higher with DET+MK. Plasma detomidine concentrations were reduced in the group receiving MK-467. After DET+MK, the area under the plasma concentration time curve of butorphanol was smaller. MK-467 enhances cardiac function and tissue oxygen delivery in horses sedated with detomidine before isoflurane anaesthesia. This finding could improve patient safety in the perioperative period. The dosage of MK-467 needs to be investigated to minimise the effect of MK-467 on MAP. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  16. The cardiopulmonary effects of etorphine, azaperone, detomidine, and butorphanol in field-anesthetized white rhinoceroses (Ceratotherium simum).

    PubMed

    Wenger, Sandra; Boardman, Wayne; Buss, Peter; Govender, Danny; Foggin, Chris

    2007-09-01

    White rhinoceroses (Ceratotherium simum) anesthetized with etorphine combinations develop severe pathophysiologic changes, including hypoventilation, hypoxemia and metabolic acidosis. The aim of this study was to evaluate the addition of butorphanol to the immobilizing mixture on the cardiopulmonary effects in free-ranging white rhinoceroses darted from the helicopter. In the control group (n=15), the rhinoceroses were anesthetized with etorphine, azaperone, detomidine, and hyaluronidase administered intramuscularly. In the treatment group (n=16), 10-20 mg of butorphanol was added to the combination. Within 10 min of becoming immobile, vital parameters (heart rate, respiratory rate, and temperature) and blood gas analyses were taken, and measurements were repeated after 10 (treatment group) and 20 min (control group). Both groups showed respiratory and metabolic acidosis, hypoxemia, and hypercapnia. In the control group, the arterial partial pressure of oxygen was significantly higher and the alveolar-to-arterial oxygen pressure gradients were significantly lower in all body positions compared with the butorphanol group. Oxygen hemoglobin saturation in the control group was higher than in the butorphanol group only in the lateral position. Improvements in arterial oxygen levels were observed in all animals when placed in sternal recumbency. There were no significant differences in the mean induction times between groups, but the distance the butorphanol group ran was significantly less after darting than in the control group. By adding butorphanol to the immobilizing mixture, no benefits in ventilation were seen; although, size differences make comparisons difficult. Running for a shorter distance during induction could be beneficial in the prevention of severe acid-base imbalances and capture myopathy.

  17. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions

    PubMed Central

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-01-01

    Abstract Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. PMID:29340578

  18. Differences in Hematological Traits between High- and Low-Altitude Lizards (Genus Phrynocephalus)

    PubMed Central

    Lu, Songsong; Xin, Ying; Tang, Xiaolong; Yue, Feng; Wang, Huihui; Bai, Yucheng; Niu, Yonggang; Chen, Qiang

    2015-01-01

    Phrynocephalus erythrurus (Lacertilia: Agamidae) is considered to be the highest living reptile in the world (about 4500-5000 m above sea level), whereas Phrynocephalus przewalskii inhabits low altitudes (about 1000-1500 m above sea level). Here, we report the differences in hematological traits between these two different Phrynocephalus species. Compared with P. przewalskii, the results indicated that P. erythrurus own higher oxygen carrying capacity by increasing red blood cell count (RBC), hemoglobin concentration ([Hb]) and hematocrit (Hct) and these elevations could promote oxygen carrying capacity without disadvantage of high viscosity. The lower partial pressure of oxygen in arterial blood (PaO2) of P. erythrurus did not cause the secondary alkalosis, which may be attributed to an efficient pulmonary system for oxygen (O2) loading. The elevated blood-O2 affinity in P. erythrurus may be achieved by increasing intrinsic O2 affinity of isoHbs and balancing the independent effects of potential heterotropic ligands. We detected one α-globin gene and three β-globin genes with 1 and 33 amino acid substitutions between these two species, respectively. Molecular dynamics simulation results showed that amino acids substitutions in β-globin chains could lead to the elimination of hydrogen bonds in T-state Hb models of P. erythrurus. Based on the present data, we suggest that P. erythrurus have evolved an efficient oxygen transport system under the unremitting hypobaric hypoxia. PMID:25955247

  19. Geometric asymmetry driven Janus micromotors.

    PubMed

    Zhao, Guanjia; Pumera, Martin

    2014-10-07

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.

  20. Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions.

    PubMed

    Nestler, Holger; Kiesel, Bärbel; Kaschabek, Stefan R; Mau, Margit; Schlömann, Michael; Balcke, Gerd Ulrich

    2007-12-01

    Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the beta-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.

  1. A kinetic model for the synthesis of high-molecular-weight alcohols over a sulfided Co-K-Mo/C catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunturu, A.K.; Kugler, E.L.; Cropley, J.B.

    A statistically designed set of experiments was run in a recycle reactor to evaluate the kinetics of the formation of higher-molecular-weight alcohols (higher alcohols) and total hydrocarbon byproducts from synthesis gas (hydrogen and carbon monoxide) in a range of experimental conditions that mirrors the limits of commercial production. The alkali-promoted, C-supported Co-Mo sulfide catalyst that was employed in this study is well known for its sulfur resistance. The reaction was carried out in a gradientless Berty-type recycle reactor. A two-level fractional-factorial set consisting of 16 experiments was performed. Five independent variables were selected for this study, namely, temperature, partial pressuremore » of carbon monoxide, partial pressure of hydrogen, partial pressure of inerts, and methanol concentration in the feed. The major oxygenated products were linear alcohols up to n-butanol, but alcohols of higher carbon number were also detected, and analysis of the liquid product revealed the presence of trace amounts of ethers also. Yields of hydrocarbons were non-negligible. The alcohol product followed an Anderson-Schultz-Flory distribution. From the results of the factorial experiments, a preliminary power-law model was developed, and the statistically significant variables in the rate expression for the production of each alcohol were found. Based on the results of the power-law models, rate expressions of the Langmuir-Hinshelwood type were fitted. The observed kinetics are consistent with the rate-limiting step for the production of each higher alcohol being a surface reaction of the alcohol of next-lower carbon number. All other steps, including CO-insertion, H{sub 2}-cleavage, and hydrogenation steps, do not appear to affect the rate correlations.« less

  2. High Oxygen Partial Pressure Decreases Anemia-Induced Heart Rate Increase Equivalent to Transfusion

    PubMed Central

    Feiner, John R.; Finlay-Morreale, Heather E.; Toy, Pearl; Lieberman, Jeremy A.; Viele, Maurene K.; Hopf, Harriet W.; Weiskopf, Richard B.

    2011-01-01

    Background Anemia is associated with morbidity and mortality and frequently leads to transfusion of erythrocytes. We sought to compare directly the effect of high inspired oxygen fraction vs. transfusion of erythrocytes on the anemia-induced increased heart rate (HR) in humans undergoing experimental acute isovolemic anemia. Methods We combined HR data from healthy subjects undergoing experimental isovolemic anemia in seven studies performed by our group. We examined HR changes associated with breathing 100% oxygen by non-rebreathing face mask vs. transfusion of erythrocytes at their nadir hemoglobin (Hb) concentration of 5 g/dL. Data were analyzed using a mixed-effects model. Results HR had an inverse linear relationship to hemoglobin concentration with a mean increase of 3.9 beats per minute per gram of Hb (beats/min/g Hb) decrease (95% confidence interval [CI], 3.7 – 4.1 beats/min/g Hb), P < 0.0001. Return of autologous erythrocytes significantly decreased HR by 5.3 beats/min/g Hb (95% CI, 3.8 – 6.8 beats/min/g Hb) increase, P < 0.0001. HR at nadir Hb of 5.6 g/dL (95% CI, 5.5 – 5.7 g/dL) when breathing air (91.4 beats/min; 95% CI, 87.6 – 95.2 beats/min) was reduced by breathing 100% oxygen (83.0 beats/min; 95% CI, 79.0 -87.0 beats/min), P < 0.0001. The HR at hemoglobin 5.6 g/dL when breathing oxygen was equivalent to the HR at Hb 8.9 g/dL when breathing air. Conclusions High arterial oxygen partial pressure reverses the heart rate response to anemia, probably owing to its usability, rather than its effect on total oxygen content. The benefit of high arterial oxygen partial pressure has significant potential clinical implications for the acute treatment of anemia and results of transfusion trials. PMID:21768873

  3. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  4. Characterization of an activity from the strict anaerobe Roseburia cecicola that degrades DNA when exposed to air.

    PubMed Central

    O'Connor, L T; Savage, D C

    1993-01-01

    Roseburia cecicola is an obligately anaerobic bacterium that is extremely sensitive to oxygen. Genomic DNA isolated from cells exposed to air for even a brief period (< 5 min) is partially degraded, while DNA extracted from cells maintained in an anaerobic environment remains intact. Cells exposed to air for longer and longer periods yield DNA which is progressively degraded into fragments with decreasing sizes. Oxygen toxicity for this anaerobe appears to result, at least in part, from degradation of its genomic DNA. Cell lysates of the organism exhibited a similar ability to degrade exogenous sources of DNA when assayed in vitro under aerobic conditions. A substance that degrades both DNA and RNA when incubated aerobically was partially purified from such lysates. It has an approximate molecular weight of 2,800 and is unlikely to be a protein. It requires a reducing agent for activity and can be inhibited by catalase and peroxidase but not superoxide dismutase. The rate at which it degrades DNA in vitro can be enhanced by temperatures above 37 degrees C or by oxygen at partial pressures above atmospheric pressure. These results suggest that this substance degrades nucleic acids by a mechanism involving oxygen radicals. Images PMID:8335626

  5. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  6. The effect of bladder outlet obstruction on tissue oxygen tension and blood flow in the pig bladder.

    PubMed

    Greenland, J E; Hvistendahl, J J; Andersen, H; Jörgensen, T M; McMurray, G; Cortina-Borja, M; Brading, A F; Frøkiaer, J

    2000-06-01

    To investigate the effect of partial bladder outlet obstruction on detrusor blood flow and oxygen tension (PdetO2) in female pigs. Detrusor-layer oxygen tension and blood flow were measured using oxygen-sensitive electrode and radiolabelled microsphere techniques in five female Large White pigs with a partial urethral obstruction and in five sham-operated controls. The effects of chronic outlet obstruction on bladder weight, and cholinergic nerve density and distribution, are also described. In the obstructed bladders, blood flow and oxygen tension were, respectively, 54.9% and 74.3% of control values at low bladder volume, and 47.5% and 42.5% at cystometric capacity. Detrusor blood flow declined by 27.8% and 37.5% in the control and obstructed bladders, respectively, as a result of bladder filling, whilst PdetO2 did not decrease in the controls, but fell by 42.7% in the obstructed bladders. Bladder weight increased whilst cholinergic nerve density decreased in the obstructed animals. In pigs with chronic bladder outlet obstruction, blood flow and oxygen tension in the detrusor layer were lower than in control animals. In addition, increasing detrusor pressure during filling caused significantly greater decreases in blood flow and oxygen tension in the obstructed than in the control bladders.

  7. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less

  8. Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations

    DOE PAGES

    Ji, Ho-Il; Davenport, Timothy C.; Gopal, Chirranjeevi Balaji; ...

    2016-07-18

    The redox kinetics of undoped ceria (CeO 2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO 2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant k chem is found to obey the correlation log(k chem/cm s -1) = (0.84 ± 0.02) × log(pO 2/atm) - (0.99 ± 0.05) and increases withmore » oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.« less

  9. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model.

    PubMed

    Sun, Chang-Jin; Li, Chao; Lv, Hai-Bo; Zhao, Cong; Yu, Jin-Ming; Wang, Guang-Hui; Luo, Yun-Xiu; Li, Yan; Xiao, Mingyong; Yin, Jun; Lang, Jin-Yi

    2014-01-01

    The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3-127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2-53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7-124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2-62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14-47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice.

  10. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    PubMed

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations.

    PubMed

    Ji, Ho-Il; Davenport, Timothy C; Gopal, Chirranjeevi Balaji; Haile, Sossina M

    2016-08-03

    The redox kinetics of undoped ceria (CeO2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant kchem is found to obey the correlation log(kchem/cm s(-1)) = (0.84 ± 0.02) × log(pO2/atm) - (0.99 ± 0.05) and increases with oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.

  12. Oxidation kinetics of molten copper sulfide

    NASA Astrophysics Data System (ADS)

    Alyaser, A. H.; Brimacombe, J. K.

    1995-02-01

    The oxidation kinetics of molten Cu2S baths, during top lancing with oxygen/nitrogen (argon) mixtures, have been investigated as a function of oxygen partial pressure (0.2 to 0.78), bath temperature (1200 °C to 1300 °C), gas flow rate (1 to 4 L/min), and bath mixing. Surface-tension-driven flows (the Marangoni effect) were observed both visually and photographically. Thus, the oxidation of molten Cu2S was found to progress in two distinct stages, the kinetics of which are limited by the mass transfer of oxygen in the gas phase to the melt surface. During the primary stage, the melt is partially desulfurized while oxygen dissolves in the liquid sulfide. Upon saturation of the melt with oxygen, the secondary stage commences in which surface and bath reactions proceed to generate copper and SO2 electrochemically. A mathematical model of the reaction kinetics has been formulated and tested against the measurements. The results of this study shed light on the process kinetics of the copper blow in a Peirce-Smith converter or Mitsubishi reactor.

  13. Magnetic properties of nitrogen-doped ZrO2: Theoretical evidence of absence of room temperature ferromagnetism

    PubMed Central

    Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2016-01-01

    N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493

  14. Electrical and optical properties of nitrogen doped SnO{sub 2} thin films deposited on flexible substrates by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Feng, E-mail: fangfeng@seu.edu.cn; Zhang, Yeyu; Wu, Xiaoqin

    2015-08-15

    Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical propertiesmore » of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.« less

  15. Oxygen evolution from olivine M n1 -xMxP O4 (M =Fe ,Ni,Al,Mg) delithiated cathode materials

    NASA Astrophysics Data System (ADS)

    Snydacker, David H.; Wolverton, C.

    2017-01-01

    Olivine LiMnP O4 is a promising cathode material for Li-ion batteries. One drawback of this material is the propensity of its delithiated phase, MnP O4 , to evolve oxygen gas above approximately 200 °C. During thermal runaway of cells, this oxygen gas can burn the electrolyte and other cell components and thereby jeopardize safety. Partial substitution of Mn with M =Fe , Ni, Al, or Mg has been used to improve the lithium intercalation kinetics of L ixMnP O4 ; however, the effect of these substitutions on oxygen evolution is not fully documented. In this paper, we calculate phase diagrams and oxygen evolution diagrams for these M n1 -xMxP O4 delithiated cathode materials. To generate the phase diagrams, we use subregular solid-solution models and fit the energetic parameters of these models to density functional theory calculations of special quasirandom structures. The resulting thermodynamic models describe the effect of mixing on the initial temperature of oxygen evolution and on the cumulative amount of oxygen evolution at elevated temperatures. We find that addition of Fe increases the initial temperature and decreases the cumulative amount of oxygen evolution. M n0.5F e0.5P O4 exhibits an initial temperature 50 °C higher than MnP O4 and releases 70% less oxygen gas at 300 °C. Al is insoluble in MnP O4 , so addition of Al has no affect on the initial temperature. However, Al addition does slightly decrease the amount of oxygen evolution due to an inactive AlP O4 component. Mg and Ni both decrease the initial temperature of oxygen evolution, and therefore may worsen the safety of MnP O4 .

  16. OXYGENATION OF HYDROCARBONS USING NANOSTRUCTURED TIO2 AS A PHOTOCATALYST: A GREEN ALTERNATIVE

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic saturated hydrocarbons by a photocatalytic oxidation process using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxygenated in both aqueous and gaseous...

  17. Vacancies and holes in bulk and at 180° domain walls in lead titanate

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Geneste, Grégory; Bellaiche, Laurent; Dkhil, Brahim

    2017-12-01

    Domain walls (DWs) in ferroic materials exhibit a plethora of unexpected properties that are different from the adjacent ferroic domains. Still, the intrinsic/extrinsic origin of these properties remains an open question. Here, density functional theory calculations are used to investigate the interaction between vacancies and 180° DWs in the prototypical ferroelectric PbTiO3, with a special emphasis on cationic vacancies and released holes. All vacancies are more easily formed within the DW than in the domains. This is interpreted, using a phenomenological model, as the partial compensation of an extra-tensile stress when the defect is created inside the DW. Oxygen vacancies are found to be always fully ionized, independently of the thermodynamic conditions, while cationic vacancies can be either neutral or partially ionized (oxygen-rich conditions), or fully ionized (oxygen-poor conditions). Therefore, in oxidizing conditions, holes are induced by neutral and partially ionized Pb vacancies. In the bulk PbTiO3, these holes are more stable as delocalized rather than small polarons, but at DWs, the two forms are found to be possible.

  18. Effect of oxygen partial pressure on the density of antiphase boundaries in Fe3O4 thin films on Si(100)

    NASA Astrophysics Data System (ADS)

    Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet

    2018-02-01

    Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.

  19. Supplemental oxygen effect on hypoxemia at moderate altitude in patients with COPD.

    PubMed

    Kelly, Paul T; Swanney, Maureen P; Stanton, Josh D; Frampton, Chris; Peters, Matthew J; Beckert, Lutz E

    2009-09-01

    Altitude exposure will cause moderate to severe hypoxemia in patients with chronic obstructive pulmonary disease (COPD). Supplemental oxygen can be used to attenuate this hypoxemia; however, individual response is variable and difficult to predict. The aim of this study was to assess the efficacy of oxygen supplementation in patients with COPD at a barometric pressure similar to that of a commercial aircraft cabin. Following sea-level (40 m) arterial blood gases measurements, 18 patients with COPD were driven to altitude (2086 m), where blood gases were repeated at rest and while on 2 L x min(-1) of supplementary oxygen (altitude O2). Ascent from sea level to altitude caused significant hypoxemia (75 +/- 9 vs. 51 +/- 6 mmHg), which was partially reversed by supplemental oxygen (64 +/- 9 mmHg). Oxygen supplementation did not significantly alter PaCO2 levels (vs. altitude PaCO2). There was a significant relationship between the sea-level CaO2 versus the altitude O2 CaO2 (r = 0.89, P < 0.001). There was a significant relationship (r = 0.81, P < 0.001) between altitude-induced desaturation and resaturation with the administration of oxygen. There was a significant negative correlation (r = -0.74, P < 0.001) between baseline K(CO) and the improvement in CaO2 with the administration of oxygen. Low-flow supplemental oxygen during acute altitude exposure will partially reverse altitude-induced hypoxemia in patients with COPD. Patients with diffusion impairments are likely to experience the greatest altitude desaturation, but will gain the most benefit from supplemental oxygen. Supplemental oxygen, delivered at 2 L x min(-1), should maintain clinically acceptable oxygenation during commercial air travel in patients with COPD.

