Sample records for higher plant counterparts

  1. Negative-strand RNA viruses: the plant-infecting counterparts.

    PubMed

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Chromosomal DNA replication in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van't Hof, J.; Bjerknes, C.A.

    1979-01-01

    Replicon-size estimations from DNA fiber autoradiograms must always be considered with the limits of resolution in mind. However, data from yeast obtained by autoradiography and electron-microscopy gave similar average sizes in the 20 to 30 ..mu..m range. These sizes are in agreement with those of C. capillaris observed in the present work, with those of Pisum sativum and Helianthus annuus, and with those of four other unrelated plant species. The curious fact that higher plants and yeast have replicons of about the same size raises the question of whether or not all members of the plant kingdom share this commonmore » statistic. Higher plants appear to have a common replicon size, and they also have a slower fork rate than either bacteria or mammalian cells when grown at optimal temperatures. Even at 38/sup 0/ sunflower (Helianthus annuus) root meristem cells have a fork rate a little less than 12 ..mu..m per hour. On the other hand, at about the same temperature, the rate is approximately 800 ..mu..m per hour in bacteria, and in mammalian cells it ranges from 30 to 60 ..mu..m per hour. Current data from higher plants show that they have a range in fork rate from 6 to 12 ..mu..m per hour. The lower rates observed among higher plants are similar to and more often less than those reported for the amphibians Triturus and Xenopus and that of fatheat minnow cells. Therefore, higher plants and cold-blooded animals commonly share the characteristic of a relatively low replication fork rate.« less

  3. The resurgence of haploids in higher plants.

    PubMed

    Forster, Brian P; Heberle-Bors, Erwin; Kasha, Ken J; Touraev, Alisher

    2007-08-01

    The life cycle of plants proceeds via alternating generations of sporophytes and gametophytes. The dominant and most obvious life form of higher plants is the free-living sporophyte. The sporophyte is the product of fertilization of male and female gametes and contains a set of chromosomes from each parent; its genomic constitution is 2n. Chromosome reduction at meiosis means cells of the gametophytes carry half the sporophytic complement of chromosomes (n). Plant haploid research began with the discovery that sporophytes can be produced in higher plants carrying the gametic chromosome number (n instead of 2n) and that their chromosome number can subsequently be doubled up by colchicine treatment. Recent technological innovations, greater understanding of underlying control mechanisms and an expansion of end-user applications has brought about a resurgence of interest in haploids in higher plants.

  4. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants.

    PubMed

    Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun

    2009-12-01

    Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.

  5. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells

    NASA Technical Reports Server (NTRS)

    Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)

    1999-01-01

    Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.

  6. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  7. Lower resistance and higher tolerance of invasive host plants: biocontrol agents reach high densities but exert weak control.

    PubMed

    Wang, Yi; Huang, Wei; Siemann, Evan; Zou, Jianwen; Wheeler, Gregory S; Carrillo, Juli; Ding, Jianqing

    2011-04-01

    Invasive plants often have novel biotic interactions in their introduced ranges. Their defense to herbivory may differ from their native counterparts, potentially influencing the effectiveness of biological control. If invasive plants have decreased resistance but increased tolerance to enemies, insect herbivores may rapidly build up their populations but exert weak control. Moreover, resource availability to plants may affect the efficacy of biological control agents. We tested these predictions using Chinese tallow tree (Triadica sebifera) and two specialist herbivores (Heterapoderopsis bicallosicollis and Gadirtha inexacta) that are candidates for biological control. We performed a pair of field common garden experiments in China in which Triadica seedlings from the native or introduced range were grown in low or high light conditions and subjected to different levels of herbivory by each herbivore in a factorial design. We found that Heterapoderopsis achieved greater densities on tallow trees from the introduced range or when trees were grown in high light conditions. When Gadirtha was raised in the lab on tallow tree foliage we found that it performed better (larger pupal size) when fed foliage from introduced populations. However, introduced populations generally had greater herbivore tolerance such that the impact of each agent on plant performance was lower than on native populations despite higher herbivore loads. Tallow trees grew more slowly and achieved smaller sizes in lower light levels, but the impact of biological control agents was comparable to that found for higher light levels. Plants from introduced populations grew larger than those from native populations in all conditions. Our results suggest that reduced resistance and increased tolerance to herbivory in introduced populations may impede success of biological control programs. Biological control practitioners should include plants from the introduced range in the prerelease evaluation

  8. Multisubunit tethering complexes in higher plants.

    PubMed

    Ravikumar, Raksha; Steiner, Alexander; Assaad, Farhah F

    2017-12-01

    Tethering complexes mediate the initial, specific contact between donor and acceptor membranes. This review focuses on the modularity and function of multisubunit tethering complexes (MTCs) in higher plants. One emphasis is on molecular interactions of plant MTCs. Here, a number of insights have been gained concerning interactions between different tethering complexes, and between tethers and microtubule-associated proteins. The roles of tethering complexes in abiotic stress responses appear indirect, but in the context of biotic stress responses it has been suggested that some tethers are direct targets of pathogen effectors or virulence factors. In light of the central roles tethering complexes play in plant development, an emerging concept is that tethers may be co-opted for plant adaptive responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of iodine disinfection products on higher plants

    NASA Technical Reports Server (NTRS)

    Janik, D.; Macler, B.; Macelroy, R. D.; Thorstenson, Y.; Sauer, R.

    1989-01-01

    Iodine is used to disinfect potable water on United States spacecraft. Iodinated potable water will likely be used to grow plants in space. Little is known about the effects of iodine disinfection products on plants. Seeds of select higher plants were germinated in water iodinated using the Shuttle Microbial Check Valve, and water to which measured amounts of iodine was added. Percent germination was decreased in seeds of most species germinated in iodinated water. Beans were most affected. Germination rates, determined from germination half-times, were decreased for beans germinated in iodinated water, and water to which iodide was added. Development was retarded and rootlets were conspicuously absent in bean and several other plant species germinated in iodinated water. Iodide alone did not elicit these responses. Clearly iodine disinfection products can affect higher plants. These effects must be carefully considered for plant experimentation and cultivation in space, and in design and testing of closed environmental life support systems.

  10. Higher Plants in Space for MELiSSA -Literature Review and Future Directions

    NASA Astrophysics Data System (ADS)

    Zabrodina, Marina; Kittang, Ann-Iren; Coelho, Liz Helena; Karoliussen, Irene; Aase Wolff, Silje; Iversen, Tor-Henning

    The human exploration of space requires the development of closed life support systems to regenerate oxygen, purify water, and produce food. MELiSSA (Micro-Ecological Life Support System Alternative) is a model system for advanced life support based on different microbial species and higher plants. The main objective of the LiRHiPliSMe (Literature Review of Higher Plants in Space for MELiSSA) project was to elaborate the preliminary roadmap for higher plant research activities for the MELiSSA project Phase 2 (Preliminary Space Experiments). The first task was to establish an understanding of the current knowledge concerning how higher plant will adapt to Moon/Mars physical factors different from Earth with focus on reduced gravity, space radiation, variations in magnetic field and combined effects of these factors. The literature related to how Moon/Mars physical factors can affect genetic processes, growth regulators, development, morphology, water and nutrients transport, gas exchange and metabolism of higher plants during one life cycle were collected. The possible effects of the space environment on the plant role as a food and on the mass balance in a Life Support System that includes a Higher Plant Compartment are reviewed. Based on this literature review there was made an assessment of where new or extended scientific knowledge about space factors effects on higher plant growth and development is needed. The requirements for research activities on higher plants in enclosed life support systems were identified. The required higher plant research activities for MELiSSA phase 2 both on ground and in space were placed in a timescale from the present until higher plants can be grown in closed life support systems on Moon and Mars.

  11. The continuing search for antitumor agents from higher plants

    PubMed Central

    Pan, Li; Chai, Heebyung; Kinghorn, A. Douglas

    2009-01-01

    Plant secondary metabolites and their semi-synthetic derivatives continue to play an important role in anticancer drug therapy. In this short review, selected single chemical entity antineoplastic agents from higher plants that are currently in clinical trials as cancer chemotherapy drug candidates are described. These compounds are representative of a wide structural diversity. In addition, the approaches taken toward the discovery of anticancer agents from tropical plants in the laboratory of the authors are summarized. The successful clinical utilization of cancer chemotherapeutic agents from higher plants has been evident for about half a century, and, when considered with the promising pipeline of new plant-derived compounds now in clinical trials, this augurs well for the continuation of drug discovery research efforts to elucidate additional candidate substances of this type. PMID:20228943

  12. Community College Global Counterparts: Historical Contexts

    ERIC Educational Resources Information Center

    Latiner Raby, Rosalind; Valeau, Edward J.

    2013-01-01

    Since 1971, scholarship on community college global counterparts has documented the nuances of these institutions and charted their similarities to one another. The purpose of this article is to detail the first three decades of community college global-counterpart scholarship from 1971-2001. Within each decade there exists scholarship that…

  13. Taxonomic discrimination of higher plants by pyrolysis mass spectrometry.

    PubMed

    Kim, S W; Ban, S H; Chung, H J; Choi, D W; Choi, P S; Yoo, O J; Liu, J R

    2004-02-01

    Pyrolysis mass spectrometry (PyMS) is a rapid, simple, high-resolution analytical method based on thermal degradation of complex material in a vacuum and has been widely applied to the discrimination of closely related microbial strains. Leaf samples of six species and one variety of higher plants (Rosa multiflora, R. multiflora var. platyphylla, Sedum kamtschaticum, S. takesimense, S. sarmentosum, Hepatica insularis, and H. asiatica) were subjected to PyMS for spectral fingerprinting. Principal component analysis of PyMS data was not able to discriminate these plants in discrete clusters. However, canonical variate analysis of PyMS data separated these plants from one another. A hierarchical dendrogram based on canonical variate analysis was in agreement with the known taxonomy of the plants at the variety level. These results indicate that PyMS is able to discriminate higher plants based on taxonomic classification at the family, genus, species, and variety level.

  14. Fractionation of metal stable isotopes by higher plants

    USGS Publications Warehouse

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  15. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  16. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  17. Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment.

    PubMed

    Wolff, Silje A; Coelho, Liz H; Karoliussen, Irene; Jost, Ann-Iren Kittang

    2014-05-05

    Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.

  18. Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment

    PubMed Central

    Wolff, Silje A.; Coelho, Liz H.; Karoliussen, Irene; Jost, Ann-Iren Kittang

    2014-01-01

    Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space. PMID:25370192

  19. Design of components for growing higher plants in space

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal of this project is to design unique systems and components for growing higher plants in microgravity during long-term space missions (Mars and beyond). Specific design tasks were chosen to contribute to and supplement NASA's Controlled Ecological Life Support System (CELSS) project. Selected tasks were automated seeding of plants, plant health sensing, and food processing. Prototype systems for planting both germinated and nongerminated seeds were fabricated and tested. Water and air pressure differences and electrostatic fields were used to trap seeds for separation and transport for planting. An absorption spectrometer was developed to measure chlorophyll levels in plants as an early warning of plant health problems. In the area of food processing, a milling system was created using high-speed rotating blades which were aerodynamically configured to produce circulation and retractable to prevent leakage. The project produced significant results having substantial benefit to NASA. It also provided an outstanding learning experience for the students involved.

  20. Novel Occurrence of Uncommon Polyamines in Higher Plants 1

    PubMed Central

    Kuehn, Glenn D.; Rodriguez-Garay, Benjamin; Bagga, Suman; Phillips, Gregory C.

    1990-01-01

    Diamines and polyamines are ubiquitous components of living cells, and apparently are involved in numerous cellular and physiological processes. Certain “uncommon” polyamines have limited distribution in nature and have been associated primarily with organisms adapted to extreme environments, although the precise function of these polyamines in such organisms is unknown. This article summarizes current knowledge regarding the occurrence in higher plants of the uncommon polyamines related to and including norspermidine and norspermine. A putative biosynthetic pathway to account for the occurrences of these uncommon polyamines in higher plants is presented, with a summary of the supporting evidence indicating the existence of the requisite enzymatic activities in alfalfa, Medicago sativa L. PMID:16667862

  1. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  2. Selection of root-zone media for higher plant cultivation in space.

    PubMed

    Guo, Shuang-sheng; Ai, Wei-dang; Zhao, Cheng-jian; Han, Li-jun; Wang, Jian-xiao

    2004-04-01

    To investigate the cultivating effects of several mineral matters used as root-zone media for higher plant growth in space. Four kinds of artificial and natural mineral matters were used as plant root-zone media based on lots of investigation and analysis. Nutrient liquid was delivered into the media by a long capillary material, and roots of plants obtained nutrition and water from the media. The related parameters such as plant height and photosynthetic efficiency were measured and analyzed. The growing effect in a mixture of coarse and fine ceramic particles with equal quantity proportion was the best, that in fine ceramic particles was the second best, that in clinoptilolite particles was the third and that in diorite particles was the last. The mixture of coarse and fine ceramic particles with equal quantity possesses not only fine capillary action, but also good aerating ability, and therefore is capable of being utilized as an effective root-zone media for higher plants intended to be grown in space.

  3. 7 CFR 955.90 - Counterparts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Counterparts. 955.90 Section 955.90 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE VIDALIA ONIONS GROWN IN GEORGIA...

  4. 7 CFR 955.90 - Counterparts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Counterparts. 955.90 Section 955.90 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE VIDALIA ONIONS GROWN IN GEORGIA...

  5. 7 CFR 955.90 - Counterparts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Counterparts. 955.90 Section 955.90 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE VIDALIA ONIONS GROWN IN GEORGIA...

  6. 7 CFR 955.90 - Counterparts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Counterparts. 955.90 Section 955.90 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE VIDALIA ONIONS GROWN IN GEORGIA...

  7. 7 CFR 955.90 - Counterparts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Counterparts. 955.90 Section 955.90 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE VIDALIA ONIONS GROWN IN GEORGIA...

  8. 50 CFR 402.04 - Counterpart regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...

  9. 50 CFR 402.04 - Counterpart regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...

  10. 50 CFR 402.04 - Counterpart regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...

  11. 50 CFR 402.04 - Counterpart regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...

  12. 50 CFR 402.04 - Counterpart regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...

  13. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants.

    PubMed

    Li, Gaojie; Hu, Shiqi; Yang, Jingjing; Schultz, Elizabeth A; Clarke, Kurtis; Hou, Hongwei

    2017-08-01

    The semi-aquatic plant Water-Wisteria is suggested as a new model to study heterophylly due to its many advantages and typical leaf phenotypic plasticity in response to environmental factors and phytohormones. Water-Wisteria, Hygrophila difformis (Acanthaceae), is a fast growing semi-aquatic plant that exhibits a variety of leaf shapes, from simple leaves to highly branched compound leaves, depending on the environment. The phenomenon by which leaves change their morphology in response to environmental conditions is called heterophylly. In order to investigate the characteristics of heterophylly, we assessed the morphology and anatomy of Hygrophila difformis in different conditions. Subsequently, we verified that phytohormones and environmental factors can induce heterophylly and found that Hygrophila difformis is easily propagated vegetatively through either leaf cuttings or callus induction, and the callus can be easily transformed by Agrobacterium tumefaciens. These results suggested that Hygrophila difformis is a good model plant to study heterophylly in higher aquatic plants.

  14. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  15. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and <1.0" from X-ray sources, and an additional 6 ``possible'' IR counterparts between 1.0'' and 1.5'' from X-ray sources. Based on a detailed study of the surface density of IR sources near the X-ray sources, we expect only ~2 of the ``strong'' counterparts and ~3 of the ``possible'' counterparts to be chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 IR clusters in the Antennae, we find with a >99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  16. Submm/mm galaxy counterpart identification using a characteristic density distribution

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Wilson, Grant W.; Lu, Yu; Johnson, Seth; Yun, Min S.; Scott, Kimberly S.; Pope, Alexandra; Aretxaga, Itziar; Ezawa, Hajime; Hughes, David H.; Kawabe, Ryohei; Kim, Sungeun; Kohno, Kotaro; Oshima, Tai

    2013-05-01

    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (˜18 arcsec), this technique identifies ˜85 per cent of SMG counterparts. For much larger beam sizes (≳30 arcsec), we report identification rates of 33-49 per cent. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope.

  17. Radio Counterparts to SXR Transients

    NASA Astrophysics Data System (ADS)

    Gary, D. E.

    1999-12-01

    By now several studies have been done on small-scale brightenings seen at radio, UV, EUV, and soft X-ray wavelengths. These are to be reviewed by Kundu in these proceedings. In this talk we concentrate on the radio counterpart of a particular type of brightening---the soft X-ray transient brightenings of Shimizu. These brightenings are associated with active regions, and a study of radio counterparts by White et al. (1995) using Nobeyama data found an excellent correspondence between the 17 GHz and SXR brightenings, both spatially and temporally. However, this study found that both the SXR and microwave emissions could be satisfactorily explained as purely thermal emission, and a search of BATSE hard X-ray data showed no nonthermal counterpart. White et al. (1995) were forced to conclude that the events may be different from flares. A more sensitive search for nonthermal emission was needed, in particular using lower frequency microwaves where the influence of nonthermal electrons would be more easily detected. Gary, Hartl and Shimizu (1997) found 34 SXR transient brightenings over a 10-day period in May 1992, for which OVRO (1-18 GHz) total power data were available. A comparison of the data showed a number of clear nonthermal signatures. In addition, one of the events was seen in the lowest energy (6-9.3 keV) channel of the BATSE SPEC detector, suggesting a connection between the microflares discovered in hard X-rays by Lin et al. (1984). The evidence that SXR transient brightenings are microflares is reviewed in this talk. We also attempt to place other small-scale brightenings in context with regard to SXR transient brightenings and microflares.

  18. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects

  19. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects.

    PubMed

    Du, Wenchao; Tan, Wenjuan; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Ji, Rong; Yin, Ying; Guo, Hongyan

    2017-01-01

    Multiple applications of metal oxide nanoparticles (MONPs) could result in their accumulation in soil, threatening higher terrestrial plants. Several reports have shown the effects of MONPs on plants. In this review, we analyze the most recent reports about the physiological and biochemical responses of plants to stress imposed by MONPs. Findings demonstrate that MONPs may be taken up and accumulated in plant tissues causing adverse or beneficial effects on seed germination, seedling elongation, photosynthesis, antioxidative stress response, agronomic, and yield characteristics. Given the importance of determining the potential risks of MONPs on crops and other terrestrial higher plants, research questions about field long-term conditions, transgenernational phytotoxicity, genotype specific sensitivity, and combined pollution problems should be considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The Chandra Xbootes Survey - IV: Mid-Infrared and Submillimeter Counterparts

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Mitchell-Wynne, Ketron; Cooray, Asantha R.; Nayyeri, Hooshang

    2016-06-01

    In this work, we use a Bayesian technique to identify mid-IR and submillimeter counterparts for 3,213 X-ray point sources detected in the Chandra XBoötes Survey so as to characterize the relationship between black hole activity and star formation in the XBoötes region. The Chandra XBoötes Survey is a 5-ks X-ray survey of the 9.3 square degree Boötes Field of the NOAO Deep Wide-Field Survey (NDWFS), a survey imaged from the optical to the near-IR. We use a likelihood ratio analysis on Spitzer-IRAC data taken from The Spitzer Deep, Wide-Field Survey (SDWFS) to determine mid-IR counterparts, and a similar method on Herschel-SPIRE sources detected at 250µm from The Herschel Multi-tiered Extragalactic Survey to determine the submillimeter counterparts. The likelihood ratio analysis (LRA) provides the probability that a(n) IRAC or SPIRE point source is the true counterpart to a Chandra source. The analysis is comprised of three parts: the normalized magnitude distributions of counterparts and background sources, and the radial probability distribution of the separation distance between the IRAC or SPIRE source and the Chandra source. Many Chandra sources have multiple prospective counterparts in each band, so additional analysis is performed to determine the identification reliability of the candidates. Identification reliability values lie between 0 and 1, and sources with identification reliability values ≥0.8 are chosen to be the true counterparts. With these results, we will consider the statistical implications of the sample's redshifts, mid-IR and submillimeter luminosities, and star formation rates.

  1. Aquatic food production modules in bioregenerative life support systems based on higher plants

    NASA Astrophysics Data System (ADS)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  2. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Tobler, Mark A; Ryel, Ronald J

    2016-05-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.

  3. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant.

    PubMed

    Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus

    2014-07-01

    Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

  4. Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.

    2018-03-01

    The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

  5. Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell.

    PubMed

    Thuleau, P; Ward, J M; Ranjeva, R; Schroeder, J I

    1994-07-01

    Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.

  6. The Relevance of Higher Plants in Lead Compound Discovery Programs⊥

    PubMed Central

    Kinghorn, A. Douglas; Pan, Li; Fletcher, Joshua N.; Chai, Heebyung

    2011-01-01

    Along with compounds from terrestrial microorganisms, the constituents of higher plants have provided a substantial number of the natural product-derived drugs used currently in western medicine. Interest in the elucidation of new structures of the secondary metabolite constituents of plants has remained high among the natural products community over the first decade of the 21st century, particularly of species that are used in systems of traditional medicine or are utilized as botanical dietary supplements. In this review, progress made in the senior author’s laboratory in research work on naturally occurring sweeteners and other taste-modifying substances and on potential anticancer agents from tropical plants will be described. PMID:21650152

  7. Growth and development in inert non-aqueous liquids. [of higher plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1974-01-01

    A preview is presented of the survival and growth capabilities of higher plants in non-aqueous, inert liquids. The two media which were used are mineral (white) oil and fluorochemical inert liquid FC-75. Both liquids dissolve oxygen and carbon dioxide readily, but are insoluble in water. Consequently, plants submerged in these liquids are capable of gas exchange with the atmosphere, but possess a water impermeable coating the dimensions of which are determined by the size of the liquid holding container. In a sense, growing plants in a tank of mineral oil imparts on them a cuticle. Plants plus prescribed volumes of water were innoculated into mineral oil. Organisms with minimal water supplied could then be observed. Also, submersed plants covered with an oil slick were shown to be capable of growth in dessicating atmospheres.

  8. Aquatic food production modules in bioregenerative life support systems based on higher plants.

    PubMed

    Bluem, V; Paris, F

    2001-01-01

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity. Grant numbers: WS50WB9319-3, IVA1216-00588. c 2001. COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  9. Is polyploidy necessary for tissue differentiation in higher plants. [Triticum, helianthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.S.; Hof, J.V.

    1975-01-01

    Measurements of relative DNA per nucleus of cells from various tissues show that cell differentiation can occur in the absence of polyploidy in higher plants. In Pisum polyploidy was present in roots, sepals, pods, pistils, and stamens but not in petals or leaves. In Triticum cells of leaves exhibited some polyploidy, but no polyploid cells were present in mature roots. No polyploid cells were found in any tissue of Helianthus examined (roots, cotyledons, stems, sepals, petals, pistils, and stamens). Therefore, as a general rule, polyploidy should not be considered essential in tissue or organ differentiation of higher plants. In Helianthusmore » polyploidy is unnecessary for the completion of the life cycle. (auth)« less

  10. Electromagnetic Counterparts to Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2011-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspirating BH system will interact strongly-on a purely Newtonian level-with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.

  11. Optimizing searches for electromagnetic counterparts of gravitational wave triggers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael W.; Tao, Duo; Chan, Man Leong; Chatterjee, Deep; Christensen, Nelson; Ghosh, Shaon; Greco, Giuseppe; Hu, Yiming; Kapadia, Shasvath; Rana, Javed; Salafia, Om Sharan; Stubbs11, Christopher

    2018-04-01

    With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.

  12. Optimizing searches for electromagnetic counterparts of gravitational wave triggers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael W.; Tao, Duo; Chan, Man Leong; Chatterjee, Deep; Christensen, Nelson; Ghosh, Shaon; Greco, Giuseppe; Hu, Yiming; Kapadia, Shasvath; Rana, Javed; Salafia, Om Sharan; Stubbs, Christopher W.

    2018-07-01

    With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.

  13. Progress of targeted genome modification approaches in higher plants.

    PubMed

    Cardi, Teodoro; Neal Stewart, C

    2016-07-01

    Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.

  14. A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions.

    PubMed

    Chen, Bao-Ming; Su, Jin-Quan; Liao, Hui-Xuan; Peng, Shao-Lin

    2018-03-05

    Soil nutrient heterogeneity has been proposed to influence competitive outcomes among different plant species. Thus, it is crucial to understand the effects of environmental heterogeneity on competition between exotic invasive and native species. However, the effects of soil nutrient heterogeneity on the competition between invasive and native plants have rarely been linked to root foraging behaviour. In this study, a competition experiment was performed with two invasive-native species pairs (BP-VC, Bidens pilosa vs. Vernonia cinerea; MM-PS, Mikania micrantha vs. Paederia scandens) grown under homogeneous and heterogeneous conditions in a common greenhouse environment. Root activity was assessed by determining the amount of strontium (Sr) taken up by the shoot of each species. The invasive species exhibited a greater foraging scale, whereas the native species exhibited a higher foraging precision. A trade-off between foraging scale and precision was observed within each pair of invasive-native species. Compared with soil homogeneity, soil heterogeneity significantly increased the biomass of the two invasive species, B. pilosa and M. micrantha, under competitive conditions. Within each pair, the invasive species exhibited greater relative competitive ability with respect to shoot mass, and considerably more Sr taken up by the invasive species compared with the native species. The Sr acquisition results indicate that nutrient-poor conditions may facilitate the competitive ability of the native species V. cinerea, whereas M. micrantha may possess a stronger competitive ability regardless of soil nutrient conditions. Soil nutrient heterogeneity has the potential to promote the invasion of these two exotic species due to their larger foraging scale, stronger competitive ability and greater root activity relative to their counterpart native species. The present work highlights the importance of soil heterogeneity in plant invasion, particularly with regards to root

  15. Higher Education and International Capacity Building: Twenty Five Years of Higher Education Links

    ERIC Educational Resources Information Center

    Stephens, David, Ed.

    2009-01-01

    For the past 25 years UK Higher Education institutions have forged research and teaching partnerships with their counterparts overseas. Many of these links were funded by the British Government and managed by the British Council's Higher Education Links Scheme. This book takes an informed and critical look at issues and trends in global higher…

  16. Enigma Variations for Peptides and Their Transporters in Higher Plants

    PubMed Central

    WATERWORTH, WANDA M.; BRAY, CLIFFORD M.

    2006-01-01

    • Background. Two families of proteins that transport small peptides, the oligopeptide transporters (OPTs) and the peptide transporters (PTRs), have been recognized in eukaryotes. Higher plants contain a far greater number of genes for these transporters than do other eukaryotes. This may be indicative of the relative importance of (oligo)peptides and their transport to plant growth and metabolism. • Recent progress. Recent studies are now allowing us to assign functions to these transporters and are starting to identify their in-planta substrates, revealing unexpected and important contributions of the transporters to plant growth and developmental processes. This Botanical Briefing appraises recent findings that PTRs and OPTs have key roles to play in the control of plant cell growth and development. Evidence is presented that some of these transporters have functions outside that of nitrogen nutrition and that these carriers can also surprise us with their totally unexpected choice of substrates. PMID:16735405

  17. Optical Counterparts to Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Beroiz, Martin

    The novel field of Gravitational Wave Astronomy has opened a new window to the universe. Never before had we received gravitational waves from the distant celestial bodies carried away by space-time perturbations, until the detection of GW150914 on September 14, 2015. But these signals, however faint, carry very little information about their positions on the sky. The sky localization can have uncertainties that span up to a few hundreds square degrees, which makes locating the sources very difficult. Traditional Astronomy can complement this limitation of gravitational wave detection where optical astronomy is stronger: localization. However, this poses other technological challenges of a different kind. In the era of multi-messenger Astronomy, a low latency response time after detection is crucial in order to have any hope of detecting the optically faint electromagnetic counterparts of the event. The mission of the Transient Optical Robotic Observatory of the South (TOROS), in the context of multi-messenger and time-domain astronomy, is to create a facility ready to respond to gravitational wave detections for prompt follow-up observations searching for optical counterparts. This dissertation discusses the implementation of a software pipeline for the TOROS project and the results obtained during the O1 campaign of Advanced LIGO.

  18. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares-Santos, M.; Holz, D. E.; Annis, J.

    Here, we present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg 2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient locatedmore » $$10\\buildrel{\\prime\\prime}\\over{.} 6$$ from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for $${H}_{0}=70$$ km s –1 Mpc –1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of $i=17.3$ and $z=17.4$, and thus an absolute magnitude of $${M}_{i}=-15.7$$, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.« less

  19. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera

    DOE PAGES

    Soares-Santos, M.; Holz, D. E.; Annis, J.; ...

    2017-10-16

    Here, we present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg 2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient locatedmore » $$10\\buildrel{\\prime\\prime}\\over{.} 6$$ from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for $${H}_{0}=70$$ km s –1 Mpc –1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of $i=17.3$ and $z=17.4$, and thus an absolute magnitude of $${M}_{i}=-15.7$$, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.« less

  20. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Soares-Santos, M.; Holz, D. E.; Annis, J.; Chornock, R.; Herner, K.; Berger, E.; Brout, D.; Chen, H.-Y.; Kessler, R.; Sako, M.; Allam, S.; Tucker, D. L.; Butler, R. E.; Palmese, A.; Doctor, Z.; Diehl, H. T.; Frieman, J.; Yanny, B.; Lin, H.; Scolnic, D.; Cowperthwaite, P.; Neilsen, E.; Marriner, J.; Kuropatkin, N.; Hartley, W. G.; Paz-Chinchón, F.; Alexander, K. D.; Balbinot, E.; Blanchard, P.; Brown, D. A.; Carlin, J. L.; Conselice, C.; Cook, E. R.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Farr, B.; Finley, D. A.; Foley, R. J.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Kasen, D.; Li, T. S.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Quataert, E.; Rest, A.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, K.; Walker, A. R.; Wester, W.; Williams, P. K. G.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Vikram, V.; Wechsler, R. H.; Weller, J.; Dark Energy Survey; Dark Energy Camera GW-EM Collaboration

    2017-10-01

    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the I and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located 10\\buildrel{\\prime\\prime}\\over{.} 6 from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for {H}0=70 km s-1 Mpc-1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of I=17.3 and z=17.4, and thus an absolute magnitude of {M}I=-15.7, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.

  1. VizieR Online Data Catalog: Selecting IRAC counterparts to SMGs (Alberts+, 2013)

    NASA Astrophysics Data System (ADS)

    Alberts, S.; Wilson, G. W.; Lu, Y.; Johnson, S.; Yun, M. S.; Scott, K. S.; Pope, A.; Aretxaga, I.; Ezawa, H.; Hughes, D. H.; Kawabe, R.; Kim, S.; Kohno, K.; Oshima, T.

    2014-05-01

    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (~18"), this technique identifies ~85% of SMG counterparts. For much larger beam sizes (>~30"), we report identification rates of 33-49%. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope. (3 data files).

  2. The second Herschel-ATLAS Data Release - III. Optical and near-infrared counterparts in the North Galactic Plane field

    NASA Astrophysics Data System (ADS)

    Furlanetto, C.; Dye, S.; Bourne, N.; Maddox, S.; Dunne, L.; Eales, S.; Valiante, E.; Smith, M. W.; Smith, D. J. B.; Ivison, R. J.; Ibar, E.

    2018-05-01

    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r < 22.4 for 42 429 H-ATLAS sources (37.8 per cent), with an estimated completeness of 71.7 per cent and a false identification rate of 4.7 per cent. We also identified counterparts in the near-infrared using deeper K-band data which covers a smaller ˜25 deg2. We found reliable near-infrared counterparts to 61.8 per cent of the 250-μm-selected sources within that area. We assessed the performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ˜25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80-90 per cent of our reliable identifications are correct.

  3. Impact of common cytostatic drugs on pollen fertility in higher plants.

    PubMed

    Mišík, Miroslav; Kundi, Michael; Pichler, Clemens; Filipic, Metka; Rainer, Bernhard; Mišíková, Katarina; Nersesyan, Armen; Knasmueller, Siegfried

    2016-08-01

    Cytostatic drugs are among the most toxic chemicals which are produced. Many of them cause damage of the genetic material which may affect the fertility of higher organisms. To study the impact of the widely used anticancer drugs [cisplatin (CisPt), etoposide (Et), and 5-fluorouracil (5-FU)] on the reproduction of higher plants, pollen abortion experiments were conducted with species which belong to major plant families, namely with Tradescantia paludosa (Commelinaceae), Arabidopsis thaliana (Brassicaceae), Chelidonium majus (Papaveraceae), and Alisma plantago-aquatica (Alismataceae). All compounds increased the frequencies of abortive grains. The lowest effective doses were in general in a narrow range (i.e., 1 and 10 mg/kg of dry soil). The effects of the individual drugs were similar in T. paludosa, A. plantago-aquatica, and Ch. majus, while A. thaliana was consistently less sensitive. The highest abortion rate was obtained in most experiments with CisPt, followed by 5-FU and Et. Comparisons of the doses which caused effects in the present experiments in the different species with the predicted environment concentrations and with the levels of the cytostatics which were detected in hospital wastewaters show that the realistic environmental concentrations of the drugs are 4-6 orders of magnitude lower. Therefore, it is unlikely that these drugs affect the fertility of higher plants in aquatic and terrestrial ecosystems.