  20. The Association of Early Blood Oxygenation with Child Development in Preterm Infants with Acute Respiratory Disorders

    PubMed Central

    Smith, Karen E.; Keeney, Susan; Zhang, Lifang; Perez-Polo, Regino; Rassin, David K.

    2008-01-01

    The potential negative impact of early blood oxygenation on development of specific cognitive and motor outcomes in children born at very low birth weight (VLBW; 1000 − 1500g) has not been examined even though these infants are exposed to varying durations and amounts of oxygen as part of their neonatal care. While this is the largest group of preterm infants, they receive much less research attention than extremely low birth weight infants (ELBW < 1000g). Although neonatologists are questioning the routine use of oxygen therapy for all neonates, research has focused primarily on the more medically fragile ELBW infants. To date there are no systematic studies available to guide decision making for oxygen supplementation for a large segment of the preterm infant population. The aim of the present study was to determine if there is an association between blood oxygenation in the first four hours of life and specific cognitive and motor skills in preterm infants with acute respiratory disorders but no severe intracranial insult using a selected cohort from a longitudinal study children recruited in 1991 and 1992 designed to examine the role of biological immaturity as defined by gestational age and parenting in development. From this cohort, 55 children had acute respiratory disorders without severe intracranial insult. Of these, 35 children had at least one partial pressure of oxygen obtained from arterial blood (PaO2) during the first four hours of life as part of their clinical care. Higher early PaO2 values were associated with lower impulse control and attention skills in the elementary school age period. Models that examined for relations between PaO2 values that also included birth weight and parenting quality across the first year of life revealed that higher PaO2 remained associated with impulse control but not attention skills. Birth weight was not associated with any outcomes. These results suggest that hyperoxia may be a risk factor for developmental problems that are not expressed until school age. PMID:17988819

  1. Micro system comprising 96 micro valves on a titer plate

    NASA Astrophysics Data System (ADS)

    Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.

    2016-10-01

    A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.

  2. A Burke-Schumann analysis of diffusion-flame structures supported by a burning droplet

    NASA Astrophysics Data System (ADS)

    Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.

    2017-07-01

    A Burke-Schumann description of three different regimes of combustion of a fuel droplet in an oxidising atmosphere, namely the premixed-flame regime, the partial-burning regime and the diffusion-flame regime, is presented by treating the fuel and oxygen leakage fractions through the flame as known parameters. The analysis shows that the burning-rate constant, the flame-standoff ratio, and the flame temperature in these regimes can be obtained from the classical droplet-burning results by suitable definitions of an effective ambient oxygen mass fraction and an effective fuel concentration in the droplet interior. The results show that increasing oxygen leakage alone through the flame lowers both the droplet burning rate and the flame temperature, whereas leakage of fuel alone leaves the burning rate unaffected while reducing the flame temperature and moving the flame closer to the droplet surface. Solutions for the partial-burning regime are shown to exist only for a limited range of fuel and oxygen leakage fractions.

  3. Oxygen nonstoichiometry and thermodynamic quantities in solid solution SrFe1-xSnxO3-δ

    NASA Astrophysics Data System (ADS)

    Merkulov, O. V.; Markov, A. A.; Leonidov, I. A.; Patrakeev, M. V.; Kozhevnikov, V. L.

    2018-06-01

    The oxygen content (3-δ) variations in tin substituted derivatives SrFe1-xSnxO3-δ, where x = 0.05, 0.1, 0.17 and 0.25, of perovskite-like strontium ferrite, have been studied by coulometric titration measurements within oxygen partial pressure (pO2) range 10-19-10-2 atm at 800-950 °С. The obtained dependencies of (3-δ) from pO2 and temperature are used for calculations of partial molar thermodynamic functions of oxygen in the oxide structure. It is found that a satisfactory explanation of the experimental results can be attained within frameworks of the ideal solution model with ion and electron defects appearing in the result of oxidation and disproportionation of iron cations. The increase of the oxidation reaction enthalpy with tin content is consistent with the increase of the unit cell parameter, i.e., the stretch and relaxation of Fe-O chemical bonds.

  4. Finite-size versus interface-proximity effects in thin-film epitaxial SrTiO3

    NASA Astrophysics Data System (ADS)

    De Souza, R. A.; Gunkel, F.; Hoffmann-Eifert, S.; Dittmann, R.

    2014-06-01

    The equilibrium electrical conductivity of epitaxial SrTiO3 (STO) thin films was investigated as a function of temperature, 950≤ T/K ≤1100, and oxygen partial pressure, 10-23≤ pO2/bar ≤1. Compared with single-crystal STO, nanoscale thin-film STO exhibited with decreasing film thickness an increasingly enhanced electronic conductivity under highly reducing conditions, with a corresponding decrease in the activation enthalpy of conduction. This implies substantial modification of STO's point-defect thermodynamics for nanoscale film thicknesses. We argue, however, against such a finite-size effect and for an interface-proximity effect. Indeed, assuming trapping of oxygen vacancies at the STO surface and concomitant depletion of oxygen vacancies—and accumulation of electrons—in an equilibrium surface space-charge layer, we are able to predict quantitatively the conductivity as a function of temperature, oxygen partial pressure, and film thickness. Particularly complex behavior is predicted for ultrathin films that are consumed entirely by space charge.

  5. Low-Tidal-Volume Ventilation in the Acute Respiratory Distress Syndrome

    PubMed Central

    Malhotra, Atul

    2008-01-01

    A 55-year-old man who is 178 cm tall and weighs 95 kg is hospitalized with community-acquired pneumonia and progressively severe dyspnea. His arterial oxygen saturation while breathing 100% oxygen through a face mask is 76%; a chest radiograph shows diffuse alveolar infiltrates with air bronchograms. He is intubated and receives mechanical ventilation; ventilator settings include a tidal volume of 1000 ml, a positive end-expiratory pressure (PEEP) of 5 cm of water, and a fraction of inspired oxygen (FiO2) of 0.8. With these settings, peak airway pressure is 50 to 60 cm of water, plateau airway pressure is 38 cm of water, partial pressure of arterial oxygen is 120 mm Hg, partial pressure of carbon dioxide is 37 mm Hg, and arterial blood pH is 7.47. The diagnosis of the acute respiratory distress syndrome (ARDS) is made. An intensive care specialist evaluates the patient and recommends changing the current ventilator settings and implementing a low-tidal-volume ventilation strategy. PMID:17855672

  6. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana.

    PubMed

    Elliott, David T; Pierson, James J; Roman, Michael R

    2013-01-01

    We describe a model predicting the effects of low environmental oxygen on vital rates (egg production, somatic growth, and mortality) of the coastal planktonic copepod Acartia tonsa. Hypoxic conditions can result in respiration rate being directly limited by oxygen availability. We hypothesized that A. tonsa egg production, somatic growth, and ingestion rates would all respond in a similar manner to low oxygen conditions, as a result of oxygen dependent changes in respiration rate. Rate data for A. tonsa egg production, somatic growth, and ingestion under low environmental oxygen were compiled from the literature and from supplementary experiments. The response of these rates to oxygen was compared by converting all to the analogous units in terms of oxygen utilization, which we termed analogous respiration rate. These analogous respiration rates, along with published measurements of respiration rates, were used to parameterize and evaluate the relationship between A. tonsa respiration rate and environmental oxygen. At 18 °C, our results suggest that A. tonsa experiences sub-lethal effects of hypoxia below an oxygen partial pressure of 8.1 kPa (~3.1 mg L(-1) = 2.3 mL L(-1)). The results of this study can be used to predict the effects of hypoxia on A. tonsa growth and mortality as related to environmental temperature and oxygen partial pressure. Such predictions will be useful as a way to incorporate the effects of coastal hypoxia into population, community, or ecosystem level models that include A. tonsa. This approach can also be used to characterize the effects of hypoxia on other aquatic organisms.

  7. The defect chemistry of UO2 ± x from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  8. Sleep Architecture in Partially Acclimatized Lowlanders and Native Tibetans at 3800 Meter Altitude: What Are the Differences?

    PubMed

    Kong, Fanyi; Liu, Shixiang; Li, Qiong; Wang, Lin

    2015-09-01

    It is not well known whether high altitude acclimatization could help lowlanders improve their sleep architecture as well as Native Tibetans. In order to address this, we investigated the structural differences in sleep between Native Tibetans and partially acclimatized lowlanders and examined the association between sleep architecture and subjective sleep quality. Partially acclimatized soldiers from lowlands and Native Tibetan soldiers stationed at Shangri-La (3800 m) were surveyed using the Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Rating Scale (HAMD). The sleep architecture of those without anxiety (as determined by HAMA>14) and/or depression (HAMD>20) was analyzed using polysomnography and the results were compared between the two groups. One hundred sixty-five male soldiers, including 55 Native Tibetans, were included in the study. After partial acclimatization, lowlanders still exhibited differences in sleep architecture as compared to Native Tibetans, as indicated by a higher PSQI score (8.14±2.37 vs. 3.90±2.85, p<0.001), shorter non-rapid eye movement (non-REM) sleep (458.68±112.63 vs. 501±37.82 min, P=0.03), lower nocturnal arterial oxygen saturation (Spo2; mean 91.39±1.24 vs. 92.71±2.12%, p=0.03), and increased times of Spo2 reduction from 89% to 85% (median 48 vs.17, p=0.04) than Native Tibetans. Sleep onset latency (β=0.08, 95%CI: 0.01 to 0.15), non-REM latency (β=0.011, 95%CI 0.001 to 0.02), mean Spo2 (β=-0.79, 95%CI: -1.35 to -0.23) and time in stage 3+4 sleep (β=-0.014, 95%CI: -0.001 to -0.028) were slightly associated with the PSQI score. Partially acclimatized lowlanders experienced less time in non-REM sleep and had lower arterial oxygen saturation than Native Tibetans at an altitude of 3800 m. The main independent contributors to poor sleep quality are hypoxemia, difficulty in sleep induction, and time in deep sleep.

  9. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  10. The Effect of Oxygen Enrichment on Cardiorespiratory and Neuropsychological Responses in Workers With Chronic Intermittent Exposure to High Altitude (ALMA, 5,050 m)

    PubMed Central

    Moraga, Fernando A.; López, Iván; Morales, Alicia; Soza, Daniel; Noack, Jessica

    2018-01-01

    It is estimated that labor activity at high altitudes in Chile will increase from 60,000 to 120,000 workers by the year 2020. Oxygenation of spaces improves the quality of life for workers at high geographic altitudes (<5,000 m). The aim of this study was to determine the effect of a mobile oxygen module system on cardiorespiratory and neuropsychological performance in a population of workers from Atacama Large Millimeter/submillimeter Array (ALMA, 5,050 m) radiotelescope in the Chajnantor Valley, Chile. We evaluated pulse oximetry, systolic and diastolic arterial pressure (SAP/DAP), and performed neuropsychological tests (Mini-Mental State examination, Rey-Osterrieth Complex Figure test) at environmental oxygen conditions (5,050 m), and subsequently in a mobile oxygenation module that increases the fraction of oxygen in order to mimic the higher oxygen partial pressure of lower altitudes (2,900 m). The use of module oxygenation at an altitude of 5,050 m, simulating an altitude of 2,900 m, increased oxygen saturation from 84 ± 0.8 to 91 ± 0.8% (p < 0.00001), decreased heart rate from 90 ± 8 to 77 ± 12 bpm (p < 0.01) and DAP from 96 ± 3 to 87 ± 5 mmHg (p < 0.01). In addition, mental cognitive state of workers (Mini-Mental State Examination) shown an increased from 19 to 31 points (p < 0.02). Furthermore, the Rey-Osterrieth Complex Figure test (memory) shown a significant increase from 35 to 70 (p < 0.0001). The results demonstrate that the use of an oxygen module system at 5,050 m, simulating an altitude equivalent to 2,900 m, by increasing FiO2 at 28%, significantly improves cardiorespiratory response and enhances neuropsychological performance in workers exposed to an altitude of 5,050 m. PMID:29628892

  11. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    PubMed

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O2±x

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi

    2017-04-01

    Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.

  13. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia

    PubMed Central

    Carreau, Aude; Hafny-Rahbi, Bouchra El; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-01-01

    Abstract Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. PMID:21251211

  14. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    PubMed

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  15. USE OF SEDIMENT PROFILE IMAGERY TO ESTIMATE NEAR-BOTTOM DISSOLVED OXYGEN REGIMES

    EPA Science Inventory

    The U.S. EPA, Atlantic Ecology Division is developing empirical stressor-response models for nitrogen pollution in partially enclosed coastal systems using dissolved oxygen (DO) as one of the system responses. We are testing a sediment profile image camera as a surrogate indicat...

  16. IMPROVING PHOTOCATALYTIC PROPERTIES OF TIO2 THROUGH THIN FILM COATING AND METAL DOPING VIA FLAME AEROSOL COATING METHOD

    EPA Science Inventory

    There has been an increasing demand for efficient, economical and environmentally friendly methods for partial oxidation of hydrocarbons by molecular oxygen, to desirable industrial feedstock oxygenates. Current processes are energy intensive, have low conversion efficiencies and...

  17. The Persistence of the Candle-and-Cylinder Misconception.

    ERIC Educational Resources Information Center

    Birk, James P.; Lawson, Anton E.

    1999-01-01

    Argues that the candle-and-cylinder demonstration does not show that air is composed of 21% oxygen. Finds that the heating of air results in a partial expulsion of air, and that the flame is extinguished by a local, rather than a complete, consumption of oxygen. (WRM)

  18. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    PubMed Central

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  19. The annealing mechanism of the radiation-induced vacancy-oxygen defect in silicon

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Londos, C. A.

    2012-06-01

    Annealing experiments on the VO defect (the A-centre) produced by radiation in silicon—reported long ago—have been re-examined in order to deduce the two most important properties of VO: its diffusivity and the equilibrium constant for VO dissociation into V + O. The loss rate of VO is accounted for by two major reactions. One is the conventional reaction of the trapping of mobile VO by oxygen, thus producing VO2. The other is an annihilation of vacancies, which coexist in an equilibrium ratio with VO, by radiation-produced interstitial point defects. In some cases, a minor reaction, VO + V, should also be taken into account. The emerging minor defects V2O are also highly mobile. They partially dissociate back and partially get trapped by oxygen producing stable V2O2 defects.

  20. Preflight studies on tolerance of pocket mice to oxygen and heat. III - Effects on eyes

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Corbett, R. L.; Black, S.; Takahashi, A.; Leaffer, D.

    1975-01-01

    A study was made of the eyes of eight pocket mice exposed to oxygen at partial pressures of 8, 10, or 12 psi over a period of 7 d. At the termination of the exposure, the animals were decompressed to sea-level O2, either immediately or over a period of 30, 60, or 90 min. No pathological changes were found in any of the eyes, except in the retina of one of the animals exposed to 12 psi O2. Here, only a single rod photoreceptor was found damaged, an observation not regarded as significant. Hence, an oxygen partial pressure as high as 12 psi in the canister in which pocket mice were expected to fly on Apollo XVII would probably have no deleterious effect on the eyes of the animals.

  1. The reduction of nitric oxide by ammonia over polycrystalline platinum model catalysts in the presence of oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katona, T.; Guczi, L.; Somorjai, G.A.

    1992-06-01

    The reaction system of nitric oxide, ammonia, and oxygen was studied using batch-mode measurements in partial pressure ranges of 65-1000 Pa (0.5-7.6 Torr) on polycrystalline Pt foils over the temperature range 423-598 K. Under these conditions the oxidation of nitric oxide was not detectable. The ammonia oxidation reaction, using dioxygen, occurred in the temperature range 423-493 K, producing nitrogen and water as the only products. The activation energy of the nitrogen formation was found to be 86 kJ/mol. Above this temperature range, flow-mode measurements showed the formation of both nitrous oxide and nitric oxide. The reaction rate between ammonia andmore » oxygen was greatly decreased (about a factor of 10) by nitric oxide, while the reaction rate between nitric oxide and ammonia was accelerated (about 10-fold) due to the presence of oxygen. Nitric oxide reduction by ammonia in the presence of oxygen occurred in the temperature range 423-598 K. The products of the reaction were nitrogen, oxygen nitrous oxide, and water. The Arrhenius plot of the reaction showed a break near 523 K. Below this temperature the activation energy of the reaction was 13 kJ/mol, and in the higher-temperature range it was 62 kJ/mol. At 473 K, the N[sub 2]/N[sub 2]O ratio was about 0.6 and O[sub 2] formation was also monitored. At 573 K, the N[sub 2]N[sub 2]O ratio was approximately 2 and oxygen was consumed in the course of the reaction as well.« less

  2. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    NASA Astrophysics Data System (ADS)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  3. Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.

    1972-01-01

    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

  4. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation.

    PubMed

    Hartmann, E K; Duenges, B; Boehme, S; Szczyrba, M; Liu, T; Klein, K U; Baumgardner, J E; Markstaller, K; David, M

    2014-09-01

    During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA /Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA /Q under CPR conditions in a pig model. Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/ Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Intergroup differences were analysed by non-parametric testing. MIGET measurements were feasible in all animals with an excellent correlation of measured and predicted arterial oxygen partial pressure (R(2)  = 0.96, n = 21 for baseline; R(2)  = 0.82, n = 21 for CPR). CPR induces a significant shift from normal VA /Q ratios to the high VA /Q range. Electrical impedance tomography indicates a dorsal to ventral shift of the ventilation distribution. Diverging pulmonary shunt fractions induced by the three inspired oxygen levels considerably increased during CPR and were traceable by MIGET, while 100% oxygen most negatively influenced the VA /Q. Return of spontaneous circulation were achieved in 52% of the animals. VA /Q assessment by MIGET is feasible during CPR and provides a novel tool for experimental purposes. Changes in VA /Q caused by different oxygen fractions are traceable during CPR. Beyond pulmonary perfusion deficits, these data imply an influence of the inspired oxygen level on VA /Q. Higher oxygen levels significantly increase shunt fractions and impair the normal VA /Q ratio. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Physiology of Oxygen Breathing in Pilots: A Brief Review

    DTIC Science & Technology

    2018-03-23

    brief review Abstract This non-exhaustive survey presents literature describing some effects of breathing oxygen partial pressures between...CG, J Butler, AB DuBois (1959). Some effects of restriction of chest cage expansion on pulmonary function in man: an experimental study. J Clin...Effects of Submerged Breathing of Air or Oxygen. Navy Experimental Diving Unit TR 02-14, Panama City, FL. http://archive.rubicon- foundation.org/3483

  6. Catalytic reforming of methane to syngas in an oxygen-permeative membrane reactor

    NASA Astrophysics Data System (ADS)

    Urano, Takeshi; Kubo, Keiko; Saito, Tomoyuki; Hitomi, Atsushi

    2011-05-01

    For fuel cell applications, partial oxidative reforming of methane to syngas, hydrogen and carbon monoxide, was performed via a dense oxygen-permeative ceramic membrane composed by both ionic and electronic conductive materials. The modification of Ni-based catalyst by noble metals was investigated to increase oxygen permeation flux and decrease carbon deposition during reforming reaction. The role of each component in catalyst was also discussed.

  7. Desulfurization kinetics of molten copper by gas bubbling

    NASA Astrophysics Data System (ADS)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  8. The Effects of Bougie Diameters on Tissue Oxygen Levels After Sleeve Gastrectomy: A Randomized Experimental Trial

    PubMed

    Konca, Can; Yılmaz, Ali Abbas; Çelik, Süleyman Utku; Kayılıoğlu, Selami Ilgaz; Paşaoğlu, Özge Tuğçe; Ceylan, Halil Arda; Genç, Volkan

    2018-05-29

    Staple-line leak is the most frightening complication of laparoscopic sleeve gastrectomy and several predisposing factors such as using improper staple sizes regardless of gastric wall thickness, narrower bougie diameter and ischemia of the staple line are asserted. To evaluate the effects of different bougie diameters on tissue oxygen partial pressure at the esophagogastric junction after sleeve gastrectomy. A randomized and controlled animal experiment with 1:1:1:1 allocation ratio. Thirty-two male Wistar Albino rats were randomly divided into 4 groups of 8 each. While 12-Fr bougies were used in groups 1 and 3, 8-Fr bougies were used in groups 2 and 4. Fibrin sealant application was also carried out around the gastrectomy line after sleeve gastrectomy in groups 3 and 4. Burst pressure of gastrectomy line, tissue oxygen partial pressure and hydroxyproline levels at the esophagogastric junction were measured and compared among groups. Mortality was detected in 2 out of 32 rats (6.25%) and one of them was in group 2 and the cause of this mortality was gastric leak. Gastric leak was detected in 2 out of 32 rats (6.25%). There was no significant difference in terms of burst pressures, tissue oxygen partial pressure and tissue hydroxyproline levels among the 4 groups. The use of narrower bougie along with fibrin sealant has not had a negative effect on tissue perfusion and wound healing.

  9. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  10. Defect formation in LaGa(Mg,Ni)O3-δ : A statistical thermodynamic analysis validated by mixed conductivity and magnetic susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.

    2006-08-01

    A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.

  11. Linear air-fuel sensor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less

  12. Effects of single and combined Mycoplasma gallisepticum vaccinations on blood electrolytes and acid-base balance in commercial egg-laying hens.

    PubMed

    Olanrewaju, H A; Collier, S D; Branton, S L

    2011-02-01

    A previous study from our laboratory on F-strain Mycoplasma gallisepticum-inoculated layers showed a significant increase in arterial partial pressure of oxygen (pO(2)), which is generally associated with an oxygen-dependent improvement in tissue oxygenation. The aim of this study was to determine whether a killed (bacterin) and live TS-11-strain M. gallisepticum (TS-11-MG) vaccine treatment combination could further enhance the arterial pO(2) levels in layer chickens. The experiment was conducted in 2 trials and arranged in a completely randomized experimental design with 4 treatments. The treatments consisted of a control M. gallisepticum, bacterin, TS-11-MG, and bacterin + TS-11-MG combined, with all treatments receiving the R low strain of MG at 30 wk of age (WOA). In each of the 2 trials, 160 one-day-old MG-free pullets were raised to 10 WOA and were transported to a poultry disease isolation facility. Sixteen isolation units were divided into 4 treatment groups, and each of the 4 treatment groups had 4 replication units, with 10 birds/unit (40 birds/treatment). Venous blood samples were collected at the termination of the study at 56 WOA. The TS-11-MG-vaccinated chickens had a higher (P ≤ 0.05) blood pO(2) and a lower (P ≤ 0.05) partial pressure of CO(2) when compared with the control and combined MG-vaccinated groups. However, no significant blood pO(2) differences were observed between the bacterin and TS-11-MG treatment groups. Hematocrit and blood concentrations of hemoglobin were not statistically different among treatments, but were numerically higher in the TS-11-MG treatment group. There was a significant (P ≤ 0.05) treatment effect on blood concentrations of Na(+), Ca(2+), and anion, but no significant effect on glucose, cholesterol, triglyceride, or osmolality. These data suggest that the inoculation of layers with TS-11-MG was more effective in elevating pO(2) than was inoculation with TS-11-MG + bacterin combined.

  13. Index of stations: surface-water data-collection network of Texas, September 1998

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    1999-01-01

    As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.

  14. Stable, Ultra-Low Residence Time Partial Oxidation

    DOEpatents

    Schmidt, Lanny D.; Hickman, Daniel A.

    1997-07-15

    A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.

  15. [Effects of vacuum sealing drainage combined with irrigation of oxygen loaded fluid on wounds of pa- tients with chronic venous leg ulcers].

    PubMed

    Wen, Huangding; Li, Zhiqing; Zhang, Meiguang; Wang, Jiahan; Wang, Guifang; Wu, Qi; Tong, Sen

    2015-04-01

    To evaluate the therapeutic effects of VSD combined with irrigation of oxygen loaded fluid on the growth of granulation tissue and macrophage polarization in chronic venous leg ulcers. Thiry-four patients with chronic venous leg ulcers hospitalized in our department from December 2010 to July 2014 were divided into VSD group ( A, n = 11) , VSD + irrigation group ( B, n = 11) , and VSD + oxygen loaded fluid irrigation group ( C, n = 12) according to the random number table. After admissian, debridement was performed, and granulation tissue in the center of the wound was harvested during the operation. After dehridement, the patients in group A were treated with VSD only (negative pressure from -30 to -25 kPa, the same below) ; the patients in group B were treated with VSD combining irrigation of normal saline; the patients in group C were treated with VSD combining normal saline loaded with oxygen irrigation (flow of 1 L/min) . On post treatment day (PTD) 7, the VSD devices were removed. Cross observation was conducted before debridement and on PTD 7. On PTD 7, the granulation tissue in the center of the wound was harvested for histopathological observation with HE staining and Masson staining, following calculation of granulation tissue coverage rate. After debridement but before the negative pressure therapy (hereinafter referred to as before treatment) and on PTD 7, partial pressure of oxygen of the skin around the wound was measured by transcutaneous tissue oxygen tension survey meter. On PTD 7, expression of vascular endothelial growth factor (VECF) was determined with immunohistochemistry. Before treatment and on PTD 7, cells with double positive expressions of induced nitric oxide synthase plus CD68 ( type I macro- phage) and arginase 1 plus CD68 ( type II macrophage) were observed with immunofluorescence staining and quantified. Data were processed with Fisher's exact test, one-way analysis of variance, covariance analysis, paired test, and LSD test. (1) The gross observation showed that before debridement there was a certain amount of necrotic tissue and little granulation tissue in the wounds of patients in all the 3 groups. On PTD 7, new granulation tissue was found in the wounds of patients in all the 3 groups, and in group C its amount was the largest. (2) On PTD 7, the granulation tissue coverage rate of wounds in pa- tients of group C was higher than that of group A or B ( P <0.05 or P <0.01). (3) On PTD 7, HE staining showed that there appeared more abundant new born microvessels and fibroblasts in the wounds of patients in group C than those in groups A and B; Masson staining showed that there was more abundant fresh collagen distributed orderly in the wounds of patients in group C compared with group A or B. (4) On PTD 7, it was found that partial pressure of oxygen of the skin around the wounds in patients of group C [(40.7 +/- 4.1) mmHg, 1 mmHg = 0.133 kPa] was higher than that of group A [ (35.0 +/- 3.1) mmHg] or B [(35.4 +/- 2.7) mmHg, with P values below 0.01]; the partial pressure of oxygen of the skin around the wounds of patients in all the 3 groups was increased significantly compared with that before treatment (with values from 10.38 to 22.52, P values below 0.01). (5) On PTD 7, the expression of VECF in the wounds of patients in group C was higher than that in group A or B ( P <0.05 or P < 0.01). (6) On PTD 7, the number of type I macrophages in granulation tissue of patients was respectively 14.3 +/- 2.3, 11.5 +/- 3.0, and 10.7 +/- 2.3 per 400 times vision field in groups A , B, and C ( F = 25.14, P < 0.01), while the number in group C was less than that in group A or B ( P < 0.05 or P < 0.01). Compared with that before treatment, the number of type I macrophages was significantly decreased on PTD 7 in all the 3 groups (with values from 14.76 to 23. 73, P values below 0. 01). On PTD 7, the number of type II macrophages in granulation tissue of patients was respectively 32.7 +/- 3.2, 35.1 +/- 3.3 , and 41.3 +/- 3.2 per 400 times vision field in groups A, B, and C ( F = 81.10, P < 0.01), and the number in group C was lager than that in group A or B ( with P values below 0. 01). Compared with that before treatment, the number of type II macrophages in all the 3 groups was significantly increased (with t values from -69.34 to -47.95, P values below 0.01). VSD combined with irrigation of oxygen loaded fluid can raise the partial pressure of oxygen of the skin around the wounds effectively, promoting the transition of macrophages from type I to type II, thus it may promote the growth of granulation tissue, resulting in a better recipient for skin grafting or epithelization.

  16. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.

    PubMed

    Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M

    2017-11-01

    This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Q c,max , whith differents oxygen tensions (high and low p c ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Q c,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10 -4 cm 3 of O 2 /cm 3 tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2269-2281, 2017. © 2016 Wiley Periodicals, Inc.

  17. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    PubMed

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  18. [The influence of oxygen partial pressure change and vascularization of rabbit wound through negative pressure wound therapy].

    PubMed

    Yang, Fan; Hu, Duan; Bai, Xiang-jun; Zhang, Kun; Li, Ren-jie; Xue, Chen-chen

    2012-07-01

    To investigate the effect of vacuum sealing drainage (VSD) on variation of oxygen partial pressure (PtO2) and vascularization. The 12 cases of rabbit's wound models were undergoing the VSD (vacuum group, n = 6) or conventional therapy (conventional group, n = 6). Variation of PtO2 was measured by oxygen partial pressure admeasuring apparatus, expression of hypoxia inducible factor 1α (HIF-1α) mRNA was measured by real-time fluorescent quantitative PCR, content of vascular endothelial growth factor (VEGF) was measured by ELISA after tissue homogenate in 7 days. Vascular endothelial cell (VEC) and new blood capillary (NBC) of hematoxylin-eosin slice of tissue were counted by using light microscope. Average value of PtO2 of vacuum group was significant lower than conventional group (t = -99.780 to -5.305, P < 0.01). Expression of HIF-1α (30 minutes, 1, 6, 12 hours were 3.11 ± 0.07, 3.68 ± 0.26, 4.16 ± 0.13 and 3.91 ± 0.26 respectively) and content of VEGF (30 minutes, 1, 6, 12 hours were 103.3 ± 2.4, 134.2 ± 9.0, 167.8 ± 3.8 and 232.1 ± 9.5 respectively) of vacuum group were increased after 30 minutes and significant lower than conventional group (t = 13.038 - 80.208, P < 0.01), and both of them were reduced after 24 hours (P < 0.05). Counting numbers of VEC (2.47 ± 0.45 to 4.70 ± 0.38) and NBC (1.33 ± 0.49 to 4.33 ± 0.68) of vacuum group were increased at the same time-point and significant higher than conventional group (t = -0.670 to 16.500, P < 0.05). PtO2 of wound surface could be reduced significantly by VSD. Expression of HIF-1α and content of VEGF were increased by VSD for enhancing differentiated state of VEC and construction of NBC, which were better for vascularization and wound healing.

  19. DFT Studies on Interaction between Lanthanum and Hydroxyamide

    NASA Astrophysics Data System (ADS)

    Pati, Anindita; Kundu, T. K.; Pal, Snehanshu

    2018-03-01

    Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.

  20. Mole-rats from higher altitudes have greater thermoregulatory capabilities.

    PubMed

    Broekman, Marna; Bennett, Nigel C; Jackson, Craig R; Scantlebury, Michael

    2006-12-30

    Subterranean mammals (those that live and forage underground) inhabit a challenging microenvironment, with high levels of carbon dioxide and low levels of oxygen. Consequently, they have evolved specialised morphological and physiological adaptations. For small mammals that inhabit high altitudes, the effects of cold are compounded by low oxygen partial pressures. Hence, subterranean mammals living at high altitudes are faced with a uniquely demanding physiological environment, which presumably necessitates additional physiological adjustments. We examined the thermoregulatory capabilities of two populations of Lesotho mole-rat Cryptomys hottentotus mahali that inhabit a 'low' (1600 m) and a 'high' (3200 m) altitude. Mole-rats from the high altitude had a lower temperature of the lower critical point, a broader thermoneutral zone, a lower thermal conductance and greater regulatory non-shivering thermogenesis than animals from the lower altitude. However, minimum resting metabolic rate values were not significantly different between the populations and were low compared with allometric predictions. We suggest that thermoregulatory costs may in part be met by animals maintaining a low resting metabolic rate. High-altitude animals may adjust to their cooler, more oxygen-deficient environment by having an increased non-shivering thermogenesis whilst maintaining low thermal conductance.

  1. Antioxidant Activity of Oxygen Evolving Enhancer Protein 1 Purified from Capsosiphon fulvescens.

    PubMed

    Kim, Eun-Young; Choi, Youn Hee; Lee, Jung Im; Kim, In-Hye; Nam, Taek-Jeong

    2015-06-01

    This study was conducted to determine the antioxidant activity of a protein purified from Capsosiphon fulvescens. The purification steps included sodium acetate (pH 6) extraction and diethylaminoethyl-cellulose, reversed phase Shodex C4P-50 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the molecular weight of the purified protein was 33 kDa. The N-terminus and partial peptide amino acid sequence of this protein was identical to the sequence of oxygen evolving enhancer (OEE) 1 protein. The antioxidant activity of the OEE 1 was determined in vitro using a scavenging test with 4 types of reactive oxygen species (ROS), including the 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical, superoxide anion, and hydrogen peroxide (H2 O2 ). OEE 1 had higher H2 O2 scavenging activity, which proved to be the result of enzymatic antioxidants rather than nonenzymatic antioxidants. In addition, OEE 1 showed less H2 O2 -mediated ROS formation in HepG2 cells. In conclusion, this study demonstrates that OEE 1 purified from C. fulvescens is an excellent antioxidant. © 2015 Institute of Food Technologists®

  2. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organicmore » carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.« less

  3. Complete healing of chronic wounds of a lower leg with haemoglobin spray and regeneration of an accompanying severe dermatoliposclerosis with intermittent normobaric oxygen inhalation (INBOI): a case report

    PubMed Central

    Barnikol, Wolfgang K. R.; Pötzschke, Harald

    2011-01-01

    A new healing procedure has been developed on the basis of the successful treatment of therapy-resistant hypoxic (and practically anoxic) leg ulcerations located within a heavy dermatoliposclerosis. The procedure involves an initial intra-ulceral application of haemoglobin followed by the intermittent administration of normobaric oxygen via inhalation. Haemoglobin is capable of externally supplying the granulating wound bed with oxygen at low partial pressure in a physiological manner, like a micro lung, so that oxidative stress can be avoided. A long-term daily administration of oxygen from within – including the peri-ulceral skin – is achieved by intermittent normobaric oxygen inhalation (INBOI) regularly throughout the day in the form of 1-hour sessions. Using this combined healing treatment during haemoglobin applications the ulcerations healed within about 1 month, and subsequently with INBOI therapy within further approx. 4 months the peri-ulceral skin regenerated as far as the oxygenation status was concerned: The peri-ulceral transcutaneous oxygen partial pressure (tcPO2) of zero (measured during breathing of normal air) rose to a satisfactory value of approx. 35 mmHg. After 28 months of treatment, the completely hypoxic and degenerated skin on the leg had practically returned to normal with a PO2 of 45 mmHg. Furthermore, the skin dermatoliposclerosis regressed. The skin regeneration was long-lasting, which was probably related to cellular tissue regeneration with an increase in the capillary density, whereby it had to be maintained by regular oxygen inhalation (INBOI maintaining treatment). By unintended intra-individual therapy variations it is evidenced that local hypoxia was the reason for skin degeneration: 3 x 1 h oxygen inhalation were sufficient for the healing treatment; 2 x 1 h sufficed for maintenance, whereas 2 x 0.5 h did not. The new procedure carries practically no risks, is simple, cheap and effective. Whereas the application of haemoglobin requires professional supervision, the oxygen inhalation can be carried out at home following initial guidance and monitoring by a physician. Using this novel method, the therapy-resistant ulceration could be closed within 5 months, during which daily outpatient care was only necessary for 1 month. The successful outcome of the treatment in terms of improvement of oxygen supply can monitored at any time using peri-ulceral tcPO2 measurements, whereby, due to the inhomogeneity of the values, measurements at a minimum of two locations at the wound edge are strongly recommended and more measurements at more skin locations would be preferable. Besides its use in the healing of ulcers, the new procedure is also suitable for the prevention of ulceration development (prophylactic INBOI treatment) in skin rendered susceptible due to the presence of hypoxia. Here, peri-ulceral transcutaneous oxygen partial pressures of below 10 mmHg should be considered as being critical and are an indication for a prophylactic oxygen inhalation treatment. The new procedure may also be suitable even before the peri-ulceral oxygen partial pressure falls below 10 mmHg. Four measures for rehabilitation, conservation, and prevention with regard to a healed chronic wound are proposed. PMID:21468328

  4. Evaluation of the protective efficiency of a new oxygen mask for aircraft passenger use to 40,000 feet.

    DOT National Transportation Integrated Search

    1980-10-01

    This report describes the methods used in the evaluation of a new continuous-flow, phase-dilution passenger oxygen mask for compliance to FAA technical Standard Order (TSO)-C64 requirements. Data presented include end expiratory partial pressures for...