  4. In vitro assembled plant microtubules exhibit a high state of dynamic instability.

    PubMed

    Moore, R C; Zhang, M; Cassimeris, L; Cyr, R J

    1997-01-01

    Higher plants possess four distinct microtubule arrays. One of these, the cortical array, is involved in orienting the deposition of cellulose microfibrils. This plant interphase array is also notable because it contains exceptionally dynamic microtubules. Although the primary sequence of plant and animal tubulin is similar (79-87% amino acid identity overall) there are some regions of divergence. Thus, one possible explanation for the high state of polymer assembly and turnover that is observed in plant interphase arrays is that the tubulins have evolved differently and possess a higher intrinsic dynamic character than their animal counterparts. This hypothesis was tested using highly purified plant tubulin assembled in vitro. Using high-resolution DIC video-enhanced microscopy, we quantified the four characteristic parameters of dynamic instability of plant microtubules and compared them with animal microtubules. The elongation velocities between plant and animal microtubules are similar, but plant microtubules undergo catastrophes more frequently, do not exhibit any rescues, and have an average shortening velocity of 195 microm/min (compared with 21 microm/min for animal microtubules). These data support the hypothesis that plant tubulin forms microtubules that are intrinsically more dynamic than those of animals.

  5. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  6. Use of higher plants as screens for toxicity assessment.

    PubMed

    Kristen, U

    1997-01-01

    This review deals with the use of entire plants, seedlings, cell suspension cultures and pollen tubes for the estimation of potential toxicity in the environment, and for risk assessment of chemicals and formulations of human relevance. It is shown that the roots of onions and various crop seedlings, as well as in vitro growing pollen tubes of some mono- and dicotyledonous plants, are most frequently used to obtain toxicity data by determination of root and tube growth inhibition. Both roots and pollen tubes are chloroplast free, non-photosynthetic systems and, therefore, with regard to their cytotoxic reactions are closer to vertebrate tissues and cells than are chloroplast-containing plant organs. Root tips and anthers of flower buds are shown to be applicable to genotoxicity screening by microscopic analysis of mitotic or meiotic aberrations during cell division or microspore development, respectively. The processes of mitosis and meiosis are similar in plants and animals. Therefore, meristematic and sporogenic tissues of plants generally show patterns of cytotoxic response similar to those of embryogenic and spermatogenic tissues of vertebrates. The suitability of root tips, cell suspensions and pollen tubes for the investigation of mechanisms of toxic action and for the analysis of structure-activity relationships is also demonstrated. Two plant-based assays, the Allium test and the pollen tube growth test, both currently being evaluated alongside with established mammalian in vivo and in vitro protocols, are emphasized with regard to their potential use as alternatives to animal in vivo toxicity tests. For both assays, preliminary results indicate that the tips of growing roots and the rapidly elongating pollen tubes of certain higher plant species are as reliable as mammalian cell lines for detecting basal cytotoxicity. It is suggested that seeds and pollen grains, in particular, provide easily storable and convenient systems for inexpensive, relatively

  7. 97. Catalog B, Higher Plants, 200 2 American Chestnut Tree, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. Catalog B, Higher Plants, 200 2 American Chestnut Tree, Negative No. 6032 (Photographer and date unknown) THIS GHOST FOREST OF BLIGHTED CHESTNUTS ONCE STOOD APPROXIMATELY AT THE LOCATION OF THE BYRD VISITOR CENTER. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  8. Physiology and toxicology of hormone-disrupting chemicals in higher plants.

    PubMed

    Couée, Ivan; Serra, Anne-Antonella; Ramel, Fanny; Gouesbet, Gwenola; Sulmon, Cécile

    2013-06-01

    Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.

  9. Design and optimization of an experimental bioregenerative life support system with higher plants and silkworms

    NASA Astrophysics Data System (ADS)

    Hu, Enzhu; Bartsev, Sergey I.; Zhao, Ming; Liu, Professor Hong

    The conceptual scheme of an experimental bioregenerative life support system (BLSS) for planetary exploration was designed, which consisted of four elements - human metabolism, higher plants, silkworms and waste treatment. 15 kinds of higher plants, such as wheat, rice, soybean, lettuce, mulberry, et al., were selected as regenerative component of BLSS providing the crew with air, water, and vegetable food. Silkworms, which producing animal nutrition for crews, were fed by mulberry-leaves during the first three instars, and lettuce leaves last two instars. The inedible biomass of higher plants, human wastes and silkworm feces were composted into soil like substrate, which can be reused by higher plants cultivation. Salt, sugar and some household material such as soap, shampoo would be provided from outside. To support the steady state of BLSS the same amount and elementary composition of dehydrated wastes were removed periodically. The balance of matter flows between BLSS components was described by the system of algebraic equations. The mass flows between the components were optimized by EXCEL spreadsheets and using Solver. The numerical method used in this study was Newton's method.

  10. Near-infrared counterparts to the Galactic Bulge Survey X-ray source population

    NASA Astrophysics Data System (ADS)

    Greiss, S.; Steeghs, D.; Jonker, P. G.; Torres, M. A. P.; Maccarone, T. J.; Hynes, R. I.; Britt, C. T.; Nelemans, G.; Gänsicke, B. T.

    2014-03-01

    We report on the near-infrared matches, drawn from three surveys, to the 1640 unique X-ray sources detected by Chandra in the Galactic Bulge Survey (GBS). This survey targets faint X-ray sources in the bulge, with a particular focus on accreting compact objects. We present all viable counterpart candidates and associate a false alarm probability (FAP) to each near-infrared match in order to identify the most likely counterparts. The FAP takes into account a statistical study involving a chance alignment test, as well as considering the positional accuracy of the individual X-ray sources. We find that although the star density in the bulge is very high, ˜90 per cent of our sources have an FAP <10 per cent, indicating that for most X-ray sources, viable near-infrared counterparts candidates can be identified. In addition to the FAP, we provide positional and photometric information for candidate counterparts to ˜95 per cent of the GBS X-ray sources. This information in combination with optical photometry, spectroscopy and variability constraints will be crucial to characterize and classify secure counterparts.

  11. Formation of higher plant component microbial community in closed ecological system

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.

    2001-07-01

    Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

  12. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.

    PubMed

    Heber, U; Bilger, W; Bligny, R; Lange, O L

    2000-11-01

    Adaptation to excessive light is one of the requirements of survival in an alpine environment particularly for poikilohydric organisms which in contrast to the leaves of higher plants tolerate full dehydration. Changes in modulated chlorophyll fluorescence and 820-nm absorption were investigated in the lichens Xanthoria elegans (Link) Th. Fr. and Rhizocarpon geographicum (L.) DC, in the moss Grimmia alpestris Limpr. and the higher plants Geum montanum L., Gentiana lutea L. and Pisum sativum L., all collected at altitudes higher than 2000 m above sea level. In the dehydrated state, chlorophyll fluorescence was very low in the lichens and the moss, but high in the higher plants. It increased on rehydration in the lichens and the moss, but decreased in the higher plants. Light-induced charge separation in photosystem II was indicated by pulse-induced fluorescence increases only in dried leaves, not in the dry moss and dry lichens. Strong illumination caused photodamage in the dried leaves, but not in the dry moss and dry lichens. Light-dependent increases in 820-nm absorption revealed formation of potential quenchers of chlorophyll fluorescence in all dehydrated plants, but energy transfer to quenchers decreased chlorophyll fluorescence only in the moss and the lichens, not in the higher plants. In hydrated systems, coupled cyclic electron transport is suggested to occur concurrently with linear electron transport under strong actinic illumination particularly in the lichens because far more electrons became available after actinic illumination for the reduction of photo-oxidized P700 than were available in the pool of electron carriers between photosystems II and I. In the moss Grimmia, but not in the lichens or in leaves, light-dependent quenching of chlorophyll fluorescence was extensive even under nitrogen, indicating anaerobic thylakoid acidification by persistent cyclic electron transport. In the absence of actinic illumination, acidification by ca. 8% CO2 in

  13. Distribution, congruence, and hotspots of higher plants in China

    PubMed Central

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-01

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China’s Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region’s specific conditions. PMID:26750244

  14. Distribution, congruence, and hotspots of higher plants in China.

    PubMed

    Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining

    2016-01-11

    Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China's Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region's specific conditions.

  15. The SCUBA-2 Cosmology Legacy Survey: Multiwavelength Counterparts to 103 Submillimeter Galaxies in the UKIDSS-UDS Field

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Smail, Ian; Ivison, Rob J.; Arumugam, Vinodiran; Almaini, Omar; Conselice, Christopher J.; Geach, James E.; Hartley, Will G.; Ma, Cheng-Jiun; Mortlock, Alice; Simpson, Chris; Simpson, James M.; Swinbank, A. Mark; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott C.; Dunlop, James S.; Farrah, Duncan; Halpern, Mark; Michałowski, Michał J.; van der Werf, Paul; Wilkinson, Aaron; Zavala, Jorge A.

    2016-04-01

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical-near-infrared (OIR) data available in this field, we develop a novel technique, Optical-IR Triple Color (OIRTC), using z - K, K - [3.6], [3.6] - [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S850 ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S850 ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S850 > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.

  16. The Optical Counterpart of M101 ULX-1

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Gruendi, Robert A.; Chu, You-Hua; Chen, C.-H. Rosie; Still, Martin; Mukai, Koji; Musuotzky, Richard F.

    2004-01-01

    We have identified the optical counterpart of the Ultra-Luminous X-ray source Ml0l ULX-1 (CX- OKM101 J140332.74+542102), by comparing HST ACS images with Chandra ACIS-S images. The optical counterpart has V= 23.75 and colours consistent with those for a mid-B supergiant. Archival WFPC2 observations show that the source brightness is constant to within approximately 0.1 mag. The physical association of this source with the ULX is confirmed by Gemini GMOS spectroscopic observations which show spatially unresolved He II lambda4686 and He I lambda5876 emission. These results suggest that M10l ULX-1 is a HMXB but deep spectroscopic monitoring observations are needed to determine the detailed properties of this system.

  17. Shoot phototropism in higher plants: new light through old concepts.

    PubMed

    Christie, John M; Murphy, Angus S

    2013-01-01

    Light is a key environmental factor that drives many aspects of plant growth and development. Phototropism, the reorientation of growth toward or away from light, represents one of these important adaptive processes. Modern studies of phototropism began with experiments conducted by Charles Darwin demonstrating that light perception at the shoot apex of grass coleoptiles induces differential elongation in the lower epidermal cells. This led to the discovery of the plant growth hormone auxin and the Cholodny-Went hypothesis attributing differential tropic bending to lateral auxin relocalization. In the past two decades, molecular-genetic analyses in the model flowering plant Arabidopsis thaliana has identified the principal photoreceptors for phototropism and their mechanism of activation. In addition, several protein families of auxin transporters have been identified. Despite extensive efforts, however, it still remains unclear as to how photoreceptor activation regulates lateral auxin transport to establish phototropic growth. This review aims to summarize major developments from over the last century and how these advances shape our current understanding of higher plant phototropism. Recent progress in phototropism research and the way in which this research is shedding new light on old concepts, including the Cholodny-Went hypothesis, is also highlighted.

  18. A novel histone variant localized in nucleoli of higher plant cells.

    PubMed

    Tanaka, I; Akahori, Y; Gomi, K; Suzuki, T; Ueda, K

    1999-07-01

    Immunofluorescence staining with antisera raised against p35, a basic nuclear protein that accumulates in the pollen nuclei of Lilium longiflorum, specifically stained the nucleoli in interphase nuclei of somatic tissues, including root and leaf, and in pachytene nuclei during meiotic division, whereas antisera raised against histone H1 uniformly stained the entire chromatin domain with the exception of the nucleoli in these nuclei. Further, p35-specific antisera stained the nucleoli in root and leaf nuclei of the monocotyledonous plants Tulipa gesneriana, Allium cepa and Triticum aestivum and of the dicotyledonous plants Vicia faba and Nicotiana tabacum. Thus, these novel antisera stained the nucleoli in cells of all higher plants examined, although the staining patterns within nucleoli were somewhat different among plant species and tissues. The full-length cDNA of p35 was cloned on the basis of the partial amino acid sequence. The deduced amino acid composition and amino acid sequence of p35 indicate that this nucleolar protein is a novel variant of histone Hl. Further, p35 was strongly bound to ribosomal DNA in vitro. The results of immunoblotting of histones extracted from each tissue of the various plant species with the nucleolus-specific antibodies also suggested the conservation of similar epitope(s) in both mono- and dicotyledonous plants. From these results, it is suggested that similar variants of histone Hl are specifically distributed in the nucleoli of all plant species and help to organize the nucleolar chromatin.

  19. Plant centromeres: structure and control.

    PubMed

    Richards, E J; Dawe, R K

    1998-04-01

    Recent work has led to a better understanding of the molecular components of plant centromeres. Conservation of at least some centromere protein constituents between plant and non-plant systems has been demonstrated. The identity and organization of plant centromeric DNA sequences are also beginning to yield to analysis. While there is little primary DNA sequence conservation among the characterized plant centromeres and their non-plant counterparts, some parallels in centromere genomic organisation can be seen across species. Finally, the emerging idea that centromere activity is controlled epigenetically finds support in an examination of the plant centromere literature.

  20. Advanced life support systems in lunar and Martian environments utilizing a higher plant based engineering paradigm

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1992-01-01

    The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.

  1. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  2. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  3. Lessons from natural and artificial polyploids in higher plants.

    PubMed

    Hegarty, M; Coate, J; Sherman-Broyles, S; Abbott, R; Hiscock, S; Doyle, J

    2013-01-01

    Polyploidy in higher plants is a major source of genetic novelty upon which selection may act to drive evolution, as evidenced by the widespread success of polyploid species in the wild. However, research into the effects of polyploidy can be confounded by the entanglement of several processes: genome duplication, hybridisation (allopolyploidy is frequent in plants) and subsequent evolution. The discovery of the chemical agent colchicine, which can be used to produce artificial polyploids on demand, has enabled scientists to unravel these threads and understand the complex genomic changes involved in each. We present here an overview of lessons learnt from studies of natural and artificial polyploids, and from comparisons between the 2, covering basic cellular and metabolic consequences through to alterations in epigenetic gene regulation, together with 2 in-depth case studies in Senecio and Glycine. See also the sister article focusing on animals by Arai and Fujimoto in this themed issue. Copyright © 2013 S. Karger AG, Basel.

  4. The optical counterpart of IGR J00291+5934 in quiescence

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Campana, S.; Covino, S.; Israel, G. L.; Stella, L.; Andreuzzi, G.

    2007-09-01

    Aims:The recent (December 2004) discovery of the sixth accretion-powered millisecond X-ray pulsar IGR J00291+5934 provides a very good chance to deepen our knowledge of such systems. Although these systems are well studied at high energies, poor informations are available for their optical/NIR counterparts during quiescence. Up to now, only for SAX J1808.4-3658, the first discovered system of this type, we have a secure multiband detection of its optical counterpart in quiescence. Among the seven known system IGR J00291+5934 is the one that resembles SAX J1808.4-3658 more closely. Methods: With the Italian 3.6 m TNG telescope, we have performed deep optical and NIR photometry of the field of IGR J00291+5934 during quiescence in order to look for the presence of a variable counterpart. Results: We present here the first multiband (VRIJH) detection of the optical and NIR counterpart of IGR J00291+5934 in quiescence as well as a deep upper limit in the K-band. We obtain an optical light curve that shows variability consistent with a sinusoidal modulation at the known 2.46 h orbital period and present evidence for a strongly irradiated companion. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  5. Lead stress effects on physiobiochemical activities of higher plants.

    PubMed

    Sengar, Rakesh Singh; Gautam, Madhu; Sengar, Rajesh Singh; Garg, Sanjay Kumar; Sengar, Kalpana; Chaudhary, Reshu

    2008-01-01

    Lead is a metallic pollutant emanating from various environmental sources including industrial wastes, combustion of fossil fuels, and use of agrochemicals. Lead may exist in the atmosphere as dusts, fumes, mists, and vapors, and in soil as a mineral. Soils along roadsides are rich in lead because vehicles burn leaded gasoline, which contributes to environmental lead pollution. Other important sources of lead pollution are geological weathering, industrial processing of ores and minerals, leaching of lead from solid wastes, and animal and human excreta. Lead is nondegradable, readily enters the food chain, and can subsequently endanger human and animal health. Lead is one of the most important environment pollutants and deserves the increasing attention it has received in recent decades. The present effort was undertaken to review lead stress effects on the physiobiochemical activity of higher plants. Lead has gained considerable attention as a potent heavy metal pollutant because of growing anthropogenic pressure on the environment. Lead-contaminated soils show a sharp decline in crop productivity. Lead is absorbed by plants mainly through the root system and in minor amounts through the leaves. Within the plants, lead accumulates primarily in roots, but some is translocated to aerial plant parts. Soil pH, soil particle size, cation-exchange capacity, as well as root surface area, root exudation, and mycorrhizal transpiration rate affect the availability and uptake of lead by plants. Only a limited amount of lead is translocated from roots to other organs because there are natural plant barriers in the root endodermis. At lethal concentrations, this barrier is broken and lead may enter vascular tissues. Lead in plants may form deposits of various sizes, present mainly in intercellular spaces, cell walls, and vacuoles. Small deposits of this metal are also seen in the endoplasmic reticulum, dictyosome, and dictyosome-derived vesicles. After entering the cells, lead

  6. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective

    PubMed Central

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635

  7. [Studies on the role of silicic acid in the development of higher plants].

    PubMed

    Werner, D

    1967-03-01

    Germanium acid, a specific inhibitor of the silicic acid metabolism in diatoms, inhibits the growth of Sinapis alba, Lemna minor, Wolffia arrhiza, Nicotiana tabacum, Tradescantia spec, Zinnia elegans, and Secale cereale when applied in the same concentrations as those used in the case of diatoms (15-75 μg GeO2/ml medium). The growth of Aspergillus niger, Phycomyces blakesleanus, Escherichia coli K 12, Euglena gracilis and Pandorina morum is not influenced by these and higher concentrations of Germanium acid. By application of high concentrations of silicic acid, the growth inhibition produced by germanium acid in Lemna minor is partially reduced. Plants of Lemna minor which have been inhibited by germanium acid are essentially smaller than plants grown in a normal medium; their chlorophyll content is significantly decreased. The growth of the roots in Lemna is particularly inhibited. Isolated growing roots of Lycopersicon pimpinellifolium MILL. are inhibited by small concentrations of Ge(OH)4 (ca. 1,5×10(-4) M/l). In contrast to the growth of older plants, the germination of Secale cereale and Sinapis alba is not influenced by Ge(OH)4. The effects of germanium acid are discussed in relation to the physiological role of silicic acid. The results suggest that the element silicon, in the form of silicic acid, is generally essential for the normal development of higher plants.

  8. Effect of free fall on higher plants.

    NASA Technical Reports Server (NTRS)

    Gordon, S. A.

    1973-01-01

    The influence of exposure to the free-fall state on the orientation, morphogenesis, physiology, and radiation response of higher plants is briefly summarized. It is proposed that the duration of the space-flight experiments has been to brief to permit meaningful effects of free fall on general biochemistry, growth, and development to appear. However, two types of significant effect did occur. The first is on differential growth - i.e., tropism and epinasty - resulting from the absence of a normal geostimulus. For these phenomena it is suggested that ground-based experiments with the clinostat would suffice to mimic the effect of the free-fall state. The second is an apparent interaction between the radiation response and some flight condition, yielding an enhanced microspore abortion, a disturbed spindle function, and a stunting of stamen hairs. It is suggested that this apparent interaction may be derived from a shift in the rhythm of the cell cycle, induced by the free fall.

  9. The Maternal-to-Zygotic Transition in Higher Plants: Available Approaches, Critical Limitations, and Technical Requirements.

    PubMed

    Zhao, Peng; Sun, Meng-Xiang

    2015-01-01

    Fertilization marks the turnover from the gametophyte to sporophyte generation in higher plants. After fertilization, sporophytic development undergoes genetic turnover from maternal to zygotic control: the maternal-to-zygotic transition (MZT). The MZT is thought to be critical for early embryogenesis; however, little is known about the time course or developmental impact of the MZT in higher plants. Here, we discuss what is known in the field and focus on techniques used in relevant studies and their limitations. Some significant questions and technical requirements for further investigations are also discussed. © 2015 Elsevier Inc. All rights reserved.

  10. Higher photosynthesis, nutrient- and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China.

    PubMed

    Liu, Ming-Chao; Kong, De-Liang; Lu, Xiu-Rong; Huang, Kai; Wang, Shuo; Wang, Wei-Bin; Qu, Bo; Feng, Yu-Long

    2017-08-01

    The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (P max ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher P max , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher P max for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as P max , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat. © 2017 Scandinavian Plant Physiology Society.

  11. Gravitropism in higher plant shoots. IV - Further studies on participation of ethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; White, Rosemary G.; Salisbury, Frank B.

    1986-01-01

    Various hypotheses regarding the influence of ethylene on gravitropism in higher plant shoots were experimentally tested. It was found that ethylene at 1.0 and 10.0 cu cm/cu m decreased the rate of gravitropic bending in cocklebur stems, while 0.1 cm/cu m of ethylene had little effect. Treating cocklebur plants with 1.0 mmol aminoethoxyvinylglycine (AVG, an ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cu cm/cu m ethylene in the surrounding atmosphere partially restored the rate of bending of AVG-treated plants. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect.

  12. Purification and Kinetics of Higher Plant NADH:Nitrate Reductase.

    PubMed

    Campbell, W H; Smarrelli, J

    1978-04-01

    Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 mumol of NADH oxidized/minute * milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 mumol of NADH oxidized/minute * milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site.

  13. Do Lower Calorie or Lower Fat Foods Have More Sodium Than Their Regular Counterparts?

    PubMed Central

    John, Katherine A.; Maalouf, Joyce; B. Barsness, Christina; Yuan, Keming; Cogswell, Mary E.; Gunn, Janelle P.

    2016-01-01

    The objective of this study was to compare the sodium content of a regular food and its lower calorie/fat counterpart. Four food categories, among the top 20 contributing the most sodium to the US diet, met the criteria of having the most matches between regular foods and their lower calorie/fat counterparts. A protocol was used to search websites to create a list of “matches”, a regular and comparable lower calorie/fat food(s) under each brand. Nutrient information was recorded and analyzed for matches. In total, 283 matches were identified across four food categories: savory snacks (N = 44), cheese (N = 105), salad dressings (N = 90), and soups (N = 44). As expected, foods modified from their regular versions had significantly reduced average fat (total fat and saturated fat) and caloric profiles. Mean sodium content among modified salad dressings and cheeses was on average 8%–12% higher, while sodium content did not change with modification of savory snacks. Modified soups had significantly lower mean sodium content than their regular versions (28%–38%). Consumers trying to maintain a healthy diet should consider that sodium content may vary in foods modified to be lower in calories/fat. PMID:27548218

  14. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: MULTIWAVELENGTH COUNTERPARTS TO 10{sup 3} SUBMILLIMETER GALAXIES IN THE UKIDSS-UDS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chian-Chou; Smail, Ian; Ma, Cheng-Jiun

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical–near-infrared (OIR) data available in this field, we develop a novel technique, Optical–IR Triple Color (OIRTC), using z − K, K − [3.6], [3.6] − [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates formore » 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S{sub 850} ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S{sub 850} ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S{sub 850} > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.« less

  15. Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and -hypertolerant plants.

    PubMed

    Huang, Ze-Chun; Chen, Tong-Bin; Lei, Mei; Liu, Ying-Ru; Hu, Tian-Dou

    2008-07-15

    The arsenic (As) hyperaccumulators, Pteris vittata and Pteris cretica and an As-tolerant plant Boehmeria nivea, were selected to compare the toxicity, uptake, and transportation of inorganic arsenate (As(V)) and its methylated counterpart dimethylarsinic acid (DMA). The XANES method was used to elucidate the effect of As species transformation on As toxicity and accumulation characteristics. Significantly higher toxicity and lower accumulation of DMAthan inorganic As(V) was shown in the As hyperaccumulators and the As-tolerant plant. Reduction of As(V) was commonly found in the plants. Arsenic complexation with thiols, which have less mobility in plants and usually occur in As-tolerant plants, was also found in rhizoids of P. cretica. Plants with greater ability to form As-thiolate have lower ability for upward transport of As. Demethylation of DMA occurred in the three plants. The DMA component decreased from the rhizoids to the fronds in both hyperaccumulators, while this tendency is reverse in B. nivea.

  16. Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein).

    PubMed

    Picoli, E A.T.; Otoni, W C.; Figueira, M L.; Carolino, S M.B.; Almeida, R S.; Silva, E A.M.; Carvalho, C R.; Fontes, E P.B.

    2001-04-01

    The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP. Although tissue culture conditions may induce BiP synthesis, the accumulation of BiP in hyperhydric shoots was consistently higher than in non-hyperhydric shoots. The leaf and stem anatomy in non-hyperhydric and hyperhydric eggplant was investigated aiming to identify structural changes associated with this phenomenon. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system when compared with its hyperhydric counterpart. Scanning electron microscopy of leaves showed that leaf surface and stomata differentiation were also affected in hyperhydric plants.

  17. Plant Biology Personnel and Training at Doctorate-Granting Institutions. Higher Education Surveys Report. Survey Number 13.

    ERIC Educational Resources Information Center

    Chaney, Bradford; And Others

    A survey instrument was sent to all doctorate-granting institutions and all institutions identified as offering doctorates in plant biology. Doctorate-granting institutions were identified using the U.S. Department of Education's Higher Education General Information Surveys (HEGIS) listings. Responses were received from plant biology program…

  18. Risk assessment for selected xenobiotics by bioassay methods with higher plants

    NASA Astrophysics Data System (ADS)

    Günther, Petra; Pestemer, Wilfried

    1990-05-01

    Different bioassays with higher plants were approved for use in a bioassay procedure for testing of xenobiotics according to the German Chemicals Act. Selected environmental pollutants (atrazine, cadmium chloride, 2,6-dichlorobenzonitrile, pentachlorophenol, potassium dichromate, thiourea), all from a list of reference chemicals, were tested with these methods. Dose-response curves for growth of oats and turnips were evaluated in soil and vermiculite (nonsorptive substrate), and availability to plants was calculated by comparing the EC50 values for one chemical in both substrates. The most active chemical was atrazine, followed by 2,6-dichlorobenzonitrile, pentachlorophenol, potassium dichromate, cadmium chloride, and thiourea. The least available compound to plants was pentachlorophenol, tested with turnips ( Brassica rapa var. rapa). The strongest inhibition of germination, demonstrated in an in vitro assay with garden cress ( Lepidium sativum), was found with 2,6-dichlorobenzonitrile, the lowest with atrazine. The effect of an extended exposure of the plants to the chemicals was evaluated in a long-term bioassay with oats ( Avena sativa) in hydroponic culture. Several dose-response curves during the growing period were derived. It was found that the EC50 values for atrazine and thiourea decreased markedly during the first four weeks; thereafter the changes were much smaller. As an overall conclusion, a bioassay procedure is proposed that can be included in the graduated plan recommended by the German Chemicals Act.

  19. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  20. 76 FR 61090 - Endangered and Threatened Species; Counterpart Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ...), Interior. ACTION: Notice of availability. SUMMARY: The U.S. Forest Service and Bureau of Land Management..., National Fire Plan Counterpart Regulation Alternative Consultation Agreements (ACAs). DATES: This is... actions that support the National Fire Plan. Upon entering into an ACA with the Services, action agencies...

  1. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  2. Subaru Hyper Suprime-Cam Survey for an optical counterpart of GW170817

    NASA Astrophysics Data System (ADS)

    Tominaga, Nozomu; Tanaka, Masaomi; Morokuma, Tomoki; Utsumi, Yousuke; Yamaguchi, Masaki S.; Yasuda, Naoki; Tanaka, Masayuki; Yoshida, Michitoshi; Fujiyoshi, Takuya; Furusawa, Hisanori; Kawabata, Koji S.; Lee, Chien-Hsiu; Motohara, Kentaro; Ohsawa, Ryou; Ohta, Kouji; Terai, Tsuyoshi; Abe, Fumio; Aoki, Wako; Asakura, Yuichiro; Barway, Sudhanshu; Bond, Ian A.; Fujisawa, Kenta; Honda, Satoshi; Ioka, Kunihito; Itoh, Youichi; Kawai, Nobuyuki; Kim, Ji Hoon; Koshimoto, Naoki; Matsubayashi, Kazuya; Miyazaki, Shota; Saito, Tomoki; Sekiguchi, Yuichiro; Sumi, Takahiro; Tristram, Paul J.

    2018-03-01

    We perform a z-band survey for an optical counterpart of the binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers 23.6 deg2 corresponding to the 56.6% credible region of GW170817 and reaches the 50% completeness magnitude of 20.6 mag on average. As a result, we find 60 candidate extragalactic transients, including J-GEM17btc (also known as SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993, which is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database. Among 59 of the candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, z-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located within the 3D skymap of GW170817. The probability for J-GEM17btc is 64%, which is much higher than for the other 59 candidates (9.3 × 10-3-2.1 × 10-1%). Furthermore, the possibility that at least one of the other 59 candidates is located within the 3D skymap is only 3.2%. Therefore, we conclude that J-GEM17btc is the most likely and distinguished candidate to be the optical counterpart of GW170817.

  3. The host galaxy and Fermi-LAT counterpart of HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Peter, D.; Domainko, W.; Sanchez, D. A.; van der Wel, A.; Gässler, W.

    2014-11-01

    Context. The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. Aims: The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. Methods: We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV counterpart. Results: The CAHA observations revealed that the near-infrared counterpart is extended with an intrinsic half light radius of 2''-2.5''. These observations also show a smooth, centrally concentrated light profile that is typical of a galaxy, and thus point toward an extragalactic scenario for the VHE gamma-ray source, assuming that the near-infrared source is the counterpart of HESS J1943+213. A high-Sérsic index profile provides a better fit than an exponential profile, indicating that the surface brightness profile of 2MASS J19435624+2118233 follows that of a typical, massive elliptical galaxy more closely than that of a disk galaxy. With Fermi-LAT a HE counterpart is found with a power-law spectrum above 1 GeV, with a normalization of (3.0 ± 0.8stat ± 0.6sys) × 10-15 cm-2 s-1 MeV-1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. Conclusions: The infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The

  4. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  5. Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array Observations

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Keating, Katie; Jenet, F. A.; Kassim, N. E.

    2011-01-01

    This paper summarizes a search for radio wavelength counterparts to candidate gravitational wave events. The identification of an electromagnetic counterpart could provide a more complete understanding of a gravitational wave event, including such characteristics as the location and the nature of the progenitor. We used the Expanded Very Large Array (EVLA) to search six galaxies which were identified as potential hosts for two candidate gravitational wave events. We summarize our procedures and discuss preliminary results.

  6. The cytoskeleton and gravitropism in higher plants

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.

    2002-01-01

    The cellular and molecular mechanisms underlying the gravitropic response of plants have continued to elude plant biologists despite more than a century of research. Lately there has been increased attention on the role of the cytoskeleton in plant gravitropism, but several controversies and major gaps in our understanding of cytoskeletal involvement in gravitropism remain. A major question in the study of plant gravitropism is how the cytoskeleton mediates early sensing and signal transduction events in plants. Much has been made of the actin cytoskeleton as the cellular structure that sedimenting amyloplasts impinge upon to trigger the downstream signaling events leading to the bending response. There is also strong molecular and biochemical evidence that the transport of auxin, an important player in gravitropism, is regulated by actin. Organizational changes in microtubules during the growth response phase of gravitropism have also been well documented, but the significance of such reorientations in controlling differential cellular growth is unclear. Studies employing pharmacological approaches to dissect cytoskeletal involvement in gravitropism have led to conflicting results and therefore need to be interpreted with caution. Despite the current controversies, the revolutionary advances in molecular, biochemical, and cell biological techniques have opened up several possibilities for further research into this difficult area. The myriad proteins associated with the plant cytoskeleton that are being rapidly characterized provide a rich assortment of candidate regulators that could be targets of the gravity signal transduction chain. Cytoskeletal and ion imaging in real time combined with mutant analysis promises to provide a fresh start into this controversial area of research.

  7. Characteristics of an MIS Executive in Higher Education.

    ERIC Educational Resources Information Center

    Ahrens, Stephen; Bryson, Charles H.

    1983-01-01

    The management information systems executive-in-charge, important to a management information system's success or failure, is examined. Successful and not-so-successful executive styles in the business world and their counterparts in higher education are characterized. (Author/MLW)

  8. Extragalactic counterparts to Einstein slew survey sources

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Elvis, Martin; Plummer, David; Remillard, Ron

    1992-01-01

    The Einstein slew survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. The importance of bright X-ray surveys is stressed, and the slew survey is compared to the Rosat all sky survey. Statistical techniques for minimizing confusion in arcminute error circles in digitized data are discussed. The 238 slew survey active galactic nuclei, clusters, and BL Lacertae objects identified to date and their implications for logN-logS and source evolution studies are described.

  9. Higher plant modelling for life support applications: first results of a simple mechanistic model

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Dussap, Claude-Gilles; Sasidharan L, Swathy

    2012-07-01

    In the case of closed ecological life support systems, the air and water regeneration and food production are performed using microorganisms and higher plants. Wheat, rice, soybean, lettuce, tomato or other types of eatable annual plants produce fresh food while recycling CO2 into breathable oxygen. Additionally, they evaporate a large quantity of water, which can be condensed and used as potable water. This shows that recycling functions of air revitalization and food production are completely linked. Consequently, the control of a growth chamber for higher plant production has to be performed with efficient mechanistic models, in order to ensure a realistic prediction of plant behaviour, water and gas recycling whatever the environmental conditions. Purely mechanistic models of plant production in controlled environments are not available yet. This is the reason why new models must be developed and validated. This work concerns the design and test of a simplified version of a mathematical model coupling plant architecture and mass balance purposes in order to compare its results with available data of lettuce grown in closed and controlled chambers. The carbon exchange rate, water absorption and evaporation rate, biomass fresh weight as well as leaf surface are modelled and compared with available data. The model consists of four modules. The first one evaluates plant architecture, like total leaf surface, leaf area index and stem length data. The second one calculates the rate of matter and energy exchange depending on architectural and environmental data: light absorption in the canopy, CO2 uptake or release, water uptake and evapotranspiration. The third module evaluates which of the previous rates is limiting overall biomass growth; and the last one calculates biomass growth rate depending on matter exchange rates, using a global stoichiometric equation. All these rates are a set of differential equations, which are integrated with time in order to provide

  10. A Comparative Study of the Navy Project Manager and His Civilian Counterpart in Industry

    DTIC Science & Technology

    1976-03-01

    Navy project manager and his civilian counterpart in industry. Sushka, Peter William Monterey, California. Naval Postgraduate School http...Wi 1 1 iam Sushka NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS A COMPARATIVE STUDY OF THE NAVY PROJECT MANAGER AND HIS CIVILIAN COUNTERPART IN...OR GRANT NUMBERfa; 9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 10. PROGRAM ELEMENT, PROJECT. TASK

  11. Preliminary Modelling of Mass Flux at the Surface of Plant Leaves within the MELiSSA Higher Plant Compartments

    NASA Astrophysics Data System (ADS)

    Holmberg, Madeleine; Paille, Christel; Lasseur, Christophe

    The ESA project Micro Ecological Life Support System Alternative (MELiSSA) is an ecosystem of micro-organisms and higher plants, constructed with the objective of being operated as a tool to understand artificial ecosystems to be used for a long-term or permanent manned planetary base (e.g. Moon or Mars). The purpose of such a system is to provide for generation of food, water recycling, atmospheric regeneration and waste management within defined standards of quality and reliability. As MELiSSA consists of individual compartments which are connected to each other, the robustness of the system is fully dependent on the control of each compartment, as well as the flow management between them. Quality of consumables and reliability of the ecosystem rely on the knowledge, understanding and control of each of the components. This includes the full understanding of all processes related to the higher plants. To progress in that direction, this paper focuses on the mechanical processes driving the gas and liquid exchanges between the plant leaf and its environment. The process responsible for the mass transfer on the surface of plant leaves is diffusion. The diffusion flux is dependent on the behaviour of the stoma of the leaf and also on the leaf boundary layer (BL). In this paper, the physiology of the leaf is briefly examined in order to relate parameters such as light quality, light quantity, CO2 concentration, temperature, leaf water potential, humidity, vapour pressure deficit (VPD) gradients and pollutants to the opening or closing of stomata. The diffusion process is described theoretically and the description is compared to empirical approaches. The variables of the BL are examined and the effect airflow in the compartment has on the BL is investigated. Also presented is the impact changes in different environmental parameters may have on the fluid exchanges. Finally, some tests, to evaluate the accuracy of the concluded model, are suggested.

  12. Seeking Counterparts to Advanced LIGO/Virgo Transients with Swift

    NASA Technical Reports Server (NTRS)

    Kanner, Jonah; Camp, Jordan; Racusin, Judith; Gehrels, Neil; White, Darren

    2012-01-01

    Binary neutron star (NS) mergers are among the most promising astrophysical sources of gravitational wave emission for Advanced LIGO and Advanced Virgo, expected to be operational in 2015 . Finding electromagnetic counterparts to these signals will be essential to placing them in an astronomical context. The Swift satellite carries a sensitive X-ray telescope (XRT), and can respond to target-of-opportunity requests within 1-2 hours, and so is uniquely poised to find the X-ray counterparts to LIGO / Virgo triggers. Assuming NS mergers are the progenitors of short gamma-ray bursts (GRBs), some percentage of LIGO/Virgo triggers will be accompanied by X-ray band afterglows that are brighter than 10(exp -12) ergs/s/sq cm in the XRT band one day after the trigger time. We find that a soft X-ray transient of this flux is bright enough to be extremely rare, and so could be confidently associated with even a moderately localized GW signal. We examine two possible search strategies with the Swift XRT to find bright transients in LIGO/Virgo error boxes. In the first strategy, XRT could search a volume of space with a approx.100 Mpc radius by observing approx 30 galaxies over the course of a day, with sufficient depth to observe the expected X-ray afterglow. For an extended LIGO / Virgo horizon distance, the XRT could employ very short 100 s exposures to cover an area of approx 35 square degrees in about a day, and still be sensitive enough to image GW discovered GRB afterglows. These strategies demonstrate that the high X-ray luminosity of short GRBs and the relatively low X-ray transient background combine to make high confidence discoveries of X-ray band counterparts to GW triggers possible, though challenging, with current satellite facilities.

  13. Differential Properties of Human ALP+ Periodontal Ligament Stem Cells vs Their ALP- Counterparts

    PubMed Central

    Tran, Quynh T; El-Ayachi, Ikbale; Bhatti, Fazal-Ur-Rehman; Bahabri, Rayan; Al-Habib, Mey; Huang, George TJ

    2015-01-01

    Characterizing subpopulations of stem cells is important to understand stem cell properties. Tissue-nonspecific alkaline phosphatase (ALP) is associated with mineral tissue forming cells as well as stem cells. Information regarding ALP subpopulation of human periodontal ligament stem cells (hPDLSCs) is limited. In the present study, we examined ALP+ and ALP− hPDLSC subpopulations, their surface markers STRO-1 and CD146, and the expression of stemness genes at various cell passages. We found that ALP+ subpopulation had higher levels of STRO-1 (30.6 ± 5.6%) and CD146 (90.4 ± 3.3%) compared to ALP− (STRO-1: 0.5 ± 0.1%; CD146: 75.3 ± 7.2%). ALP+ cells expressed significantly higher levels of stemness associated genes, NANOG, OCT4 and SOX than ALP− cells at low cell passages of 2-3 (p<0.05). ALP+ and ALP− cells had similar osteogenic, chondrogenic and neurogenic potential while ALP−, not ALP+ cells, lacked adipogenic potential. Upon continuous culturing and passaging, ALP+ continued to express higher stemness genes and STRO-1 and CD146 than ALP− cells at ≥passage 19. Under conditions (over-confluence and vitamin C treatment) when ALP+ subpopulation was increased, the stemness gene levels of ALP+ was no longer significantly higher than those in ALP− cells. In conclusion, ALP+ hPDLSCs possess differential properties from their ALP− counterparts. PMID:26807329

  14. Tolerance of chufa (Cyperus esculentus L.) plants, representing the higher plant compartment in bioregenerative life support systems, to super-optimal air temperatures

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2013-01-01

    Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop's mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m-2 s-1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m-2 s-1 and 1150 μmol m-2 s-1. The exposure to the damaging air temperature for 44 h at 690 μmol m-2 s-1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m-2 s-1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m-2 s-1 PAR, respiration rate was higher than photosynthesis rate, but after 3-4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure

  15. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    NASA Astrophysics Data System (ADS)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  16. l-Tartaric acid synthesis from vitamin C in higher plants

    PubMed Central

    DeBolt, Seth; Cook, Douglas R.; Ford, Christopher M.

    2006-01-01

    The biosynthetic pathway of l-tartaric acid, the form most commonly encountered in nature, and its catabolic ties to vitamin C, remain a challenge to plant scientists. Vitamin C and l-tartaric acid are plant-derived metabolites with intrinsic human value. In contrast to most fruits during development, grapes accumulate l-tartaric acid, which remains within the berry throughout ripening. Berry taste and the organoleptic properties and aging potential of wines are intimately linked to levels of l-tartaric acid present in the fruit, and those added during vinification. Elucidation of the reactions relating l-tartaric acid to vitamin C catabolism in the Vitaceae showed that they proceed via the oxidation of l-idonic acid, the proposed rate-limiting step in the pathway. Here we report the use of transcript and metabolite profiling to identify candidate cDNAs from genes expressed at developmental times and in tissues appropriate for l-tartaric acid biosynthesis in grape berries. Enzymological analyses of one candidate confirmed its activity in the proposed rate-limiting step of the direct pathway from vitamin C to tartaric acid in higher plants. Surveying organic acid content in Vitis and related genera, we have identified a non-tartrate-forming species in which this gene is deleted. This species accumulates in excess of three times the levels of vitamin C than comparably ripe berries of tartrate-accumulating species, suggesting that modulation of tartaric acid biosynthesis may provide a rational basis for the production of grapes rich in vitamin C. PMID:16567629

  17. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations.

    PubMed

    Cesarz, Simone; Ciobanu, Marcel; Wright, Alexandra J; Ebeling, Anne; Vogel, Anja; Weisser, Wolfgang W; Eisenhauer, Nico

    2017-07-01

    The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.

  18. Overweight and obesity among Ghanaian residents in The Netherlands: how do they weigh against their urban and rural counterparts in Ghana?

    PubMed

    Agyemang, Charles; Owusu-Dabo, Ellis; de Jonge, Ank; Martins, David; Ogedegbe, Gbenga; Stronks, Karien

    2009-07-01

    To investigate differences in overweight and obesity between first-generation Dutch-Ghanaian migrants in The Netherlands and their rural and urban counterparts in Ghana. Cross-sectional study. A total of 1471 Ghanaians (rural Ghanaians, n 532; urban Ghanaians, n 787; Dutch-Ghanaians, n 152) aged > or = 17 years. Overweight (BMI > or = 25 kg/m2) and obesity (BMI > or = 30 kg/m2). Dutch-Ghanaians had a significantly higher prevalence of overweight and obesity (men 69.1%, women 79.5%) than urban Ghanaians (men 22.0%, women 50.0%) and rural Ghanaians (men 10.3%, women 19.0%). Urban Ghanaian men and women also had a significantly higher prevalence of overweight and obesity than their rural Ghanaian counterparts. In a logistic regression analysis adjusting for age and education, the odds ratios for being overweight or obese were 3.10 (95% CI 1.75, 5.48) for urban Ghanaian men and 19.06 (95% CI 8.98, 40.43) for Dutch-Ghanaian men compared with rural Ghanaian men. Among women, the odds ratios for being overweight and obese were 3.84 (95% CI 2.66, 5.53) for urban Ghanaians and 11.4 (95% CI 5.97, 22.07) for Dutch-Ghanaians compared with their rural Ghanaian counterparts. Our current findings give credence to earlier reports of an increase in the prevalence of overweight/obesity with urbanization within Africa and migration to industrialized countries. These findings indicate an urgent need to further assess migration-related factors that lead to these increases in overweight and obesity among migrants with non-Western background, and their impact on overweight- and obesity-related illnesses such as diabetes among these populations.

  19. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.

    PubMed

    Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke

    2016-07-01

    The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.

  20. Search for Gravitational Wave Counterparts with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  1. Production characteristics of the "higher plants-soil-like substrate" system as an element of the bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Velichko, V. V.; Tikhomirov, A. A.; Ushakova, S. A.; Tikhomirova, N. A.; Shihov, V. N.; Tirranen, L. S.; Gribovskaya, I. A.

    2013-01-01

    The study addresses the possibility of long-duration operation of a higher plant conveyor, using a soil-like substrate (SLS) as the root zone. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.), and lettuce (Lactuca sativa L.) were used as study material. A chufa community consisting of 4 age groups and radish and lettuce communities consisting of 2 age groups were irrigated with a nutrient solution, which contained mineral elements extracted from the SLS. After each harvest, inedible biomass of the harvested plants and inedible biomasses of wheat and saltwort were added to the SLS. The amounts of the inedible biomasses of wheat and saltwort to be added to the SLS were determined based on the nitrogen content of the edible mass of harvested plants. CO2 concentration in the growth chamber was maintained within the range of 1100-1700 ppm. The results of the study show that higher plants can be grown quite successfully using the proposed process of plant waste utilization in the SLS. The addition of chufa inedible biomass to the SLS resulted in species-specific inhibition of growth of both cultivated crops and microorganisms in the "higher plants - SLS" system. There were certain differences between the amounts of some mineral elements removed from the SLS with the harvested edible biomass and those added to it with the inedible biomasses of wheat and saltwort.

  2. Need for higher fuel burnup at the Hatch Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckhman, J.T.

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make themore » conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.« less

  3. Regulation of phosphate starvation responses in higher plants.

    PubMed

    Yang, Xiao Juan; Finnegan, Patrick M

    2010-04-01

    Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.

  4. Conserved noncoding sequences (CNSs) in higher plants.

    PubMed

    Freeling, Michael; Subramaniam, Shabarinath

    2009-04-01

    Plant conserved noncoding sequences (CNSs)--a specific category of phylogenetic footprint--have been shown experimentally to function. No plant CNS is conserved to the extent that ultraconserved noncoding sequences are conserved in vertebrates. Plant CNSs are enriched in known transcription factor or other cis-acting binding sites, and are usually clustered around genes. Genes that encode transcription factors and/or those that respond to stimuli are particularly CNS-rich. Only rarely could this function involve small RNA binding. Some transcribed CNSs encode short translation products as a form of negative control. Approximately 4% of Arabidopsis gene content is estimated to be both CNS-rich and occupies a relatively long stretch of chromosome: Bigfoot genes (long phylogenetic footprints). We discuss a 'DNA-templated protein assembly' idea that might help explain Bigfoot gene CNSs.

  5. Higher plants as bioindicators of sulphur dioxide emissions in urban environments.

    PubMed

    Hijano, Concepción Fidalgo; Domínguez, Maria Dolores Petit; Gimínez, Rosario García; Sínchez, Pilar Hungría; García, Inís Sancho

    2005-12-01

    The evaluation of certain vascular plants that grow in the city of Madrid as biomonitors of SO(2) air pollution in urban environments has been carried out. Total concentration of sulphur in leaves of the chosen higher plants as well as other parameters in close relation to this contaminant (visible injury symptoms, chlorophyll a- and b-content and peroxidase activity) have been determined in order to study the spatial distribution and temporal changes in SO(2) deposition. Results obtained show that coniferous species such as Pinus pinea, were more sensitive to SO(2) atmospheric concentration than leafy species as Quercux ilex subspecies ballota and, in the same way, bush species, such as Pyracantha coccinea and Nerium oleander, were more sensitive than wooded species, such as Cedrus deodara and Pinus pinea, respectively. There is a higher accumulation of sulphur in vegetable species located near highways and dense traffic incidence roads and near areas with high density of population. The minimum values for accumulation of SO(2) were registered in winter and spring seasons (from January to April) due to the vegetative stop; while maximum values are obtained during the summer season (from June to September), due to the stoma opening. The highest increments in sulphur concentration, calculated as the difference between two consecutive months, are obtained in May and June for all considered species except for Cedrus deodara and Pyracantha coccinea, both species have few seasonal changes during the whole year. Some species are more sensitive to natural washing than others, showing a decrease in sulphur concentration after rainfall periods.

  6. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants.

    PubMed

    Golivets, Marina; Wallin, Kimberly F

    2018-05-01

    High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success. © 2018 John Wiley & Sons Ltd/CNRS.

  7. The near-infrared counterpart to XTE J1856+053

    NASA Astrophysics Data System (ADS)

    Torres, M. A. P.; Steeghs, D.; Jonker, P. G.; Morrell, N.; Roth, M.; Kerber, F.

    2007-05-01

    We report the detection of the near-infrared counterpart to the X- ray transient and black hole candidate XTE J1856+053 (Marshall et al. 1996, IAUC #6504; Barret et al. 1996, IAUC #6519). This finding is based on follow-up observations of the currently ongoing outburst (Levine et al. 2007; ATel #1024) with the 6.5m Magellan Baade telescope at Las Campanas observatory.

  8. Transgenic plants with enhanced growth characteristics

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  9. Transgenic plants with enhanced growth characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of themore » double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.« less

  10. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine.

    PubMed

    Favas, Paulo J C; Pratas, João; Mitra, Soumita; Sarkar, Santosh Kumar; Venkatachalam, Perumal

    2016-10-15

    The present study highlights the uranium (U) concentrations in water-soil-plant matrices and the efficiency considering a heterogeneous assemblage of terrestrial and aquatic native plant species to act as the biomonitor and phytoremediator for environmental U-contamination in the Sevilha mine (uraniferous region of Beiras, Central Portugal). A total of 53 plant species belonging to 22 families was collected from 24 study sites along with ambient soil and/or water samples. The concentration of U showed wide range of variations in the ambient medium: 7.5 to 557mgkg(-1) for soil and 0.4 to 113μgL(-1) for water. The maximum potential of U accumulation was recorded in roots of the following terrestrial plants: Juncus squarrosus (450mgkg(-1) DW), Carlina corymbosa (181mgkg(-1) DW) and Juncus bufonius (39.9mgkg(-1) DW), followed by the aquatic macrophytes, namely Callitriche stagnalis (55.6mgkg(-1) DW) Lemna minor (53.0mgkg(-1) DW) and Riccia fluitans (50.6mgkg(-1) DW). Accumulation of U in plant tissues exhibited the following decreasing trend: root>leaves>stem>flowers/fruits and this confirms the unique efficiency of roots in accumulating this radionuclide from host soil/sediment (phytostabilization). Overall, the accumulation pattern in the studied aquatic plants (L. minor, R. fluitans, C. stagnalis and Lythrum portula) dominated over most of the terrestrial counterpart. Among terrestrial plants, the higher mean bioconcentration factor (≈1 in roots/rhizomes of C. corymbosa and J. squarrosus) and translocation factor (31 in Andryala integrifolia) were encountered in the representing families Asteraceae and Juncaceae. Hence, these terrestrial plants can be treated as the promising candidates for the development of the phytostabilization or phytoextraction methodologies based on the accumulation, abundance and biomass production. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Characterization of Zea mays endosperm C-24 sterol methyltransferase: one of two types of sterol methyltransferase in higher plants.

    PubMed

    Grebenok, R J; Galbraith, D W; Penna, D D

    1997-08-01

    We report the characterization of a higher-plant C-24 sterol methyltransferase by yeast complementation. A Zea mays endosperm expressed sequence tag (EST) was identified which, upon complete sequencing, showed 46% identity to the yeast C-24 methyltransferase gene (ERG6) and 75% and 37% amino acid identity to recently isolated higher-plant sterol methyltransferases from soybean and Arabidopsis, respectively. When placed under GALA regulation, the Z. mays cDNA functionally complemented the erg6 mutation, restoring ergosterol production and conferring resistance to cycloheximide. Complementation was both plasmid-dependent and galactose-inducible. The Z. mays cDNA clone contains an open reading frame encoding a 40 kDa protein containing motifs common to a large number of S-adenosyl-L-methionine methyltransferases (SMTs). Sequence comparisons and functional studies of the maize, soybean and Arabidopsis cDNAs indicates two types of C-24 SMTs exist in higher plants.

  12. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  13. The consumption of more vegetables and less meat is associated with higher levels of acculturation among Mongolians in South Korea.

    PubMed

    Tserendejid, Zuunnast; Hwang, Jinah; Lee, Jounghee; Park, Haeryun

    2013-12-01

    Although Mongolian immigrants are a rapidly growing population in South Korea, the 2 countries have distinct diets because of climatic and geographical differences. The Mongolian diet is mostly animal-based with few vegetables and fruits, whereas the Korean diet is largely plant based. The purpose of this study was to examine the association between acculturation and dietary intakes among Mongolians living in South Korea. We hypothesized that higher levels of acculturation would be associated with higher vegetable, fruit, and plant-based food intakes among Mongolian immigrants. A total of 500 Mongolian immigrants participated in this study conducted between December 2010 and May 2011. To measure the acculturation level, we developed an acculturation scale based on the Suinn-Lew Asian self-identity acculturation scale. Dietary intakes were assessed using the 24-hour dietary recall method. Associations between acculturation and dietary intakes were investigated using a general linear model adjusted for demographic characteristics. The participants were grouped into either a low-acculturation group or a high-acculturation group. The high-acculturation group reported significantly higher consumption of vegetables and rice and significantly lower consumption of meat, potatoes, and flour products compared with their low-acculturation counterparts. However, a higher level of acculturation was also significantly related to a higher intake of sodium. These findings could be used to tailor nutrition programs to different acculturation levels. 2013 Elsevier Inc. All rights reserved.

  14. Gravitropism in Higher Plant Shoots 1

    PubMed Central

    Sliwinski, Julianne E.; Salisbury, Frank B.

    1984-01-01

    Cross and longitudinal sections were prepared for light microscopy from vertical control plants (Xanthium strumarium L. Chicago strain), free-bending horizontal stems, plants restrained 48 hours in a horizontal position, and plants restrained 48 hours and then released, bending immediately about 130°. Top cells of free-bending stems shrink or elongate little; bottom cells continue to elongate. In restrained stems, bottom cells elongate some and increase in diameter; top cells elongate about as much but decrease in diameter. Upon release, bottom cells elongate more and decrease in diameter, while top cells shorten and increase in diameter, accounting for the bend. During restraint, bottom cells take up water while tissue pressures increase; top cells fail to take up water although tissue pressures are decreasing. Settling of amyloplasts was observed in cells of the starch sheath. Removal of different amounts of stem (Xanthium; Lycopersicon esculentum Miller, cv Bonny Best; Ricinus communis L. cv Yolo Wonder) showed that perception of gravity occurs in the bending (elongation) zone, although bending of fourth and fifth internodes from the top was less than in uncut controls. Uniform application of 1% indoleacetic acid in lanolin to cut stem surfaces partially restored bending. Reversing the gradient in tension/compression in horizontal stems (top under compression, bottom under tension) did not affect gravitropic bending. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:16663939

  15. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    PubMed

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  16. Identification of a Likely Radio Counterpart to the Rapid Burster (MXB 1730-335)

    NASA Astrophysics Data System (ADS)

    Rutledge, R.; Moore, C.; Fox, D.; Lewin, W. H. G.; van Paradijs, J.

    1997-12-01

    We have identified a likely radio counterpart to the X-ray low-mass-X-ray-binary MXB 1730-335 (The Rapid Burster; RB). The counterpart, which is between 4-5.6sigma away from the X-ray position, has during our five observations shown radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM -- the chance probabilty of an unrelated background source duplicating this is 1.6%. If the radio and X-ray flux are correlated on ~ seconds timescales, then observations of radio bursts are well within current instrumentation capability.

  17. A Discussion on Community Colleges and Global Counterparts Completion Policies

    ERIC Educational Resources Information Center

    Raby, Rosalind Latiner; Friedel, Janice Nahra; Valeau, Edward J.

    2016-01-01

    This article is a comparative study of community colleges and global counterparts at 41 institutions in 25 countries. Policies from each country link completion of a college program to career entry and to advancement opportunities. National and institutional policies are being defined, benchmark data is being collected on goals in the process, and…

  18. Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration

    NASA Astrophysics Data System (ADS)

    Díaz, M. C.; Macri, L. M.; Garcia Lambas, D.; Mendes de Oliveira, C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell, W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz, M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Castillo, M.; Chavushyan, V.; Coelho, P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; DePoy, D. L.; Domínguez Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.; Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.; Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Marshall, J. L.; Melia, R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones, C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.; Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.; Torres-Flores, S.; Tornatore, M.; Zadrożny, A.

    2017-10-01

    We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly significant dimming in the light curves of the counterpart ({{Δ }}g=0.17+/- 0.03 mag, {{Δ }}r=0.14+/- 0.02 mag, {{Δ }}I=0.10+/- 0.03 mag) over the course of only 80 minutes of observations obtained ˜35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ˜59 hr after the event with the EABA 1.5 m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a “blue kilonova” relatively free of lanthanides.

  19. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?

    PubMed

    Dempsey, D'Maris Amick; Klessig, Daniel F

    2017-03-23

    Salicylic acid (SA) is an important plant hormone that regulates many aspects of plant growth and development, as well as resistance to (a)biotic stress. Efforts to identify SA effector proteins have revealed that SA binds to and alters the activity of multiple plant proteins-this represents a shift from the paradigm that hormones mediate their functions via one or a few receptors. SA and its derivatives also have multiple targets in animals; some of these proteins, like their plant counterparts, are associated with pathological processes. Together, these findings suggest that SA exerts its defense-associated effects in both kingdoms via a large number of targets.

  20. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines

    PubMed Central

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-01-01

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate. PMID:28186201

  1. DISCOVERY OF A TRANSIENT GAMMA-RAY COUNTERPART TO FRB 131104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLaunay, J. J.; Murase, K.; Mészáros, P.

    We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2 σ confidence) to the fast radio burst (FRB) FRB 131104, the first such counterpart to any FRB. The transient has a duration T {sub 90} ≳ 100 s and a fluence S{sub γ} ≈ 4 × 10{sup −6} erg cm{sup −2}, increasing the energy budget for this event by more than a billion times; at the nominal z ≈ 0.55 redshift implied by its dispersion measure, the burst’s gamma-ray energy output is E{sub γ} ≈ 5 × 10{sup 51} erg. The observed radio to gamma-ray fluencemore » ratio for FRB 131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806−20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst (GRB) X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB’s nominal distance, D ≳ 320 Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, such as, for example, from magnetar flares, GRBs, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.« less

  2. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    PubMed

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  3. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart.

    PubMed

    Malgieri, Gaetano; Palmieri, Maddalena; Russo, Luigi; Fattorusso, Roberto; Pedone, Paolo V; Isernia, Carla

    2015-12-01

    Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships. © 2015 FEBS.

  4. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    PubMed Central

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  5. Penetration and Toxicity of Nanomaterials in Higher Plants

    PubMed Central

    Chichiriccò, Giuseppe; Poma, Anna

    2015-01-01

    Nanomaterials (NMs) comprise either inorganic particles consisting of metals, oxides, and salts that exist in nature and may be also produced in the laboratory, or organic particles originating only from the laboratory, having at least one dimension between 1 and 100 nm in size. According to shape, size, surface area, and charge, NMs have different mechanical, chemical, electrical, and optical properties that make them suitable for technological and biomedical applications and thus they are being increasingly produced and modified. Despite their beneficial potential, their use may be hazardous to health owing to the capacity to enter the animal and plant body and interact with cells. Studies on NMs involve technologists, biologists, physicists, chemists, and ecologists, so there are numerous reports that are significantly raising the level of knowledge, especially in the field of nanotechnology; however, many aspects concerning nanobiology remain undiscovered, including the interactions with plant biomolecules. In this review we examine current knowledge on the ways in which NMs penetrate plant organs and interact with cells, with the aim of shedding light on the reactivity of NMs and toxicity to plants. These points are discussed critically to adjust the balance with regard to the risk to the health of the plants as well as providing some suggestions for new studies on this topic. PMID:28347040

  6. The main goals of experiments with the higher plants in the project MARS - 500.

    NASA Astrophysics Data System (ADS)

    Sychev, Vladimir; Levinskikh, Margarita; Podolsky, Igor; Gushin, Vadim; Bingham, Gail; Bates, Scott

    At the present step of development of manned flight to Mars there is a current opinion that including a greenhouse in the composition of Life Support Systems (LSS) of Martian expedition would essentially improve a spacecraft habitat conditions and also would have impact to preventing of a number of possible consequences of continuous presence of human in artificial environment. Development of design objectives of future space greenhouses applicable for conditions of Martian expedition should be based, in our opinion, not only on the results of real space experiments, conducted onboard of orbital stations, but also on the results of ground-based experiments. In connection with above considerations there is a number of technological, biological and psychological experiments is planned to be conducted in the frame of MARS-500 project to resolve questions related to incorporation of higher plants in LSS of inter-planetary flights. The questions include: testing of developed elements of the greenhouse construction and methods for cultivation of vegetables under conditions of imitation of the flight of Martian expedition; selection of breeds and species of vegetables, characterized by high speed of biomass accumulation, attractive taste and appearance; investigation of growth, development and metabolism of plants under long-term continuous cultivation in manned pressurized object; comparison of the productivity of the plants as a function of utilization of different light source; determination of maximum amount of planted biomass of the plants and number of possible vegetation under conditions of long-term utilization of vegetation chamber of the greenhouse without substrate replacement; investigation of crops dietetic preferences of crew members; estimation of quality of plant biomass using seeding of the plants by microorganisms and nitrates and vitamins content as markers; development and approbation of methodical approaches to estimation of psychological factors of

  7. The near-infrared counterpart of a variable galactic plane radio source

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Phillips, Andrew C.; Ciardullo, Robin; Jacoby, George H.

    1992-01-01

    A near-infrared counterpart to the highly variable, unresolved galactic plane radio source GT 0116 + 622 is identified. This source is of particular interest, as it has been previously suggested to be the counterpart of the gamma-ray source Cas gamma-l. The present NIR and red images detect a faint, spatially extended (3 arcsec FWHM), very red object coincident with the radio position. There is complex spatial structure which may be due in part to an unrelated superposed foreground object. Observations on multiple nights show no evidence for flux variability, despite the high amplitude variability on a time-scale of days reported for the radio source. The data are consistent with an interpretation of GT 0116 + 622 as an unusually variable, obscured active galaxy at a distance of several hundred megaparsecs, although more exotic, and in particular galactic, interpretations cannot yet be ruled out. If the object is extragalactic, the previously suggested identification with the gamma-ray source would seem unlikely.

  8. Somatic mosaicism in plants with special reference to somatic crossing over

    PubMed Central

    Vig, Baldev K.

    1978-01-01

    Plant systems in use for the detection of environmental mutagens appear capable of detecting all types of genetic effects which can be studied in animals. The study of somatic mosaicism, however, is better developed in plants than in higher animals. A case is presented here which shows the ability of plant systems in analyzing a host of genetic end points, including chromosome aberrations like deletions, somatic crossing over, numerical inequality, gene conversion, paramutations and point mutations. The systems in general use utilize certain varieties of Tradescantia, Glycine max, Nicotiana tabacum, Antirrhinum majus, Petunia hybrida, and Arabidopsis thaliana. Heterozygous plants or their homozygous counterparts with gene markers affecting chlorophyll development or anthocyanin in floral parts are exploited in these studies. Mutagens produce different frequencies of different types of spots typical of the mode of action of the agent. Analysis of these parameters may be used to predict, at least qualitatively, the kind of genetic damage that might be produced in man. Besides, one can test the validity of interpretation by traditional progeny tests of plants raised from tissue culture from sectors as in Nicotiana and/or by precursor analysis as done in Antirrhinum. The study of mosaicism in plants offers quite inexpensive, rapid, and reliable tests of mutagenicity at least as a preliminary eukaryotic test system. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 9. PMID:367771

  9. LOOC UP: Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer; Marka, S.; Shawhan, P. S.; Kanner, J.; Huard, T. L.; Murphy, D. C.

    2007-12-01

    We have begun a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP), to search promptly for optical counterparts to potential candidates for gravitational wave (GW) bursts. Several plausible GW sources are likely to also emit light, so the identification of a transient optical counterpart would confirm the GW signal and provide additional information about the progenitor. For example, it is expected that a merger of two neutron stars in a binary system close enough to be detectable in GWs may exhibit an optical counterpart as bright as R=13 magnitude initially, with a dimming of 1 magnitude per night. We carried out a pilot study in the summer of 2007 to develop methods and software tools for such a search. The first stage involves identifying potential GW burst candidates, or "triggers", by near real-time analysis of signals from the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detector sites plus the Virgo GW detector in Europe, using very low thresholds on signal amplitude and requiring coincidence among the detectors. (At such low thresholds, typical noise fluctuations in the detectors produce a false trigger rate of one or more per hour.) Rough positions of putative sources are estimated from the GW data using the timing differences among detectors; this information is then used to select follow-up targets, giving preference to nearby galaxies and Milky Way globular clusters. A large number of nominal trigger times and targets were selected in this way for the pilot study. Using Las Campanas and MDM observatories, repeated optical observations of fields containing these targets were obtained starting a few hours after each trigger and continuing for several nights. We will present the methods we have developed for choosing targets for follow-ups and analyzing the optical image data for transients.

  10. The Fatty Acid Composition of Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol of Higher Plants in Relation to Chilling Sensitivity

    PubMed Central

    Kenrick, Janette R.; Bishop, David G.

    1986-01-01

    The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol has been measured in the leaves of 27 species of higher plants from six families whose members differed in their degrees of chilling sensitivity. The content of high melting point fatty acids (represented by the sum of hexadecanoic, trans-3-hexadecenoic and octadecanoic acids) in phosphatidylglycerols varied little between members of the same plant family and was not obviously related to the relative chilling sensitivity of members of that family. The saturated fatty acid content (hexadecanoic + octadecanoic acids) of sulfoquinovosyldiacylglycerols also appeared to be characteristic of a plant family, although some exceptions were found. In one case, (Carica papaya) the content of saturated fatty acids in sulfoquinovosyldiacylglycerol was sufficiently high to suggest that this lipid could undergo phase separations above 0°C. It is concluded that the content of high melting point fatty acids in leaf phosphatidylglycerol is not a direct indication of the chilling sensitivity of a plant, but rather may be a reflection of the genetic origin of that plant. PMID:16664962

  11. [Impacts of human disturbance on the species composition of higher plants in the wetlands around Dianchi Lake, Yunnan Province of Southwest China].

    PubMed

    Xiang, Xi-Xi; Wu, Zhao-Lu; Luo, Kang; Ding, Hong-Bo; Zhang, Hai-Yan

    2013-09-01

    Introducing higher plants to build semi-natural wetland ecosystem is one of the key approaches to restore the wetlands and lakes that suffered from serious pollution and destruction. Based on the investigation data from 128 quadrats at 26 sampling sites in the wetlands around Dianchi Lake in December 2011-October 2012, and in combining with the references published in the 1960s, this paper discussed the impacts of human activities on the species composition of higher plants in the wetlands around the Lake. In 2012, there were 299 species of 88 families in the wetlands, of which, 181 species were native species, and 118 species were alien ones (including 32 invasive species). Of the 42 species of hydrophytes in the total species, 13 species were alien ones (including 2 invasive species). In comparing with the species data recorded in the 1960s, 232 plants were newly recorded and 43 species disappeared in 2012. Aquatic plants changed obviously. The decreased species were 2 submerged plants, 2 floating plants, and 5 floating leaved plants, and the increased species were 8 emergent plants. Fourteen community types were identified by cluster analysis, of which, the main communities were those dominated by alien species including Pistia stratiotes and Alternanthera philoxeroides. As compared with the data in the 1960s, the plant communities dominated by native species such as Ottelia acuminate and Vallisneria natans were not found presently. Therefore, in the practice of introducing higher plants to restore the degraded wetlands and lakes, it would be necessary to scientifically and appropriately select and blend plant species to avoid the wetland degradation by human activities.