  5. Regulation of Redox Signaling by Selenoproteins

    USDA-ARS?s Scientific Manuscript database

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced...

  6. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    USGS Publications Warehouse

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the center of the LVC. Conversely, the ??18O values of the rhyodacitic rocks suggest that the continental crust in the melt generation zones beneath the LVC has been substantially modified by intrusion of mantle-derived basaltic magmas, with the degree of hybridization ranging on a molar oxygen basis from approximately 60% at distances up to 12 km from the center of the system to 97% directly beneath the focus region. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction-related basaltic magmas. ?? The Author 2008. Published by Oxford University Press. All rights reserved.

  7. Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering.

    PubMed

    Brockmann, D; Morgenroth, E

    2010-03-01

    In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions.

    PubMed

    Brighenti, Chiara; Gnudi, Gianni; Avanzolini, Guido

    2003-05-01

    This paper presents a mathematical model of the oxygen alveolo-capillary exchange to provide the capillary oxygen partial pressure profile in normal and pathological conditions. In fact, a thickening of the blood-gas barrier, heavy exercise or a low oxygen partial pressure (PO2) in the alveolar space can reduce the O2 alveolo-capillary exchange. Since the reversible binding between haemoglobin and oxygen makes it impossible to determine the closed form for the mathematical description of the PO2 profile along the pulmonary capillaries, an approximate analytical solution of the capillary PO2 profile is proposed. Simulation results are compared with the capillary PO2 profile obtained by numerical integration and by a piecewise linear interpolation of the oxyhaemoglobin dissociation curve. Finally, the proposed model is evaluated in a large range of physiopathological diffusive conditions. The good fit to numerical solutions in all experimental conditions seems to represent a substantial improvement with respect to the approach based on a linear approximation of the oxyhaemoglobin dissociation curve, and makes this model a candidate to be incorporated into the integrated descriptions of the entire respiratory system, where the datum of primary interest is the value of end capillary PO2.

  9. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    NASA Astrophysics Data System (ADS)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  10. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  11. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID:28521045

  12. SYNTHESIZING ALCOHOLS AND KETONES BY PHOTOINDUCED CATALYTIC PARTIAL-OXIDATION OF HYDROCARBONS IN TI02 FILM REACTORS PREPARED BY THREE DIFFERENT METHODS

    EPA Science Inventory

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV irradiated titanium dioxide films in the presence of molecular oxygen at ambient temperatures and pressures was studied. Three different coating methodologies (dip coating using titanium isopropoxide an...

  13. Predicting the Effects of Coastal Hypoxia on Vital Rates of the Planktonic Copepod Acartia tonsa Dana

    PubMed Central

    Elliott, David T.; Pierson, James J.; Roman, Michael R.

    2013-01-01

    We describe a model predicting the effects of low environmental oxygen on vital rates (egg production, somatic growth, and mortality) of the coastal planktonic copepod Acartia tonsa. Hypoxic conditions can result in respiration rate being directly limited by oxygen availability. We hypothesized that A. tonsa egg production, somatic growth, and ingestion rates would all respond in a similar manner to low oxygen conditions, as a result of oxygen dependent changes in respiration rate. Rate data for A. tonsa egg production, somatic growth, and ingestion under low environmental oxygen were compiled from the literature and from supplementary experiments. The response of these rates to oxygen was compared by converting all to the analogous units in terms of oxygen utilization, which we termed analogous respiration rate. These analogous respiration rates, along with published measurements of respiration rates, were used to parameterize and evaluate the relationship between A. tonsa respiration rate and environmental oxygen. At 18°C, our results suggest that A. tonsa experiences sub-lethal effects of hypoxia below an oxygen partial pressure of 8.1 kPa (∼3.1 mg L−1 = 2.3 mL L−1). The results of this study can be used to predict the effects of hypoxia on A. tonsa growth and mortality as related to environmental temperature and oxygen partial pressure. Such predictions will be useful as a way to incorporate the effects of coastal hypoxia into population, community, or ecosystem level models that include A. tonsa. This approach can also be used to characterize the effects of hypoxia on other aquatic organisms. PMID:23691134

  14. Properties of Cast Films Made from Different Ratios of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol

    PubMed Central

    Schmid, Markus

    2013-01-01

    Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonthuis, Douwe Jan, E-mail: douwe.bonthuis@physics.ox.ac.uk; Mamatkulov, Shavkat I.; Netz, Roland R.

    We optimize force fields for H{sub 3}O{sup +} and OH{sup −} that reproduce the experimental solvation free energies and the activities of H{sub 3}O{sup +} Cl{sup −} and Na{sup +} OH{sup −} solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H{sub 3}O{sup +} force field is 0.8 ± 0.1|e|—significantly higher than the value typically used for nonpolarizable water models and H{sub 3}O{sup +} force fields. In contrast,more » the optimal partial charge on the hydrogen atom of OH{sup −} turns out to be zero. Standard combination rules can be used for H{sub 3}O{sup +} Cl{sup −} solutions, while for Na{sup +} OH{sup −} solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.« less

  16. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  17. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOEpatents

    Schwartz, Michael; White, James H.; Sammels, Anthony F.

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  18. Comments on the interaction of materials with atomic oxygen

    NASA Technical Reports Server (NTRS)

    Torre, Larry P.; Pippin, H. Gary

    1987-01-01

    An explanation of the relative resistance of various materials to attack by atomic oxygen is presented. Data from both ground based and on-orbit experiments is interpreted. The results indicate the importance of bond strengths, size and structure of pendant groups, and fluorination to the resistance of certain polymers to atomic oxygen. A theory which provides a partial explanation of the degradation of materials in low Earth orbit due to surface recombination of oxygen atoms is also included. Finally, a section commenting on mechanisms of material degradation is provided.

  19. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Garth A.; Ge Zhao, Alice; Usui, Marcia

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygenmore » partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the detrimental impact of biofilms on wound healing.« less

  20. Nutrition and Resistance to Climatic Stress; With Particular Reference to Man

    DTIC Science & Technology

    1949-11-01

    significantly to o~rational efficiency, or may reduce significantly the hazard of explosive decompression resulting from combat, when seconds of...the low 1 partial pressure of oxygen in the inspired air is a type of climatic stress presenting a serious hazard to the preservation of...oxygen is a complete defense against this hazard except in combat or in accident. The breath- ing of pure oxygen in an airplane cabin not so

  1. Water pollution and income relationships: A seemingly unrelated partially linear analysis

    NASA Astrophysics Data System (ADS)

    Pandit, Mahesh; Paudel, Krishna P.

    2016-10-01

    We used a seemingly unrelated partially linear model (SUPLM) to address a potential correlation between pollutants (nitrogen, phosphorous, dissolved oxygen and mercury) in an environmental Kuznets curve study. Simulation studies show that the SUPLM performs well to address potential correlation among pollutants. We find that the relationship between income and pollution follows an inverted U-shaped curve for nitrogen and dissolved oxygen and a cubic shaped curve for mercury. Model specification tests suggest that a SUPLM is better specified compared to a parametric model to study the income-pollution relationship. Results suggest a need to continually assess policy effectiveness of pollution reduction as income increases.

  2. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations.

    PubMed

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-04-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

  3. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations

    PubMed Central

    Karrasch, Nicole M.; Hubbell, John A.E.; Aarnes, Turi K.; Bednarski, Richard M.; Lerche, Phillip

    2015-01-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia. PMID:25829559

  4. On Defect Cluster Aggregation and Non-Reducibilty in Tin-Doped Indium Oxide

    NASA Astrophysics Data System (ADS)

    Warschkow, Oliver; Ellis, Donald E.; Gonzalez, Gabriela; Mason, Thomas O.

    2003-03-01

    The conductivity of tin-doped indium oxide (ITO), a transparent conductor, is critically dependent on the amount of tin-doping and oxygen partial pressure during preparation and annealing. Frank and Kostlin (Appl. Phys. A 27 (1982) 197-206) rationalized the carrier concentration dependence by postulating the formation of two types of neutral defect clusters at medium tin-doping levels: "Reducible" and "non-reducible" defect clusters; so named to indicate their ability to create carriers under reduction. According to Frank and Kostlin, both are composed of a single oxygen interstitial and two tin atoms substituting for indium, positioned in non-nearest and nearest coordination, respectively. This present work, seeking to distinguish reducible and non-reducible clusters by use of an atomistic model, finds only a weak correlation of oxygen interstitial binding energies with the relative positioning of dopants. Instead, the number of tin-dopants in the vicinity of the interstitial has a much larger effect on how strongly it is bound, a simple consequence of Coulomb interactions. We postulate that oxygen interstitials become non-reducible when clustered with three or more Sn_In. This occurs at higher doping levels as reducible clusters aggregate and share tin atoms. A simple probabilistic model, estimating the average number of clusters so aggregated, provides a qualitatively correct description of the carrier density in reduced ITO as a function of Sn doping level.

  5. High-Performanced Cathode with a Two-Layered R-P Structure for Intermediate Temperature Solid Oxide Fuel Cells.

    PubMed

    Huan, Daoming; Wang, Zhiquan; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Lu, Yalin

    2016-02-01

    Driven by the mounting concerns on global warming and energy crisis, intermediate temperature solid-oxide fuel cells (IT-SOFCs) have attracted special attention for their high fuel efficiency, low toxic gas emission, and great fuel flexibility. A key obstacle to the practical operation of IT-SOFCs is their sluggish oxygen reduction reaction (ORR) kinetics. In this work, we applied a new two-layered Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7-δ (SFO), as the material for oxygen ion conducting IT-SOFCs. Density functional theory calculation suggested that SFO has extremely low oxygen ion formation energy and considerable energy barrier for O(2-) diffusion. Unfortunately, the stable SrO surface of SFO was demonstrated to be inert to O2 adsorption and dissociation reaction, and thus restricts its catalytic activity toward ORR. Based on this observation, Co partially substituted SFO (SFCO) was then synthesized and applied to improve its surface vacancy concentration to accelerate the oxygen adsorptive reduction reaction rate. Electrochemical performance results suggested that the cell using the SFCO single phase cathode has a peak power density of 685 mW cm(-2) at 650 °C, about 15% higher than those when using LSCF cathode. Operating at 200 mA cm(-2), the new cell using SFCO is quite stable within the 100-h' test.

  6. Hyperbaric oxygen therapy may overcome nitric oxide blockage during cyanide intoxication.

    PubMed

    Polzik, Peter; Hansen, Marco Bo; Olsen, Niels Vidiendal; Grøndal, Olav; Hyldegaard, Ole

    2017-01-01

    To determine the effects of a blockade of nitric oxide (NO) synthesis on hyperbaric oxygen (HBO₂) therapy during cyanide (CN) intoxication. 39 anesthetized female Sprague-Dawley rats were exposed to CN intoxication (5.4 mg/kg intra-arterially) with or without previous nitric oxide synthase (NOS) inhibition by L-NG-nitroarginine methyl ester (L-NAME) injection (40 mg/kg intraperitoneally). Subsequently, either HBO₂ therapy (284 kPa/90 minutes), normobaric oxygen therapy (100% oxygen/90 minutes) or nothing was administered. Intracerebral microdialysis was used to measure the interstitial brain concentration of lactate, glucose, glycerol and lactate/pyruvate ratios. L-NAME potentiated CN intoxication by higher maximum and prolonged lactate (in mM: 0. 5 ± 0.3 vs. 0.7 ± 0.4, P ⟨ 0.005) concentrations compared with solely CN-intoxicated rats. The same trend was found for mean glucose, glycerol and lactate/pyruvate ratio levels. During HBO₂ treatment a sustained reduction occurred in mean lactate levels (in mM: 0.5 ± 0.5 vs. 0.7 ± 0.4, P ⟨ 0.01) regardless of NOS blockade by L-NAME. The same trend was found for mean glucose and glycerol levels. The results suggest that blocking NOS using L-NAME can worsen acute CN intoxication. HBO₂ treatment can partially overcome this block and continue to ameliorate CN intoxication.

  7. High altitude hypoxia, a mask and a Street. Donation of an aviation BLB oxygen mask apparatus from World War 2.

    PubMed

    Cooper, M G; Street, N E

    2017-03-01

    The history of hypoxia prevention is closely inter-related with high altitude mountain and aviation physiology. One pioneering attempt to overcome low inspired oxygen partial pressures in aviation was the BLB mask-named after the three designers-Walter M Boothby, W Randolph Lovelace II and Arthur H Bulbulian. This mask and its variations originated just prior to World War 2 when aircraft were able to fly higher than 10,000 feet and pilot hypoxia affecting performance was an increasing problem. We give a brief description of the mask and its designers and discuss the donation of a model used by the British War Office in October 1940 and donated to the Harry Daly Museum at the Australian Society of Anaesthetists by the family of Dr Fred Street. Dr Street was a pioneering paediatric surgeon in Australia and served as a doctor in the Middle East and New Guinea in World War 2. He received the Military Cross.

  8. Olive polyphenol effects in a mouse model of chronic ethanol addiction.

    PubMed

    Carito, Valentina; Ceccanti, Mauro; Cestari, Vincenzo; Natella, Fausta; Bello, Cristiano; Coccurello, Roberto; Mancinelli, Rosanna; Fiore, Marco

    2017-01-01

    Alcohol addiction elicits oxidative imbalance and it is well known that polyphenols possess antioxidant properties. We investigated whether or not polyphenols could confer a protective potential against alcohol-induced oxidative stress. We administered (per os) for two months 20 mg/kg of olive polyphenols containing mostly hydroxytyrosol in alcoholic adult male mice. Hydroxytyrosol metabolites as hydroxytyrosol sulfate 1 and hydroxytyrosol sulfate 2 were found in the serum of mice administered with polyphenols with the highest amount in animals treated with both polyphenols and alcohol. Oxidative stress was evaluated by FORT (free oxygen radical test) and FORD (free oxygen radical defense) tests. Alcoholic mice showed a worse oxidative status than nonalcoholic mice (higher FORT and lower FORD) but polyphenol supplementation partially counteracted the alcohol pro-oxidant effects, as evidenced by FORT. A better understanding of the antioxidant protection provided by polyphenols might be of primary interest for drug discovery and dietary-based prevention of the damage associated with chronic alcohol abuse. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  10. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  11. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  12. Study of the tritium behavior on the surface of Li 2O by means of work function measurement

    NASA Astrophysics Data System (ADS)

    Yokota, Toshihiko; Suzuki, Atsushi; Yamaguchi, Kenji; Terai, Takayuki; Yamawaki, Michio

    2000-12-01

    In the present study, the work function change of Li 2O due to change of oxygen potential of sweep gas was investigated by measuring the contact potential difference (CPD) between Li 2O and Pt electrodes with a so-called `high temperature Kelvin probe'. The CPD change for Li 2O was generally insensitive to the oxygen partial pressure in the sweep gas. A similar insensitivity was also observed for LiAlO 2. Although the CPD change of Li 2O was about 200 mV when the oxygen partial pressure was changed by as much as 15 orders of magnitude, such was not the case for LiAlO 2. By comparing with the results obtained for other Li-bearing ceramics, it was estimated to be caused by the adsorption/desorption processes of water vapor contained in the sweep gas.

  13. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  14. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  15. Hypoxia and Coriolis Illusion in Pilots During Simulated Flight.

    PubMed

    Kowalczuk, Krzysztof P; Gazdzinski, Stefan P; Janewicz, Michał; Gąsik, Marek; Lewkowicz, Rafał; Wyleżoł, Mariusz

    2016-02-01

    Pilots' vision and flight performance may be impeded by spatial disorientation and high altitude hypoxia. The Coriolis illusion affects both orientation and vision. However, the combined effect of simultaneous Coriolis illusion and hypoxia on saccadic eye movement has not been evaluated. A simulated flight was performed by 14 experienced pilots under 3 conditions: once under normal oxygen partial pressure and twice under reduced oxygen partial pressures, reflecting conditions at 5000 m and 6000 m (16,404 and 19,685 ft), respectively. Eye movements were evaluated with a saccadometer. At normal oxygen pressure, Coriolis illusion resulted in 55% and 31% increases in mean saccade amplitude and duration, respectively, but a 32% increase in mean saccade frequency was only noted for saccades smaller than the angular distance between cockpit instruments, suggesting an increase in the number of correction saccades. At lower oxygen pressures a pronounced increase in the standard deviation of all measures was noticed; however, the pattern of changes remained unchanged. Simple measures of saccadic movement are not affected by short-term hypoxia, most likely due to compensatory mechanisms.