  12. Moringa oleifera Root Induces Cancer Apoptosis more Effectively than Leave Nanocomposites and Its Free Counterpart

    PubMed Central

    Abd-Rabou, Ahmed A; Abdalla, Aboelfetoh M; Ali, Naglaa A; Zoheir, Khairy MA

    2017-01-01

    Medicinal plants are important elements of indigenous medical system that have persisted in developing countries. Many of the botanical chemo-preventions currently used as potent anticancer agents. However, some important anticancer agents are still extracted from plants because they cannot be synthesized chemically on a commercial scale due to their complex structures that often contain several chiral centers. The aim of this study was to test different extracts from the Moringa oleifera leaves (ML), its PLGA-CS-PEG nanocomposites (MLn), as well as root core (Rc) and outer (Ro) parts for activity against hepatocarcinoma HepG2, breast MCF7, and colorectal HCT 116/ Caco-2 cells in vitro. Nano-composites were prepared and characterized. Then, the nanocomposites and the free counterparts were screened on different propagated cancer cell lines. The underlying cytotoxic impact was followed using apoptosis measurements. All extracts kill the different cancer cells with different ratios, but intriguingly, the root core extract could kill the majority of cancer cells (approximately 70-80%), while sparing normal BHK-21 cells with minimal inhibitory effect (approximately 30-40%). Apoptotic cell increment came to confirm the cytotoxic effects of these extracts on HCT 116 cells (Rc: 212% and Ro: 180%, respectively) and HepG2 cells (ML: 567.5% and MLn: 608%, respectively) compared to control (100%) mechanistically wise. Moringa oleifera nanocomposites may have potential for use as a natural source of anti-cancer compounds. PMID:28843248

  13. Comparative Studies of Enzymes Related to Serine Metabolism in Higher Plants 1

    PubMed Central

    Cheung, Geoffrey P.; Rosenblum, I. Y.; Sallach, H. J.

    1968-01-01

    The following enzymes related to serine metabolism in higher plants have been investigated: 1) d-3-phosphoglycerate dehydrogenase, 2) phosphohydroxypyruvate:l-glutamate transaminase, 3) d-glycerate dehydrogenase, and 4) hydroxypyruvate:l-alanine transaminase. Comparative studies on the distribution of the 2 dehydrogenases in seeds and leaves from various plants revealed that d-3-phosphoglycerate dehydrogenase is widely distributed in seeds in contrast to d-glycerate dehydrogenase, which is either absent or present at low levels, and that the reverse pattern is observed in green leaves. The levels of activity of the 4 enzymes listed above were followed in different tissues of the developing pea (Pisum sativum, var. Alaska). In the leaf, from the tenth to seventeenth day of germination, the specific activity of d-glycerate dehydrogenase increased markedly and was much higher than d-3-phosphoglycerate dehydrogenase which remained relatively constant during this time period. Etiolation resulted in a decrease in d-glycerate dehydrogenase and an increase in d-3-phosphoglycerate dehydrogenase activities. In apical meristem, on the other hand, the level of d-3-phosphoglycerate dehydrogenase exceeded that of d-glycerate dehydrogenase at all time periods studied. Low and decreasing levels of both dehydrogenases were found in epicotyl and cotyledon. The specific activities of the 2 transaminases remained relatively constant during development in both leaf and apical meristem. In general, however, the levels of phosphohydroxypyruvate:l-glutamate transaminase were comparable to those of d-3-phosphoglycerate dehydrogenase in a given tissue as were those for hydroxypyruvate: l-alanine transaminase and d-glycerate dehydrogenase. PMID:5699148

  14. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    PubMed

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  15. Concepts, strategies and potentials using hypo-g and other features of the space environment for commercialization using higher plants

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1985-01-01

    Opportunities for releasing, capturing, constructing and/or fixing the differential expressions or response potentials of the higher plant genome in the hypo-g environment for commercialization are explored. General strategies include improved plant-growing, crop and forestry production systems which conserve soil, water, labor and energy resources, and nutritional partitioning and mobilization of nutrients and synthates. Tissue and cell culture techniques of commercial potential include the growing and manipulation of cultured plant cells in vitro in a bioreactor to produce biologicals and secondary plants of economic value. The facilitation of plant breeding, the cloning of specific pathogen-free materials, the elimination of growing point or apex viruses, and the increase of plant yield are other O-g applications. The space environment may be advantageous in somatic embryogenesis, the culture of alkaloids, and the development of completely new crop plant germ plasm.

  16. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates?

    PubMed

    Wudick, Michael M; Michard, Erwan; Oliveira Nunes, Custódio; Feijó, José A

    2018-04-19

    Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.

  17. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.

    PubMed

    Atkinson, Nicky; Feike, Doreen; Mackinder, Luke C M; Meyer, Moritz T; Griffiths, Howard; Jonikas, Martin C; Smith, Alison M; McCormick, Alistair J

    2016-05-01

    Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Research on the effects of altered gravity and other factors on the growth and development of higher plants

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1973-01-01

    The establishment, maintenance and use of the NASA-UCSC Botanical Centrifuge is discussed. The broad goals of this project were: (1) to establish facilities for conducting experiments under conditions of sustained centrifugation; (2) to pursue research on the gravitational physiology of higher plants; (3) to develop experimental hardware suitable for studies of plant development in the weightless condition; and (4) to accommodate visiting investigators whose researches are of interest to the NASA Biomedical Program and who may require for some limited time, the use of a medium size centrifuge with associated facilities appropriate for plant physiological studies.

  19. Experimental identification of Ca isotopic fractionations in higher plants

    NASA Astrophysics Data System (ADS)

    Cobert, Florian; Schmitt, Anne-Désirée; Bourgeade, Pascale; Labolle, François; Badot, Pierre-Marie; Chabaux, François; Stille, Peter

    2011-10-01

    Hydroponic experiments have been performed in order to identify the co-occurring geochemical and biological processes affecting the Ca isotopic compositions within plants. To test the influence of the Ca concentration and pH of the nutritive solution on the Ca isotopic composition of the different plant organs, four experimental conditions were chosen combining two different Ca concentrations (5 and 60 ppm) and two pHs (4 and 6). The study was performed on rapid growing bean plants in order to have a complete growth cycle. Several organs (root, stem, leaf, reproductive) were sampled at two different growth stages (10 days and 6 weeks of culture) and prepared for Ca isotopic measurements. The results allow to identify three Ca isotopic fractionation levels. The first one takes place when Ca enters the lateral roots, during Ca adsorption on cation-exchange binding sites in the apoplasm. The second one takes place when Ca is bound to the polygalacturonic acids (pectins) of the middle lamella of the xylem cell wall. Finally, the last fractionation occurs in the reproductive organs, also caused by cation-exchange processes with pectins. However, the cell wall structures of these organs and/or number of available exchange sites seem to be different to those of the xylem wall. These three physico-chemical fractionation mechanisms allow to enrich the organs in the light 40Ca isotope. The amplitude of the Ca isotopic fractionation within plant organs is highly dependent on the composition of the nutritive solution: low pH (4) and Ca concentrations (5 ppm) have no effect on the biomass increase of the plants but induce smaller fractionation amplitudes compared to those obtained from other experimental conditions. Thus, Ca isotopic signatures of bean plants are controlled by the external nutritive medium. This study highlights the potential of Ca isotopes to be applied in plant physiology (to identify Ca uptake, circulation and storage mechanisms within plants) and in

  20. Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts

    PubMed Central

    Moura, Michelle B.; Momcilovic, Olga; Easley, Charles A.; Ramalho-Santos, João; Van Houten, Bennett; Schatten, Gerald

    2011-01-01

    Background Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human

  1. Is higher risk sex common among male or female youths?

    PubMed

    Berhan, Yifru; Berhan, Asres

    2015-01-01

    There are several studies that showed the high prevalence of high-risk sexual behaviors among youths, but little is known how significant the proportion of higher risk sex is when the male and female youths are compared. A meta-analysis was done using 26 countries' Demographic and Health Survey data from and outside Africa to make comparisons of higher risk sex among the most vulnerable group of male and female youths. Random effects analytic model was applied and the pooled odds ratios were determined using Mantel-Haenszel statistical method. In this meta-analysis, 19,148 male and 65,094 female youths who reported to have sexual intercourse in a 12-month period were included. The overall OR demonstrated that higher risk sex was ten times more prevalent in male youths than in female youths. The practice of higher risk sex by male youths aged 15-19 years was more than 27-fold higher than that of their female counterparts. Similarly, male youths in urban areas, belonged to a family with middle to highest wealth index, and educated to secondary and above were more than ninefold, eightfold and sixfold at risk of practicing higher risk sex than their female counterparts, respectively. In conclusion, this meta-analysis demonstrated that the practice of risky sexual intercourse by male youths was incomparably higher than female youths. Future risky sex protective interventions should be tailored to secondary and above educated male youths in urban areas.

  2. Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Copperwheat, C. M.; Steele, I. A.; Piascik, A. S.; Bersier, D.; Bode, M. F.; Collins, C. A.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Lamb, G. P.; Levan, A. J.; Mazzali, P. A.; Mundell, C. G.; Pian, E.; Pollacco, D.; Steeghs, D.; Tanvir, N. R.; Ulaczyk, K.; Wiersema, K.

    2016-11-01

    The first direct detection of gravitational waves was made in 2015 September with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events during the first science run, and many facilities were engaged in the search for counterparts. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from 2015 September to 2016 January. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (˜degrees) fields of view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae. No counterparts were identified, which is in line with expectations given that the events were classified as black hole-black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely.

  3. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    PubMed Central

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  4. Results from GROCSE I: A real-time search for gamma ray burst optical counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.; Akerlof, C.; Ables, E.

    The GROCSE I experiment (Gamma-Ray Optical Counterpart Search Experiment) is a rapid slewing wide field of view optical telescope at Lawrence Livermore National Laboratory which responds to triggers from the BATSE GRB data telemetry stream that have been processed and distributed by the BACODINE network. GROCSE 1 has been in continuous automated operation since January 1994. As of October 1995, sky images for 22 GRB triggers have been recorded, in some cases while the burst was still emitting gamma rays. The preliminary analysis of eight of these events are presented here. No optical counterparts have yet been detected. Limits formore » optical emission are given.« less

  5. Relationships and Values among Students and Staff in British and German Higher Education

    ERIC Educational Resources Information Center

    Pritchard, Rosalind

    2005-01-01

    Financial stringency and neo-liberal influences in higher education are impacting upon relationships and academic values in higher education. The aim of the present paper was to analyse how these forces operate differentially in the UK and Germany. The British students were significantly more satisfied than were their German counterparts with the…

  6. Capability of detecting ultraviolet counterparts of gravitational waves with GLUV

    NASA Astrophysics Data System (ADS)

    Ridden-Harper, Ryan; Tucker, B. E.; Sharp, R.; Gilbert, J.; Petkovic, M.

    2017-12-01

    With the discovery of gravitational waves (GWs), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multimessenger follow-up strategies to the GW detections, ultraviolet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using the u΄-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m_{u^' }}(AB)≈ 24 to fully complement the aLIGO range and sky localization. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30 cm could be capable of covering the aLIGO detection distance from ∼60 to 100 per cent for BNS events and ∼40 per cent for the black hole and a neutron star events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique data set, which can act as an effective diagnostic to discriminate between models.

  7. Identification of a Likely Radio Counterpart to the Rapid Burster

    NASA Astrophysics Data System (ADS)

    Moore, Christopher B.; Rutledge, Robert E.; Fox, Derek W.; Guerriero, Robert A.; Lewin, Walter H. G.; Fender, Robert; van Paradijs, Jan

    2000-04-01

    We have identified a likely radio counterpart to the low-mass X-ray binary MXB 1730-335 (the Rapid Burster). The counterpart has shown 8.4 GHz radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM during six VLA observations. The probability of an unrelated, randomly varying background source duplicating this behavior is 1%-3% depending on the correlation timescale. The location of the radio source is R.A. 17h33m24.61s, decl. -33 deg23'19.8" (J2000), +/-0.1". We do not detect 8.4 GHz radio emission coincident with type II (accretion-driven) X-ray bursts. The ratio of radio to X-ray emission during such bursts is constrained to be below the ratio observed during X-ray-persistent emission at the 2.9 σ level. Synchrotron bubble models of the radio emission can provide a reasonable fit to the full data set, collected over several outbursts, assuming that the radio evolution is the same from outburst to outburst but given the physical constraints the emission is more likely to be due to ~1 hr radio flares such as have been observed from the X-ray binary GRS 1915+105.

  8. How common is within-plant signaling via volatiles?

    PubMed

    Li, Tao; Blande, James D

    2017-08-03

    Many plants respond to herbivory by releasing a complex blend of volatiles that may differ from that emitted by intact counterparts. These herbivore-induced plant volatiles (HIPV) mediate many interactions among plants and their community members, including alerting undamaged leaves of the attacked or neighboring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signaling and that other organisms subsequently evolved to use them. However, only 7 studies have reported HIPV-mediated within-plant signaling, most conducted in the laboratory or greenhouse. This leaves open the ecological relevance and evolutionary underpinning of the phenomenon. We recently observed within-plant signaling in hybrid aspen under laboratory and field conditions. Greenhouse experiments showed that HIPVs mediated the process. While our study adds an aspen hybrid to the list of plants in which within-plant signaling has been demonstrated, we lack understanding of how common the process is and whether plants obtain fitness benefits.

  9. The Impact of Digital Games on Student Persistence and Retention in an Online Higher Education Context

    ERIC Educational Resources Information Center

    Case, Randall E.

    2013-01-01

    Enrollment in online higher education programs has been climbing for the past decade but research suggests that online courses exhibit significantly higher attrition rates than their face-to-face counterparts. Consequently, while significantly more students are enrolling in higher education programs, far too few are graduating. Self-determination…

  10. Assessment of organochlorine pesticides residues in higher plants from oil exploration areas of Niger Delta, Nigeria.

    PubMed

    Sojinu, O Samuel; Sonibare, Oluwadayo O; Ekundayo, Olusegun O; Zeng, Eddy Y

    2012-09-01

    The concentrations and distributions of organochlorine pesticides (OCPs) in some higher plant samples collected from oil exploration areas of the Niger Delta, Nigeria were examined. The concentrations of Σ(25)OCP ranged from 82 to 424, 44 to 200 , 34 to 358, 33 to 106 and 16 to 75 ng/g in Olomoro, Oginni, Uzere, Irri and Calabar plants, respectively. The compositional profiles of the analysed OCPs in most of the plants showed no fresh inputs in the area. The OCPs detected in the samples could have resulted from pesticide usage for intense farming activities cum the use of pesticides to control household pests and insects in the area. Drilling fluids and corrosion inhibitors used in petroleum explorations also have chlorinated compounds as additives thereby serving as potential sources of OCPs. Among the studied plants, elephant grass showed high bioaccumulation and phytoremediation potentials of OCPs. The ΣHCH concentrations exceeded the allowable daily intake limit thereby serving as potential threat to humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    PubMed

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  12. Reconciling functions and evolution of isoprene emission in higher plants.

    PubMed

    Loreto, Francesco; Fineschi, Silvia

    2015-04-01

    Compilation and analysis of existing inventories reveal that isoprene is emitted by c. 20% of the perennial vegetation of tropical and temperate regions of the world. Isoprene emitters are found across different plant families without any clear phylogenetic thread. However, by critically appraising information in inventories, several ecological patterns of isoprene emission can be highlighted, including absence of emission from C4 and annual plants, and widespread emission from perennial and deciduous plants of temperate environments. Based on this analysis, and on available information on biochemistry, ecology and functional roles of isoprene, it is suggested that isoprene may not have evolved to help plants face heavy or prolonged stresses, but rather assists C3 plants to run efficient photosynthesis and to overcome transient and mild stresses, especially during periods of active plant growth in warm seasons. When the stress status persists, or when evergreen leaves cope with multiple and repeated stresses, isoprene biosynthesis is replaced by the synthesis of less volatile secondary compounds, in part produced by the same biochemical pathway, thus indicating causal determinism in the evolution of isoprene-emitting plants in response to the environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Jasmonate-induced responses are costly but benefit plants under attack in native populations

    PubMed Central

    Baldwin, Ian T.

    1998-01-01

    Herbivore attack is widely known to reduce food quality and to increase chemical defenses and other traits responsible for herbivore resistance. Inducible defenses are commonly thought to allow plants to forgo the costs of defense when not needed; however, neither their defensive function (increasing a plant’s fitness) nor their cost-savings function have been demonstrated in nature. The root-produced toxin nicotine increases after herbivore attack in the native, postfire annual Nicotiana attenuata and is internally activated by the wound hormone, jasmonic acid. I treated the roots of plants with the methyl ester of this hormone (MeJA) to elicit a response in one member of each of 745 matched pairs of plants growing in native populations with different probabilities of attack from herbivores, and measured the lifetime production of viable seed. In populations with intermediate rates of attack, induced plants were attacked less often by herbivores and survived to produce more seed than did their uninduced counterparts. Previous induction did not significantly increase the fitness of plants suffering high rates of attack. However, if plants had not been attacked, induced plants produced less seed than did their uninduced counterparts. Jasmonate-induced responses function as defenses but are costly, and inducibility allows this species to forgo these costs when the defenses are unnecessary. PMID:9653149

  14. Less Time to Study, Less Well Prepared for Work, yet Satisfied with Higher Education: A UK Perspective on Links between Higher Education and the Labour Market

    ERIC Educational Resources Information Center

    Little, Brenda; Arthur, Lore

    2010-01-01

    This paper explores graduates' views on the relationship between higher education and employment. It draws on a major European study involving graduates five years after graduation and highlights similarities and differences between UK graduates' experiences and their European counterparts. Specifically, we address questions raised in the study…

  15. Women Reap More Benefits from Higher Education, Study Finds

    ERIC Educational Resources Information Center

    Troumpoucis, Patricia

    2004-01-01

    Higher education offers a variety of benefits, both economic and non-economic, and women seem to reap much bigger economic benefits from earning an associate's degree or a bachelor's degree than their male counterparts, according to a new study. The study's author said this revelation could shed some light on why the numbers of women in college…

  16. The X-Ray Counterpart to LAT PSR J2021+4026 and Its Interesting Spectrum

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Becker, W.; Carraminana, A.; De Luca, A.; Dormandy, M.; Harding, A.; Kanbach, G.; O'Dell, S. L.; Parkinson, P. Saz; Ray, P.; hide

    2011-01-01

    We report on the likely identification of the X-ray counterpart to LAT PSR J2021+4026, using the Chandra X-Ray Observatory ACIS-S3 and timing analysis of Large Area telescope (LAT) data from the Fermi satellite. The X-ray source that lies closest (10 arcsec) to the position determined from the Fermi-LAT timing solution has no cataloged infrared-to-visible counterpart and we have set an upper limit to its optical I and R band emission. The source exhibits a X-ray spectrum which is different when compared to Geminga and CTA 1, and this may have implications for the evolutionary track of radio-quiet gamma-ray pulsars.

  17. [Effect of salt stress on respiration metabolism in higher plants].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    We studied the activity of NADP-dependent isocitrate dehydrogenase, malate dehydrogenase, succinate dehydrogenase, catalase, and peroxidase as well as the rate of 14CO2 release after introduction of labeled substrates for glycolysis and citrate acid cycle within 24 h after salt stress (1% NaCl) in 10-14 days old germinants of wheat (Triticum aestivum L.) and maize (Zea mays L.) as well as thallus of small duckweed (Wolffia arrhiza (L.) Hork ex Wimmer). Oscillations in the enzymes activity with 4-6 h period have been revealed under stress conditions. Activity of glycolysis decreased in wheat and maize and increased in duckweed under the influence of stress stimulus. Six hours after NaCl action decarboxylation of exogenous citrate and succinate was enhanced in all three plants while the rate of exogenous malate decarboxylation was decreased. We conclude that adaptation of higher plans to salinization is accompanied by rearrangements in oxidative metabolism reflected by oscillations in activity of the enzymes involved in oxidative metabolism.

  18. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo

    PubMed Central

    1986-01-01

    The reorganization of the microtubular meshwork was studied in intact Haemanthus endosperm cells and cell fragments (cytoplasts). This higher plant tissue is devoid of a known microtubule organizating organelle. Observations on living cells were correlated with microtubule arrangements visualized with the immunogold method. In small fragments, reorganization did not proceed. In medium and large sized fragments, microtubular converging centers formed first. Then these converging centers reorganized into either closed bushy microtubular spiral or chromosome-free cytoplasmic spindles/phragmoplasts. Therefore, the final shape of organized microtubular structures, including spindle shaped, was determined by the initial size of the cell fragments and could be achieved without chromosomes or centrioles. Converging centers elongate due to the formation of additional structures resembling microtubular fir trees. These structures were observed at the pole of the microtubular converging center in anucleate fragments, accessory phragmoplasts in nucleated cells, and in the polar region of the mitotic spindle during anaphase. Therefore, during anaphase pronounced assembly of new microtubules occurs at the polar region of acentriolar spindles. Moreover, statistical analysis demonstrated that during the first two-thirds of anaphase, when chromosomes move with an approximately constant speed, kinetochore fibers shorten, while the length of the kinetochore fiber complex remains constant due to the simultaneous elongation of their integral parts (microtubular fir trees). The half-spindle shortens only during the last one-third of anaphase. These data contradict the presently prevailing view that chromosome-to-pole movements in acentriolar spindles of higher plants are concurrent with the shortening of the half-spindle, the self- reorganizing property of higher plant microtubules (tubulin) in vivo. It may be specific for cells without centrosomes and may be superimposed also on other

  19. Plant defences on land and in water: why are they so different?

    PubMed Central

    2016-01-01

    Background Plants (attached photosynthesizing organisms) are eaten by a wide variety of herbivorous animals. Despite a vast literature on plant defence, contrasting patterns of antiherbivore adaptation among marine, freshwater and land plants have been little noticed, documented or understood. Scope Here I show how the surrounding medium (water or air) affects not only the plants themselves, but also the sensory and locomotor capacities of herbivores and their predators, and I discuss patterns of defence and host specialization of plants and herbivores on land and in water. I analysed the literature on herbivory with special reference to mechanical defences and sensory cues emitted by plants. Spines, hairs, asymmetrically oriented features on plant surfaces, and visual and olfactory signals that confuse or repel herbivores are common in land plants but rare or absent in water-dwelling plants. Small terrestrial herbivores are more often host-specific than their aquatic counterparts. I propose that patterns of selection on terrestrial herbivores and plants differ from those on aquatic species. Land plants must often attract animal dispersers and pollinators that, like their herbivorous counterparts, require sophisticated locomotor and sensory abilities. Plants counter their attractiveness to animal helpers by evolving effective contact defences and long-distance cues that mislead or warn herbivores. The locomotor and sensory world of small aquatic herbivores is more limited. These characteristics result from the lower viscosity and density of air compared with water as well as from limitations on plant physiology and signal transmission in water. Evolutionary innovations have not eliminated the contrasts in the conditions of life between water and land. Conclusion Plant defence can be understood fully when herbivores and their victims are considered in the broader context of other interactions among coexisting species and of the medium in which these interactions

  20. Inverse Compton Scattered Merger-nova: Late X-Ray Counterpart of Gravitational-wave Signals from NS–NS/BH Mergers

    NASA Astrophysics Data System (ADS)

    Ai, Shunke; Gao, He

    2018-01-01

    The recent observations of GW170817 and its electromagnetic (EM) counterparts show that double neutron star mergers could lead to rich and bright EM emissions. Recent numerical simulations suggest that neutron star and neutron star/black hole (NS–NS/BH) mergers would leave behind a central remnant surrounded by a mildly isotropic ejecta. The central remnant could launch a collimated jet and when the jet propagates through the ejecta, a mildly relativistic cocoon would be formed and the interaction between the cocoon and the ambient medium would accelerate electrons via external shock in a wide angle, so that the merger-nova photons (i.e., thermal emission from the ejecta) would be scattered into higher frequency via an inverse Compton (IC) process when they propagate through the cocoon shocked region. We find that the IC scattered component peaks at the X-ray band and it will reach its peak luminosity on the order of days (simultaneously with the merger-nova emission). With current X-ray detectors, such a late X-ray component could be detected out to 200 Mpc, depending on the merger remnant properties. It could serve as an important electromagnetic counterpart of gravitational-wave signals from NS–NS/BH mergers. Nevertheless, simultaneous detection of such a late X-ray signal and the merger-nova signal could shed light on the cocoon properties and the concrete structure of the jet.

  1. The X-ray counterpart to the gravitational-wave event GW170817

    NASA Astrophysics Data System (ADS)

    Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R. T.; Im, M.; Fox, O. D.; Butler, N. R.; Cenko, S. B.; Sakamoto, T.; Fryer, C. L.; Ricci, R.; Lien, A.; Ryan, R. E.; Korobkin, O.; Lee, S.-K.; Burgess, J. M.; Lee, W. H.; Watson, A. M.; Choi, C.; Covino, S.; D'Avanzo, P.; Fontes, C. J.; González, J. Becerra; Khandrika, H. G.; Kim, J.; Kim, S.-L.; Lee, C.-U.; Lee, H. M.; Kutyrev, A.; Lim, G.; Sánchez-Ramírez, R.; Veilleux, S.; Wieringa, M. H.; Yoon, Y.

    2017-11-01

    A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration. The observational support for this model, however, is only indirect. A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth. Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta, observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.

  2. Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) cells and higher electron mobility in space charge limited current (SCLC) devices.

    PubMed

    Zhang, Youdi; Wang, Helin; Xiao, Yi; Wang, Ligang; Shi, Dequan; Cheng, Chuanhui

    2013-11-13

    In this work, we propose the application of liquid crystalline acceptors as a potential means to improve the performances of bulk heterojunction (BHJ) organic solar cells. LC-1, a structurally-simple perylene diimide (PDI), has been adopted as a model for thorough investigation. It exhibits a broad temperature range of liquid crystalline (LC) phase from 41 °C to 158 °C, and its LC properties have been characterized by differental scanning calorimetry (DSC), polarization optical microscopy (POM), and X-ray diffraction (XRD). The BHJ devices, using P3HT:LC-1 (1:2) as an organic photovoltaic active layer undergoing thermal annealing at 120 °C, shows an optimized efficiency of 0.94 %. By contrast, the devices based on PDI-1, a nonliquid crystalline PDI counterpart, only obtain a much lower efficiency of 0.22%. Atomic force microscopy (AFM) images confirm that the active layers composed of P3HT:LC-1 have smooth and ordered morphology. In space charge limited current (SCLC) devices fabricated via a spin-coating technique, LC-1 shows the intrinsic electron mobility of 2.85 × 10(-4) cm(2)/(V s) (at 0.3 MV/cm) which is almost 5 times that of PDI-1 (5.83 × 10(-5) cm(2)/(V s)) under the same conditions for thermal annealing at 120 °C.

  3. Seed sprout production: Consumables and a foundation for higher plant growth in space

    NASA Technical Reports Server (NTRS)

    Day, Michelle; Thomas, Terri; Johnson, Steve; Luttges, Marvin

    1990-01-01

    Seed sprouts can be produced as a source of fresh vegetable materials and as higher plant seedlings in space. Sprout production was undertaken to evaluate the mass accumulations possible, the technologies needed, and the reliability of the overall process. Baseline experiments corroborated the utility of sprout production protocols for a variety of seed types. The automated delivery of saturated humidity effectively supplants labor intensive manual soaking techniques. Automated humidification also lend itself to modest centrifugal sprout growth environments. A small amount of ultraviolet radiation effectively suppressed bacterial and fungal contamination, and the sprouts were suitable for consumption.

  4. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C

  5. Gravitropism in Higher Plant Shoots 1

    PubMed Central

    Mueller, Wesley J.; Salisbury, Frank B.; Blotter, P. Thomas

    1984-01-01

    Dimensional changes during gravitropic bending of cocklebur (Xanthium strumarium L.) dicot stems were measured using techniques of stereo photogrammetry. The differential growth is from an increased growth rate on the bottom of the stem and a stopping or contraction of the top. Contraction of the top was especially evident upon release and immediate bending of horizontal stems that had been restrained between stiff wires for 36 hours. The energy for this could have been stored in both the top and bottom, since the bottom elongated, and the top contracted. Forces developed during bending were measured by fastening a stem tip to the end of a bar with attached strain gauges and recording electrical output from the strain gauges. Restrained mature cocklebur stems continued to accumulate potential energy for bending for about 120 hours, after which the recorded force reached a maximum. Pressures within castor bean (Ricinus communis L.) stems were also measured with 3.5-millimeter diameter pressure transducers. As expected, the pressure on the bottom of the restrained plants increased with time; pressures decreased in vertical controls, tops of restrained stems, and bottoms of free-bending stems. Pressures increased in tops of free-bending stems. When restrained plants were released, pressure on the bottom decreased and pressure on the top increased. Results suggest a possible role for cell contraction in the top of stems bending upward in response to gravity. Images Fig. 5 Fig. 11 PMID:16663987

  6. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.

    PubMed

    Sivaram, Anithadevi Kenday; Logeshwaran, Panneerselvan; Lockington, Robin; Naidu, Ravi; Megharaj, Mallavarapu

    2018-02-01

    The phytoremediation potential of 14 different plant species belonging to C3 and C4 carbon fixation pathway for soils spiked with polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and pyrene (PYR) was investigated. A glasshouse experiment was conducted to measure the changes in morphological, physiological, biochemical parameters and the bioaccumulation and biodegradation ability of the plants in soils spiked with 48 and 194 mg kg -1 of B[a]P and PYR, respectively. The per cent removal efficacy of B[a]P and PYR by the tested plant species over a period of 50 days was from 6 to 26% and 14 to 40% respectively. The maximum removal of both B[a]P and PYR was observed in Sudan grass (C4), vetiver (C4), maize (C4), and sunflower (C3). In terms of accumulation in root and shoot, the concentration of PYR was higher in both C3 and C4 plant species when compared to B[a]P. Overall the results indicated that C4 plants were more efficient than their C3 counterparts in terms of morphological, physiological, biochemical and degradation ability of PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Quantitative Study of the Underrepresentation of Female Leaders in Assemblies of God Higher Education

    ERIC Educational Resources Information Center

    Vicari, Nicole

    2017-01-01

    Consistently women have been unable to attain senior leadership roles as fast as their male counterparts particularly within higher education. Scholars have studied the under-representation of women in senior leadership positions within higher education but have not studied the phenomenon at faith-based institutions or within the Assemblies of God…

  8. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    PubMed

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  9. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque-Escamilla, Pedro L.; Martí, Josep; Muñoz-Arjonilla, Álvaro J., E-mail: peter@ujaen.es, E-mail: jmarti@ujaen.es, E-mail: ajmunoz@ujaen.es

    2014-12-10

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest inmore » time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.« less

  10. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant

    PubMed Central

    Zachariades, Costas; Heshula, Lelethu U.; Hill, Martin P.

    2018-01-01

    Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect

  11. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant.

    PubMed

    Uyi, Osariyekemwen O; Zachariades, Costas; Heshula, Lelethu U; Hill, Martin P

    2018-01-01

    Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect

  12. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  13. The infrared counterpart of GX 13 + 1

    NASA Technical Reports Server (NTRS)

    Garcia, M. R.; Grindlay, J. E.; Bailyn, C. D.; Pipher, J. L.; Shure, M. A.; Woodward, C. E.

    1992-01-01

    A bright (K = 12) IR source is discovered which is likely the counterpart to the bright galactic-bulge X-ray source GX 13 + 1. Observations with the MMT IR photometer and the Rochester IR Array camera at the IRTF allow determination of the source position to about 0.7 arcsec, allow the IR colors to be measured, and show no variability on a 1-yr timescale. Four possible sources for the IR emission are considered and it is most likely due to a K-giant secondary. The discovery of a late-type giant secondary in GX 13 + 1 is contrary to the expectation that low-mass X-ray binaries which show quasi-periodic oscillations (QPO) have giant companions, while those which do not show QPO (like GX 13 + 1) have dwarf secondaries. The relation between the size of the scattered X-ray halo and the Av inferred from the IR observations is compared to that found in other X-ray sources.

  14. Optical study of the counterpart to GRB 990712

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; Castro-Tirado, A. J.; Saizar, P.; Rattenbury, N. J.; Bond, I. A.; Yock, P.; Hearnshaw, J.; Kilmartin, P. M.; Muraki, Y.; Nakamura, T.; Ohnishi, K.; Reid, M.; Saito, To; Noda, S.

    2000-09-01

    Quasi-simultaneous BVR-band observations performed from New Zealand and Argentina ~16 hr after the burst clearly detected the optical counterpart to GR-B 990712. Based on these measurements we construct the optical multi-band spectrum. We report that the spectrum between the R and B bands follows a power law Fv~νβ with index β=-0.50+/-0.16. The spectrum is consistent with a stretch of an afterglow spectrum between the peak frequency, νm, and the cooling break, νc. The photon index derived following the model of Sari et al. (1998), p=2.36+/-0.08 is compatible with β and the power law decay, α, only if no absorption is introduced. Thus, our results support that GRB 990712 occurred in a low density region, resembling GRB 970508. .

  15. X-ray Counterparts of Infrared Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  16. Spin-orbit precession along eccentric orbits: Improving the knowledge of self-force corrections and of their effective-one-body counterparts

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Damour, Thibault; Geralico, Andrea

    2018-05-01

    The (first-order) gravitational self-force correction to the spin-orbit precession of a spinning compact body along a slightly eccentric orbit around a Schwarzschild black hole is computed through the ninth post-Newtonian order and to second order in the eccentricity, improving recent results by Kavanagh et al. [Phys. Rev. D 96, 064012 (2017), 10.1103/PhysRevD.96.064012]. We show that our higher-accurate theoretical estimates of the spin precession exhibits an improved agreement with corresponding numerical self-force data. We convert our new theoretical results into its corresponding effective-one-body counterpart, thereby determining several new post-Newtonian terms in the gyrogravitomagnetic ratio gS * .