  16. Pilot study assessment of dynamic vascular changes in breast cancer with near-infrared tomography from prospectively targeted manipulations of inspired end-tidal partial pressure of oxygen and carbon dioxide.

    PubMed

    Jiang, Shudong; Pogue, Brian W; Michaelsen, Kelly E; Jermyn, Michael; Mastanduno, Michael A; Frazee, Tracy E; Kaufman, Peter A; Paulsen, Keith D

    2013-07-01

    The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC) was analyzed. Dynamic NIRS imaging was performed at different time points during treatment. The maximum tumor dynamic changes in deoxy-hemoglobin increased from less than 7% at cycle 1, day 5 (C1, D5) to 17% at (C1, D28), which indicated a complete response to NAC early during treatment and was subsequently confirmed pathologically at the time of surgery.

  17. Phase relations in the system Cu-Ho-O and stability of Cu{sub 2}Ho{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.; Jacob, K.T.

    1994-01-01

    The phase relations in the system Cu-Ho-O have been determined at 1300 K using X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only one ternary compound, Cu{sub 2}Ho{sub 2}O{sub 5}, was found to be stable. The Gibbs free energy of formation of this compound has been measured. Since the formation is endothermic, Cu{sub 2}Ho{sub 2}O{sub 5} becomes thermodynamically unstable with respect to CuO and Ho{sub 2}O{sub 3} below 810 K. When the oxygen partial pressure over Cu{sub 2}Ho{sub 2}O{sub 5} is lowered, it decomposes. The decomposition temperature at anmore » oxygen partial pressure of 1.52 X 10{sup 4} Pa was measured using a combined DTA-TGA apparatus. Based on these results, an oxygen potential diagram for the system Cu-Ho-O at 1300 K is presented.« less

  18. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets.

    PubMed

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Rasmussen, Rune; Miles, James Edward; Poulsen, Helle Harding; Moltke, Finn Borgbjerg; Eriksen, Thomas

    2018-02-08

    Vasopressors are frequently used to increase blood pressure in order to ensure sufficient cerebral perfusion and oxygenation (CPO) during hypotensive periods in anaesthetized patients. Efficacy depends both on the vasopressor and anaesthetic protocol used. Propofol-remifentanil total intravenous anaesthesia (TIVA) is common in human anaesthesia, and dexmedetomidine is increasingly used as adjuvant to facilitate better haemodynamic stability and analgesia. Little is known of its interaction with vasopressors and subsequent effects on CPO. This study investigates the CPO response to infusions of norepinephrine and phenylephrine in piglets during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia. Sixteen healthy female piglets (25-34 kg) were randomly allocated into a two-arm parallel group design with either normal blood pressure (NBP) or induced low blood pressure (LBP). Anaesthesia was induced with propofol without premedication and maintained with propofol-remifentanil TIVA, and finally supplemented with continuous infusion of dexmedetomidine. Norepinephrine and phenylephrine were infused in consecutive intervention periods before and after addition of dexmedetomidine. Cerebral perfusion measured by laser speckle contrast imaging was related to cerebral oxygenation as measured by an intracerebral Licox probe (partial pressure of oxygen) and transcranial near infrared spectroscopy technology (NIRS) (cerebral oxygen saturation). During propofol-remifentanil anaesthesia, increases in blood pressure by norepinephrine and phenylephrine did not change cerebral perfusion significantly, but cerebral partial pressure of oxygen (Licox) increased following vasopressors in both groups and increases following norepinephrine were significant (NBP: P = 0.04, LBP: P = 0.02). In contrast, cerebral oxygen saturation (NIRS) fell significantly in NBP following phenylephrine (P = 0.003), and following both norepinephrine (P = 0.02) and phenylephrine (P = 0.002) in LBP. Blood pressure increase by both norepinephrine and phenylephrine during propofol-remifentanil-dexmedetomidine anaesthesia was not followed by significant changes in cerebral perfusion. Licox measures increased significantly following both vasopressors in both groups, whereas the decreases in NIRS measures were only significant in the NBP group. Cerebral partial pressure of oxygen measured by Licox increased significantly in concert with the vasopressor induced increases in blood pressure in healthy piglets with both normal and low blood pressure. Cerebral oxygenation assessed by intracerebral Licox and transcranial NIRS showed opposing results to vasopressor infusions.

  19. Elucidating mechanisms for insect body size: partial support for the oxygen-dependent induction of moulting hypothesis.

    PubMed

    Kivelä, Sami M; Viinamäki, Sonja; Keret, Netta; Gotthard, Karl; Hohtola, Esa; Välimäki, Panu

    2018-01-25

    Body size is a key life history trait, and knowledge of its mechanistic basis is crucial in life history biology. Such knowledge is accumulating for holometabolous insects, whose growth is characterised and body size affected by moulting. According to the oxygen-dependent induction of moulting (ODIM) hypothesis, moult is induced at a critical mass at which oxygen demand of growing tissues overrides the supply from the tracheal respiratory system, which principally grows only at moults. Support for the ODIM hypothesis is controversial, partly because of a lack of proper data to explicitly test the hypothesis. The ODIM hypothesis predicts that the critical mass is positively correlated with oxygen partial pressure ( P O 2 ) and negatively with temperature. To resolve the controversy that surrounds the ODIM hypothesis, we rigorously test these predictions by exposing penultimate-instar Orthosia gothica (Lepidoptera: Noctuidae) larvae to temperature and moderate P O 2  manipulations in a factorial experiment. The relative mass increment in the focal instar increased along with increasing P O 2 , as predicted, but there was only weak suggestive evidence of the temperature effect. Probably owing to a high measurement error in the trait, the effect of P O 2  on the critical mass was sex specific; high P O 2  had a positive effect only in females, whereas low P O 2  had a negative effect only in males. Critical mass was independent of temperature. Support for the ODIM hypothesis is partial because of only suggestive evidence of a temperature effect on moulting, but the role of oxygen in moult induction seems unambiguous. The ODIM mechanism thus seems worth considering in body size analyses. © 2018. Published by The Company of Biologists Ltd.

  20. The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    PubMed

    Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E

    2008-09-01

    Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.

  1. Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    PubMed

    Santhirapala, Vatshalan; Williams, Louisa C; Tighe, Hannah C; Jackson, James E; Shovlin, Claire L

    2014-01-01

    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity. 165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100. There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up. Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses.

  2. Arterial Oxygen Content Is Precisely Maintained by Graded Erythrocytotic Responses in Settings of High/Normal Serum Iron Levels, and Predicts Exercise Capacity: An Observational Study of Hypoxaemic Patients with Pulmonary Arteriovenous Malformations

    PubMed Central

    Santhirapala, Vatshalan; Williams, Louisa C.; Tighe, Hannah C.; Jackson, James E.; Shovlin, Claire L.

    2014-01-01

    Background Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity. Methodology 165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100. Principal Findings There was wide variation in SaO2 on air (78.5–99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up. Significance Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses. PMID:24637882

  3. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma

    DTIC Science & Technology

    2017-02-01

    ambient conditions such as cabin pressure and temperature could potentially have detrimental effects on the already vulnerable brain. There is evidence...long-range aero-medical evacuation has adverse effects on brain blood flow and tissue oxygenation , as well as lung function in swine models of...differences in partial pressure of arterial oxygen or oxygen delivery, extraction and consumption data. This suggests that in this particular model

  4. The interaction of Ag with Bi-Pb-Sr-Ca-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Song, K. H.; Liu, H. K.; Sorrell, C. C.; Apperley, M. H.; Gouch, A. J.; Savvides, N.; Hensley, D. W.

    1989-10-01

    Bi-Pb-Sr-Ca-Cu-O superconductor compounds have been doped with up to 30 wt% Ag, sintered under variable oxygen partial pressure, and characterised in terms of the electrical and crystallographic behaviour. In contrast to previous reports that claim that Ag is the only metal non-poisoning to the superconductivity of Bi-Sr-Ca-Cu-O (BSCCO), it has been found that Ag additions to Bi-Pb-Sr-Ca-Cu-O depress Tc and Jc drastically and cause a large decrease in lattice parameters when samples are treated in air or pure oxygen. However, the lattice parameters, Tc and Jc remain unaffected by Ag additions when samples are heat treated in 0.030-0.067 atm oxygen. It is clear that the Ag reacts with and destabilises the superconducting phase when the samples are treated in air or pure oxygen while, when the samples are heat treated in low oxygen partial pressures, the Ag remains as an isolated inert metal phase that improves the weak links between the grains. This discovery clearly shows the feasibility of Ag-clad superconductor wire. For Ag-clad superconductor tape of 0.1 mm 2 cross sectional area heat treated in air, Jc was measured to be 54 A/cm 2. The same specimen sintered in 0.067 atm oxygen showed that the Jc increased to 2078 A/cm 2.

  5. A theoretical study of the stability of anionic defects in cubic ZrO 2 at extreme conditions

    DOE PAGES

    Samanta, Amit

    2016-02-19

    Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO 2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formationmore » free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.« less

  6. Circulatory limits to oxygen supply during an acute temperature increase in the Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Clark, Timothy D; Sandblom, Erik; Cox, Georgina K; Hinch, Scott G; Farrell, Anthony P

    2008-11-01

    This study was undertaken to provide a comprehensive set of data relevant to disclosing the physiological effects and possible oxygen transport limitations in the Chinook salmon (Oncorhynchus tshawytscha) during an acute temperature change. Fish were instrumented with a blood flow probe around the ventral aorta and catheters in the dorsal aorta and sinus venosus. Water temperature was progressively increased from 13 degrees C in steps of 4 degrees C up to 25 degrees C. Cardiac output increased from 29 to 56 ml.min(-1).kg(-1) between 13 and 25 degrees C through an increase in heart rate (58 to 105 beats/min). Systemic vascular resistance was reduced, causing a stable dorsal aortic blood pressure, yet central venous blood pressure increased significantly at 25 degrees C. Oxygen consumption rate increased from 3.4 to 8.7 mg.min(-1).kg(-1) during the temperature increase, although there were signs of anaerobic respiration at 25 degrees C in the form of increased blood lactate and decreased pH. Arterial oxygen partial pressure was maintained during the heat stress, although venous oxygen partial pressure (Pv(O(2))) and venous oxygen content were significantly reduced. Cardiac arrhythmias were prominent in three of the largest fish (>4 kg) at 25 degrees C. Given the switch to anaerobic metabolism and the observation of cardiac arrhythmias at 25 degrees C, we propose that the cascade of venous oxygen depletion results in a threshold value for Pv(O(2)) of around 1 kPa. At this point, the oxygen supply to systemic and cardiac tissues is compromised, such that the oxygen-deprived and acidotic myocardium becomes arrhythmic, and blood perfusion through the gills and to the tissues becomes compromised.

  7. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses.

    PubMed

    Compañ, Vicente; Oliveira, Cristina; Aguilella-Arzo, Marcel; Mollá, Sergio; Peixoto-de-Matos, Sofia C; González-Méijome, José M

    2014-09-04

    We defined the theoretical oxygen tension behind modern scleral contact lenses (CLs) made of different rigid gas permeable (RGP) materials, assuming different thickness of the tear layer behind the lens. A second goal was to show clinically the effect of the postlens tear film on corneal swelling. We simulated the partial pressure of oxygen across the cornea behind scleral CLs made of different lens materials (oxygen permeability Dk, 75-200 barrer) and different thickness (Tav, 100-300 μm). Postlens tear film thicknesses (Tpost-tear) ranging from 150 to 350 μm were considered. Eight healthy subjects were fitted randomly with a scleral lens with a thin and a thick postlens tear layer in two different sessions for a period of 3 hours under open-eye conditions. The CLs with less than 125 barrer of Dk and a thickness over 200 μm depleted the oxygen availability at the lens-cornea interface below 55 mm Hg for a postlens tear film of 150 μm. For a postlens tear film thickness of 350 μm, no combination of material or lens thickness will meet the criteria of 55 mm Hg. Our clinical measures of corneal edema showed that this was significantly higher (P < 0.001, Wilcoxon signed ranks test) with the thicker compared to the thinner Tpost-tear (mean ± SD, 1.66 ± 1.12 vs. 4.27 ± 1.19%). Scleral RGP CLs must be comprised of at least 125 barrer of oxygen permeability and up to 200 μm thick to avoid hypoxic effects even under open eye conditions. Postlens tear film layer should be below 150 μm to avoid clinically significant edema. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Structural features and high-temperature transport in SrFe0.7Mo0.3O3-δ

    NASA Astrophysics Data System (ADS)

    Merkulov, O. V.; Markov, A. A.; Patrakeev, M. V.; Leonidov, I. A.; Shalaeva, E. V.; Tyutyunnik, A. P.; Kozhevnikov, V. L.

    2018-02-01

    The complex oxide SrFe0.7Mo0.3O3-δ was obtained by combustion of the organometallic precursor in air followed by annealing in an argon flow at 1350 °C, and characterized with the help of X-ray and electron diffraction methods. Oxygen nonstoichiometry and electrical conductivity data were collected in the oxygen partial pressure range from 10-19 to 0.5 atm at temperatures 750-950 °C. The as-prepared single phase oxide SrFe0.7Mo0.3O3-δ with the cubic double perovskite structure (SG Fm3m) is shown to undergo a structural transition to the tetragonal double perovskite phase (SG I4mmm) in the result of reducing treatment at pO2 = 10-12 atm and 950 °C. The ordered phases are characterized by a strong anti-site disordering of iron and molybdenum and nearly zero long-range ordering parameter. The maximal concentration of n-type carriers is about four times larger than of p-type carriers in the studied limits of oxygen pressure and temperature. The mobility of p-type carriers is found to vary within 0.02-0.03 cm2 V-1 s-1 with the migration energy of about 0.4 eV, while the n-type mobility being approximately twice higher does not practically depend on temperature. Such features as good electrical conductivity, which can rise up to 40 S cm-1 in reducing conditions and a considerable amount of oxygen vacancies favorable for fast oxygen ion transport are beneficial for application of SrFe0.7Mo0.3O3-δ as anode material in SOFCs and oxygen membrane for hydrogen generation by a water splitting.

  9. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  10. Effectiveness and Safety of High-Flow Nasal Cannula Oxygen Delivery during Bronchoalveolar Lavage in Acute Respiratory Failure Patients.

    PubMed

    Kim, Eun Jin; Jung, Chi Young; Kim, Kyung Chan

    2018-06-19

    Bronchoalveolar lavage (BAL) is a necessary procedure for diagnosis of various lung diseases. High-flow nasal cannula (HFNC) oxygen delivery was recently introduced. This study aimed to investigate the safety and effectiveness of HFNC oxygen supply during BAL procedure in patients with acute respiratory failure (ARF). Patients who underwent BAL while using HFNC at a partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO₂/FiO₂; PF) ratio of 300 or below among patients who had been admitted from March 2013 to May 2017 were retrospectively investigated. Thirty-three BAL procedures were confirmed. Their baseline PF ratio was 166.1±46.7. FiO₂ values before, during, and after BAL were 0.45±0.12, 0.74±0.19, and 0.57±0.14, respectively. Flow (L/min) values before, during, and after BAL were 26.5±20.3, 49.0±7.2, and 40.8±14.2, respectively. Both FiO₂ and flow during and after the procedure were significantly different from those before the procedure (both p<0.001). Oxygen saturation levels before, during, and after BAL measured by pulse oximeter were 94.8±2.9, 94.6±3.5, and 95.2±2.8%, respectively. There were no significant differences in oxygen saturation among the three groups. Complications of BAL procedure included transient hypoxemia, hypotension, and fever. However, there was no endotracheal intubation within 24 hours. Baseline PF ratio in "without HFNC" group was significantly higher than that in "with HFNC" group. There were no differences in complications between the two groups. The use of HFNC during BAL procedure in ARF patients was effective and safe. However, there were no significant differences in oxygen saturation level and complications comparing "without HFNC" group in mild ARF. More studies are needed for moderate to severe ARF patients. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  11. The effect of surface-groundwater interaction on dissolved organic carbon transformation

    NASA Astrophysics Data System (ADS)

    De Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2014-05-01

    The preservation and improvement of water quality in streams is a challenging task, limited by our partial understanding of the coupling between biogeochemical and hydrological processes occurring in stream ecosystems. High potential for biogeochemical activity is found in the hyporheic zone, the saturated sediments where surface water and ground water mixes and degradation activities occur. The aim of the study was to quantifythe effect of losing and gaining flow conditions on the degradation of dissolved organic carbon (DOC). Experiments were conducted in a recirculating flume that is equipped with a drainage system that enables the control on losing and gaining fluxes. The degradation of DOC under losing and gaining conditions was studied by spiking the water with benzoic acid and monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, the spatial and temporal change in oxygen concentrations within the benthic biofilm was measured using a Clark-type oxygen microelectrode. Preliminary results showed that DOC degradation rate was faster under higher overlying water velocity, due to enhanced delivery of DOC to the biofilm. Under both gaining and losing conditions, the DOC degradation was slower than under neutral condition, probably as a consequence of the reduction of the hyporheic exchange zone. Series of oxygen profiles under losing conditions showed a complete depletion of oxygen within the first 3 millimeters of sediment. In contrast, oxygen profiles under gaining condition showed a incomplete consumption of oxygen (usually within 1 mm), followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the size of the active aerobic region within the hyporheic zone is changing dynamically with the flow conditions. The effect of flow conditions on redox zonation in the hyporheic zone is expected to affect a myriad of important reactions and ecological processes and should be incorporated on future models.

  12. Fire-related medical science

    NASA Technical Reports Server (NTRS)

    Knight, Douglas R.

    1987-01-01

    Spacecraft fire safety may be improved by the use of a fire-retardant atmosphere in occupied spaces. Low concentrations of oxygen can protect humans from fire damage by reducing the rate and spread of combustion, but care must be taken to avoid the hypoxic effects of oxygen-lean atmospheres. Crews can live and work in 11 percent oxygen if barometric pressure were adjusted to maintain the partial pressure of oxygen above 16 kPa. Eleven percent oxygen should prevent most types of fires, since 15 percent oxygen retards the combustion of paper and 13 percent oxygen extinguishes pentane flames. Test results indicate that seated humans can perform mental tasks in atmospheres containing 11.5 percent oxygen. Although this strategy of fire safety is under consideration for submarines, it could be adapted to spacecraft once operational procedures define a maximum hyperbaric pressure and fire research defines the effects of reduced oxygen concentrations on combustion in low gravity environments.

  13. Portable Unit for Metabolic Analysis

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.

    2007-01-01

    The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas.

  14. Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb

    NASA Astrophysics Data System (ADS)

    Wang, Daya; Yan, Baijun; Sichen, Du

    2015-04-01

    The activity coefficients of niobium in Cu-Nb melts were measured by equilibrating solid NbO2 with liquid copper under controlled oxygen potentials in the temperature range of 1773 K to 1898 K (1500 °C to 1625 °C). Either CO-CO2 gas mixture or H2-CO2 gas mixture was employed to obtain the desired oxygen partial pressures. Cu-Nb system was found to follow Henry's law in the composition range studied. The temperature dependence of Henry's constant in the Cu-Nb melts could be expressed as follows: The partial molar excess Gibbs energy change of niobium in Cu-Nb melts can be expressed as follows:

  15. Oxygen beams for therapy: advanced biological treatment planning and experimental verification

    NASA Astrophysics Data System (ADS)

    Sokol, O.; Scifoni, E.; Tinganelli, W.; Kraft-Weyrather, W.; Wiedemann, J.; Maier, A.; Boscolo, D.; Friedrich, T.; Brons, S.; Durante, M.; Krämer, M.

    2017-10-01

    Nowadays there is a rising interest towards exploiting new therapeutical beams beyond carbon ions and protons. In particular, 16 O ions are being widely discussed due to their increased LET distribution. In this contribution, we report on the first experimental verification of biologically optimized treatment plans, accounting for different biological effects, generated with the TRiP98 planning system with 16 O beams, performed at HIT and GSI. This implies the measurements of 3D profiles of absorbed dose as well as several biological measurements. The latter includes the measurements of relative biological effectiveness along the range of linear energy transfer values from  ≈20 up to  ≈750 keV μ m-1 , oxygen enhancement ratio values and the verification of the kill-painting approach, to overcome hypoxia, with a phantom imitating an unevenly oxygenated target. With the present implementation, our treatment planning system is able to perform a comparative analysis of different ions, according to any given condition of the target. For the particular cases of low target oxygenation, 16 O ions demonstrate a higher peak-to-entrance dose ratio for the same cell killing in the target region compared to 12 C ions. Based on this phenomenon, we performed a short computational analysis to reveal the potential range of treatment plans, where 16 O can benefit over lighter modalities. It emerges that for more hypoxic target regions (partial oxygen pressure of  ≈0.15% or lower) and relatively low doses (≈4 Gy or lower) the choice of 16 O over 12 C or 4 He may be justified.

  16. Fluorocarbons as oxygen carriers. II. An NMR study of partially or totally fluorinated alkanes and alkenes

    NASA Astrophysics Data System (ADS)

    Ali Hamza, M'Hamed; Serratrice, Guy; Stébé, Marie-José; Delpuech, Jean-Jacques

    Highly fluorinated compounds of the general type R FR H or R FR H'R F, with R F: n-C nF 2 n+1 n = 6, 7, or 8; R H: C 2H 5, CHCH 2, n-C 8H 17; R H': CHCH, CH 2CH 2, are studied either as pure degassed liquids or as solvents of oxygen, using 13C relaxation times T 1 measurements in each case. Comparison of the relaxation data for the degassed liquids with those relative to the analogous n-alkanes provides evidence for slower internal segmental motions in the perfluoroalkyl chains. This rate decrease is shown to arise mainly from purely inertial effects and not from increased rotational potential barriers, thus suggesting similar flexibilities of both hydrocarbon and perfluorocarbon chains. Solubilities of oxygen (in mole fractions) are higher in fluoroalkanes than in previously studied hexafluorobenzene (J-J. Delpuech, M. A. Hamza, G. Serratrice, and M. J. Stebe, J. Chem. Phys.70, 2680 (1979)). Relaxation data are expressed by the variation rates qx of relaxation rates T1-1 per mole fraction of dissolved oxygen. Values of qx. roughly decrease with the total length of the aliphatic chains, and from the ends of the center of each chain, except for C 6F 13CHCHC 6F 13. These results are not consistent with specific attractive oxygen-fluorine forces, the major factor for solubility being the liquid structure of the solvent, mainly determined by the shape of molecules, according to Chandler's viewpoint.

  17. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics

    NASA Astrophysics Data System (ADS)

    Ai, L.; Shi, Z. H.; Yin, W.; Huang, X.

    2015-04-01

    Landscape characteristics are widely accepted as strongly influencing stream water quality in heterogeneous watersheds. Understanding the relationships between landscape and specific water contaminant can greatly improve the predictability of potential contamination and the assessment of contaminant export. In this work, we examined the combined effects of watershed complexity, in terms of land use and physiography, on specific water contaminant across watersheds close to the Danjiangkou Reservoir. The land use composition, land use pattern, morphometric variables and soil properties were calculated at the watershed scale and considered potential factors of influence. Due to high co-dependence of these watershed characteristics, partial least squares regression was used to elucidate the linkages between some specific water contaminants and the 16 selected watershed characteristic variables. Water contaminant maps revealed spatial and seasonal heterogeneity. The dissolved oxygen values in the dry season were higher than those in the wet season, whereas the other contaminant concentrations displayed the opposite trend. The studied watersheds which are influenced strongly by urbanization, showed higher levels of ammonia nitrogen, total phosphorus, potassium permanganate index and petroleum, and lower levels of dissolved oxygen. The urban land use, largest patch index and the hypsometric integral were the dominant factors affecting specific water contaminant.

  18. Metabolic modulation of neuronal gamma-band oscillations.

    PubMed

    Vodovozov, Wadim; Schneider, Justus; Elzoheiry, Shehabeldin; Hollnagel, Jan-Oliver; Lewen, Andrea; Kann, Oliver

    2018-05-28

    Gamma oscillations (30-100 Hz) represent a physiological fast brain rhythm that occurs in many cortex areas in awake mammals, including humans. They associate with sensory perception, voluntary movement, and memory formation and require precise synaptic transmission between excitatory glutamatergic neurons and inhibitory GABAergic interneurons such as parvalbumin-positive basket cells. Notably, gamma oscillations are exquisitely sensitive to shortage in glucose and oxygen supply (metabolic stress), with devastating consequences for higher cognitive functions. Herein, we explored the robustness of gamma oscillations against changes in the availability of alternative energy substrates and amino acids, which is partially regulated by glial cells such as astrocytes. We used organotypic slice cultures of the rat hippocampus expressing acetylcholine-induced persistent gamma oscillations under normoxic recording conditions (20% oxygen fraction). Our main findings are (1) partial substitution of glucose with pyruvate and the ketone body β-hydroxybutyrate increases the frequency of gamma oscillations, even at different stages of neuronal tissue development. (2) Supplementation with the astrocytic neurotransmitter precursor glutamine has no effect on the properties of gamma oscillations. (3) Supplementation with glycine increases power, frequency, and inner coherence of gamma oscillations in a dose-dependent manner. (4) During these treatments switches to other frequency bands or pathological network states such as neural burst firing or synchronized epileptic activity are absent. Our study indicates that cholinergic gamma oscillations show general robustness against these changes in nutrient and amino acid composition of the cerebrospinal fluid; however, modulation of their properties may impact on cortical information processing under physiological and pathophysiological conditions.

  19. Long-term operation of a novel pilot-scale six tanks alternately operating activated sludge process in treating domestic wastewater.

    PubMed

    Mohammed, R N; Abu-Alhail, S; Xi-Wu, L

    2014-08-01

    The performance of a new pilot-scale six tanks activated sludge process has been evaluated for 303 d, receiving real domestic wastewater with a flow rate of 15-24.4 L/h. Partial nitrification via nitrite and microbial community structure were investigated in this system. The result shows that the nitrite accumulation rate was achieved successfully over 94% in the last aerobic compartment through a combination of short hydraulic retention time and low dissolved oxygen (DO) level. Fluorescence in situ hybridization analysis was used to correlate ammonia-oxidizing bacteria (AOB) numbers with nutrient removal via nitrite. It was shown that in response to complete and partial nitrification modes, the numbers of AOB population were 7.7 x 10(7) cells/g mixed liquor suspended solids (MLSS) and 5.31 x 10(8) cells/g MLSS, respectively. The morphology of the sludge indicated that there is a small rod-shaped and spherical cluster which was mainly dominantly bacterial according to scanning electron microscope. Higher pollutant removal efficiencies of 86.2%, 98%, and 96.1%, for total nitrogen, NH4+ - N, and total phosphorus, respectively, were achieved by a long-term operation of the six tanks activated sludge process at a low DO concentration and low chemical oxygen demand to nitrogen ratio which were approximately equal to the complete nitrification-ldenitrification with the addition of an external carbon source at a concentration of 1.5-2.5 mg/L.

  20. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  1. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  2. High-Flow Nasal Oxygen in Patient With Obstructive Sleep Apnea Undergoing Awake Craniotomy: A Case Report.

    PubMed

    Wong, Jaclyn W M; Kong, Amy H S; Lam, Sau Yee; Woo, Peter Y M

    2017-12-15

    Patients with obstructive sleep apnea are frequently considered unsuitable candidates for awake craniotomy due to anticipated problems with oxygenation, ventilation, and a potentially difficult airway. At present, only a handful of such accounts exist in the literature. Our report describes the novel use of high-flow nasal oxygen therapy for a patient with moderate obstructive sleep apnea who underwent an awake craniotomy under deep sedation. The intraoperative application of high-flow nasal oxygen therapy achieved satisfactory oxygenation, maintained the partial carbon dioxide pressure within a reasonable range even during periods of deep sedation, permitted responsive patient monitoring during mapping, and provided excellent patient and surgeon satisfaction.

  3. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

    PubMed Central

    2015-01-01

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165

  4. The Ratio of Partial Pressure Arterial Oxygen and Fraction of Inspired Oxygen 1 Day After Acute Respiratory Distress Syndrome Onset Can Predict the Outcomes of Involving Patients.

    PubMed

    Lai, Chih-Cheng; Sung, Mei-I; Liu, Hsiao-Hua; Chen, Chin-Ming; Chiang, Shyh-Ren; Liu, Wei-Lun; Chao, Chien-Ming; Ho, Chung-Han; Weng, Shih-Feng; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2016-04-01

    The initial hypoxemic level of acute respiratory distress syndrome (ARDS) defined according to Berlin definition might not be the optimal predictor for prognosis. We aimed to determine the predictive validity of the stabilized ratio of partial pressure arterial oxygen and fraction of inspired oxygen (PaO2/FiO2 ratio) following standard ventilator setting in the prognosis of patients with ARDS.This prospective observational study was conducted in a single tertiary medical center in Taiwan and compared the stabilized PaO2/FiO2 ratio (Day 1) following standard ventilator settings and the PaO2/FiO2 ratio on the day patients met ARDS Berlin criteria (Day 0). Patients admitted to intensive care units and in accordance with the Berlin criteria for ARDS were collected between December 1, 2012 and May 31, 2015. Main outcome was 28-day mortality. Arterial blood gas and ventilator setting on Days 0 and 1 were obtained.A total of 238 patients met the Berlin criteria for ARDS were enrolled, and they were classified as mild (n = 50), moderate (n = 125), and severe (n = 63) ARDS, respectively. Twelve (5%) patients who originally were classified as ARDS did not continually meet the Berlin definition, and a total of 134 (56%) patients had the changes regarding the severity of ARDS from Day 0 to Day 1. The 28-day mortality rate was 49.1%, and multivariate analysis identified age, PaO2/FiO2 on Day 1, number of organ failures, and positive fluid balance within 5 days as significant risk factors of death. Moreover, the area under receiver-operating curve for mortality prediction using PaO2/FiO2 on Day 1 was significant higher than that on Day 0 (P = 0.016).PaO2/FiO2 ratio on Day 1 after applying mechanical ventilator is a better predictor of outcomes in patients with ARDS than those on Day 0.

  5. The Ratio of Partial Pressure Arterial Oxygen and Fraction of Inspired Oxygen 1 Day After Acute Respiratory Distress Syndrome Onset Can Predict the Outcomes of Involving Patients

    PubMed Central

    Lai, Chih-Cheng; Sung, Mei-I; Liu, Hsiao-Hua; Chen, Chin-Ming; Chiang, Shyh-Ren; Liu, Wei-Lun; Chao, Chien-Ming; Ho, Chung-Han; Weng, Shih-Feng; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2016-01-01

    Abstract The initial hypoxemic level of acute respiratory distress syndrome (ARDS) defined according to Berlin definition might not be the optimal predictor for prognosis. We aimed to determine the predictive validity of the stabilized ratio of partial pressure arterial oxygen and fraction of inspired oxygen (PaO2/FiO2 ratio) following standard ventilator setting in the prognosis of patients with ARDS. This prospective observational study was conducted in a single tertiary medical center in Taiwan and compared the stabilized PaO2/FiO2 ratio (Day 1) following standard ventilator settings and the PaO2/FiO2 ratio on the day patients met ARDS Berlin criteria (Day 0). Patients admitted to intensive care units and in accordance with the Berlin criteria for ARDS were collected between December 1, 2012 and May 31, 2015. Main outcome was 28-day mortality. Arterial blood gas and ventilator setting on Days 0 and 1 were obtained. A total of 238 patients met the Berlin criteria for ARDS were enrolled, and they were classified as mild (n = 50), moderate (n = 125), and severe (n = 63) ARDS, respectively. Twelve (5%) patients who originally were classified as ARDS did not continually meet the Berlin definition, and a total of 134 (56%) patients had the changes regarding the severity of ARDS from Day 0 to Day 1. The 28-day mortality rate was 49.1%, and multivariate analysis identified age, PaO2/FiO2 on Day 1, number of organ failures, and positive fluid balance within 5 days as significant risk factors of death. Moreover, the area under receiver-operating curve for mortality prediction using PaO2/FiO2 on Day 1 was significant higher than that on Day 0 (P = 0.016). PaO2/FiO2 ratio on Day 1 after applying mechanical ventilator is a better predictor of outcomes in patients with ARDS than those on Day 0. PMID:27057912

  6. Bubble CPAP for respiratory distress syndrome in preterm infants.

    PubMed

    Koti, Jagdish; Murki, Srinivas; Gaddam, Pramod; Reddy, Anupama; Reddy, M Dasaradha Rami

    2010-02-01

    To ascertain the immediate outcome of preterm infants with respiratory distress syndrome (RDS) on Bubble CPAP and identify risk factors associated with its failure. Prospective analytical study. Inborn preterm infants (gestation 28 to 34 weeks) admitted to the NICU with respiratory distress and chest X ray suggestive of RDS. Bubble CPAP with bi-nasal prongs. CPAP failures infants requiring ventilation in the first one week. 56 neonates were enrolled in the study. 14 (25%) babies failed CPAP. The predictors of failure were; no or only partial exposure to antenatal steroids, white-out on the chest X-ray, patent ductus arteriosus, sepsis/pneumonia and Downes score > 7 or FiO2 > or = 50% after 15-20 minutes of CPAP. Other maternal and neonatal variables did not influence the need for ventilation. Rates of mortality and duration of oxygen requirement was significantly higher in babies who failed CPAP. Only two infants developed pneumothorax. No baby had chronic lung disease. Infants with no or partial exposure to antenatal steroids, white-out chest X-ray, patent ductus arteriosus, sepsis/pneumonia and those with higher FiO2 requirement after initial stabilization on CPAP are at high risk of CPAP failure (needing mechanical ventilation). Bubble CPAP is safe for preterm infants with RDS.

  7. Joining of alumina via copper/niobium/copper interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less

  8. Thermodynamics of Oxygen Ordering in Yttrium BARIUM(2) COPPER(3) OXYGEN(6+X)

    NASA Astrophysics Data System (ADS)

    Schieger, Paul Richard

    An apparatus has been built to study and manipulate the oxygen in high temperature superconductors. It uses the principle of cryogenically assisted volumetric titration to precisely set changes in the oxygen content of high -T_{c} samples. The apparatus has been used to study the thermodynamics of oxygen in YBa_2Cu_3O _{6 + x} in order to help determine the correct model for oxygen thermodynamics as well as to provide standard curves for materials preparation by other methods. In particular, extensive measurements have been made on the oxygen pressure isotherms as a function of x for temperatures between 450^circ C and 650^circC. The measurement technique also allows one to extract the thermodynamic response function, (partial x/ partialmu)_{T}, ( mu is the chemical potential), which is sensitive to the oxygen configuration and which can be calculated by any candidate theory of the oxygen thermodynamics. Several existing theoretical models for the oxygen ordering thermodynamics are presented and compared to the experimental results. The models considered are classed into two basic approaches: lattice gas models and defect chemical models. It is found that the lattice gas models which assume static effective pair interactions between oxygen atoms, do not fit the experimental data very well, especially in the orthorhombic phase. The defect chemical models, which incorporate additional degrees of freedom (spin and charge) due to the creation of electronic defects, fit significantly better, but make crude assumptions for the configurational entropy of oxygen atoms. Using a commonly accepted picture for the creation of mobile electron holes and unpaired spins on the copper sites, it is possible to relate these quantities in terms of short range cluster probabilities defined in mean field approximations to the 2D lattice gas models. Based upon this connection, a thermodynamical model is developed, which takes into account interactions between oxygen atoms and the additional spin and charge degrees of freedom, assuming a narrow band, high temperature limit for the motion of the charge carriers. The model, containing the nearest-neighbour oxygen interaction (0.241eV) and the single site oxygen binding energy (-0.82eV - D/2; D is the dissociation energy of an oxygen molecule) as the only adjustable parameters, is compared to experimental results for the chemical potential, kT(partial x/partialmu)_{T}, fractional site occupancies, structural phase diagram, the number of monovalent coppers, and the total number of mobile electron holes. Qualitative agreement is found for all compared quantities, and quantitative agreement is found for the chemical potential, fractional site occupancies and kT(partial x/partialmu)_ {T} in the orthorhombic phase. Improvements to the model are outlined which should result in a quantitative fit to all results, in particular the valence and hole count vs. x. In addition to illuminating what is lacking in the commonly used two dimensional lattice gas models, the theory may form the basis for accurately predicting the electron hole count of the CuO_2 plane of YBa_2Cu_3 O_{6 + x} as a function of the sample preparation conditions.