  17. The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants.

    PubMed

    Perry, Jason; Zhao, Yunde

    2003-11-01

    A previously undetected domain, named CW for its conserved cysteine and tryptophan residues, appears to be a four-cysteine zinc-finger motif found exclusively in vertebrates, vertebrate-infecting parasites and higher plants. Of the twelve distinct nuclear protein families that comprise the CW domain-containing superfamily, only the microrchida (MORC) family has begun to be characterized. However, several families contain other domains suggesting a relationship between the CW domain and either chromatin methylation status or early embryonic development.

  18. INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Kazunori; Johnson, Michael D., E-mail: kazu@haystack.mit.edu

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williamsmore » and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T {sub b} ≳ 10{sup 9} K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.« less

  19. Signature Concepts of Women Researchers in Higher Education Teaching and Learning

    ERIC Educational Resources Information Center

    Kandlbinder, Peter

    2014-01-01

    The history of research into higher education teaching and learning has been one led by male researchers. Individual women researchers have always been active in the field but their contributions have not received the same level of recognition as their male counterparts. A review of the research literature in journals focused on teaching and…

  20. The optical counterpart to the Be/X-ray binary SAX J2239.3+6116

    NASA Astrophysics Data System (ADS)

    Reig, P.; Blay, P.; Blinov, D.

    2017-02-01

    Context. Be/X-ray binaries represent the main group of high-mass X-ray binaries. The determination of the astrophysical parameters of the counterparts of these high-energy sources is important for the study of X-ray binary populations in our Galaxy. X-ray observations suggest that SAX J2239.3+6116 is a Be/X-ray binary. However, little is known about the astrophysical parameters of its massive companion. Aims: The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. Methods: We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 Å spectroscopy. The 4000-5000 Å spectra allowed us to determine the spectral type and projected rotational velocity of the optical companion; the 6000-7000 Å spectra, together with the photometric magnitudes, were used to derive the colour excess E(B-V), estimate the distance, and to study the variability of the Hα line. Results: The optical counterpart to SAX J2239.3+6116 is a V = 14.8 B0Ve star located at a distance of 4.9 kpc. The interstellar reddening in the direction of the source is E(B-V) = 1.70 ± 0.03 mag. The monitoring of the Hα line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. We measured intrinsic optical polarization for the first time. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. Conclusions: We attribute the long-term decrease in the intensity of the Hα line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of the system.

  1. THE IDENTIFICATION OF THE X-RAY COUNTERPART TO PSR J2021+4026

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisskopf, Martin C.; Elsner, Ronald F.; O'Dell, Stephen L.

    2011-12-10

    We report the probable identification of the X-ray counterpart to the {gamma}-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20{sup h}21{sup m}30.{sup s}733, decl. +40 Degree-Sign 26'46.''04 (J2000) with an estimated uncertainty of 1.''3 combined statistical and systematic error. Moreover, both the X-ray to {gamma}-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray sourcemore » has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a power law and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less

  2. The Identification Of The X-Ray Counterpart To PSR J2021+4026

    DOE PAGES

    Weisskopf, Martin C.; Romani, Roger W.; Razzano, Massimiliano; ...

    2011-11-23

    We report the probable identification of the X-ray counterpart to the γ-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30s.733, Decl. +40°26'46.04" (J2000) with an estimated uncertainty of 1."3 combined statistical and systematic error. Moreover, both the X-ray to γ-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through newmore » observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less

  3. Plant Viruses and Mycoplasmas. Proceedings of a Workshop on Plant Viruses and Mycoplasmas Held at the Botany Department, National University of Singapore, Singapore, May 24-27, 1983.

    ERIC Educational Resources Information Center

    Lim, G., Ed.; And Others

    A workshop on plant viruses and mycoplasmas brought together scientists and researchers working on these microorganisms in the countries of eastern Asia, and enabled them to discuss their studies, to exchange ideas, and to become familiar with their counterparts These proceedings of the workshop contain papers which include country reports,…

  4. Plant defences on land and in water: why are they so different?

    PubMed

    Vermeij, Geerat J

    2016-06-01

    Plants (attached photosynthesizing organisms) are eaten by a wide variety of herbivorous animals. Despite a vast literature on plant defence, contrasting patterns of antiherbivore adaptation among marine, freshwater and land plants have been little noticed, documented or understood. Here I show how the surrounding medium (water or air) affects not only the plants themselves, but also the sensory and locomotor capacities of herbivores and their predators, and I discuss patterns of defence and host specialization of plants and herbivores on land and in water. I analysed the literature on herbivory with special reference to mechanical defences and sensory cues emitted by plants. Spines, hairs, asymmetrically oriented features on plant surfaces, and visual and olfactory signals that confuse or repel herbivores are common in land plants but rare or absent in water-dwelling plants. Small terrestrial herbivores are more often host-specific than their aquatic counterparts. I propose that patterns of selection on terrestrial herbivores and plants differ from those on aquatic species. Land plants must often attract animal dispersers and pollinators that, like their herbivorous counterparts, require sophisticated locomotor and sensory abilities. Plants counter their attractiveness to animal helpers by evolving effective contact defences and long-distance cues that mislead or warn herbivores. The locomotor and sensory world of small aquatic herbivores is more limited. These characteristics result from the lower viscosity and density of air compared with water as well as from limitations on plant physiology and signal transmission in water. Evolutionary innovations have not eliminated the contrasts in the conditions of life between water and land. Plant defence can be understood fully when herbivores and their victims are considered in the broader context of other interactions among coexisting species and of the medium in which these interactions occur. © The Author 2016

  5. A radio counterpart to a neutron star merger.

    PubMed

    Hallinan, G; Corsi, A; Mooley, K P; Hotokezaka, K; Nakar, E; Kasliwal, M M; Kaplan, D L; Frail, D A; Myers, S T; Murphy, T; De, K; Dobie, D; Allison, J R; Bannister, K W; Bhalerao, V; Chandra, P; Clarke, T E; Giacintucci, S; Ho, A Y Q; Horesh, A; Kassim, N E; Kulkarni, S R; Lenc, E; Lockman, F J; Lynch, C; Nichols, D; Nissanke, S; Palliyaguru, N; Peters, W M; Piran, T; Rana, J; Sadler, E M; Singer, L P

    2017-12-22

    Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry. Copyright © 2017, American Association for the Advancement of Science.

  6. Finding counterparts for all-sky X-ray surveys with NWAY: a Bayesian algorithm for cross-matching multiple catalogues

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Buchner, J.; Budavári, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.

    2018-02-01

    We release the AllWISE counterparts and Gaia matches to 106 573 and 17 665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b| > 15°. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ∼94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.

  7. Gravitropism in Higher Plant Shoots 1

    PubMed Central

    Wheeler, Raymond M.; White, Rosemary G.; Salisbury, Frank B.

    1986-01-01

    Ethylene at 1.0 and 10.0 cubic centimeters per cubic meter decreased the rate of gravitropic bending in stems of cocklebur (Xanthium strumarium L.) and tomato (Lycopersicon esculentum Mill), but 0.1 cubic centimeter per cubic meter ethylene had little effect. Treating cocklebur plants with 1.0 millimolar aminoethoxyvinylglycine (AVG) (ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cubic centimeter per cubic meter ethylene in the surrounding atmosphere (or applying 0.1% ethephon solution) partially restored the rate of bending of AVG-treated plants. Ethylene increases in bending stems, and AVG inhibits this. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. This was especially true when horizontal stems were physically restrained from bending. Ethylene might promote cell elongation in bottom tissues of a horizontal stem or indicate other factors there (e.g. a large amount of `functioning' auxin). Or top and bottom tissues may become differentially sensitive to ethylene. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect. Acidic ethephon solutions applied to one side of young seedlings of cocklebur, tomato, sunflower (Helianthus annuus L.), and soybean (Glycine max [L.] Merr.) caused bending away from that side, but neutral ethephon solutions did not cause bending. Buffered or unbuffered acid (HCl) caused similar bending. Neutral ethephon solutions produced typical ethylene symptoms (i.e. epinasty, inhibition of stem elongation). HCl or acidic ethephon applied to the top of horizontal stems caused downward bending, but these substances applied to the bottom of such stems inhibited growth and upward bending—an unexpected result. PMID:11539089

  8. G protein signaling in plants: minus times minus equals plus.

    PubMed

    Stateczny, Dave; Oppenheimer, Jara; Bommert, Peter

    2016-12-01

    Heterotrimeric G proteins are key regulators in the transduction of extracellular signals both in animals and plants. In plants, heterotrimeric G protein signaling plays essential roles in development and in response to biotic and abiotic stress. However, over the last decade it has become clear that plants have unique mechanisms of G protein signaling. Although plants share most of the core components of heterotrimeric G proteins, some of them exhibit unusual properties compared to their animal counterparts. In addition, plants do not share functional GPCRs. Therefore the well-established paradigm of the animal G protein signaling cycle is not applicable in plants. In this review, we summarize recent insights into these unique mechanisms of G protein signaling in plants with special focus on the evident potential of G protein signaling as a target to modify developmental and physiological parameters important for yield increase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Higher high-density lipoprotein cholesterol in African-American women with polycystic ovary syndrome compared with Caucasian counterparts.

    PubMed

    Koval, Kathryn W; Setji, Tracy L; Reyes, Eric; Brown, Ann J

    2010-09-01

    Studies have demonstrated lipid differences among African-Americans and Caucasians and between women with polycystic ovary syndrome (PCOS) and normally ovulating women. However, few studies have examined racial differences in lipoprotein levels in women with PCOS. This study compared lipoprotein levels in African-American and Caucasian women with PCOS. We performed a retrospective chart review of 398 subjects seen as new patients for PCOS at the Duke University Medical Center Endocrinology Clinic in Durham, NC. We identified 126 charts appropriate for review, based on a diagnosis of PCOS (using the 1990 National Institutes of Health criteria), a self-reported race of either Caucasian or African-American, and a body mass index (BMI) higher than 25. We excluded patients taking glucophage, oral contraceptives, or lipid-lowering medications. Age, BMI, total cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL cholesterol, random triglycerides (TG), and oral glucose tolerance test measurements were collected and included in the analysis. African-American women with PCOS had higher HDL cholesterol levels (52.6 vs. 47.5 mg/dl, P = 0.019), lower non-HDL cholesterol (134.1 vs. 154.6 mg/dl, P = 0.046), and lower TG levels (97.5 vs. 168.2 mg/dl, P < 0.001) than Caucasian women. These differences could not be attributed to age, BMI, or differences in insulin resistance as determined by homeostasis model assessment of insulin resistance. African-American women with PCOS appear to have a more favorable lipid profile than Caucasian women with PCOS having higher HDL cholesterol, lower non-HDL cholesterol, and lower TG when BMI and insulin resistance are equal.

  10. Photosynthetic and respiratory activity in germfree higher plant species

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Equipment developed for the study of gas exchange in germfree plants is described. The equipment includes a gas exchange chamber to house the plant under study, a gas feed assembly to introduce and remove gas from the chamber, and a clinostat to rotate the apparatus. Fluorescent and incandescent lights are used to illuminate the chamber and a sealed plastic barrier is used to isolate the potting soil from the chamber atmosphere. The gas outflow from the chamber can be diverted to an infrared CO2 analyzer. The performance of the system was evaluated.

  11. Biological effects of weightlessness and clinostatic conditions registered in cells of root meristem and cap of higher plants

    NASA Astrophysics Data System (ADS)

    Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.

    Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.

  12. The Herschel-ATLAS Data Release 1 - II. Multi-wavelength counterparts to submillimetre sources

    NASA Astrophysics Data System (ADS)

    Bourne, N.; Dunne, L.; Maddox, S. J.; Dye, S.; Furlanetto, C.; Hoyos, C.; Smith, D. J. B.; Eales, S.; Smith, M. W. L.; Valiante, E.; Alpaslan, M.; Andrae, E.; Baldry, I. K.; Cluver, M. E.; Cooray, A.; Driver, S. P.; Dunlop, J. S.; Grootes, M. W.; Ivison, R. J.; Jarrett, T. H.; Liske, J.; Madore, B. F.; Popescu, C. C.; Robotham, A. G.; Rowlands, K.; Seibert, M.; Thompson, M. A.; Tuffs, R. J.; Viaene, S.; Wright, A. H.

    2016-10-01

    This paper is the second in a pair of papers presenting data release 1 (DR1) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), the largest single open-time key project carried out with the Herschel Space Observatory. The H-ATLAS is a wide-area imaging survey carried out in five photometric bands at 100, 160, 250, 350 and 500 μm covering a total area of 600 deg2. In this paper, we describe the identification of optical counterparts to submillimetre sources in DR1, comprising an area of 161 deg2 over three equatorial fields of roughly 12 × 4.5 deg centred at 9h, 12h and 14{^h.}5, respectively. Of all the H-ATLAS fields, the equatorial regions benefit from the greatest overlap with current multi-wavelength surveys spanning ultraviolet (UV) to mid-infrared regimes, as well as extensive spectroscopic coverage. We use a likelihood ratio technique to identify Sloan Digital Sky Survey counterparts at r < 22.4 for 250-μm-selected sources detected at ≥4σ (≈28 mJy). We find `reliable' counterparts (reliability R ≥ 0.8) for 44 835 sources (39 per cent), with an estimated completeness of 73.0 per cent and contamination rate of 4.7 per cent. Using redshifts and multi-wavelength photometry from GAMA and other public catalogues, we show that H-ATLAS-selected galaxies at z < 0.5 span a wide range of optical colours, total infrared (IR) luminosities and IR/UV ratios, with no strong disposition towards mid-IR-classified active galactic nuclei in comparison with optical selection. The data described herein, together with all maps and catalogues described in the companion paper, are available from the H-ATLAS website at www.h-atlas.org.

  13. A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.

    2006-01-01

    We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification

  14. Aluminum, a Friend or Foe of Higher Plants in Acid Soils

    PubMed Central

    Bojórquez-Quintal, Emanuel; Escalante-Magaña, Camilo; Echevarría-Machado, Ileana; Martínez-Estévez, Manuel

    2017-01-01

    Aluminum (Al) is the most abundant metal in the earth’s crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al. PMID:29075280

  15. Cell biology of aluminum toxicity and tolerance in higher plants.

    PubMed

    Matsumoto, H

    2000-01-01

    Aluminum is the major element in the soil and exists as a stable complex with oxygen and silicate in neutral and weakly acidic soil. When the soil pH is lower than 4.5-5.0, Al is solubilized in the soil water and absorbed by plant roots. Absorbed Al inhibits root elongation severely, and the elongation of roots exposed to Al3+ as low as mumol level is inhibited within an hour(s). Thus much research has been conducted to understand the mechanism of Al toxicity and tolerance. Al is located specifically at the root apex. Al-sensitive plants absorb more Al than do Al-tolerant plants, and thus the exclusion mechanism of Al is the major idea for Al tolerance. The understanding of Al stress in plants is important for stable food production in future. Al is a complicated ion in its chemical form and biological function. In this chapter, mechanisms of Al toxicity and tolerance proposed during the past few decades as well as future topics are described from physiological and molecular points of view.

  16. Using Penelope to assess the correctness of NASA Ada software: A demonstration of formal methods as a counterpart to testing

    NASA Technical Reports Server (NTRS)

    Eichenlaub, Carl T.; Harper, C. Douglas; Hird, Geoffrey

    1993-01-01

    Life-critical applications warrant a higher level of software reliability than has yet been achieved. Since it is not certain that traditional methods alone can provide the required ultra reliability, new methods should be examined as supplements or replacements. This paper describes a mathematical counterpart to the traditional process of empirical testing. ORA's Penelope verification system is demonstrated as a tool for evaluating the correctness of Ada software. Grady Booch's Ada calendar utility package, obtained through NASA, was specified in the Larch/Ada language. Formal verification in the Penelope environment established that many of the package's subprograms met their specifications. In other subprograms, failed attempts at verification revealed several errors that had escaped detection by testing.

  17. Challenges to Christian Higher Education at a Time of Increasing Emphasis on Research

    ERIC Educational Resources Information Center

    Hemmings, Brian; Hill, Doug

    2014-01-01

    In Australia, both Christian and non-Christian higher education institutions (HEIs) have experienced a rapidly changing external environment that is becoming more performance-driven, particularly in relation to faculty research. Academics working in Australian Christian HEIs often feel pressure to keep pace with their counterparts in non-Christian…

  18. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  19. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  20. Light curve of the optical counterpart of 2A0311-227

    NASA Technical Reports Server (NTRS)

    Williams, G.; Hiltner, W. A.

    1980-01-01

    Visual and blue light curves are presented for the optical counterpart of the X-ray source 2A0311-227. This system, which is the newest member of the AM Herculis class of binaries, has an orbital period of 81 minutes which also modulates the visual light curve. A Fourier analysis of the data has revealed the presence of a 6-minute oscillation, at least in the visual light curve. Whether or not it is also present in the blue light curve is unclear.

  1. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.

    PubMed

    Goss, Reimund; Greifenhagen, Anne; Bergner, Juliane; Volke, Daniela; Hoffmann, Ralf; Wilhelm, Christian; Schaller-Laudel, Susann

    2017-04-01

    A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.

  2. An in-advance stable isotope labeling strategy for relative analysis of multiple acidic plant hormones in sub-milligram Arabidopsis thaliana seedling and a single seed.

    PubMed

    Sun, Xiaohong; Ouyang, Yue; Chu, Jinfang; Yan, Jing; Yu, Yan; Li, Xiaoqiang; Yang, Jun; Yan, Cunyu

    2014-04-18

    A sensitive and reliable in-advance stable isotope labeling strategy was developed for simultaneous relative quantification of 8 acidic plant hormones in sub-milligram amount of plant materials. Bromocholine bromide (BETA) and its deuterated counterpart D9-BETA were used to in-advance derivatize control and sample extracts individually, which were then combined and subjected to solid-phase extraction (SPE) purification followed by UPLC-MS/MS analysis. Relative quantification of target compounds was obtained by calculation of the peak area ratios of BETA/D9-BETA labeled plant hormones. The in-advance stable isotope labeling strategy realized internal standard-based relative quantification of multiple kinds of plant hormones independent of availability of internal standard of every analyte with enhanced sensitivity of 1-3 orders of magnitude. Meanwhile, the in-advance labeling contributes to higher sample throughput and more reliability. The method was successfully applied to determine 8 plant hormones in 0.8mg DW (dry weight) of seedlings and 4 plant hormones from single seed of Arabidopsis thaliana. The results show the potential of the method in relative quantification of multiple plant hormones in tiny plant tissues or organs, which will advance the knowledge of the crosstalk mechanism of plant hormones. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. An X-Ray Counterpart of HESS J1427-608 Discovered with Suzaku

    NASA Astrophysics Data System (ADS)

    Fujinaga, Takahisa; Mori, Koji; Bamba, Aya; Kimura, Shoichi; Dotani, Tadayasu; Ozaki, Masanobu; Matsuta, Keiko; Pülhofer, Gerd; Uchiyama, Hideki; Hiraga, Junko S.; Matsumoto, Hironori; Terada, Yukikatsu

    2013-06-01

    We report on the discovery of an X-ray counterpart of the unidentified very high-energy gamma-ray source HESS J1427-608. In the sky field coincident with HESS J1427-608, an extended source was found in the 2-8 keV band, and was designated as Suzaku J1427-6051. Its X-ray radial profile has an extension of σ = 0.'9 ± 0.'1 if approximated by a Gaussian. The spectrum was well fitted by an absorbed power-law with NH = (1.1 ± 0.3) × 1023 cm-2, Γ = 3.1+0.6-0.5, and the unabsorbed flux FX = (9+4-2) × 10-13 erg s-1 cm-2 in the 2-10 keV band. Using XMM-Newton archive data, we found seven point sources in the Suzaku source region. However, because their total flux and absorbing column densities are more than an order of magnitude lower than those of Suzaku J1427-6051, we consider that they are unrelated to the Suzaku source. Thus, Suzaku J1427-6051 is considered to be a truly diffuse source and an X-ray counterpart of HESS J1427-608. The possible nature of HESS J1427-608 is discussed based on the observational properties.

  4. Pinpointing Counterparts to Submillimeter Galaxies in the Aztec/Cosmos Field

    NASA Astrophysics Data System (ADS)

    Wahl, Matthew; Sheth, K.

    2011-01-01

    In the last decade, the sub-millimeter field has been opened up and advancing. After SCUBA detected the first two sub-millimeter galaxies (SMGs), follow up observation's revealed hundreds more. Although the number of SMGs continues to grow, our knowledge of SMGs is still based upon roughly 50% of the population. Without accurate positional information of these SMGs, that percentage will remain mostly unchanged. By using CARMA, we were able to generate accurate positional information (< .3 arcsec) on 3 SMGs. With this information, it is possible to accurately identify, the radio and optical counterparts to these SMGs, which is critical to figuring out their redshift.

  5. Structure of the higher plant light harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins.

    PubMed

    Klimmek, Frank; Ganeteg, Ulrika; Ihalainen, Janne A; van Roon, Henny; Jensen, Poul E; Scheller, Henrik V; Dekker, Jan P; Jansson, Stefan

    2005-03-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.

  6. Gamma-ray Burst and Gravitational Wave Counterpart Prospects in the MeV Band with AMEGO

    NASA Astrophysics Data System (ADS)

    Racusin, Judith; AMEGO Team

    2018-01-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) Probe mission concept is uniquely suited to address open questions in Gamma-ray Burst (GRB) science including the search for counterparts to gravitational-wave events. AMEGO is a wide field of view instrument (~60 deg radius) with a broad energy range (~200 keV to >10 GeV) and excellent continuum sensitivity. The sensitivity improvement will allow for probes of GRB emission mechanisms and jet composition in ways that have not been accessible with previous instruments. Potential for polarization measurement may also have profound impacts on the understanding of GRB mechanisms. AMEGO will also be an excellent facility for the search for gravitational wave counterparts to binary mergers including at least one neutron star, which are thought to produce short duration GRBs. This poster will describe how the AMEGO will advance these fields.

  7. [Survivability and morphologic anomalies in higher plants wolffia arrhiza following exposure to heavy ions of the galactic space radiation].

    PubMed

    Nevzgodina, L V; Kaminskaia, E V; Maksimova, E N; Fatsius, R; Sherrer, K; Shtraukh, V

    2000-01-01

    Experimental data on the effects of spaceflight factors, space radiation in particular, on higher plant Wolffia arrhiza firstly exposed in the "Bioblock" assembly and measurements made by physical track detectors of heavy ions (HI) are presented. Death of individual Wolffia plants and morphologic anomalies were the basic evaluation criteria. The peculiar feature of this biological object consists in the possibility to reveal delayed effects after 1-2 months since space flight as Wolffia has a high rate of vegetative reproduction. German investigators through microscopic examination of track detectors performed identification of individual plants affected by HI. With specially developed software and a coordinate system of supposition of biolayers and track detectors with the accuracy of 1 micron, tracks and even separate sections of individual HI tracks were determined in biological objects. Thereafter each Wolffia plant hit by HI was examined and data were compared with other variants. As a result, correlation between Wolffia death rate and morphologic anomalies were determined at different times post flight and topography of HI tracks was found. It is hypothesized that morphological anomalies in Walffia were caused by direct hits of plant germs by heavy ions or close passage of particles.

  8. Results of the first stage (2002-2009) of investigation of higher plants onboard RS ISS, as an element of future closed Life Support Systems

    NASA Astrophysics Data System (ADS)

    Sychev, Vladimir; Levinskikh, Margarita; Podolsky, Igor; Bingham, Gail; Novikova, Nataliya; Sugimoto, Manabu

    A key task for biomedical human support in long-term manned space expeditions is the develop-ment of the Life Support System (LSS). It is expected that in the first continuous interplanetary expeditions LSS of only a few biological elements of the LSS, such as higher plants will be in-cluded. Therefore, investigations of growth and development of higher plants for consideration in the LSS are of high importance. In a period from October, 2002 to December 2009, 15 ex-periments on cultivation of different plants, including two genetically marked species of dwarf peas, a leaf vegetable strain of Mizuna, radish, barley and wheat were conducted in space greenhouse "LADA" onboard Russian Segment (RS) of International Space Station (ISS). The experiments resulted in the conclusion that the properties of growth and development of plants grown in space greenhouse "LADA" were unaffected by spaceflight conditions. In experiments conducted in a period from 2003 to 2005, it was shown for the first time that pea plants pre-serve reproductive functions, forming viable seeds during at least four continuous full cycles of ontogenesis ("seed to seed") under spaceflight conditions. No changes were found in the genetic apparatus of the pea plants in the four "space" generations. Since 2005, there have been routine collections of microbiological samples from the surfaces of the plants grown on-board in "LADA" greenhouse. Analysis has shown that the properties of contamination of the plants grown aboard by microorganism contain no abnormal patterns. Since 2008, the plants cultivated in "LADA" greenhouse have been frozen onboard RS ISS in the MELFI refrigerator and transferred to the Earth for further investigations. Investigations of Mizuna plants grown and frozen onboard of ISS, showed no differences between "ground control" and "space" plants in chemical and biochemical properties. There also no stress-response was found in kashinriki strain barley planted and frozen onboard ISS.

  9. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE PAGES

    Vianello, G.; Omodei, N.; Chiang, J.; ...

    2017-05-20

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  10. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, G.; Omodei, N.; Chiang, J.

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  11. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase.

    PubMed

    van der Rest, Benoît; Boisson, Anne-Marie; Gout, Elisabeth; Bligny, Richard; Douce, Roland

    2002-09-01

    Glycerophosphocholine (GroPCho) is a diester that accumulates in different physiological processes leading to phospholipid remodeling. However, very little is known about its metabolism in higher plant cells. (31)P-Nuclear magnetic resonance spectroscopy and biochemical analyses performed on carrot (Daucus carota) cells fed with GroPCho revealed the existence of an extracellular GroPCho phosphodiesterase. This enzymatic activity splits GroPCho into sn-glycerol-3-phosphate and free choline. In vivo, sn-glycerol-3-phosphate is further hydrolyzed into glycerol and inorganic phosphate by acid phosphatase. We visualized the incorporation and the compartmentation of choline and observed that the major choline pool was phosphorylated and accumulated in the cytosol, whereas a minor fraction was incorporated in the vacuole as free choline. Isolation of plasma membranes, culture medium, and cell wall proteins enabled us to localize this phosphodiesterase activity on the cell wall. We also report the existence of an intracellular glycerophosphodiesterase. This second activity is localized in the vacuole and hydrolyzes GroPCho in a similar fashion to the cell wall phosphodiesterase. Both extra- and intracellular phosphodiesterases are widespread among different plant species and are often enhanced during phosphate deprivation. Finally, competition experiments on the extracellular phosphodiesterase suggested a specificity for glycerophosphodiesters (apparent K(m) of 50 microM), which distinguishes it from other phosphodiesterases previously described in the literature.

  12. The Hunt for a Counterpart to GW150914

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) in a pre-operative testing state at the time detected its first sign of gravitational-waves. The LIGO team sprang into action, performing data-quality checks on this unexpected signal. Within two days, they had sent a notification to 63 observing teams at observatories representing the entire electromagnetic spectrum, from radio to gamma-ray wavelengths.Illustration of a binary neutron star merger. The neutron stars 1) inspiral, 2) can produce a short gamma-ray burst, 3) can fling out hot, radioactive material in the form of a kilonova, and 4) form a massive neutron star or black hole with a possible remnant debris disk around it. [NASA/ESA/A. Feild (STScI)]Thus began the very first hunt for an electromagnetic counterpart to a detected gravitational wave signal.What were they looking for?As two compact objects in a binary system merge, the system is expected to emit energy in the form of gravitational waves. If both of the compact objects are black holes, were unlikely to see any electromagnetic radiation in the process, unless the merger is occurring in an (improbable) environment filled with gas and dust.But if one or both of the two compact objects is a neutron star, then there are a number of electromagnetic signatures that could occur due to energetic outflows. If a relativistic jet forms, we could see a short gamma-ray burst and X-ray, optical, and radio afterglows. Sub-relativistic outflows could produce optical and near-infrared signals, or a radio blast wave.Timeline of observations of GW150914, separated by wavelength band, and relative to the time of the gravitational-wave trigger. The top row shows LIGO information releases. The bottom four rows show high-energy, optical, near-infrared, and radio observations, respectively. Click for a closer look! [Abbott et al. 2016]Surprise SignalSince LIGO and Virgo (LIGOs European counterpart), wereprimarily expecting to detect

  13. Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults.

    PubMed

    Berryman, Claire E; Agarwal, Sanjiv; Lieberman, Harris R; Fulgoni, Victor L; Pasiakos, Stefan M

    2016-09-01

    Higher-protein diets are associated with decreased adiposity and greater HDL cholesterol than lower protein diets. Whether these benefits can be attributed to a specific protein source (i.e., nondairy animal, dairy, or plant) is unknown, and concerns remain regarding the impact of higher-protein diets on kidney function. The objective of this study was to evaluate trends of protein source on markers of cardiometabolic disease risk and kidney function in US adults. Total, nondairy animal, dairy, and plant protein intake were estimated with the use of 24-h recall data from NHANES 2007-2010 (n = 11,111; ≥19 y). Associations between source-specific protein intake and health outcomes were determined with the use of models that adjusted for sex, race and ethnicity, age, physical activity, poverty-to-income ratio, individual intake (grams per kilogram) for each of the other 2 protein sources, body mass index (BMI) (except for weight-related variables), and macronutrient (carbohydrate, fiber, and total and saturated fat) intake. Mean ± SE total protein intake was 82.3 ± 0.8 g/d (animal: 37.4 ± 0.5 g/d; plant: 24.7 ± 0.3 g/d; and dairy: 13.4 ± 0.3 g/d). Both BMI and waist circumference were inversely associated [regression coefficient (95% CI)] with animal [-0.199 (-0.265, -0.134), P < 0.0001; -0.505 (-0.641, -0.370), P < 0.0001] and plant [-0.346 (-0.455, -0.237), P < 0.0001; -0.826 (-1.114, -0.538), P < 0.0001] protein intake. Blood urea nitrogen concentrations increased across deciles for animal [0.313 (0.248, 0.379), P < 0.0001; decile 1-10: 11.6 ± 0.2 to 14.9 ± 0.3 mg/dL] and dairy [0.195 (0.139, 0.251), P < 0.0001; decile 1-10: 12.7 ± 0.2 to 13.9 ± 0.2 mg/dL] but not plant protein intake. Glomerular filtration rate and blood creatinine were not associated with intake of any protein source. Diets higher in plant and animal protein, independent of other dietary factors, are associated with cardiometabolic benefits, particularly improved central adiposity

  14. Herbivore-Triggered Electrophysiological Reactions: Candidates for Systemic Signals in Higher Plants and the Challenge of Their Identification1

    PubMed Central

    Zimmermann, Matthias R.; Will, Torsten; Felle, Hubert H.; Furch, Alexandra C.U.

    2016-01-01

    In stressed plants, electrophysiological reactions (elRs) are presumed to contribute to long-distance intercellular communication between distant plant parts. Because of the focus on abiotic stress-induced elRs in recent decades, biotic stress-triggered elRs have been widely ignored. It is likely that the challenge to identify the particular elR types (action potential [AP], variation potential, and system potential [SP]) was responsible for this course of action. Thus, this survey focused on insect larva feeding (Spodoptera littoralis and Manduca sexta) that triggers distant APs, variation potentials, and SPs in monocotyledonous and dicotyledonous plant species (Hordeum vulgare, Vicia faba, and Nicotiana tabacum). APs were detected only after feeding on the stem/culm, whereas SPs were observed systemically following damage to both stem/culm and leaves. This was attributed to the unequal vascular innervation of the plant and a selective electrophysiological connectivity of the plant tissue. However, striking variations in voltage patterns were detected for each elR type. Further analyses (also in Brassica napus and Cucurbita maxima) employing complementary electrophysiological approaches in response to different stimuli revealed various reasons for these voltage pattern variations: an intrinsic plasticity of elRs, a plant-specific signature of elRs, a specific influence of the applied (a)biotic trigger, the impact of the technical approach, and/or the experimental setup. As a consequence, voltage pattern variations, which are not irregular but rather common, need to be included in electrophysiological signaling analysis. Due to their widespread occurrence, systemic propagation, and respective triggers, elRs should be considered as candidates for long-distance communication in higher plants. PMID:26872949

  15. THE BIOSYNTHESIS OF HYDROXYBENZOIC ACIDS IN HIGHER PLANTS

    DTIC Science & Technology

    some species. Ortho hydroxybenzoic acids were shown to arise from phenylalanine and cinnamic acid ....Radioactive para-hydroxybenzoic, vanillic and syringic acids were shown to be synthesized in a variety of plants from the corresponding...hydroxycinnamic acids labelled in the beta-position. Decarboxylation of the hydroxybenzoic acids indicated that nearly all the activity was contained in the

  16. Higher water temperature enhances dietary carbohydrate utilization and growth performance in Labeo rohita (Hamilton) fingerlings.

    PubMed

    Alexander, C; Sahu, N P; Pal, A K; Akhtar, M S; Saravanan, S; Xavier, B; Munilkumar, S

    2011-10-01

    A 60-day experiment was conducted to delineate the effect of three dietary levels of gelatinized carbohydrate (GC) on growth, nutrient-utilization and body composition of Labeo rohita fingerlings (avg. wt 6.5 ± 0.3 g) reared at two water temperatures (ambient-AT (26 ± 0.8 °C) and 32 °C). Two hundred and sixteen fingerlings were randomly distributed into six treatments in triplicates. Three semi-purified isonitrogenous diets were prepared with graded levels of GC viz. D(1) : 40%, D(2) : 50% and D(3) : 58%. Growth rate, feed efficiency and protein efficiency ratio were significantly (p < 0.05) higher in 50% GC and 32 °C reared groups than their AT counterparts. Hepato Somatic Index was higher in AT reared groups compared to 32 °C reared counterparts. Apparent digestibility co-efficient of carbohydrate was significantly (p < 0.05) higher at 32 °C reared groups but decreased with increasing carbohydrate (GC) levels. Fish reared at 32 °C showed significantly (p < 0.05) higher amylase, protease and hexokinase activities while glucose-6-phosphate dehydrogenase and glucose-6-phosphatse were significantly (p < 0.05) higher at ambient temperatures. The results obtained in present study indicated that L. rohita could utilize higher level (50%) of dietary carbohydrate at 32 °C. © 2010 Blackwell Verlag GmbH.

  17. Effect of counterpart metals in carbon-supported Pt-based catalysts prepared using radiation chemical method

    NASA Astrophysics Data System (ADS)

    Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.

  18. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  19. Organization of transport from endoplasmic reticulum to Golgi in higher plants.

    PubMed

    Andreeva, A V; Zheng, H; Saint-Jore, C M; Kutuzov, M A; Evans, D E; Hawes, C R

    2000-01-01

    In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.

  20. The Tortoise and the Hare Enigma in E-Transformation in Japanese and Korean Higher Education

    ERIC Educational Resources Information Center

    Latchem, Colin; Jung, Insung; Aoki, Kumiko; Ozkul, Ali Ekrem

    2008-01-01

    Japan and Korea have highly developed information and communications technology infrastructures and have recently reformed their higher education systems and encouraged e-transformation. However, Japanese universities have not embraced e-learning as wholeheartedly as their Korean counterparts. The paper concludes that this is due to governmental…

  1. MORC Proteins: Novel Players in Plant and Animal Health

    PubMed Central

    Koch, Aline; Kang, Hong-Gu; Steinbrenner, Jens; Dempsey, D'Maris A.; Klessig, Daniel F.; Kogel, Karl-Heinz

    2017-01-01

    Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided. PMID:29093720

  2. MORC Proteins: Novel Players in Plant and Animal Health.

    PubMed

    Koch, Aline; Kang, Hong-Gu; Steinbrenner, Jens; Dempsey, D'Maris A; Klessig, Daniel F; Kogel, Karl-Heinz

    2017-01-01

    Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

  3. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  4. The Roles of Professional Engineers at the Institutions of Higher Learning in Nation-Building

    ERIC Educational Resources Information Center

    Harun, Zambri; Khamis, Nor Kamaliana; Isa, Mohamad Dali; Hashim, Hashimah

    2013-01-01

    This paper discusses the roles of professional engineers (PEs) who are attached to the Institutions of Higher Learning (IHLs) and how their contributions are as important as their counterparts in the industry. This paper highlights the roles for PEs at IHLs based on a survey conducted at selected IHLs in Malaysia. Academician-professional…

  5. The health concerns and behaviours of primigravida: comparing advanced age pregnant women with their younger counterparts.

    PubMed

    Loke, Alice Yuen; Poon, Chung Fan

    2011-04-01

    This study was to describe and compare the health concerns, behaviours and anxiety of advanced age pregnant women (35 years and older) with their younger counterparts. Women have specific health concerns and behaviours during pregnancy. Delayed childbearing has an increased risk of adverse pregnancy outcomes and advanced age pregnant women may have more health concerns than younger ones. A cross-sectional study. Primigravidae Chinese women aged 35 or older (n = 47) and 188 younger than aged 35 were recruited in February and March of 2005 by convenient sampling from the antenatal clinic of a regional hospital in Hong Kong to complete a questionnaire. Advanced age pregnant women when compared with their counterparts were more likely to have tertiary education (42·6% vs. 28·7%) and a higher family monthly income of Hong Kong $40,001 or more (40·5% vs. 15·4%). They were more likely to be concerned the possibility of miscarriage (63·8% vs. 45·9%) and the physical demands of caring for the newborn (61·7% vs. 45·4%) but were more likely to take up healthy behaviours such as 'eating nutritious food' (100%) and avoiding 'wearing tight clothing and high-heel shoes'(100%). Advanced age women were more likely to be concerned about their 'recovery after childbirth' (63·8% vs. 42·7%), Down's syndrome (70·2% vs. 37·8%) and structural defects of their foetus (78·7% vs. 54·1%). The results of this study provide a background for improving prenatal care catering for the specific health concerns of the advanced aged and promotion of health behaviours among younger pregnant women. Antenatal, obstetric and community health nurses have the responsibility to provide education and support services catering to the special concerns of pregnant women at different ages. Health professionals should promote the prime time for childbearing and deliver messages regarding the potential problems associated with later childbearing at premarital counselling. © 2011 Blackwell Publishing

  6. Retrofitting the Williams Energy Services Ignacio Plant for higher throughput and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, J.T.; Pitman, R.N.

    1999-07-01

    The Ignacio Plant located near Durango, Colorado was originally designed to process 346 MMscfd of feed gas and to recover approximately 82% of the contained ethane. Based on increasing volumes of available feed gas, Williams Energy Services (WES) undertook a study to investigate alternatives for increasing plant capacity and ethane recovery. This study led to the selection of Ortloff's Recycle Split-Vapor (RSV) process for retrofitting the existing facility because it offered several very important advantages: maximum utilization of existing equipment, a 30% increase in plant feed handling capacity and an increase in average ethane recovery to 94% without adding residuemore » compressors. This paper presents the comparative case analysis that led to the selection of the RSV design. It also describes the modifications required for the retrofit, all of which can be accomplished with minimum plant down time. The modified Ignacio Plant is scheduled for startup in March 1999.« less

  7. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  8. Symmetries, invariants and generating functions: higher-order statistics of biased tracers

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2018-01-01

    Gravitationally collapsed objects are known to be biased tracers of an underlying density contrast. Using symmetry arguments, generalised biasing schemes have recently been developed to relate the halo density contrast δh with the underlying density contrast δ, divergence of velocity θ and their higher-order derivatives. This is done by constructing invariants such as s, t, ψ,η. We show how the generating function formalism in Eulerian standard perturbation theory (SPT) can be used to show that many of the additional terms based on extended Galilean and Lifshitz symmetry actually do not make any contribution to the higher-order statistics of biased tracers. Other terms can also be drastically simplified allowing us to write the vertices associated with δh in terms of the vertices of δ and θ, the higher-order derivatives and the bias coefficients. We also compute the cumulant correlators (CCs) for two different tracer populations. These perturbative results are valid for tree-level contributions but at an arbitrary order. We also take into account the stochastic nature bias in our analysis. Extending previous results of a local polynomial model of bias, we express the one-point cumulants Script SN and their two-point counterparts, the CCs i.e. Script Cpq, of biased tracers in terms of that of their underlying density contrast counterparts. As a by-product of our calculation we also discuss the results using approximations based on Lagrangian perturbation theory (LPT).

  9. INTERNAL FILTERS: PROSPECTS FOR UV-ACCLIMATION IN HIGHER PLANTS

    EPA Science Inventory

    Wavelength-selective absorption of solar radiation within plant leaves allows penetration of visible radiation (400-700nm) to the chloroplasts, while removing much of the damaging ultraviolet-B (UV-B, 280-320 nm) radiation. Flavonoids are important in this wavelength-selective ab...

  10. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  11. Enhanced Cellular Internalization: A Bactericidal Mechanism More Relative to Biogenic Nanoparticles than Chemical Counterparts.

    PubMed

    Kumari, Madhuree; Shukla, Shatrunajay; Pandey, Shipra; Giri, Ved P; Bhatia, Anil; Tripathi, Tusha; Kakkar, Poonam; Nautiyal, Chandra S; Mishra, Aradhana

    2017-02-08

    Biogenic synthesis of silver nanoparticles for enhanced antimicrobial activity has gained a lot of momentum making it an urgent need to search for a suitable biocandidate which could be utilized for efficient capping and shaping of silver nanoparticles with enhanced bactericidal activity utilizing its secondary metabolites. Current work illustrates the enhancement of antimicrobial efficacy of silver nanoparticles by reducing and modifying their surface with antimicrobial metabolites of cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to citrate stabilized silver nanoparticles. Nanoparticles were characterized by visual observations, UV-visible spectroscopy, zetasizer, and transmission electron microscopy (TEM). Synthesized particles were monodispersed, spherical in shape and 10-20 nm in size. Presence of metabolites on surface of biosynthesized silver nanoparticles was observed by gas chromatography-mass spectroscopy (GC-MS), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial activity of both silver nanoparticles was tested against Shigella sonnei, Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) by growth inhibition curve analysis and colony formation unit assay. Further, it was noted that internalization of biosynthesized nanoparticles inside the bacterial cell was much higher as compared to citrate stabilized particles which in turn lead to higher production of reactive oxygen species. Increase in oxidative stress caused severe damage to bacterial membrane enhancing further uptake of particles and revoking other pathways for bacterial disintegration resulting in complete and rapid death of pathogens as evidenced by fluorescein diacetate/propidium iodide dual staining and TEM. Thus, study reveals that biologically synthesized silver nanoarchitecture coated with antimicrobial metabolites of T. viride was more potent than their

  12. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    PubMed Central

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  13. Flat-Spectrum Radio Sources as Likely Counterparts of Unidentified INTEGRAL Sources (Research Note)

    NASA Technical Reports Server (NTRS)

    Molina, M.; Landi, R.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bazzano, A.; Bird, A. J.; Gehrels, N.

    2012-01-01

    Many sources in the fourth INTEGRAL/IBIS catalogue are still unidentified since they lack an optical counterpart. An important tool that can help in identifying and classifying these sources is the cross-correlation with radio catalogues, which are very sensitive and positionally accurate. Moreover, the radio properties of a source, such as the spectrum or morphology, could provide further insight into its nature. In particular, flat-spectrum radio sources at high Galactic latitudes are likely to be AGN, possibly associated to a blazar or to the compact core of a radio galaxy. Here we present a small sample of 6 sources extracted from the fourth INTEGRAL/IBIS catalogue that are still unidentified or unclassified, but which are very likely associated with a bright, flat-spectrum radio object. To confirm the association and to study the source X-ray spectral parameters, we performed X-ray follow-up observations with Swift/XRT of all objects. We report in this note the overall results obtained from this search and discuss the nature of each individual INTEGRAL source. We find that 5 of the 6 radio associations are also detected in X-rays; furthermore, in 3 cases they are the only counterpart found. More specifically, IGR J06073-0024 is a flat-spectrum radio quasar at z = 1.08, IGR J14488-4008 is a newly discovered radio galaxy, while IGR J18129-0649 is an AGN of a still unknown type. The nature of two sources (IGR J07225-3810 and IGR J19386-4653) is less well defined, since in both cases we find another X-ray source in the INTEGRAL error circle; nevertheless, the flat-spectrum radio source, likely to be a radio loud AGN, remains a viable and, in fact, a more convincing association in both cases. Only for the last object (IGR J11544-7618) could we not find any convincing counterpart since the radio association is not an X-ray emitter, while the only X-ray source seen in the field is a G star and therefore unlikely to produce the persistent emission seen by INTEGRAL.

  14. Discrete rational and breather solution in the spatial discrete complex modified Korteweg-de Vries equation and continuous counterparts.

    PubMed

    Zhao, Hai-Qiong; Yu, Guo-Fu

    2017-04-01

    In this paper, a spatial discrete complex modified Korteweg-de Vries equation is investigated. The Lax pair, conservation laws, Darboux transformations, and breather and rational wave solutions to the semi-discrete system are presented. The distinguished feature of the model is that the discrete rational solution can possess new W-shape rational periodic-solitary waves that were not reported before. In addition, the first-order rogue waves reach peak amplitudes which are at least three times of the background amplitude, whereas their continuous counterparts are exactly three times the constant background. Finally, the integrability of the discrete system, including Lax pair, conservation laws, Darboux transformations, and explicit solutions, yields the counterparts of the continuous system in the continuum limit.

  15. Final Report for Regulation of Embryonic Development in Higher Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, John J.

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulatedmore » by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.« less

  16. CBL-CIPK network for calcium signaling in higher plants

    NASA Astrophysics Data System (ADS)

    Luan, Sheng

    Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.

  17. Candidate counterparts to the soft gamma-ray flare in the direction of LS I +61 303

    NASA Astrophysics Data System (ADS)

    Muñoz-Arjonilla, A. J.; Martí, J.; Combi, J. A.; Luque-Escamilla, P.; Sánchez-Sutil, J. R.; Zabalza, V.; Paredes, J. M.

    2009-04-01

    Context: A short duration burst reminiscent of a soft gamma-ray repeater/anomalous X-ray pulsar behaviour was detected in the direction of LS I +61 303 by the Swift satellite. While the association with this well known gamma-ray binary is likely, a different origin cannot be excluded. Aims: We explore the error box of this unexpected flaring event and establish the radio, near-infrared and X-ray sources in our search for any peculiar alternative counterpart. Methods: We carried out a combined analysis of archive Very Large Array radio data of LS I +61 303 sensitive to both compact and extended emission. We also reanalysed previous near infrared observations with the 3.5 m telescope of the Centro Astronómico Hispano Alemán and X-ray observations with the Chandra satellite. Results: Our deep radio maps of the LS I +61 303 environment represent a significant advancement on previous work and 16 compact radio sources in the LS I +61 303 vicinity are detected. For some detections, we also identify near infrared and X-ray counterparts. Extended emission features in the field are also detected and confirmed. The possible connection of some of these sources with the observed flaring event is considered. Based on these data, we are unable to claim a clear association between the Swift-BAT flare and any of the sources reported here. However, this study represents the most sophisticated attempt to determine possible alternative counterparts other than LS I +61 303.

  18. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.

    PubMed

    Shimazu, T; Yuda, T; Miyamoto, K; Yamashita, M; Ueda, J

    2001-01-01

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  19. Toxicity of combined chromium(VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants.

    PubMed

    Hu, Shuangqing; Gu, Hairong; Cui, Chunyan; Ji, Rong

    2016-08-01

    Studies of the interaction and toxicity of pollutant combinations such as heavy metals and PAHs are of practical importance in the remediation and monitoring of the industrial soil environment. This study investigated the single and combined toxicity of chromium(VI) and phenanthrene on three important higher plants: mung beans (Phaseolus aureus), pakchoi cabbage (Brassica chinensis), and rice (Oryza sativa). In experiments using artificial soil matrix, the EC10 and EC20 of the two pollutants, alone and in combination, were analyzed with respect to seed germination, stem length, and above-ground fresh weight of these higher plants. The additive index method was used to evaluate the combined biological toxicity of chromium(VI) and phenanthrene. The results showed that the EC20 of chromium(VI) on the stem lengths of mung beans, pakchoi cabbage, and rice was 289, 248, and 550 mg kg(-1), respectively. The corresponding EC20 values for the fresh weights of the three plants were 334, 307, and 551 mg kg(-1). The EC20 of phenanthrene on the stem lengths of mung beans, pakchoi cabbage, and rice was 528, 426, and 628 mg kg(-1), respectively. The corresponding EC20 values for the fresh weights of the three plants were 696, 585, and 768 mg kg(-1). The EC20 of a combination of chromium(VI) and phenanthrene on the stem lengths of mung beans, pakchoi cabbage, and rice was 192, 173, and 279 mg kg(-1), respectively, and 200, 205, and 271 mg kg(-1) for the fresh weights of the three plants. The single and combined exposure of soil to chromium(VI) and phenanthrene had deleterious effects on plants in the early stage of growth. Overall, pakchoi cabbage was more sensitive than mung beans and rice. The two pollutants exerted synergistic effects on the stem lengths and above-ground fresh weights of both mung beans and rice but antagonistic effects on pakchoi cabbage. The results of this study also suggested pakchoi cabbage as a sensitive indicator of soil pollution.

  20. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.

    1989-01-01

    This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  1. Health and functional status and utilization of health care services among holocaust survivors and their counterparts in Israel.

    PubMed

    Iecovich, Esther; Carmel, Sara

    2010-01-01

    To examine differences in health and functional status and in utilization of health services between holocaust survivors and their counterparts; and (b) to investigate if holocaust survivor status is a significant predictor of health status, functional status, and utilization of health services. The study included 1255 respondents of whom 272 were holocaust survivors. Interviews were conducted face-to-face at the respondents' homes. Participants were asked about their health (self-rated health and comorbidity) and functional (ADL and IADL) status, utilization of inpatient and outpatient health care services, age, gender, education, marital status, length of residence in Israel, and if they were holocaust survivors. Holocaust survivors, who were frailer and more chronically ill compared to their counterparts, visited their family physician and the nurse at the health care clinic more often than their counterparts did, and received more homecare services. Yet, there were no differences between them in the utilization of other health care services such as visits to specialists, emergency department, and hospitalizations. Holocaust survivors are more homebound due to more morbidity and functional limitations and therefore receive more health home care services that offset the utilization of other health services. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Higher Education Policy and Flexibility in University Studies--Student Experiences with Electronic Exams in Finland

    ERIC Educational Resources Information Center

    Saarivirta, Toni; Karppinen, Jenni

    2016-01-01

    Finnish university students graduate later than their counterparts in other countries. For several years, Finnish higher education policy, regulated by Finland's Ministry of Education and Culture, has aimed at fostering the graduation of students in a shorter time than at present. The study at hand provides insights into one of the reforms carried…

  3. Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt.

    PubMed

    Das, Krishnashis; Rajawat, Mahendra Vikram Singh; Saxena, Anil Kumar; Prasanna, Radha

    2017-03-01

    Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride - Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri /biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

  4. Comparison of the suitability of two lichen species and one higher plant for monitoring airborne heavy metals.

    PubMed

    Aprile, Giuseppa Grazia; Di Salvatore, Mina; Carratù, Giovanna; Mingo, Antonio; Carafa, Anna Maria

    2010-03-01

    We compared the capacity to accumulate airborne heavy metals of two lichens (Flavoparmelia caperata and Parmotrema chinense) and one higher plant (Nerium oleander) at a very densely populated urban site near Naples. After 15, 45, 75, and 120 days of exposure at four sites with different levels of air pollution, equal portions of thalli and 20 leaves were collected, and four environmentally significant elements, Fe, Cu, Zn, and Pb, were measured by inductively coupled plasma analysis. To compare the accumulation rates of lichens and the vascular plant, we determined an index of relative accumulation rate of pollutants during time and the ratio between the concentrations of each element in exposed samples to that of control samples (exposed-to-control ratio). Our data indicate F. caperata as being the most suitable bioaccumulator, followed by P. chinense. N. oleander was also found to be a useful heavy metal biomonitor though not suitable as a bioaccumulator.

  5. Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants.

    PubMed

    Rontani, Jean-François; Rabourdin, Adélaïde; Pinot, Franck; Kandel, Sylvie; Aubert, Claude

    2005-02-01

    9-Hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic acids deriving from type II (i.e. involving 1O2) photooxidation of 18-hydroxyoleic acid were detected after visible light-induced senescence experiments carried out with Petroselinum sativum and subsequent cutin depolymerisation. These results showed that in senescent plants, where the 1O2 formation rate exceeds the quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts and affect the unsaturated components of cutins. Significant amounts of 9,18-dihydroxyoctadec-10(trans)-enoic and 10,18-dihydroxyoctadec-8(trans)-enoic acids resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also detected in different natural samples. These results well support the significance of the photooxidation of the unsaturated components of higher plant cutins in the natural environment.

  6. GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817

    NASA Astrophysics Data System (ADS)

    Lamb, Gavin P.; Kobayashi, Shiho

    2018-05-01

    Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse- and forward-shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz-factor (Γ); a low-Γ and low-kinetic energy jet; a low-Γ, high kinetic energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis `typical' GRB jet. All jet models will produce observable afterglows on various timescales. The late-time afterglow from 10-110 days can be fit by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future GW detected NS merger counterparts with a jet afterglow origin.

  7. Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.

    2017-10-01

    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.

  8. Engineering sciences design. Design and implementation of components for a bioregenerative system for growing higher order plants in space

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1989-01-01

    The primary goal was to address specific needs in the design of an integrated system to grow higher plants in space. With the needs defined, the emphasis was placed on the design and fabrication of devices to meet these needs. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.

  9. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    1999-01-01

    A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.

  10. The host galaxy and Fermi -LAT counterpart of HESS J1943+213

    DOE PAGES

    Peter, D.; Domainko, W.; Sanchez, D. A.; ...

    2014-11-06

    The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV stat ± 0.6 sys) × 10 -15 cmmore » -2 s -1 MeV -1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. In conclusion, the infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The source is most likely located at a redshift between 0.03 and 0.45 according to extension and EBL attenuation arguments.« less

  11. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity.

    PubMed

    Sahoo, Ranjan Kumar; Ansari, Mohammad Wahid; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress. The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition. In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.

  12. The optical counterpart to the new accreting pulsar Swift J0243.6+6124 is a Be star

    NASA Astrophysics Data System (ADS)

    Kouroubatzakis, K.; Reig, P.; Andrews, J.; ), A. Zezas

    2017-10-01

    We report optical spectroscopic observations of the optical counterpart to the 9.87-s accreting neutron star transient Swift J0243.6+6124 (ATel#10809, ATel#10812) from the 1.3-m telescope of the Skinakas Observatory (Greece).

  13. Finding X-ray counterparts for unidentified sources in the 105 months BAT survey - 1

    NASA Astrophysics Data System (ADS)

    Stephen, J. B.; Bassani, L.; Malizia, A.; Masetti, N.; Ubertini, P.

    2018-02-01

    We provide X-ray counterparts for the unidentified Swift/BAT sources listed in the 105 month catalogue (Oh et al. 2018, ApJS in press). These associations were found by cross-correlating the list of U1,U2 and U3 sources with the ROSAT Bright (RASSBSC, Voges et al. 1999, A & A, 349, 389) and the XMM-Newton Slew (XMMSlew, Saxton et al. 2008, A & A, 480, 611) catalogues.

  14. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; Gu, Bao-Min; Wang, Yong-Qiang

    The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of themore » curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.« less

  15. [Safety assessment of foods derived from genetically modified plants].

    PubMed

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  16. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    PubMed Central

    Igamberdiev, Abir U.; Eprintsev, Alexander T.

    2016-01-01

    Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA) cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve), while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve). This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium. PMID:27471516

  17. The Educational Technology Centre: A Window to View the Progress of Chinese ICT-Based Higher Education

    ERIC Educational Resources Information Center

    Zhou, Rong; Xie, Baizhi

    2010-01-01

    In China, after many years, the current status and challenges of e-learning development in higher education have been gradually understood. The educational technology centre (ECT) serves as the key unit to promote e-learning initiatives, but the performance of some centres still trails their foreign counterparts. Under such conditions, the project…

  18. Requirements of blue, UV-A, and UV-B light for normal growth of higher plants, as assessed by action spectra for growth and related phenomena

    NASA Technical Reports Server (NTRS)

    Hashimoto, T.

    1994-01-01

    Artificial lighting is very important for experimental purposes, as well as for the practical use of plants when not enough sunlight is available. To grow green higher plants in their normal forms under artificial lighting constructing efficient and economically reasonable lighting systems is not an easy task. One possible approach would be to simulate sunlight in intensity and the radiation spectrum, but its high construction and running costs are not likely to allow its use in practice. Sunlight may be excessive in irradiance in some or all portions of the spectrum. Reducing irradiance and removing unnecessary wavebands might lead to an economically feasible light source. However, removing or reducing a particular waveband from sunlight for testing is not easy. Another approach might be to find the wavebands required for respective aspects of plant growth and to combine them in a proper ratio and intensity. The latter approach seems more practical and economical, and the aim of this Workshop lies in advancing this approach. I summarize our present knowledge on the waveband requirements of higher plants for the regions of blue, UV-A and UV-B.

  19. Requirements of blue, UV-A, and UV-B light for normal growth of higher plants, as assessed by actions spectra for growth and related phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, T.

    1994-12-31

    It is very important for experimental purposes, as well as for the practical use of plants when not enough sunlight is available. To grow green higher plants in their normal forms under artificial lighting constructing efficient and economically reasonable lighting systems is not an easy task. One possible approach would be to simulate sunlight in intensity and the radiation spectrum, but its high construction and running costs are not likely to allow its use in practice. Sunlight may be excessive in irradiance in some or all portions of the spectrum. Reducing irradiance and removing unnecessary wavebands might lead to anmore » economically feasible light source. However, removing or reducing a particular waveband from sunlight for testing is not easy. Another approach might be to find the wavebands required for respective aspects of plant growth and to combine them in a proper ratio and intensity. The latter approach seems more practical and economical, and the aim of this Workshop lies in advancing this approach. I summarize our present knowledge on the waveband requirements of higher plants for the regions of blue, UV-A and UV-B.« less

  20. Finding X-ray counterparts for unidentified sources in the 105 months BAT survey - 2

    NASA Astrophysics Data System (ADS)

    Stephen, J. B.; Bassani, L.; Malizia, A.; Masetti, N.; Ubertini, P.

    2018-02-01

    We provide X-ray counterparts for unidentified Swift/BAT sources in the 105 month catalogue (Oh et al. 2018, ApJS in press). They were found by cross-correlating the list of U1,U2 and U3 sources with the ROSAT Bright (RASSBSC, Voges et al. 1999, A & A, 349, 389) and XMM-Newton Slew (XMMSlew, Saxton et al. 2008, A & A, 480, 611) catalogues and optically identified as reported in Atel #11340.

  1. Emergency department patients self-report higher patient inertia, hopelessness, and harmful lifestyle choices than community counterparts.

    PubMed

    Joyner, JaNae; Moore, Ashley R; Mount, David L; Simmons, Debra R; Ferrario, Carlos M; Cline, David M

    2012-12-01

    Patient inertia is defined as an individual's failure to take responsibility for proactive lifestyle change and health conditions including hypertension. Generalized and hypertension-specific patient inertia factors were compared in 110 patients (48% women; 52% African American) from a Forsyth County, NC, emergency department (ED) and 104 community members (79% women; 70% African American) using the patient inertia-facilitated survey Patient Inertia-36. Statistically, more ED than community participants added salt to food at the table and consumed fast foods 5 to 7 days a week. ED patients agreed less often with health literacy questions about salt and BP. Hypertension associated Patient inertia questions asked of 45 ED and 40 community participants with a personal history of hypertension revealed a statistically higher sense of hopelessness surrounding blood pressure management in ED participants. Past BP control experiences of family members had statistically greater impact on community participants regarding their own BP control. Using a logistic regression model, advancing age and being surveyed in the ED were correlated with hopelessness towards BP control. ED patients make unhealthier diet choices and possess heightened generalized and hypertension-specific patient inertia including hopelessness towards controlling their BP that increases with age. These factors may contribute to this population's poor BP control, particularly self-efficacy barriers. © 2012 Wiley Periodicals, Inc.

  2. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    PubMed

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  3. Gas exchange at whole plant level shows that a less conservative water use is linked to a higher performance in three ecologically distinct pine species

    NASA Astrophysics Data System (ADS)

    Salazar-Tortosa, D.; Castro, J.; Rubio de Casas, R.; Viñegla, B.; Sánchez-Cañete, E. P.; Villar-Salvador, P.

    2018-04-01

    Increasing temperatures and decreasing precipitation in large areas of the planet as a consequence of global warming will affect plant growth and survival. However, the impact of climatic conditions will differ across species depending on their stomatal response to increasing aridity, as this will ultimately affect the balance between carbon assimilation and water loss. In this study, we monitored gas exchange, growth and survival in saplings of three widely distributed European pine species (Pinus halepensis, P. nigra and P. sylvestris) with contrasting distribution and ecological requirements in order to ascertain the relationship between stomatal control and plant performance. The experiment was conducted in a common garden environment resembling rainfall and temperature conditions that two of the three species are expected to encounter in the near future. In addition, gas exchange was monitored both at the leaf and at the whole-plant level using a transient-state closed chamber, which allowed us to model the response of the whole plant to increased air evaporative demand (AED). P. sylvestris was the species with lowest survival and performance. By contrast, P. halepensis showed no mortality, much higher growth (two orders of magnitude), carbon assimilation (ca. 14 fold higher) and stomatal conductance and water transpiration (ca. 4 fold higher) than the other two species. As a consequence, P. halepensis exhibited higher values of water-use efficiency than the rest of the species even at the highest values of AED. Overall, the results strongly support that the weaker stomatal control of P. halepensis, which is linked to lower stem water potential, enabled this species to maximize carbon uptake under drought stress and ultimately outperform the more water conservative P. nigra and P. sylvestris. These results suggest that under a hotter drought scenario P. nigra and P. sylvestris would very likely suffer increased mortality, whereas P. halepensis could maintain

  4. Vacuolar deposition of recombinant proteins in plant vegetative organs as a strategy to increase yields.

    PubMed

    Marin Viegas, Vanesa Soledad; Ocampo, Carolina Gabriela; Petruccelli, Silvana

    2017-05-04

    Delivery of recombinant proteins to vegetative tissue vacuoles was considered inconvenient since this compartment was expected to be hydrolytic; nevertheless there is growing evidence that certain foreign proteins accumulate at high yields in vacuoles. For example avidin, cellulolytic enzymes, endolysin, and transglutaminases were produced at high yields when were sorted to leaf central vacuole avoiding the detrimental effect of these proteins on plant growth. Also, several secretory mammalian proteins such as collagen, α1-proteinase inhibitor, complement-5a, interleukin-6 and immunoglobulins accumulated at higher yields in leaf vacuoles than in the apoplast or cytosol. To reach this final destination, fusions to sequence specific vacuolar sorting signals (ssVSS) typical of proteases or proteinase inhibitors and/or Ct-VSS representative of storage proteins or plant lectins were used and both types of motifs were capable to increase accumulation. Importantly, the type of VSSs or position, either the N or C-terminus, did not alter protein stability, levels or pos-translational modifications. Vacuolar sorted glycoproteins had different type of oligosaccharides indicating that foreign proteins reached the vacuole by 2 different pathways: direct transport from the ER, bypassing the Golgi (high mannose oligosaccharides decorated proteins) or trafficking through the Golgi (Complex oligosaccharide containing proteins). In addition, some glycoproteins lacked of paucimannosidic oligosaccharides suggesting that vacuolar trimming of glycans did not occur. Enhanced accumulation of foreign proteins fused to VSS occurred in several plant species such as tobacco, Nicotiana benthamiana, sugarcane, tomato and in carrot and the obtained results were influenced by plant physiological state. Ten different foreign proteins fused to vacuolar sorting accumulated at higher levels than their apoplastic or cytosolic counterparts. For proteins with cytotoxic effects vacuolar sorted forms

  5. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    PubMed

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  6. Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels

    PubMed Central

    Ferrer-Paris, José R.; Sánchez-Mercado, Ada; Viloria, Ángel L.; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448

  7. A differential diagnosis of inherited endocrine tumors and their tumor counterparts

    PubMed Central

    Toledo, Sergio P. A.; Lourenço, Delmar M.; Toledo, Rodrigo A.

    2013-01-01

    Inherited endocrine tumors have been increasingly recognized in clinical practice, although some difficulties still exist in differentiating these conditions from their sporadic endocrine tumor counterparts. Here, we list the 12 main topics that could add helpful information and clues for performing an early differential diagnosis to distinguish between these conditions. The early diagnosis of patients with inherited endocrine tumors may be performed either clinically or by mutation analysis in at-risk individuals. Early detection usually has a large impact in tumor management, allowing preventive clinical or surgical therapy in most cases. Advice for the clinical and surgical management of inherited endocrine tumors is also discussed. In addition, recent clinical and genetic advances for 17 different forms of inherited endocrine tumors are briefly reviewed. PMID:23917672

  8. Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants

    DOEpatents

    Somerville, C.R.; Nawrath, C.; Poirier, Y.

    1997-03-11

    The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.

  9. Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants

    DOEpatents

    Somerville, Christopher R.; Nawrath, Christiane; Poirier, Yves

    1997-03-11

    The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid.

  10. Genotoxicity Assessment of Volatile Organic Compounds in Landfill Gas Emission Using Comet Assay in Higher Terrestrial Plant.

    PubMed

    Na Roi-Et, Veerapas; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2017-02-01

    Genotoxicity model is developed to assess the individual subacute toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) at very low levels as in a landfill gas. Golden Pothos (Epipremnum aureum), a higher plant, was tested under variation of benzene 54-5656 ng/L, toluene 10-4362 ng/L, ethylbenzene 28-4997 ng/L, xylene 53-4845 ng/L, for 96 h. DNA fragmentation in plant leaves were investigated via comet assay. The results show that DNA migration ratio increased with the BTEX concentrations, but at different rates. The 50% effective concentration (EC 50 ) of DNA fragmentation from the dose-response relationships indicated toluene has the highest EC 50 value and followed by benzene, xylene and ethylbenzene. Alternatively, ethylbenzene has the highest toxicity unit and followed by xylene, benzene and toluene as described by toxicity unit (TU). In conclusion, comet assay of Pothos can be used in differentiating DNA fragmentation against very low levels of BTEX in the atmosphere. Pothos is recommended for genotoxicity assessment of a low BTEX contaminated atmosphere.

  11. A study of the far infrared counterparts of new candidates for planetary nebulae

    NASA Astrophysics Data System (ADS)

    Iyengar, K. V. K.

    1986-05-01

    The IRAS Point Source Catalog was searched for infrared counterparts of the fourteen new candidates for planetary nebulae of low surface brightness detected by Hartl and Tritton (1985). Five of these candidates were identified with sources in the Catalog. All five nebulae are found in regions of high cirrus flux at 100 microns, and all have both point sources and small size extended sources with numbers varying from field to field. The infrared emission from these nebulae is connected with dust temperatures of about 100 K, characteristic of planetary nebulae.

  12. Fermi/LAT search for counterpart to the IceCube event 67093193 (run 127853)

    NASA Astrophysics Data System (ADS)

    Vianello, G.; Magill, J. D.; Omodei, N.; Kocevski, D.; Ajello, M.; Buson, S.; Krauss, F.; Chiang, J.