  9. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    NASA Technical Reports Server (NTRS)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  10. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric

    2007-01-01

    The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.

  11. Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.

    2016-05-01

    Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.

  12. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process.

    PubMed

    Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J

    2011-01-01

    A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

  13. Assessment by near-infrared spectroscopy of the consumption of oxygen provoked by the human body weight in the vastus medialis muscle

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan

    1996-12-01

    This study has been focused to find the importance of the consumption of oxygen for a muscle that works supporting the weight of the human body. The oxygen uptake at rest level is a data know, but by near-IR spectroscopy can be assessed the oxygen uptake used for a muscle. The energy required by the human body is partially used to produce the energy that help to move the human structure. The oxygen required by the muscles to produce the energy to support the human body has been defined as weight oxygen consumption. The purpose of this study was to assess by near-IR spectroscopy the amount of relative oxygenation/deoxygenation that a muscle requires at rest level and a middle-term rest level.

  14. The role of silver in the processing and properties of Bi-2212

    NASA Technical Reports Server (NTRS)

    Lang, TH.; Heeb, B.; Buhl, D.; Gauckler, L. J.

    1995-01-01

    The influence of the silver content and the oxygen partial pressure on the solidus temperature and the weight loss during melting of Bi2Sr2Ca1Cu2O(x) has been examined by means of DTA and TGA. By decreasing the oxygen partial pressure the solidus is lowered (e.g. del T = 59 C by decreasing pO2 from 1 atm to 0.001 atm) and the weight loss is increased. The addition of silver causes two effects: (1) the solidus is further decreased (e.g. 2 wt% Ag lower T (solidus) by up to 25 C, depending on the oxygen partial pressure); and (2) the weight loss during melting is reduced. Thick films (10-20 micron in thickness) with 0 and 5 wt% silver and bulk samples with) and 2.7 wt% silver were melt processed in flowing oxygen on a silver substrate in the DTA, allowing the observation of the melting process and a good temperature control. The critical current densities are vigorously dependent on the maximum processing temperature. The highest j(sub c) in thick films (8000 A/sq cm at 77 K, O T) was reached by melting 7 C above the solidus temperature. The silver addition shows no significant effect on the processing parameters or the superconducting properties. The highest j(sub c) for bulk samples (1 mm in thickness) was obtained by partial melting at 900 C or 880 C, depending on the silver content of the powder (0 or 2.7 wt%). The j(sub c) of the samples is slightly enhanced from 1800 A/sq cm (at 77 K, O T) to 2000 A/sq cm by the silver addition. To be able to reach at least 80% of the maximum critical current density, the temperature has to be controlled in a window of 5 C for thick films and 17 C for bulk samples.

  15. [Role of hemoglobin affinity to oxygen in adaptation to hypoxemia].

    PubMed

    Kwasiborski, Przemysław Jerzy; Kowalczyk, Paweł; Zieliński, Jakub; Przybylski, Jacek; Cwetsch, Andrzej

    2010-04-01

    One of the basic mechanisms of adapting to hypoxemia is a decrease in the affinity of hemoglobin for oxygen. This process occurs mainly due to the increased synthesis of 2,3-diphosphoglycerate (2,3-DPG) in the erythrocytes, as well as through the Bohr effect. Hemoglobin with decreased affinity for oxygen increases the oxygenation of tissues, because it gives up oxygen more easily during microcirculation. In foetal circulation, however, at a partial oxygen pressure (pO2) of 25 mmHg in the umbilical vein, the oxygen carrier is type F hemoglobin which has a high oxygen affinity. The commonly accepted role for hemoglobin F is limited to facilitating diffusion through the placenta. Is fetal life the only moment when haemoglobin F is useful? THE AIM OF STUDY was to create a mathematical model, which would answer the question at what conditions an increase, rather than a decrease, in haemoglobin oxygen affinity is of benefit to the body. Using the kinetics of dissociation of oxygen from hemoglobin described by the Hill equation as the basis for further discussion, we created a mathematical model describing the pO2 value in the microcirculatory system and its dependence on arterial blood pO2. The calculations were performed for hemoglobin with low oxygen affinity (adult type) and high-affinity hemoglobin (fetal type). The modelling took into account both physiological and pathological ranges of acid-base equilibrium and tissue oxygen extraction parameters. It was shown that for the physiological range of acid-base equilibrium and the resting level of tissue oxygen extraction parameters, with an arterial blood pO2 of 26.8 mmHg, the higher-affinity hemoglobin becomes the more effective oxygen carrier. It was also demonstrated that the arterial blood pO2, below which the high-affinity hemoglobin becomes the more effective carrier, is dependent on blood pH and the difference between the arterial and venous oxygen saturation levels. Simulations performed for the pathological states showed that acidosis and increased tissue oxygen demand lead to a broadened arterial blood pO2 range, in which the high-affinity hemoglobin is more efficient. Contrary to the widely held view that the only response to hypoxemia is a decrease in haemoglobin oxygen affinity, it was shown that under extreme hypoxemic conditions, an increased haemoglobin oxygen affinity improves the oxygenation of tissues. It was also shown that the dominance of hemoglobin with a high oxygen affinity rapidly exceeds hemoglobin with low oxygen affinity in the case of acidosis with its accompanying high tissue oxygen extraction. In cases of extreme disruptions of the acid-base equilibrium, the dominance of high-oxygen-affinity hemoglobin spans over the entire possible range of pO2 in arterial blood.

  16. Nitrogen removal from wastewater by a catalytic oxidation method.

    PubMed

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  17. Effect of the preform fabrication process on the properties of all-silica optical fibres

    NASA Astrophysics Data System (ADS)

    Grishchenko, A. B.

    2017-12-01

    In this paper, we present a detailed comparison of technical capabilities of processes for the fabrication of all-silica optical fibre preforms with the use of an atmospheric pressure radio frequency plasma (POVD process) and low-pressure microwave plasma (PCVD process) and analyse the origin of the difference in optical properties between fibres produced by these methods. It is shown that the higher temperature of the core material and the higher oxygen partial pressure in preform fabrication by the POVD process lead to an increase in optical losses in the visible and UV spectral regions in the silica fibres with low hydroxyl (OH) content and a decrease in the solarisation resistance of the fibres with high OH content, i.e. to a more rapid increase in background losses in response to UV irradiation. No such drawbacks are detected in the case of the growth of reflective layers by the PCVD process.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2Zr 2O 7. In a recentmore » neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2Th 2O 7'' fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. Finally, the results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.« less

  19. Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and AC methods

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Odgaard, Madeleine; Schlueter, Debbie; Serov, Alexey

    2018-01-01

    Membrane electrode assemblies (MEAs) for anion exchange membrane fuel cells (AEMFCs) were manufactured from commercial materials: Pt/C catalyst, A201 AEM and AS4 ionomer by using an industrial mass-production digital printing method. The MEA designs selected are close to those recommended by US Department of Energy, including low loading of platinum on the cathode side (0.2 mg cm-2). Polarization curves and electrochemical impedance spectroscopy (EIS) were applied for MEA evaluation in fuel cell conditions with variation of gas humidification and oxygen partial pressure (air vs oxygen). The typical impedance curves recorded at H2/O2 gas configuration consist of high- and medium-frequency arcs responsible for hydrogen oxidation and oxygen reduction, respectively. Operation with air as a cathode feed gas resulted in a decrease in AEMFC performance due to possible CO2 poisoning and mass transfer losses. At the same time, EIS demonstrated formation of a low frequency loop due to diffusion limitations. Despite the low loading of platinum on the cathode (0.2 mg cm-2), a peak power density of ∼330 mW cm-2 was achieved (at 50/50% of RH on anode and cathode), which is substantially higher performance than for AEMFC MEAs tested at similar conditions.

  20. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    PubMed

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  1. Erythropoiesis and myocardial energy requirements contribute to the hypermetabolism of childhood sickle cell anemia.

    PubMed

    Hibbert, Jacqueline M; Creary, Melissa S; Gee, Beatrice E; Buchanan, Iris D; Quarshie, Alexander; Hsu, Lewis L

    2006-11-01

    We hypothesized that an elevated hemoglobin synthesis rate (SynHb) and myocardial oxygen consumption (MVO2) contribute to the excess protein and energy metabolism reported in children with sickle cell anemia. Twelve children (6-12 years old) with asymptomatic sickle cell and 9 healthy children matched for age and sex were studied. Measurements were whole-body protein turnover by [1-C]leucine, SynHb by [N]glycine, resting energy expenditure by indirect calorimetry and the systolic blood pressure-heart rate product used as an index of MVO2. Protein energy cost was calculated from protein turnover. Statistical analysis included Spearman correlations and partial correlation analyses. Although body mass index was significantly lower for sickle cell versus controls (P < 0.02), children with asymptomatic sickle cell had 52% higher protein turnover (P < 0.0005). Proportional reticulocyte count, SynHb, MVO2 and resting energy expenditure were also significantly higher in children with sickle cell (P < 0.01). Protein turnover correlated significantly with both SynHb (r = 0.63, P < 0.01) and reticulocyte percentage (r = 0.83, P < 0.0001). Partial correlation of these 3 variables showed reticulocyte percentage as the only variable to be significantly associated with protein turnover, even after adjusting for sickle cell anemia (P = 0.03). Partial correlation of log resting energy expenditure on MVO2 was significant, controlling for protein energy cost, sex and age (P = 0.03). These results indicate that metabolic demands of increased erythropoiesis and cardiac energy consumption account for much of the excess protein and energy metabolism in children with sickle cell anemia.

  2. Oxygenation and ventilation characteristics in obese sedated dogs before and after weight loss: a clinical trial.

    PubMed

    Mosing, M; German, A J; Holden, S L; MacFarlane, P; Biourge, V; Morris, P J; Iff, I

    2013-11-01

    This prospective clinical study examined the effect of obesity and subsequent weight loss on oxygenation and ventilation during deep sedation in pet dogs. Data from nine dogs completing a formalised weight loss programme were evaluated. Dual-energy X-ray absorptiometry (DEXA) was used to quantify body fat mass prior to and after weight loss. Dogs were deeply sedated and positioned in dorsal recumbency. Sedation was scored using a semi-objective scheme. As part of the monitoring of sedation, arterial oxygen partial pressure (PaO2) and arterial carbon dioxide partial pressure (PaCO2) were measured after 10 min in dorsal recumbency. Oxygen saturation of haemoglobin (SpO2) was monitored continuously using pulse oximetry, starting oxygen supplementation where indicated (SpO2<90%) via a face mask. Morphometric measurements were taken from DEXA images and compared before and after weight loss. Several oxygen indices were calculated and correlated with body fat variables evaluated by DEXA. All body fat variables improved significantly after weight loss. PaO2 increased from 27.9±19.2 kPa to 34.8±24.4 kPa, while FiO2 decreased from 0.74±0.31 to 0.66±0.35. Morphometric measurements improved significantly after weight loss. PaO2/FiO2 (inspired oxygen fraction) and Pa/AO2 (ratio of PaO2 to alveolar PO2) also improved significantly, but there was no change in f-shunt and PaCO2 after weight loss. On multiple linear regression analysis, all oxygen indices were negatively associated with thoracic fat percentage. In conclusion, obesity decreases oxygenation in dogs during deep sedation. Oxygenation status improves with successful weight loss, but ventilation is not influenced by obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. SIMS study of oxygen diffusion in monoclinic HfO2

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  4. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  5. Effects of pumpless extracorporeal lung assist on hemodynamics, gas exchange and inflammatory cascade response during experimental lung injury

    PubMed Central

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2018-01-01

    Pumpless extracorporeal lung assist (pECLA) has been reported to efficiently remove the systemic CO2 production and provide mild to moderate oxygenation, thereby allowing for ventilator settings and modes prioritizing oxygenation and lung protection. However, an adequate bypass flow, the capacity to provide respiratory support and the effect on the inflammatory cascade response and tissue perfusion require further study to be determined. After induction of acute lung injury (ALI) by oleic acid injection, pECLA was implemented in 12 anaesthetized and mechanically ventilated dogs for 48 h. Improved oxygenation [partial oxygen pressure (PaO2) and oxygen saturation (SaO2) was measured by arterial blood gas analysis, and increased by 29 and 18%, respectively] and CO2 elimination (partial CO2 pressure decreased by 43.35%) were obtained after pECLA implementation. A maximum arterio-venous shunt flow of up to 25% of the foundational CO resulted in stable hemodynamics. The pECLA procedure did not elicit any further increase in the concentration of tumor necrosis factor-α, interleukin (IL)-6, IL-8 and endothelin-1 compared with that in the group subjected to oleic acid injection only. In addition, the pECLA procedure had no effect on lactate levels and urine production. In conclusion, pECLA is an efficient and promising strategy for providing a mild to moderate oxygenation and adequate decarboxylation, while avoiding excessive inflammatory cascade response and tissue hypoperfusion in an experimental ALI model. PMID:29434789

  6. Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T

    The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generatedmore » due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom % Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom % samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 1 mTorr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed« less

  7. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3–δ thin films investigated by chemical capacitance measurements

    PubMed Central

    Rupp, Ghislain M.; Fleig, Jürgen

    2018-01-01

    La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421

  8. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3-δ thin films investigated by chemical capacitance measurements.

    PubMed

    Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen

    2018-05-03

    La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.

  9. Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions

    NASA Technical Reports Server (NTRS)

    Ownby, D. P.; Barsoum, M. W.

    1980-01-01

    The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.

  10. X-ray Raman scattering for structural investigation of silica/silicate minerals

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Kanzaki, M.; Hiraoka, N.; Cai, Y. Q.

    2009-03-01

    We have performed X-ray Raman scattering (XRS) measurements on the oxygen K and silicon L absorption edges of four silica minerals: α-quartz, α-cristobalite, coesite, and stishovite. We have also calculated the partial electron densities of states (DOSs) and compared these with the XRS spectra. This study demonstrates that the short-range structure around the atom of interest strongly influences the XRS spectral features. Importantly, the oxygen K-edge XRS spectra are found to reflect the p-orbital DOS while the silicon L-edge spectra reflect the s- and d-orbital DOSs, even when a product of a momentum transfer and a mean radius of a electron orbit (1 s for oxygen and 2 p for silicon), Qr, is close to or larger than unity. Building on this, calculations of the partial DOSs for other silica phases are presented, including ultra-high-pressure phases, which provide a good reference for further XRS study of silica and silicate minerals. XRS measurements should be performed on not only either of oxygen or silicon but also on many kinds of constituent elements to reveal the structural change of glasses/melts of silicates under extreme conditions.

  11. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment.

    PubMed

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  12. Hyberbaric oxygen as sole treatment for severe radiation - induced haemorrhagic cystitis

    PubMed Central

    Dellis, Athanasios; Papatsoris, Athanasios; Kalentzos, Vasileios; Deliveliotis, Charalambos; Skolarikos, Andreas

    2017-01-01

    ABSTRACT Purpose To examine the safety and efficacy of hyperbaric oxygen as the primary and sole treatment for severe radiation-induced haemorrhagic cystitis. Materials and methods Hyperbaric oxygen was prospectively applied as primary treatment in 38 patients with severe radiation cystitis. Our primary endpoint was the incidence of complete and partial response to treatment, while the secondary endpoints included the duration of response, the correlation of treatment success-rate to the interval between the onset of haematuria and initiation of therapy, blood transfusion need and total radiation dose, the number of sessions to success, the avoidance of surgery and the overall survival. Results All patients completed therapy without complications with a mean follow-up of 29.33 months. Median number of sessions needed was 33. Complete and partial response rate was 86.8% and 13.2%, respectively. All 33 patients with complete response received therapy within 6 months of the haematuria onset. One patient needed cystectomy, while 33 patients were alive at the end of follow-up. Conclusions Our study suggests the early primary use of hyperbaric oxygen for radiation-induced severe cystitis as an effective and safe treatment option. PMID:28338304

  13. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats

    PubMed Central

    Guerra, Joyce Ferreira da Costa; Magalhães, Cíntia Lopes de Brito; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2011-01-01

    Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control and streptozotocin-induced diabetic rats. Diet supplementation with 2% açai was found to increase mRNA levels for gamma-glutamylcysteine synthetase and glutathione peroxidase in liver tissue and to decrease reactive oxygen species production by neutrophils. Compared to control animals, diabetic rats exhibited lower levels of mRNA coding for Zn-superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase and higher levels of reactive oxygen species production by neutrophils, thiobarbituric acid-reactive substances and carbonyl proteins in hepatic tissues. Although açai supplementation was not effective in restore gene expression of antioxidant enzymes in diabetic rats, it showed a protective effect, decreasing thiobarbituric acid-reactive substances levels and increasing reduced glutathione content in the liver. These findings suggest that açai can modulate reactive oxygen species production by neutrophils and that it has a significant favorable effect on the liver antioxidant defense system under fisiological conditions of oxidative stress and partially revert deleterious effects of diabetes in the liver. PMID:22128218

  14. Oxygen uptake rate in alginate producer (algU+) and nonproducer (algU-) strains of Azotobacter vinelandii under nitrogen-fixation conditions.

    PubMed

    Castillo, T; López, I; Flores, C; Segura, D; García, A; Galindo, E; Peña, C

    2018-07-01

    The sigma E (AlgU) in Azotobacter vinelandii has been shown to control the expression of cydR gene, a repressor of genes of the alternative respiratory chain, and alginate has been considered a barrier for oxygen diffusion. Therefore, the aim of the present study was to compare the respiratory activity of an alginate nonproducing strain, lacking the sigma factor E (algU-), and polymer-producing strains (algU+) of A. vinelandii under diazotrophic conditions at different aeration conditions. Our results reveal that under diazotrophic and high aeration conditions, A. vinelandii strain OP (algU-) had a specific oxygen consumption rate higher (30 and 54%) than those observed in the OP algU+-complemented strain, named OPAlgU+, and the ATCC 9046 respectively. However, the specific growth rate and biomass yields (based on oxygen and sucrose) were lower for OP cultivations as compared to the algU+ strains. These differences were partially explained by an increase in 1·5-fold of cydA relative expression in the OP strain, as compared to that obtained in the isogenic OPAlgU+ strain. Overall, our results confirm the important role of algU gene on the regulation of respiratory metabolism under diazotrophic growth when A. vinelandii is exposed to high aeration. This study highlights the role of AlgU to control respiration of A. vinelandii when exposed to diazotrophy. © 2018 The Society for Applied Microbiology.

  15. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure

    PubMed Central

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-01-01

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view. PMID:24710521

  16. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy

    2016-12-01

    Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.

  17. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    PubMed

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  18. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure.

    PubMed

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-04-08

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.

  19. [The influence of low partial oxygen pressure on the biolodical process of mesenchymal stromal cells].

    PubMed

    Berezovskyĭ, V Ia; Plotnikova, L M; Vesel'skyĭ, S P; Litovka, I H

    2014-01-01

    The influence of low partial oxygen pressure (Po2) on the amino acid composition in culture medium of human mesenchymal stromal cell (MSC) lines 4BL has been studied. At 23 mm Hg (3% oxygen), a significant decrease (by 31%) in the concentration of proline and hydroxyproline was registered. Under these conditions, the concentration of serine and aspartic acid decreased by 45% compared to the control. Maximum consumption of free amino acids from the culture medium required for the synthesis of collagen (proline and hydroxyproline by 42%, serine and aspartic acid by 62%) was observed at a gas-phase Po2 of 38 mm Hg (5% O2). At Po2 76 mm Hg (10% O2), a lack of amino acids proline and hydroxyproline was only 21%, while that of glutamine and alanine amounted 12% compared to the control. This intensity ratio of consumption of amino acids may indicate that the maximum of MSC vital functions occurs at Po2 38 mm Hg.

  20. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  1. Mathematical Modeling of Ultra-Superheated Steam Gasification

    NASA Astrophysics Data System (ADS)

    Xin, Fen

    Pure steam gasification has been of interest in hydrogen production, but with the challenge of supplying heat for endothermic reactions. Traditional solutions included either combusting feedstocks at the price of decreasing carbon conversion ratio, or using costly heating apparatus. Therefore, a distributed gasifier with an Ultra-Superheated-Steam (USS) generator was invented, satisfying the heat requirement and avoiding carbon combustion in steam gasification. This project developed the first version of the Ultra-Superheated-Steam-Fluidization-Model (USSFM V1.0) for the USS gasifier. A stand-alone equilibrium combustion model was firstly developed to calculate the USS mixture, which was the input to the USSFM V1.0. Model development of the USSFM V1.0 included assumptions, governing equations, boundary conditions, supporting equations and iterative schemes of guessed values. There were three nested loops in the dense bed and one loop in the freeboard. The USSFM V1.0 included one main routine and twenty-four subroutines. The USSFM V1.0 was validated with experimental data from the Enercon USS gasifier. The calculated USS mixture had a trace of oxygen, validating the initial expectation of creating an oxygen-free environment in the gasifier. Simulations showed that the USS mixture could satisfy the gasification heat requirement without partial carbon combustion. The USSFM V1.0 had good predictions on the H2% in all tests, and on other variables at a level of the lower oxygen feed. Provided with higher oxygen feed, the USSFM V1.0 simulated hotter temperatures, higher CO% and lower CO2%. Errors were explained by assumptions of equilibrium combustion, adiabatic reactors, reaction kinetics, etc. By investigating specific modeling data, gas-particle convective heat transfers were found to be critical in energy balance equations of both emulsion gas and particles, while bubble size controlled both the mass and energy balance equations of bubble gas. Parametric study suggested a lower level of oxygen feed for higher content of hydrogen. However, too little oxygen would impede fluidization in the bed. The reasonability of iterative schemes and the stability of USSFM V1.0 were tested by the sensitivity analysis of two guessed values. Analytical Hierarchy Process analysis indicated that large-scale gasification is advantageous for hydrogen production but with impediments of high capital cost and CO2 emissions. This study manifested the USS gasifier offering the possibility of generating H2-rich and CO2-lean syngas in a much cheaper distributed way. Currently, the FORTRAN-based USSFM V1.0 had a good correlation with experimental data with a small oxygen feed. On the demand of wider applications, suggestions were proposed at last for the model improvement in future.

  2. Effect of Free Ammonia, Free Nitrous Acid, and Alkalinity on the Partial Nitrification of Pretreated Pig Slurry, Using an Alternating Oxic/Anoxic SBR

    PubMed Central

    Hsieh, Chia-Fang; Guerrero, Lorna; Méndez, Ramón; Mosquera-Corral, Anuska; Vidal, Gladys

    2017-01-01

    The effect of free ammonia (NH3 or FA), free nitrous acid (HNO2 or FNA), and total alkalinity (TA) on the performance of a partial nitrification (PN) sequencing batch reactor (SBR) treating anaerobically pretreated pig slurry was studied. The SBR was operated under alternating oxic/anoxic (O/A) conditions and was fed during anoxic phases. This strategy allowed using organic matter to partially remove nitrite (NO2−) and nitrate (NO3−) generated during oxic phases. The desired NH4+ to NO2− ratio of 1.3 g N/g N was obtained when an Ammonium Loading Rate (ALR) of 0.09 g NH4+-N/L·d was applied. The system was operated at a solid retention time (SRT) of 15–20 d and dissolved oxygen (DO) levels higher than 3 mg O2/L during the whole operational period. PN mainly occurred caused by the inhibitory effect of FNA on nitrite oxidizing bacteria (NOB). Once HNO2 concentration was negligible, NH4+ was fully oxidized to NO3− in spite of the presence of FA. The use of biomass acclimated to ammonium as inoculum avoided a possible effect of FA on NOB activity. PMID:29018815

  3. Combustion synthesis of complex oxides

    NASA Astrophysics Data System (ADS)

    Ming, Qimin

    Advanced ceramic materials have numerous applications in electronic engineering, chemical engineering, and semiconductor industry. The synthesis of these materials at an economical cost is the bottleneck in the application of these materials. Self-propagating High-temperature Synthesis (SHS) is a new technique for producing these materials for exothermic systems by a combustion wave that propagates and produces high purity products. The full potential of SHS to produce advanced materials has not yet been utilized. In this study, we used SHS to prepare two types of complex oxides: La 1-xSrxCrO3, La0.89Sr0.1 MnO3, powders, used to make interconnect and cathode of solid oxide fuel cells; and chromium- and gallium-doped La1-xSr xFeO3-delta, mixed ionic and electronic conductive powders used to manufacture ceramic membranes for oxygen separation. A thermodynamic feasibility analysis shows that the oxidation of Cr is the main source of heat generation of La1-xSrxCrO 3, which maintains a stable reaction front. Replacing part of the metallic Cr in the reaction mixture by its oxides decreases the combustion temperature and front propagating velocity and modifies the product morphology. The oxygen needed for the Cr oxidation is provided by the decomposition of CrO3 , SrO2, or NaClO4. The predicted and observed combustion temperatures are in reasonable agreement. TG/DTA analyses of La1-xSrxCrO3 indicated that SHS stability was strongly affected by the transport of oxygen between the two regions, in which oxygen was generated by the decomposition of either NaClO4 or CrO3 and that in which it was consumed by the oxidation of Cr. Partial melting at the high combustion temperature during SHS of La 1-xSrxMnO3 increased product homogeneity. The electrical conductivity at 1000°C in air of SHS-produced cathode material (of 180 O-1·cm-1) matches that of the commercial product made by other processes. However, the SHS process provides much higher productivity and decreases processing time and the consumption of the electrical power. SrFeO3-x and LaCrO3 were the main intermediates and products for SHS of chromium-doped La0.2Sr0.8FeO 3-delta. The final structure was a solid solution of Fe and Sr rich oxides and La and Cr rich oxides. Decreasing the reactant particle size increased the homogeneity of the SHS product and increased the velocity of the propagating combustion front. The SHS produced La0.2Sr 0.8Cr0.2Fe0.8O3-delta had a maximal electrical conductivity of 8.8 O-1·cm -1 at 560°C in a pure oxygen. The material, having the highest stability in reducing conditions, had a moderate oxygen permeation rate of 3.35 x 10-9 mol/s·cm2 at 980°C in an oxygen partial pressure gradient from air to 4 x 10 -5 atm. The homogeneity and particle size of the combustion product of gallium-doped La0.5Sr0.5FeO3-delta may be increased by decreasing the cooling rate of the sample, either by increasing the sample diameter or by controlling the post-combustion temperature. The perovskite oxide maintained its cubic structure at all temperatures (from 20 to 1000°C) in air. However, decomposition occurred at 860°C under a simulated synthesis gas environment (22%CH4+21%CO2+57%H2, oxygen partial pressure of about 10-21 atm). Its maximal electrical conductivity was 142 O-1·cm-1 at 580°C under oxygen pressure of 1 atm. This material is suitable for use as a membrane in synthesis gas production, since the thermal expansions in air and reducing conditions are rather close at high temperatures.

  4. Undergraduate students' misconceptions about respiratory physiology.

    PubMed

    Michael, J A; Richardson, D; Rovick, A; Modell, H; Bruce, D; Horwitz, B; Hudson, M; Silverthorn, D; Whitescarver, S; Williams, S

    1999-12-01

    Approximately 700 undergraduates studying physiology at community colleges, a liberal arts college, and universities were surveyed to determine the prevalence of our misconceptions about respiratory phenomena. A misconception about the changes in breathing frequency and tidal volume (physiological variables whose changes can be directly sensed) that result in increased minute ventilation was found to be present in this population with comparable prevalence (approximately 60%) to that seen in a previous study. Three other misconceptions involving phenomena that cannot be experienced directly and therefore were most likely learned in some educational setting were found to be of varying prevalence. Nearly 90% of the students exhibited a misconception about the relationship between arterial oxygen partial pressure and hemoglobin saturation. Sixty-six percent of the students believed that increasing alveolar oxygen partial pressure leads to a decrease in alveolar carbon dioxide partial pressure. Nearly 33% of the population misunderstood the relationship between metabolism and ventilation. The possible origins of these respiratory misconceptions are discussed and suggestions for how to prevent and/or remediate them are proposed.

  5. Electric current-producing device having sulfone-based electrolyte

    DOEpatents

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  6. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  7. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy-rich ceria during re-oxidation at room temperature. The quantified oxygen isotope fractionation factors are consistent with the direct involvement of O2 in the rate limiting step for ceria reoxidation in air at room temperature. While additional parameters may reduce some of the uncertainties in our approach, this study demonstrates that isotope effects can be an encouraging tool for studying oxygen transport kinetics in ceria and other oxides. In addition, our finding warns of the special cares and limits in using ceria as an exchange medium for laboratory triple oxygen isotope analysis of CO2 or other oxygen-bearing gases.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.

    Beta-gallium oxide (β-Ga 2O 3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga 2O 3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality β-Ga 2O 3 films on (0001) sapphire and (–201) Ga 2O 3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. As a result, there is a strong temperature dependencemore » to the phase formation, morphology, and electronic properties of β-Ga 2O 3 from 350 to 550 °C.« less

  9. One man electrochemical air revitalization system

    NASA Technical Reports Server (NTRS)

    Huddleston, J. C.; Aylward, J. R.

    1975-01-01

    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC.

  10. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  11. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, William David

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m 2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO 3/(MoO 3 + V 2O 5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V +4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of watermore » to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V 2O 5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V 2O 5, solid solutions of Mo in V 2O 5, V 9Mo 6O 40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO 3/(V 2O 5 + MoO 3), determined by EDS analysis.« less

  12. The effect of 2,3-diphosphoglycerate on the oxygen dissociation curve of human haemoglobin.

    PubMed Central

    Goodford, P J; Norrington, F E; Paterson, R A; Wootton, R

    1977-01-01

    1. Oxygen dissociation curves for concentrated human haemoglobin solutions (1.6 mmol dm-3 in haem) have been measured by mixing known quantities of oxy- and deoxyhaemoglobin solutions and measuring the resulting partial pressure of oxygen with an oxygen electrode. 2. Observations in the presence of 2,3-diphosphoglycerate support previous conclusions derived from experiments at low haemoglobin concentrations, the validity of which has been questioned. 3. The two affinity state model of Monod, Wyman & Changeux (1965) does not fully describe the actions of 2,3-diphosphoglycerate and a model in which this allosteric effector not only binds preferentially to the T state but also lowers the oxygen affinity of this state gives an improved fit to the data. PMID:604451

  13. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry

    DOE PAGES

    Osterberg, Paul M.; Niemeier, Jeffry K.; Welch, Christopher J.; ...

    2014-12-06

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. Furthermore, the data obtained from these studies help define safe operating conditions for the use of oxygen with organicmore » solvents.« less

  14. Assessing the Formation of Ungrouped Achondrite Northwest Africa 8186: Residue, Crystallization Product, or Recrystallized Chondrite?

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; McCubbin, F. M.; Agee, C. B.

    2016-01-01

    The recent discoveries of primitive achondrites, metachondrites, and type 7 chondrites challenge the long held idea that all chondrites and achondrites form on separate parent bodies. These meteorites have experienced metamorphic temperatures above petrologic type 6 and have partially melted to various degrees. However, because of their isotopic and compositional similarities to both undifferentiated and differentiated groups, the provenance of these 'type 6+' meteorites remains largely unknown. CK and CV chondrites have recently been linked to a few achondrites due to their strong compositional, mineralogical, and isotopic similarities], suggesting a common origin between these meteorites. Although CVs have generally undergone low degrees of alteration near petrologic type 3, CKs have experienced a wide range of thermal alteration from petrologic type 3 to 6. Thermal evolution models on early accreting bodies predict that an early forming body can partially differentiate due to radiogenic heating, and, as a result, form radial layers of material increasing in thermal grade (types 3 to 6+) from the unmelted chondritic surface towards the differentiated core.Northwest Africa (NWA) 8186 is an ungrouped achondrite that provides compelling evidence for higher degrees of thermal processing and/or melting and differentiation on some CK/CV parent bodies. NWA 8186 plots on the CCAM line on a 3-oxygen isotope diagram directly with CK and CV chondrites and also plots with the CKs in regards to Cr isotopes. This meteorite is dominated by Nickel(II)Oxygen-rich olivine (less than 80%), lacks iron metal, and contains four oxide phases, indicating a high fOxygen (above FMQ) similar to the CKs. Additionally, NWA 8186 does not contain chondrules. We have further investigated the origins of NWA 8186 by examining and comparing the bulk composition of this CK-like achondrite with CK and CV chondrites, allowing us to assess the various scenarios in which NWA 8186 may have formed from CK/CV precursor material.

  15. Overheated and Out of Breath: Temperature Regulation of Respiration and Oxygen Supply in Coastal Zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M.; Elliott, D. T.; Pierson, J. J.

    2016-02-01

    Increasing global coastal hypoxia occurs under a large range of temperature and salinity conditions. Temperature directly influences oxygen solubility in seawater as well as the oxygen demand of zooplankton, thus oxygen concentration alone is not sufficient to categorize the biological impact of hypoxia for pelagic organisms. To effectively assess the impacts of hypoxic stress on zooplankton habitat space and production, it is necessary to consider the effects of temperature on both oxygen availability and zooplankton metabolism. Our analysis and modeling evaluate available oxygen (partial pressure and concentration) in the context of ambient temperature conditions and zooplankton oxygen demand. We will present allometric models, accounting for both body size and temperature that predict temperature-dependent oxygen supply and demand in coastal zooplankton. Our goal is to develop generalized, functional relationships that describe and quantify the interactive effects of temperature and low oxygen on coastal zooplankton that can lead to improved size-structured models that serve to predict impacts of increasing coastal hypoxia on pelagic food webs.

  16. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  17. Liquid ventilation.

    PubMed

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  18. A spectral study of a radio-frequency plasma-generated flux of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E.; Brown, Kenneth G.; Lewis, Beverley W.

    1994-01-01

    The active environment of a radio-frequency (RF) plasma generator, with and without low-pressure oxygen, has been characterized through the identification of emission lines in the spectral region from 250 to 900 nm. The environment is shown to be dependent on the partial pressure of oxygen and the power applied to the RF generator. Atomic oxygen has been found in significant amounts as well as atomic hydrogen and the molecular oxygen species O2((sup 1)Sigma). The only charged species observed was the singly charged molecular ion O2(+). With a polymer specimen in the plasma chamber, carbon monoxide was also observed. The significance of these observations with respect to previous studies using this type of generator to stimulate material degradation in space is discussed. The possibility of using these generators as atomic oxygen sources in the development of oxygen atom fluorescence sensors is explored.

  19. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  20. Past and present role of extracorporeal membrane oxygenation in combat casualty care: How far will we go?

    PubMed

    Cannon, Jeremy W; Mason, Phillip E; Batchinsky, Andriy I

    2018-06-01

    Advanced extracorporeal therapies have been successfully applied in the austere environment of combat casualty care over the previous decade. In this review, we describe the historic underpinnings of extracorporeal membrane oxygenation, review the recent experience with both partial and full lung support during combat operations, and critically assess both the current status of the Department of Defense extracorporeal membrane oxygenation program and the way forward to establish long-range lung rescue therapy as a routine capability for combat casualty care.

Top