    2016-04-01

    on behalf of the Fermi-LAT team: We have searched the Fermi Large Area Telescope data for a high-energy gamma-ray counterpart for the IceCube High Energy Starting Event (HESE) 67093193, detected in run 127853 on 2016-04-27 05:52:32.00 UT (AMON GCN notice rev. 2, http://gcn.gsfc.nasa.gov/notices_amon/67093193_127853.amon . See http://gcn.gsfc.nasa.gov/doc/Public_Doc_AMON_IceCube_GCN_Alerts_v2.pdf for a description of HESE events and related GCN notices).

  13. Do residents in a northern program have better quality lives than their counterparts in a city?

    PubMed Central

    Johnsen, J. H.

    2001-01-01

    OBJECTIVE: To determine whether McMaster University's family medicine residents training in the Family Medicine North (FMN) program have better quality lives than those based in Hamilton, Ont (urban). DESIGN: Residents at both sites were simultaneously given the Quality of Life Questionnaire, a standardized measurement tool. They were asked to complete the questionnaire anonymously and to provide demographic data. SETTING: Family practice residencies in Ontario. PARTICIPANTS: McMaster University's family medicine residents. Of 66 residents living in Hamilton, 36 completed the questionnaire; five respondents were ineligible. Of 25 residents living in Thunder Bay, Ont, 24 completed the questionnaire; none were ineligible. MAIN OUTCOME MEASURES: Total quality-of-life score. Score was divided into five major domains, each with several subdomains: general well-being (material, physical, and personal growth), interpersonal relations (marital, parent-child, extended family, and extramarital), organizational activity (altruistic and political behaviour), occupational activity (job characteristics, occupational relations, and job satisfiers), and leisure and recreational activity (creative/esthetic behaviour, sports activity, vacation behaviour). RESULTS: The FMN residents scored significantly higher than the Hamilton-based residents on overall quality of life (124.7 vs 112.5, P < .05) and tended to score higher in the five major domains. The trend reached statistical significance in general well-being and occupational activity; it was also apparent in various subdomains, with statistically significant differences in material well-being, marital relations, job characteristics, job satisfiers, and vacation behaviour. CONCLUSION: Family Medicine North residents enjoy better quality of life than their urban counterparts based on responses to a standardized questionnaire. PMID:11398733

  14. Hydrogen bonding in water clusters and their ionized counterparts.

    PubMed

    Neela, Y Indra; Mahadevi, A Subha; Sastry, G Narahari

    2010-12-30

    Ab initio and DFT computations were carried out on four distinct hydrogen-bonded arrangements of water clusters (H(2)O)(n), n = 2-20, represented as W1D, W2D, W2DH, and W3D. The variation in the strength of hydrogen bond as a function of the chain length is studied. In all the four cases, there is a substantial cooperative interaction, albeit in different degrees. The effect of basis set superposition error (BSSE) on the complexation energy of water clusters has been analyzed. Atoms in molecules (AIM) analysis performed to evaluate the nature of the hydrogen bonding shows a high correlation between hydrogen bond strength and the trends in complexation energy. Solvated water clusters exhibit lower complexation energies compared to corresponding gas-phase geometries on PCM (polarized continuum model) optimization. The feasibility of stripping an electron or addition of an electron increases dramatically as the cluster size increases. Although W3D caged structures are stable for neutral clusters, the helical W2DH arrangement appeared to be an optimal choice for its ionized counterparts.

  15. Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Bionta, R.M.

    GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less

  16. Spectroscopic observations of the optical counterpart of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Van Paradijs, J.; Verbunt, F.; Van Der Linden, T.; Pedersen, H.; Wamsteker, W.

    1980-01-01

    The optical spectrum of the transient X-ray burst source Centaurus X-4 was observed about 5 weeks after the source reached its maximum. The brightness of the optical counterpart had decreased to V = 18.2, and the star had become appreciably redder (B - V = 0.7) compared to its color at maximum. The spectrum of Centaurus X-4 is similar to that of cataclysmic variables showing strong emission lines of H-1 and weaker lines of He-1 and He-2. The N03 lambda 4640 line is not visible. The continuum energy distribution of Centaurus X-4 shows the presence of a main-sequence star in the system, with spectral type between K3 and K7. This is consistent with the orbital period of 8.2 hr proposed by Kaluzienski et al (1980), if the main-sequence star is close to filling its Roche lobe.

  17. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolcic, V.; Navarrete, F.; Bertoldi, F.

    2012-05-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F{sub 1m} > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, {approx}10''-30'', resolution. All three sources-AzTEC/C1, Cosbo-3, and Cosbo-8-are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution ({approx}2'') mm-observations to identify themore » correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z {approx}> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 {+-} 1.2, 1.9{sup +0.9}{sub -0.5}, and {approx}4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of {approx}> 1000 M{sub Sun} yr{sup -1}and IR luminosities of {approx}10{sup 13} L{sub Sun} consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z {approx} 2 and today's passive galaxies.« less

  18. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey

    NASA Astrophysics Data System (ADS)

    Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.

    2016-11-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (I) sub-relativistic merger ejecta and (II) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.

  19. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. AllWISE counterparts to ROSAT and XMMSlew surveys done using NWAY (An accurate algorithm to pair sources simultaneously between N catalogs)

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Buchner, j.; Budavari, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.

    2017-10-01

    At the end of the mission, the eROSITA All-sky X-ray survey will provide the community with about 4 million of point-like sources, down to a limit of 10^{-14} erg/cm^2/s in the soft band and 2x10^{-13} erg/cm^2/s in the hard band. The brightest sources however have been already observed by ROSAT, but have been rarely used due to the large uncertainties in their positions, thus making the identification of their right multi-wavelength counterparts a demanding task with uncertain results. New all-sky Optical and IR surveys like GAIA and WISE allow us, for the first time, to provide reliable counterparts to all ROSAT sources, thanks also to the development of a new algorithm, NWAY, based on Bayesian statistic and adoption of color-magnitude priors. This paves the way to new programs of complete characterization of the bright X-ray sky, such as the SDSS-IV/SPIDERS survey started in 2014. In this talk I will briefly present the code and the multiwavelength properties of ROSAT and XMMSLEW counterparts.

  1. Impact of drought on plant populations of native and invasive origins.

    PubMed

    Kleine, Sandra; Weissinger, Lisa; Müller, Caroline

    2017-01-01

    Invasive populations often shift phenotypically during introduction. Moreover, they are postulated to show an increased phenotypic plasticity compared with their native counterparts, which could be advantageous. However, less is known about trait selection across populations along the invasion gradient in response to environmental factors, such as increasing drought caused by climate change. In this study, we investigated the impacts of drought on growth, regrowth, and various leaf traits in plants of different origin. Therefore, seeds of 18 populations of the perennial Tanacetum vulgare were collected along the invasion gradient (North America, invasive; West Europe, archaeophyte; East Europe, native) and grown in competition with the grass Poa pratensis under control or dry conditions in a common garden. Above-ground biomass was cut once and the regrowth was measured as an indicator for tolerance over a second growth period. Initially, drought had little effects on growth of T. vulgare, but after cutting, plants grew more vigorously. Against expectations, phenotypic plasticity was not higher in invasive populations, but even reduced in one trait, which may be attributable to ecological constraints imposed by multiple stress conditions. Trait responses reflected the range expansion and invasion gradient and were influenced by the latitudinal origin of populations. Populations of invaded ranges may be subject to faster and more extensive genetic mixing or had less time to undergo and reflect selective processes.

  2. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.

    PubMed

    Blum, V; Andriske, M; Eichhorn, H; Kreuzberg, K; Schreibman, M P

    1995-10-01

    Based on the construction principle of the already operative Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) the concept of an aquaculture system for combined production of animal and plant biomass was developed. It consists of a tank for intensive fish culture which is equipped with a feeding lock representing also a trap for biomass removal followed by a water recycling system. This is an optimized version of the original C.E.B.A.S. filters adapted to higher water pollutions. It operates in a fully biological mode and is able to convert the high ammonia ion concentrations excreted by the fish gills into nitrite ions. The second biomass production site is a higher plant cultivator with an internal fiber optics light distributor which may utilize of solar energy. The selected water plant is a tropical rootless duckweed of the genus Wolffia which possesses a high capacity in nitrate elimination and is terrestrially cultured as a vegetable for human nutrition in Southeast Asia. It is produced in an improved suspension culture which allows the removal of excess biomass by tangential centrifugation. The plant cultivator is able to supply the whole system with oxygen for respiration and eliminates vice versa the carbon dioxide exhaled by the fish via photosynthesis. A gas exchanger may be used for emergency purposes or to deliver excess oxygen into the environment and may be implemented into the air regeneration system of a closed environment of higher order. The plant biomass is fed into a biomass processor which delivers condensed fresh and dried biomass as pellets. The recovered water is fed back into the aquaculture loop. The fresh plants can be used for human nutrition immediately or can be stored after sterilization in an adequate packing. The dried Wolffia pellets are collected and brought into the fish tank by an automated feeder. In parallel the water from the plant cultivator is driven back to the animal tank by a pump. The special feature of the

  3. Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants

    PubMed Central

    Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław

    2016-01-01

    Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. PMID:27273581

  4. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    PubMed

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  5. Plants and men in space - A new field in plant physiology

    NASA Technical Reports Server (NTRS)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  6. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts.

    PubMed

    Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A

    2013-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    PubMed

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  8. A search for optical counterparts of gamma-ray bursts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hye-Sook

    Gamma Ray Bursts (GRBS) are mysterious flashes of gamma rays lasting several tens to hundreds of seconds that occur approximately once per day. NASA launched the orbiting Compton Gamma Ray Observatory to study GRBs and other gamma ray phenomena. CGRO carries the Burst and Transient Experiment (BATSE) specifically to study GRBS. Although BATSE has collected data on over 600 GRBS, and confirmed that GRBs are localized, high intensity point sources of MeV gamma rays distributed isotropically in the sky, the nature and origin of GRBs remains a fundamental problem in astrophysics. BATSE`s 8 gamma ray sensors located on the comersmore » of the box shaped CGRO can detect the onset of GRBs and record their intensity and energy spectra as a function of time. The position of the burst on the sky can be determined to < {plus_minus}10{degrees} from the BATSE data stream. This position resolution is not sufficient to point a large, optical telescope at the exact position of a GRB which would determine its origin by associating it with a star. Because of their brief duration it is not known if GRBs are accompanied by visible radiation. Their seemingly large energy output suggests thatthis should be. Simply scaling the ratio of visible to gamma ray intensities of the Crab Nebula to the GRB output suggests that GRBs ought to be accompanied by visible flashes of magnitude 10 or so. A few photographs of areas containing a burst location that were coincidentally taken during the burst yield lower limits on visible output of magnitude 4. The detection of visible light during the GRB would provide information on burst physics, provide improved pointing coordinates for precise examination of the field by large telescope and provide the justification for larger dedicated optical counterpart instruments. The purpose of this experiment is to detect or set lower limits on optical counterpart radiation simultaneously accompanying the gamma rays from« less

  9. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  10. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, W.; Berger, E.; Blanchard, P. K.

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  11. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE PAGES

    Fong, W.; Berger, E.; Blanchard, P. K.; ...

    2017-10-16

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  12. X-ray counterpart candidates for six new γ-ray pulsars

    NASA Astrophysics Data System (ADS)

    Zyuzin, Dmitry A.; Karpova, Anna V.; Shibanov, Yuriy A.

    2018-05-01

    Using archival X-ray data, we have found point-like X-ray counterpart candidates positionally coincident with six γ-ray pulsars discovered recently in the Fermi Gamma-ray Space Telescope data by the Einstein@Home project. The candidates for PSRs J0002+6216, J0554+3107, J1844-0346, and J1105-6037 are detected with Swift, and those for PSRs J0359+5414 and J2017+3625 are detected with Chandra. Despite a low count statistics for some candidates, assuming plausible constraints on the absorbing column density towards the pulsars, we show that X-ray spectral properties for all of them are consistent with those observed for other pulsars. J0359+5414 is the most reliably identified object. We detect a nebula around it, whose spectrum and extent suggest that this is a pulsar wind nebula powered by the pulsar. Associations of J0002+6216 and J1844-0346 with supernova remnants CTB 1 and G28.6-0.1 are proposed.

  13. Specific Activation of the Plant P-type Plasma Membrane H+-ATPase by Lysophospholipids Depends on the Autoinhibitory N- and C-terminal Domains.

    PubMed

    Wielandt, Alex Green; Pedersen, Jesper Torbøl; Falhof, Janus; Kemmer, Gerdi Christine; Lund, Anette; Ekberg, Kira; Fuglsang, Anja Thoe; Pomorski, Thomas Günther; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-06-26

    Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed.

    PubMed

    Mehdi, Hossein; Dickson, Fiona H; Bragg, Leslie M; Servos, Mark R; Craig, Paul M

    2017-11-22

    The objective of this study was to assess the effects of municipal wastewater treatment plant effluent on the energetics and stress response of rainbow darter (Etheostoma caeruleum). Male and female rainbow darter were collected upstream and downstream of the Waterloo WWTP in the Grand River watershed, ON, Canada. To assess the effects of wastewater treatment plant effluent on whole-body and tissue specific metabolic capacity, closed-chamber respirometry and muscle-enzyme activity analyses were performed. Plasma cortisol was also collected from fish before and after an acute air-exposure stressor to evaluate the cortisol stress response in fish exposed to additional stressors. Male and female rainbow darter collected downstream of the effluent had higher oxygen consumption rates, while differences in enzyme activities were primarily associated with sex rather than collection site. No impairment in the cortisol stress response between downstream and upstream fish was observed, however baseline cortisol levels in female fish from the downstream site were significantly higher compared to other baseline groups. Stress-induced cortisol levels were also higher in female fish from both sites when compared to their male counterparts. Overall, this study demonstrates that chronic exposure to WWTP effluent impacts whole-body metabolic performance. This study was also able to demonstrate that sex-differences are a key determinant of various metabolic changes in response to physiological stress, thereby, providing a novel avenue to be considered and further explored. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Identification of the alternative terminal oxidase of higher plant mitochondria

    PubMed Central

    Elthon, Thomas E.; McIntosh, Lee

    1987-01-01

    In addition to cytochrome oxidase, plant mitochondria have a second terminal oxidase called the alternative oxidase. The alternative oxidase is of great interest in that energy is not conserved when electrons flow through it. The potential energy of the system is thus lost as heat, and, in plants with high levels of the alternative oxidase, this results in thermogenesis. We have purified the alternative oxidase from mitochondria of the thermogenic spadix of Sauromatum guttatum and have identified its polypeptide constituents by using polyclonal antibodies. A 166-fold purification was achieved through a combination of cation-exchange (carboxymethyl-Sepharose) and hydrophobic-interaction (phenyl-Sepharose) chromatography. Polyclonal antibodies raised to the CM-Sepharose fractions readily immunoprecipitated alternative oxidase activity and immunoprecipitated four of the proteins that copurify with the activity. These proteins have apparent molecular masses of 37, 36, 35.5, and 35 kDa. Polyclonal antibodies raised individually to the 37-, 36-, and 35.5- plus 35-kDa proteins cross-reacted with all of these proteins, indicating the presence of common antigenic sites. The 37-kDa protein appears to be constitutive in Sauromatum, whereas expression of the 36- and 35-kDa proteins was correlated with presence of alternative pathway activity. The 35.5-kDa protein appears with loss of alternative pathway activity during senescence, indicating that this protein may be a degradation product of the 36-kDa protein. Binding of anti-36-kDa protein antibodies to total mitochondrial protein blots of five plant species indicated that similar proteins were always present when alternative pathway activity was observed. Images PMID:16593898

  16. Increased Helicoverpa zea (Boddie) larval feeding on cotton plants with RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis

    USDA-ARS?s Scientific Manuscript database

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  17. UV-A radiation effects on higher plants: Exploring the known unknown.

    PubMed

    Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne

    2017-02-01

    Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Market Forces in Higher Education--Chinese and British Experience between Mid-1980s and Mid-1990s

    ERIC Educational Resources Information Center

    Zhao, Xiaonan

    2010-01-01

    This paper tries to examine how higher education in China and Britain has been affected by market forces between the mid-1980s and the mid-1990s, from three major issues. Comparing the experiences of both places, the paper argues that unlike the case of British counterpart, where marketisation of education has shifted to a corporate management…

  19. The Open University of the Netherlands: "Serving the Adult Learner" by Distance Education and "Innovating Higher Education."

    ERIC Educational Resources Information Center

    van Enckevort, G.; Leibbrandt, G. J.

    The Dutch Open University accepted its first students in September 1984 after a two-year preparation period. Like its British counterpart, the Dutch Open University offers free access and has no requirements as far as previous education is concerned. Its principal aims are to (1) provide higher education for adults either as a second chance (for…

  20. A challenge to identify an optical counterpart of the gravitational wave event GW151226 with Hyper Suprime-Cam†

    NASA Astrophysics Data System (ADS)

    Utsumi, Yousuke; Tominaga, Nozomu; Tanaka, Masaomi; Morokuma, Tomoki; Yoshida, Michitoshi; Asakura, Yuichiro; Finet, François; Furusawa, Hisanori; Kawabata, Koji S.; Liu, Wei; Matsubayashi, Kazuya; Moritani, Yuki; Motohara, Kentaro; Nakata, Fumiaki; Ohta, Kouji; Terai, Tsuyoshi; Uemura, Makoto; Yasuda, Naoki

    2018-01-01

    We present the results of detailed analysis of an optical imaging survey conducted using the Subaru/Hyper Suprime-Cam (HSC) that aimed to identify an optical counterpart to the gravitational wave event GW151226. In half a night, the i- and z-band imaging survey by HSC covered 63.5 deg2 of the error region, which contains about 7% of the LIGO localization probability, and the same field was observed in three different epochs. The detectable magnitude of the candidates in a differenced image is evaluated as i ˜ 23.2 mag for the requirement of at least two 5 σ detections, and 1744 candidates are discovered. Assuming a kilonova as an optical counterpart, we compare the optical properties of the candidates with model predictions. A red and rapidly declining light curve condition enables the discrimination of a kilonova from other transients, and a small number of candidates satisfy this condition. The presence of stellar-like counterparts in the reference frame suggests that the surviving candidates are likely to be flare stars. The fact that most of those candidates are in the galactic plane, |b| < 5°, supports this interpretation. We also check whether the candidates are associated with the nearby GLADE galaxies, which reduces the number of contaminants even with a looser color cut. When a better probability map (with localization accuracy of ˜50 deg2) is available, kilonova searches of up to approximately 200 Mpc will become feasible by conducting immediate follow-up observations with an interval of 3-6 d.

  1. Plant polyadenylation factors: conservation and variety in the polyadenylation complex in plants.

    PubMed

    Hunt, Arthur G; Xing, Denghui; Li, Qingshun Q

    2012-11-20

    Polyadenylation, an essential step in eukaryotic gene expression, requires both cis-elements and a plethora of trans-acting polyadenylation factors. The polyadenylation factors are largely conserved across mammals and fungi. The conservation seems also extended to plants based on the analyses of Arabidopsis polyadenylation factors. To extend this observation, we systemically identified the orthologs of yeast and human polyadenylation factors from 10 plant species chosen based on both the availability of their genome sequences and their positions in the evolutionary tree, which render them representatives of different plant lineages. The evolutionary trajectories revealed several interesting features of plant polyadenylation factors. First, the number of genes encoding plant polyadenylation factors was clearly increased from "lower" to "higher" plants. Second, the gene expansion in higher plants was biased to some polyadenylation factors, particularly those involved in RNA binding. Finally, while there are clear commonalities, the differences in the polyadenylation apparatus were obvious across different species, suggesting an ongoing process of evolutionary change. These features lead to a model in which the plant polyadenylation complex consists of a conserved core, which is rather rigid in terms of evolutionary conservation, and a panoply of peripheral subunits, which are less conserved and associated with the core in various combinations, forming a collection of somewhat distinct complex assemblies. The multiple forms of plant polyadenylation complex, together with the diversified polyA signals may explain the intensive alternative polyadenylation (APA) and its regulatory role in biological functions of higher plants.

  2. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  3. Can Stress-Induced Biochemical Differences drive Variation in the Hydrogen Isotope Composition of Leaf Wax n-Alkanes from Terrestrial Higher Plants?

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Pedentchouk, N.; Dawson, L.

    2014-12-01

    Recent research has identified that interspecies variation in leaf wax n-alkane 2H/1H from plants growing at the same geographical location can exceed 100‰. These differences cannot easily be explained by mechanisms that influence the isotopic composition of leaf water. Biochemical processes are therefore likely to drive some of this variability. Currently, however, little is known about the relative importance of different biochemical processes in shaping n-alkane hydrogen isotope composition. To explore this issue, we combined n-alkane δ2H analysis with measurements of: (i) the percentage content of leaf C and N; and (ii) foliar δ15N, from seven plants growing at Stiffkey salt marsh, Norfolk, UK. These species differ biochemically in respect of the protective compounds they produce under salt or water stressed conditions, with monocots generally producing more carbohydrates, and dicots producing more nitrogenous compounds. We found that monocots had higher %C, while dicots had higher %N and 15N-enriched leaf tissue. We identified a systematic relationship between the nature of the dominant protective compound produced (carbohydrate vs. nitrogenous) and n-alkane 2H/1H: species with a greater proportion of carbohydrates have more negative δ2H values. These findings might imply that shifts in the relative contribution of H to pyruvate from NADPH (2H-depleted) and recycled carbohydrates (2H-enriched) can influence n-alkane δ2H. The 2H-depletion of monocot n-alkanes relative to dicots may therefore be due to a greater proportion of NADPH-derived H incorporated into pyruvate because of their enhanced demand for carbohydrates. The production of protective compounds in plant species is a common response to a range of abiotic stresses (e.g. high UV irradiation, drought, salinity, high/low temperature). Species-specific biochemical responses to stress could therefore influence n-alkane 2H/1H across a range of habitats. This study highlights the importance of detailed

  4. A CANDIDATE OPTICAL COUNTERPART TO THE MIDDLE AGED γ -RAY PULSAR PSR J1741–2054

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignani, R. P.; Marelli, M.; Luca, A. De

    We carried out deep optical observations of the middle aged γ -ray pulsar PSR J1741−2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes m {sub v} = 23.10 ± 0.05 and m {sub v} = 25.32 ± 0.08, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741−2054. The nebula is displaced by ∼0.″9 (at the 3 σ confidence level) with respect to its position measured in archival data,more » showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra , down to a surface brightness limit of ∼28.1 mag arcsec{sup −2}. Future observations are needed to confirm the optical identification of PSR J1741−2054 and characterize the spectrum of its counterpart.« less

  5. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim

    PubMed Central

    Rose, Annkatrin; Meier, Iris

    2001-01-01

    Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475

  6. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

    PubMed Central

    Rothstein, Steven J.

    2014-01-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions. PMID:24420570

  7. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    PubMed

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  8. LMC stellar X-ray sources observed with ROSAT. 1: X-ray data and search for optical counterparts

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Cowley, A. P.; Frattare, L. M.; Mcgrath, T. K.

    1994-01-01

    Observations of Einstein Large Magellanic Cloud (LMC) X-ray point sources have been made with ROSAT's High-Resolution Imager to obtain accurate positions from which to search for optical counterparts. This paper is the first in a series reporting results of the ROSAT observations and subsequent optical observations. It includes the X-ray positions and fluxes, information about variability, optical finding charts for each source, a list of identified counterparts, and information about candidates which have been observed spectroscopically in each of the fields. Sixteen point sources were measured at a greater than 3 sigma level, while 15 other sources were either extended or less significant detections. About 50% of the sources are serendipitous detections (not found in previous surveys). More than half of the X-ray sources are variable. Sixteen of the sources have been optically identified or confirmed: six with foreground cool stars, four with Seyfert galaxies, two with signal-to-noise ratio (SNR) in the LMC, and four with peculiar hot LMC stars. Presumably the latter are all binaries, although only one (CAL 83) has been previously studied in detail.

  9. Increased Helicoverpa zea (Boddie) larval feeding on a RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis in cotton plants

    USDA-ARS?s Scientific Manuscript database

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  10. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    PubMed

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  11. Characterization of a Chlamydomonas Transposon, Gulliver, Resembling Those in Higher Plants

    PubMed Central

    Ferris, P. J.

    1989-01-01

    While pursuing a chromosomal walk through the mt(+) locus of linkage group VI of Chlamydomonas reinhardtii, I encountered a 12-kb sequence that was found to be present in approximately 12 copies in the nuclear genome. Comparison of various C. reinhardtii laboratory strains provided evidence that the sequence was mobile and therefore a transposon. One of two separate natural isolates interfertile with C. reinhardtii, C. smithii (CC-1373), contained the transposon, but at completely different locations in its nuclear genome than C. reinhardtii; and a second, CC-1952 (S1-C5), lacked the transposon altogether. Genetic analysis indicated that the transposon was found at dispersed sites throughout the genome, but had a conserved structure at each location. Sequence homology between the termini was limited to an imperfect 15-bp inverted repeat. An 8-bp target site duplication was created by insertion; transposon sequences were completely removed upon excision leaving behind both copies of the target site duplication, with minor base changes. The transposon contained an internal region of unique repetitive sequence responsible for restriction fragment length heterogeneity among the various copies of the transposon. In several cases it was possible to identify which of the dozen transposons in a given strain served as the donor when a transposition event occurred. The transposon often moved into a site genetically linked to the donor, and transposition appeared to be nonreplicative. Thus the mechanism of transposition and excision of the transposon, which I have named Gulliver, resembles that of certain higher plant transposons, like the Ac transposon of maize. PMID:2570007

  12. Student Decision-Making about a Globally Familiar Socioscientific Issue: The value of sharing and comparing views with international counterparts

    NASA Astrophysics Data System (ADS)

    Grace, Marcus; Chung Lee, Yeung; Asshoff, Roman; Wallin, Anita

    2015-07-01

    This paper focuses on the views of 16-17-year-old science students from England, Germany, Hong Kong and Sweden on whale hunting, and their perceptions of the views of their international counterparts. The students were all provided with the same decision-making task, discussed the issue in small groups and then presented their views on video, which were shared with their counterparts. The findings show that the decision-making task served to deepen and modify students' views across all nationalities, and the students generally valued and learned from the sharing of views with students of the same age from around the world. However, an important discovery was that the German students' opinions often ran counter to those from the other 3 locations, and the paper cautions against making broad-sweeping generalisations about students' views on socioscientific issues.

  13. The clinical consequences of an industrial aerosol plant explosion.

    PubMed

    Hull, D; Grindlinger, G A; Hirsch, E F; Petrone, S; Burke, J

    1985-04-01

    The factors relating to the clinical outcome of an industrial aerosol plant explosion are reviewed. Eighteen of 24 workers inside the plant required hospitalization and five died. Proximity to the blast was associated with extensive injuries unless workers were shielded by physical barriers or partitions. Burn severity and mortality were increased in those wearing synthetic garments compared to their counterparts wearing fiber clothing. Facial burns occurred in all unprotected workers. Forearm and hand burns in 11 patients required decompressive escharotomies. Topical treatment with silver sulfadiazine was associated with more significant leukopenia and neutropenia than treatment with silver nitrate. We conclude that industrial design should include safeguards which isolate workers from flammable materials, including isolation of explosive materials from working areas, alarm systems to detect leakage of flammable agents, protective barriers and shields, and the regulation and institution of flame and flash-resistant clothing.

  14. 325 and 610 MHz radio counterparts of SNR G353.6-0.7 also known as HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Nayana, A. J.; Chandra, Poonam; Roy, Subhashis; Green, David A.; Acero, Fabio; Lemoine-Goumard, Marianne; Marcowith, Alexandre; Ray, Alak K.; Renaud, Matthieu

    2017-05-01

    HESS J1731-347 also known as SNR G353.6-0.7 is one of the five known shell-type supernova remnants (SNRs) emitting in the very high energy (VHE, energy > 0.1 TeV) γ-ray domain. We observed this TeV SNR with the Giant Metrewave Radio Telescope (GMRT) in 1390, 610 and 325 MHz bands. In this paper, we report the discovery of 325 and 610 MHz radio counterparts of the SNR HESS J1731-347 with the GMRT. Various filaments of the SNR are clearly seen in the 325 and 610 MHz bands. However, the faintest feature in the radio bands corresponds to the peak in VHE emission. We explain this anti-correlation in terms of a possible leptonic origin of the observed VHE γ-ray emission. We determine the spectral indices of the bright individual filaments, which were detected in both the 610 and the 325 MHz bands. Our values range from -1.11 to -0.15, consistent with the non-thermal radio emission. We also report a possible radio counterpart of a nearby TeV source HESS J1729-345 from the 843 MHz Molonglo Galactic Plane Survey and the 1.4 GHz Southern Galactic Plane Survey maps. The positive radio spectral index of this possible counterpart suggests a thermal origin of the radio emission of this nearby TeV source.

  15. South Asian women with polycystic ovary syndrome exhibit greater sensitivity to gonadotropin stimulation with reduced fertilization and ongoing pregnancy rates than their Caucasian counterparts.

    PubMed

    Palep-Singh, M; Picton, H M; Vrotsou, K; Maruthini, D; Balen, A H

    2007-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous syndrome. In vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) is required for PCOS cases that are refractory to standard ovulation induction or have co-existing infertility factors in women with PCOS and Tubal factor subfertility. Assess ethnic variations in response to IVF/ICSI treatment. Observational Comparative study in a University hospital fertility clinic in women with PCOS and Tubal factor subfertility. Women with PCOS (Asians: AP=104; Caucasians: CP=220) and those with tubal factor infertility seeking fertility treatment were assessed (Asians: AC=84; Caucasians: CC=200). Six hundred and eight fresh IVF or ICSI cycles using long protocol of GnRHa suppression and resulting in a fresh embryo transfer were compared. The primary endpoint was to assess the dose of gonadotropins used in the cycles. The secondary outcomes were: total number of oocytes retrieved, fertilization and ongoing clinical pregnancy rates. We found that the South Asian women presented at a younger age for the management of sub-fertility. An extended stimulation phase and Caucasian ethnicity showed an inverse correlation with the number of oocytes retrieved in the PCOS subgroup. Caucasian ethnicity was associated with a higher fertilization rate however increase in body mass index (BMI) and the laboratory technique of IVF appeared to have a negative impact on fertilization rates in the PCOS subgroup. Commencing down regulation on day 1 of the cycles was negatively associated with fertilization rates in the tubal group. In terms of clinical pregnancy rates, the Caucasian PCOS had a 2.5 times (95% CI: 1.25-5) higher chance of an ongoing clinical pregnancy as compared with their Asian counterpart. Also, a unit increase in the basal FSH concentration reduced the odds of pregnancy by 18.6% (95% CI: 1.8-32.6%) in the PCOS group. The Asian PCOS have a greater sensitivity to gonadotropin stimulation with lower fertilization and

  16. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  17. Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring cry1AcF and cry2Aa Genes and Their Nontransgenic Counterparts.

    PubMed

    Mishra, Pragya; Singh, Shweta; Rathinam, Maniraj; Nandiganti, Muralimohan; Ram Kumar, Nikhil; Thangaraj, Arulprakash; Thimmegowda, Vinutha; Krishnan, Veda; Mishra, Vagish; Jain, Neha; Rai, Vandna; Pattanayak, Debasis; Sreevathsa, Rohini

    2017-02-22

    Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.

  18. [The chiral mutagens: cytogenetic effects on higher plants].

    PubMed

    Morgun, V V; Larchenko, E A; Kostianovskiĭ, R G; Keterinchuk, A M

    2011-01-01

    The paper covers investigation of cytogenetic activity of chiral mutagens and their specific effects on the plant cells chromosomes of soft winter wheat (Triticum aestivum L.). Comparative analysis of cytogenetic activity of chiral NEU: S(+)1-N-nitroso- 1-N-methyl-3-N-sec-buthylureas (S(+)NMsBU) and R(-)1-N-nitroso- 1N-methyl-3-Nsec-buthylureas (R(-)NMsBU) on winter wheat was performed. As it was shown by the frequency of chromosomal aberrations the S(+) stereoisomer was twice more active than R(-). In addition to typical anaphase aberrations (fragments, bridges, lagging chromosomes) the numerous mitosis pathologies were revealed - K-mitoses, hyperspiralization and despiralization of chromosomes, unequal allocation of chromosomes between the daughter nuclei, mass fragmentation, nondisjunction and chromosome adhesion, three-pole mitoses, etc. Neither of the mentioned pathologies was observed under the action of NEU and gamma-rays.

  19. The radio and optical counterpart of the new Fermi LAT flaring source J0109+6134

    NASA Astrophysics Data System (ADS)

    Paredes, J. M.; Martí, J.; Peracaula, M.

    2010-02-01

    Following the recent ATELs #2414, #2416 and #2420 concerning the Fermi-LAT, AGILE and Swift/XRT consistent detections of the new gamma-ray flaring source J0109+6134, we wish to remind that the proposed radio counterpart (VCS2 J0109+6133/GT 0106+613) was extensively observed nearly two decades ago by different authors in the context of the GT catalogue of Galactic Plane radio sources (Taylor and Gregory 1983, AJ, 88, 1784; Gregory and Taylor 1986, AJ 92, 371).

  20. Two visual observations of relevance to the search for optical counterparts of gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Warner, B.

    1986-05-01

    The authors draw attention to a visual observation of a brief flash from ζ Lyrae, observed by Heis in 1850, which resembles the optical burst detected electronically by Wdowiak and Clifton (1985) from β Cam in 1969. Visual observation by the author of a second magnitude flash of very short duration is shown to originate from planar reflection from a very distant satellite. Such flashes will contribute to the "noise" in all-sky searches for optical counterparts of γ-ray bursters.

  1. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  2. BurstCube: A CubeSat for Gravitational Wave Counterparts

    NASA Astrophysics Data System (ADS)

    Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila

    2018-01-01

    We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.

  3. Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes

    NASA Astrophysics Data System (ADS)

    Andreoni, I.; Ackley, K.; Cooke, J.; Acharyya, A.; Allison, J. R.; Anderson, G. E.; Ashley, M. C. B.; Baade, D.; Bailes, M.; Bannister, K.; Beardsley, A.; Bessell, M. S.; Bian, F.; Bland, P. A.; Boer, M.; Booler, T.; Brandeker, A.; Brown, I. S.; Buckley, D. A. H.; Chang, S.-W.; Coward, D. M.; Crawford, S.; Crisp, H.; Crosse, B.; Cucchiara, A.; Cupák, M.; de Gois, J. S.; Deller, A.; Devillepoix, H. A. R.; Dobie, D.; Elmer, E.; Emrich, D.; Farah, W.; Farrell, T. J.; Franzen, T.; Gaensler, B. M.; Galloway, D. K.; Gendre, B.; Giblin, T.; Goobar, A.; Green, J.; Hancock, P. J.; Hartig, B. A. D.; Howell, E. J.; Horsley, L.; Hotan, A.; Howie, R. M.; Hu, L.; Hu, Y.; James, C. W.; Johnston, S.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasliwal, M.; Keane, E. F.; Kenney, D.; Klotz, A.; Lau, R.; Laugier, R.; Lenc, E.; Li, X.; Liang, E.; Lidman, C.; Luvaul, L. C.; Lynch, C.; Ma, B.; Macpherson, D.; Mao, J.; McClelland, D. E.; McCully, C.; Möller, A.; Morales, M. F.; Morris, D.; Murphy, T.; Noysena, K.; Onken, C. A.; Orange, N. B.; Osłowski, S.; Pallot, D.; Paxman, J.; Potter, S. B.; Pritchard, T.; Raja, W.; Ridden-Harper, R.; Romero-Colmenero, E.; Sadler, E. M.; Sansom, E. K.; Scalzo, R. A.; Schmidt, B. P.; Scott, S. M.; Seghouani, N.; Shang, Z.; Shannon, R. M.; Shao, L.; Shara, M. M.; Sharp, R.; Sokolowski, M.; Sollerman, J.; Staff, J.; Steele, K.; Sun, T.; Suntzeff, N. B.; Tao, C.; Tingay, S.; Towner, M. C.; Thierry, P.; Trott, C.; Tucker, B. E.; Väisänen, P.; Krishnan, V. Venkatraman; Walker, M.; Wang, L.; Wang, X.; Wayth, R.; Whiting, M.; Williams, A.; Williams, T.; Wolf, C.; Wu, C.; Wu, X.; Yang, J.; Yuan, X.; Zhang, H.; Zhou, J.; Zovaro, H.

    2017-12-01

    The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement ( 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.

  4. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation.

    PubMed

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications.

  5. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit.

    PubMed

    Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki

    2013-07-01

    We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.

  6. Effect of Designated Pollutants on Plants

    DTIC Science & Technology

    1977-11-01

    fungi are root symbionts on higher plants. There was no effect on the fungus when mycorrhizal plants were exposed to HCl although ozone-exposed plants...MYCORRHIZAE In the last decade much attention has been focused on the ability of root-inhabiting vesicular - arbuscular (VA) mycorrhizae to improve...University of California, Riverside, California. Tinker, P. B., 1975, Effects of vesicular - arbuscular mycorrhiza on higher plants, 29th Symposium of the

  7. A systematic search for dwarf counterparts to ultra compact high velocity clouds

    NASA Astrophysics Data System (ADS)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija; Strader, Jay

    2015-01-01

    Observations of the Universe on scales smaller than typical, massive galaxies challenge the standard Lambda Cold Dark Matter paradigm for structure formation. It is thus imperative to discover and characterize the faintest dwarf galaxy systems, not just within the Local Group, but in relatively isolated environments as well in order to properly connect them with models of structure formation. Here we report on a systematic search of public ultraviolet and optical archives for dwarf galaxy counterparts to so-called Ultra Compact High Velocity Clouds (UCHVCs), which are compact, isolated HI sources recently found in the Galactic Arecibo L-band Feed Array-HI (GALFA-HI) and Arecibo Legacy Fast ALFA (ALFALFA-HI) surveys. Our search has uncovered at least three strong dwarf galaxy candidates, and we present their inferred star formation rate and structural properties here.

  8. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serakinci, Nedime; Christensen, Rikke; Graakjaer, Jesper

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses formore » phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.« less

  9. Do Asian women do as well as their Caucasian counterparts in IVF treatment: Cohort study.

    PubMed

    Kan, Andrew; Leung, Peter; Luo, Kehui; Fay, Louise; Tan, Chunyan Leeann

    2015-06-01

    To evaluate if there is a difference in pregnancy rate between Asian and Caucasian women when they undergo in vitro fertilization (IVF). This was a retrospective cohort study set in a private reproductive medicine clinic. The study consisted of a total of 2594 patients (Asian, n = 522; Caucasian, n = 2072) undergoing IVF managed by a single doctor over a 10 year period. The main outcome measures were clinical pregnancy rate and live birth rate. Logistic regression was used to control for confounding factors. Asian women achieved a significantly lower clinical pregnancy and live birth rate than their Caucasian counterparts, despite replacement of more embryos. This difference was not significant after controlling for age and duration of infertility. Despite higher doses of gonadotrophin, they achieved fewer oocytes and had resultant fewer embryos for transfer or cryopreservation. In a study designed to reduce the effect of confounding factors by looking at a large number of patients from a single IVF unit under the care of a single doctor, there does not appear to be a difference in IVF pregnancy rate as a result of race. Asian women tend to present for IVF treatment at a later age after having tried for a longer period of time and this contributes significantly to their lower pregnancy rate. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  10. Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights

    PubMed Central

    Gilliham, Matthew

    2018-01-01

    Genomes of unicellular and multicellular green algae, mosses, grasses and dicots harbor genes encoding cation-chloride cotransporters (CCC). CCC proteins from the plant kingdom have been comparatively less well investigated than their animal counterparts, but proteins from both plants and animals have been shown to mediate ion fluxes, and are involved in regulation of osmotic processes. In this review, we show that CCC proteins from plants form two distinct phylogenetic clades (CCC1 and CCC2). Some lycophytes and bryophytes possess members from each clade, most land plants only have members of the CCC1 clade, and green algae possess only the CCC2 clade. It is currently unknown whether CCC1 and CCC2 proteins have similar or distinct functions, however they are both more closely related to animal KCC proteins compared to NKCCs. Existing heterologous expression systems that have been used to functionally characterize plant CCC proteins, namely yeast and Xenopus laevis oocytes, have limitations that are discussed. Studies from plants exposed to chemical inhibitors of animal CCC protein function are reviewed for their potential to discern CCC function in planta. Thus far, mutations in plant CCC genes have been evaluated only in two species of angiosperms, and such mutations cause a diverse array of phenotypes—seemingly more than could simply be explained by localized disruption of ion transport alone. We evaluate the putative roles of plant CCC proteins and suggest areas for future investigation. PMID:29415511

  11. Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights.

    PubMed

    Henderson, Sam W; Wege, Stefanie; Gilliham, Matthew

    2018-02-06

    Genomes of unicellular and multicellular green algae, mosses, grasses and dicots harbor genes encoding cation-chloride cotransporters (CCC). CCC proteins from the plant kingdom have been comparatively less well investigated than their animal counterparts, but proteins from both plants and animals have been shown to mediate ion fluxes, and are involved in regulation of osmotic processes. In this review, we show that CCC proteins from plants form two distinct phylogenetic clades (CCC1 and CCC2). Some lycophytes and bryophytes possess members from each clade, most land plants only have members of the CCC1 clade, and green algae possess only the CCC2 clade. It is currently unknown whether CCC1 and CCC2 proteins have similar or distinct functions, however they are both more closely related to animal KCC proteins compared to NKCCs. Existing heterologous expression systems that have been used to functionally characterize plant CCC proteins, namely yeast and Xenopus laevis oocytes, have limitations that are discussed. Studies from plants exposed to chemical inhibitors of animal CCC protein function are reviewed for their potential to discern CCC function in planta. Thus far, mutations in plant CCC genes have been evaluated only in two species of angiosperms, and such mutations cause a diverse array of phenotypes-seemingly more than could simply be explained by localized disruption of ion transport alone. We evaluate the putative roles of plant CCC proteins and suggest areas for future investigation.

  12. Inherent and environmental patterns in biomass allocation and allometry among higher plants

    NASA Astrophysics Data System (ADS)

    Poorter, Hendrik

    2017-04-01

    It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749

  13. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective.

    PubMed

    Naseem, Muhammad; Srivastava, Mugdha; Tehseen, Muhammad; Ahmed, Nazeer

    2015-01-01

    The plant hormone auxin regulates a whole repertoire of plant growth and development. Many plant-associated microorganisms, by virtue of their auxin production capability, mediate phytostimulation effects on plants. Recent studies, however, demonstrate diverse mechanisms whereby plant pathogens manipulate auxin biosynthesis, signaling and transport pathways to promote host susceptibility. Auxin responses have been coupled to their antagonistic and synergistic interactions with salicylic acid and jasmonate mediated defenses, respectively. Here, we discuss that a better understanding of auxin crosstalk to plant immune networks would enable us to engineer crop plants with higher protection and low unintended yield losses.

  14. Steroid plant hormones: effects outside plant kingdom.

    PubMed

    Zhabinskii, Vladimir N; Khripach, Natalia B; Khripach, Vladimir A

    2015-05-01

    Brassinosteroids (BS) are the first group of steroid-hormonal compounds isolated from and acting in plants. Among numerous physiological effects of BS growth stimulation and adaptogenic activities are especially remarkable. In this review, we provide evidence that BS possess similar types of activity also beyond plant kingdom at concentrations comparable with those for plants. This finding allows looking at steroids from a new point of view: how common are the mechanisms of steroid bioregulation in different types of organisms from protozoa to higher animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients.

    PubMed

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi

    2015-01-28

    There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m(2) plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P < 0.05). The relative yield (RY) of mile-a-minute and sweet potato was less than 1.0 in mixed culture, indicating that intraspecific competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P < 0.05) in mile-a-minute monoculture soil than in sweet potato monoculture soil, and were reduced by the competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet

  16. Real-time Automatic Search for Multi-wavelength Counterparts of DWF Transients

    NASA Astrophysics Data System (ADS)

    Murphy, Christopher; Cucchiara, Antonino; Andreoni, Igor; Cooke, Jeff; Hegarty, Sarah

    2018-01-01

    The Deeper Wider Faster (DWF) survey aims to find and classify the fastest transients in the Universe. DWF utilizes the Dark Energy Camera (DECam), collecting a continuous sequence of 20s images over a 3 square degree field of view.Once an interesting transient is detected during DWF observations, the DWF collaboration has access to several facilities for rapid follow-up in multiple wavelengths (from gamma to radio).An online web tool has been designed to help with real-time visual classification of possible astrophysical transients in data collected by the DWF observing program. The goal of this project is to create a python-based code to improve the classification process by querying several existing archive databases. Given the DWF transient location and search radius, the developed code will extract a list of possible counterparts and all available information (e.g. magnitude, radio fluxes, distance separation).Thanks to this tool, the human classifier can make a quicker decision in order to trigger the collaboration rapid-response resources.

  17. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    PubMed

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  18. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. PV integration into a CSP plant

    NASA Astrophysics Data System (ADS)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  20. On the Weyl anomaly of 4D conformal higher spins: a holographic approach

    NASA Astrophysics Data System (ADS)

    Acevedo, S.; Aros, R.; Bugini, F.; Diaz, D. E.

    2017-11-01

    We present a first attempt to derive the full (type-A and type-B) Weyl anomaly of four dimensional conformal higher spin (CHS) fields in a holographic way. We obtain the type-A and type-B Weyl anomaly coefficients for the whole family of 4D CHS fields from the one-loop effective action for massless higher spin (MHS) Fronsdal fields evaluated on a 5D bulk Poincaré-Einstein metric with an Einstein metric on its conformal boundary. To gain access to the type-B anomaly coefficient we assume, for practical reasons, a Lichnerowicz-type coupling of the bulk Fronsdal fields with the bulk background Weyl tensor. Remarkably enough, our holographic findings under this simplifying assumption are certainly not unknown: they match the results previously found on the boundary counterpart under the assumption of factorization of the CHS higher-derivative kinetic operator into Laplacians of "partially massless" higher spins on Einstein backgrounds.

  1. Asian Adolescents with Excess Weight are at Higher Risk for Insulin Resistance than Non-Asian Peers.

    PubMed

    Elsamadony, Ahmed; Yates, Kathy F; Sweat, Victoria; Yau, Po Lai; Mangone, Alex; Joseph, Adriana; Fierman, Arthur; Convit, Antonio

    2017-11-01

    The purpose of this study was to evaluate whether Asian American adolescents have higher metabolic risk from excess weight than non-Asians. Seven hundred thirty-three students, aged 14 to 19 years old, completed a school-based health screening. The 427 Asian and 306 non-Asian students were overall equivalent on age, sex, and family income. Height, weight, waist circumference, percent body fat, and blood pressure were measured. Fasting triglycerides, high- and low-density lipoproteins, glucose, and insulin levels were measured. Asian and non-Asians in lean or overweight/obesity groups were contrasted on the five factors that make up the metabolic syndrome. Asian adolescents carrying excess weight had significantly higher insulin resistance (IR), triglyceride levels, and waist-height ratios (W/H), despite a significantly lower overall BMI than corresponding non-Asians. Similarly, Asians had a stronger relationship between W/H and the degree of IR than non-Asian counterparts; 35% and 18% of the variances were explained (R 2  = 0.35, R 2  = 0.18) respectively, resulting in a significant W/H by racial group interaction (F change [1,236] = 11.56, P < 0.01). Despite lower overall BMI, Asians have higher IR and triglyceride levels from excess weight than their non-Asian counterparts. One-size-fits-all public health policies targeting youth should be reconsidered and attention paid to Asian adolescents, including those with mild degrees of excess weight. © 2017 The Obesity Society.

  2. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants.

    PubMed

    Porcel, Rosa; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2014-01-25

    Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.

  3. Higher organization and histone modification of the plant nucleus and chromosome.

    PubMed

    Wako, T; Fukui, K

    2010-07-01

    Plants have a wide range of genome sizes. The length of each DNA molecule is usually much longer than the diameter of the cell and the length of each metaphase chromosome is effectively shortened to progress through mitosis. Thus some questions arise, such as: How is genomic DNA folded and shortened into chromosomes? What kind of proteins and/or their modifications contribute to chromosome structure? Are there any upper limits for the ratio of DNA volume to nuclear volume? This review attempts to answer these questions based on recent advances in chromosome research. Genomic DNA is first folded into nucleosomal fibers and then superfolded into metaphase chromosomes to sufficiently shorten its length to less than the upper limit for normal progression of cell division. Nucleosomes play structural roles, not only for DNA folding, but also for determination of euchromatin, heterochromatin, and centromeres, together with post-translational modifications and replacement of core histones with histone variants, and for the regulation of their structure and transcriptional status. More than 200 proteins of human metaphase chromosomes have been identified, including 5 types of nucleosome histones. They are categorized into 4 groups, and a 4-layer model of the human metaphase chromosome has been developed. There are upper limits for DNA volume. In all plants examined to date the DNA volume does not exceed 3% of the nuclear volume. Histone modification also has an impact on the spatial distribution of chromosomes within a nucleus, which seems to be related to the plant genome size. These points are discussed as well, as they are essential to maintain proper nuclear functions. Copyright 2010 S. Karger AG, Basel.

  4. Strategic wholesale pricing for an incumbent supplier facing with a competitive counterpart.

    PubMed

    Sun, Jianwu

    2014-01-01

    We introduce a wholesale pricing strategy for an incumbent supplier facing with a competitive counterpart. We propose a profit function which considers both the present loss and future loss from a wholesale price and then study the optimal wholesale prices for different objectives about this profit function for the incumbent supplier. First, we achieve an optimal wholesale price for the incumbent supplier to maximize his expected profit. Then, to reduce the risk originating from the fluctuation in the competitive supplier's wholesale price, we integrate the conditional value-at-risk (CVaR) measure in financial risk management into this study and derive an optimal wholesale price to maximize CVaR about profit for the incumbent supplier. Besides, the properties of the two optimal wholesale prices are discussed. Finally, some management insights are suggested for the incumbent supplier in a competitive setting.

  5. Strategic Wholesale Pricing for an Incumbent Supplier Facing with a Competitive Counterpart

    PubMed Central

    Sun, Jianwu

    2014-01-01

    We introduce a wholesale pricing strategy for an incumbent supplier facing with a competitive counterpart. We propose a profit function which considers both the present loss and future loss from a wholesale price and then study the optimal wholesale prices for different objectives about this profit function for the incumbent supplier. First, we achieve an optimal wholesale price for the incumbent supplier to maximize his expected profit. Then, to reduce the risk originating from the fluctuation in the competitive supplier's wholesale price, we integrate the conditional value-at-risk (CVaR) measure in financial risk management into this study and derive an optimal wholesale price to maximize CVaR about profit for the incumbent supplier. Besides, the properties of the two optimal wholesale prices are discussed. Finally, some management insights are suggested for the incumbent supplier in a competitive setting. PMID:25614891

  6. Bioaugmentation in growing plants for lunar bases

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, B.; Kozyrovska, N.

    2011-03-01

    Microorganisms may be a key element in a precursory scenario of growing pioneer plants for extraterrestrial exploration. They can be used for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressors, as well as to decompose both lunar rocks and the plant straw in order to form a protosoil. Bioleaching capacities of both French marigold (Tagetes patula L.) and the associated bacteria in contact with a lunar rock simulant (terrestrial anorthosite) were examined using the model plant-bacteria microcosms under controlled conditions. Marigold accumulated K, Na, Fe, Zn, Ni, and Cr at higher concentrations in anorthosite compared to the podzol soil. Plants inoculated with the consortium of well-defined species of bacteria accumulated higher levels of K, Mg, and Mn, but lower levels of Ni, Cr, Zn, Na, Ca, Fe, which exist at higher levels in anorthosite. Bacteria also affected the Са/Mg and Fe/Mn ratios in the biomass of marigold grown on anorthosite. Despite their growth retardation, the inoculated plants had 15% higher weight on anorthosite than noninoculated plants. The data suggest that the bacteria supplied basic macro-and microelements to the model plant.

  7. Development of a Novel Simplified PBPK Absorption Model to Explain the Higher Relative Bioavailability of the OROS® Formulation of Oxybutynin.

    PubMed

    Olivares-Morales, Andrés; Ghosh, Avijit; Aarons, Leon; Rostami-Hodjegan, Amin

    2016-11-01

    A new minimal Segmented Transit and Absorption model (mSAT) model has been recently proposed and combined with intrinsic intestinal effective permeability (P eff,int ) to predict the regional gastrointestinal (GI) absorption (f abs ) of several drugs. Herein, this model was extended and applied for the prediction of oral bioavailability and pharmacokinetics of oxybutynin and its enantiomers to provide a mechanistic explanation of the higher relative bioavailability observed for oxybutynin's modified-release OROS® formulation compared to its immediate-release (IR) counterpart. The expansion of the model involved the incorporation of mechanistic equations for the prediction of release, transit, dissolution, permeation and first-pass metabolism. The predicted pharmacokinetics of oxybutynin enantiomers after oral administration for both the IR and OROS® formulations were in close agreement with the observed data. The predicted absolute bioavailability for the IR formulation was within 5% of the observed value, and the model adequately predicted the higher relative bioavailability observed for the OROS® formulation vs. the IR counterpart. From the model predictions, it can be noticed that the higher bioavailability observed for the OROS® formulation was mainly attributable to differences in the intestinal availability (F G ) rather than due to a higher colonic f abs , thus confirming previous hypotheses. The predicted f abs was almost 70% lower for the OROS® formulation compared to the IR formulation, whereas the F G was almost eightfold higher than in the IR formulation. These results provide further support to the hypothesis of an increased F G as the main factor responsible for the higher bioavailability of oxybutynin's OROS® formulation vs. the IR.

  8. DAMPs, MAMPs, and NAMPs in plant innate immunity.

    PubMed

    Choi, Hyong Woo; Klessig, Daniel F

    2016-10-26

    Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.

  9. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    PubMed

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future

  10. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    PubMed Central

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop

  11. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective

    PubMed Central

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md. Asraful; Hasan, Md. Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki

    2016-01-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles

  12. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    PubMed

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki

    2016-01-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles

  13. [Distribution of HCB discharged from a chemical plant in plants].

    PubMed

    Chen, Jing; Wang, Lin-Ling; Lu, Xiao-Hua; Yuan, Song-Hu; Liu, Xi-Xiang; Wang, Yue; Zhao, Qian; Mei, Ling-Fang

    2009-04-15

    The distribution characteristics of hexachlorobenzene (HCB) in plant and rhizosphere soil in contamination conduit, a nearby river and a cropland were studied and the impact factors were also discussed. The results are summarized as follows: the range of the HCB concentration in plant and rhizosphere soil in investigation area were respectively from 4.45 microg x kg(-1) to 1,189.89 microg x kg(-1) (dw) and from 27.93 microg x kg(-1) to 3,480.71 microg x kg(-1) (dw). Higher enrichment of HCB in woodplant than herbs due to higher fat concentration in woodplant in the contamination conduit and the rich concentrtion factor of woodplant and herbs were 0.41-2.55 and 0.01-1.34. The range of HCB concentrations in plants in nearby croplands was significantly wide (4.45-333.1 microg x kg(-1)) while HCB concentrations in different parts of plant were various, e.g. HCB concentrations in fruit, root and shoot of taro were 318.77 microg x kg(-1), 281.02 microg x kg(-1) and 10.94 microg x kg(-1). There was a remarkable positive relation between the concentrations of HCB in plant and fat concentration of plant while no relativity between the concentrations of HCB in plant and those in ground soils in the contamination conduit and cropland. The concentration levels of HCB in plant and rhizosphere soil in river were dramatically decreased with increasing distance from contaminated conduit. There was a remarkable positive relation between the concentrations of HCB in plant and those in ground soils but no relation between concentrations of HCB in plant and fat concentration of plant in river. The distribution characteristics of HCB in plants were influenced by contaminated levels, fat concentration and Partition-transfer model.

  14. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  15. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants.

    PubMed

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-05-17

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection.

  16. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.

    PubMed

    Rodrigues, Simone M; Andrade, Maxuel O; Gomes, Ana Paula Soares; Damatta, Fabio M; Baracat-Pereira, Maria C; Fontes, Elizabeth P B

    2006-01-01

    Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H(2)O(2)- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H(2)O(2), whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants.

  17. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation

    PubMed Central

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications. PMID:26161643

  18. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.

    PubMed

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC < 4 ds/m) and high (>8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative

  19. An Enhanced Method for Scheduling Observations of Large Sky Error Regions for Finding Optical Counterparts to Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Javed; Singhal, Akshat; Gadre, Bhooshan

    2017-04-01

    The discovery and subsequent study of optical counterparts to transient sources is crucial for their complete astrophysical understanding. Various gamma-ray burst (GRB) detectors, and more notably the ground-based gravitational wave detectors, typically have large uncertainties in the sky positions of detected sources. Searching these large sky regions spanning hundreds of square degrees is a formidable challenge for most ground-based optical telescopes, which can usually image less than tens of square degrees of the sky in a single night. We present algorithms for better scheduling of such follow-up observations in order to maximize the probability of imaging the optical counterpart, basedmore » on the all-sky probability distribution of the source position. We incorporate realistic observing constraints such as the diurnal cycle, telescope pointing limitations, available observing time, and the rising/setting of the target at the observatory’s location. We use simulations to demonstrate that our proposed algorithms outperform the default greedy observing schedule used by many observatories. Our algorithms are applicable for follow-up of other transient sources with large positional uncertainties, such as Fermi -detected GRBs, and can easily be adapted for scheduling radio or space-based X-ray follow-up.« less

  20. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  1. Water-soluble metal nanoparticles stabilized by plant polyphenols for improving the catalytic properties in oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Mao, H.; Liao, Y.; Ma, J.; Zhao, S. L.; Huo, F. W.

    2015-12-01

    Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic conditions, the as-prepared BWT-Pt colloid catalyst exhibited high activity in a series of biphasic oxidation of aromatic alcohols and aliphatic alcohols. As for the cycling stability, the BWT-Pt catalyst showed no obvious decrease during the 7 cycles, revealing superior cycling stability as compared with the counterparts using PVP or PEG as the stabilizer.Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic

  2. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles.

    PubMed

    Mashwani, Zia-Ur-Rehman; Khan, Mubarak Ali; Khan, Tariq; Nadhman, Akhtar

    2016-08-01

    Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Possible X-Ray and Radio Counterpart of the High-Energy Gamma-Ray Source 3EG J2227+6122

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Gotthelf, E. V.; Helfand, D. J.; Leighly, K. M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The identity of the persistent EGRET sources in the Galactic plane is largely a mystery. For one of these, 3EG J2227+6122, our complete census of X-ray and radio sources in its error circle reveals a remarkable superposition of an incomplete radio shell with a flat radio spectrum, and a compact, power-law X-ray source with photon index Gamma = 1.5 and with no obvious optical counterpart. The radio shell is polarized at a level of approx. = 25%. The anomalous properties of the radio source prevent us from deriving a completely satisfactory theory as to its nature. Nevertheless, using data from ROSAT, ASCA, the VLA, and optical imaging and spectroscopy, we argue that the X-ray source may be a young pulsar with an associated wind-blown bubble or bow shock nebula, and an example of the class of radio-quiet pulsars which are hypothesized to comprise the majority of EGRET sources in the Galaxy. The distance to this source can be estimated from its X-ray absorption as 3 kpc. At this distance, the X-ray and gamma-ray luminosities would be approx. = 1.7 x 10(exp 33) and approx. = 3.7 x 10(exp 35) erg/s, respectively, which would require an energetic pulsar to power them. If, on the contrary, this X-ray source is not the counterpart of 3EG J2227+6122, then by process of elimination the X-ray luminosity of the latter must be less than 10(exp -4) of its gamma-ray luminosity, a condition not satisfied by any established class of gamma-ray source counterpart. This would require the existence of at least a quantitatively new type of EGRET source, as has been suggested in studies of other EGRET fields.

  4. VizieR Online Data Catalog: Blazars with γ-ray counterparts. II. (Massaro+, 2013)

    NASA Astrophysics Data System (ADS)

    Massaro, F.; D'Abrusco, R.; Paggi, A.; Masetti, N.; Giroletti, M.; Tosti, G.; Smith, H. A.; Funk, S.

    2013-06-01

    Our primary sample of unidentified γ-ray sources (UGSs) consists of all the sources for which no counterpart was assigned at low energies in the 2FGL or in the 2LAC (Nolan et al. 2012, Cat. J/ApJS/199/31; Ackermann et al. 2011, Cat. J/ApJ/743/171, respectively), for a total of 590 γ-ray objects. We considered and analyzed independently two subsamples of UGSs, distinguishing the 299 Fermi sources without any γ-ray analysis flags from the other 291 objects that have a warning in their γ-ray detection. The complete description of our association procedure together with the estimates of its efficiency and its completeness can be found in D'Abrusco et al. (Paper I, 2013, Cat. J/ApJS/206,12). (9 data files).

  5. Discovery of the optical counterpart of the transient X-ray burster Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Mcclintock, J. E.; Grindlay, J. E.

    1980-01-01

    The paper deals with the discovery and subsequent study of the optical counterpart to an X-ray nova which is almost certainly the historical transient Centaurus X-4, first discovered in 1969 and then dormant for the past decade. It is shown that Cen X-4 is a clear example of a soft, transient X-ray burster. The most important consequence of the connection between bursters and soft transients is the support it gives to the hypothesis that bursters are accreting neutron stars in binary systems. The observations support the hypothesis that at least some of the light comes from an accretion disk, and that X-ray heating plays an important role in the optical emission.

  6. Plant features measurements for robotics

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1989-01-01

    Initial studies of the technical feasibility of using machine vision and color image processing to measure plant health were performed. Wheat plants were grown in nutrient solutions deficient in nitrogen, potassium, and iron. An additional treatment imposed water stress on wheat plants which received a full complement of nutrients. The results for juvenile (less than 2 weeks old) wheat plants show that imaging technology can be used to detect nutrient deficiencies. The relative amount of green color in a leaf declined with increased water stress. The absolute amount of green was higher for nitrogen deficient leaves compared to the control plants. Relative greenness was lower for iron deficient leaves, but the absolute green values were higher. The data showed patterns across the leaf consistent with visual symptons. The development of additional color image processing routines to recognize these patterns would improve the performance of this sensor of plant health.

  7. Student Decision-Making about a Globally Familiar Socioscientific Issue: The Value of Sharing and Comparing Views with International Counterparts

    ERIC Educational Resources Information Center

    Grace, Marcus; Lee, Yeung Chung; Asshoff, Roman; Wallin, Anita

    2015-01-01

    This paper focuses on the views of 16-17-year-old science students from England, Germany, Hong Kong and Sweden on whale hunting, and their perceptions of the views of their international counterparts. The students were all provided with the same decision-making task, discussed the issue in small groups and then presented their views on video,…

  8. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    PubMed Central

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M.; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC < 4 ds/m) and high (>8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative

  9. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    PubMed

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  10. Adaptive evolution of centromere proteins in plants and animals.

    PubMed

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  11. Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants.

    PubMed

    Rathner, Petr; Rathner, Adriana; Horničáková, Michaela; Wohlschlager, Christian; Chandra, Kousik; Kohoutová, Jaroslava; Ettrich, Rüdiger; Wimmer, Reinhard; Müller, Norbert

    2015-09-01

    The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  12. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  13. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    PubMed

    Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling

    2015-01-01

    Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  14. Comparative analysis of diversity and utilization of edible plants in arid and semi-arid areas in Benin.

    PubMed

    Segnon, Alcade C; Achigan-Dako, Enoch G

    2014-12-23

    Agrobiodiversity is said to contribute to the sustainability of agricultural systems and food security. However, how this is achieved especially in smallholder farming systems in arid and semi-arid areas is rarely documented. In this study, we explored two contrasting regions in Benin to investigate how agroecological and socioeconomic contexts shape the diversity and utilization of edible plants in these regions. Data were collected through focus group discussions in 12 villages with four in Bassila (semi-arid Sudano-Guinean region) and eight in Boukoumbé (arid Sudanian region). Semi-structured interviews were carried out with 180 farmers (90 in each region). Species richness and Shannon-Wiener diversity index were estimated based on presence-absence data obtained from the focus group discussions using species accumulation curves. Our results indicated that 115 species belonging to 48 families and 92 genera were used to address food security. Overall, wild species represent 61% of edible plants collected (60% in the semi-arid area and 54% in the arid area). About 25% of wild edible plants were under domestication. Edible species richness and diversity in the semi-arid area were significantly higher than in the arid area. However, farmers in the arid area have developed advanced resource-conserving practices compared to their counterparts in the semi-arid area where slash-and-burn cultivation is still ongoing, resulting in natural resources degradation and loss of biodiversity. There is no significant difference between the two areas for cultivated species richness. The interplay of socio-cultural attributes and agroecological conditions explains the diversity of food plants selected by communities. We conclude that if food security has to be addressed, the production and consumption policies must be re-oriented toward the recognition of the place of wild edible plants. For this to happen we suggest a number of policy and strategic decisions as well as research

  15. CLC-mediated anion transport in plant cells

    PubMed Central

    De Angeli, Alexis; Monachello, Dario; Ephritikhine, Geneviève; Frachisse, Jean-Marie; Thomine, Sébastien; Gambale, Franco; Barbier-Brygoo, Hélène

    2008-01-01

    Plants need nitrate for growth and store the major part of it in the central vacuole of cells from root and shoot tissues. Based on few studies on the two model plants Arabidopsis thaliana and rice, members of the large ChLoride Channel (CLC) family have been proposed to encode anion channels/transporters involved in nitrate homeostasis. Proteins from the Arabidopsis CLC family (AtClC, comprising seven members) are present in various membrane compartments including the vacuolar membrane (AtClCa), Golgi vesicles (AtClCd and AtClCf) or chloroplast membranes (AtClCe). Through a combination of electrophysiological and genetic approaches, AtClCa was shown to function as a 2NO3−/1H+ exchanger that is able to accumulate specifically nitrate into the vacuole, in agreement with the main phenotypic trait of knockout mutant plants that accumulate 50 per cent less nitrate than their wild-type counterparts. The set-up of a functional complementation assay relying on transient expression of AtClCa cDNA in the mutant background opens the way for studies on structure–function relationships of the AtClCa nitrate transporter. Such studies will reveal whether important structural determinants identified in bacterial or mammalian CLCs are also crucial for AtClCa transport activity and regulation. PMID:18957376

  16. Do cytokinins function as two-way signals between plants and animals? Cytokinins may not only mediate defence reactions via secondary compounds, but may directly interfere with developmental signals in insects.

    PubMed

    Robischon, Marcel

    2015-04-01

    Cytokinins are plant hormones that have, among many other functions, senescence-modulatory effects in plant tissue. This is evident not only from biochemical data, but is vividly illustrated in the "green island" phenotype in plant leaves caused by cytokinins released for example by leaf mining insects or microbial pathogens. It is beyond doubt that, in addition to their roles in plants, cytokinins also provoke physiological and developmental effects in animals. It is hypothesized that the recently much discussed modification of plant metabolism by insects and associated microbes via cytokinin signals has a counterpart in direct cytokinin signalling that interferes with the animals' hormonal systems and impacts their population dynamics. © 2015 WILEY Periodicals, Inc.

  17. Studies of genetic transformation of higher plants using irradiated pollen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyi, Y.S.

    Pandey has reported extensively on an unusual genetic phenomenon he called egg transformation. When compatible pollen was treated wth genetically lethal dosage of ..gamma..-radiation (100,000 rad), and used as mentor pollen to overcome selfincompatibility of several Nicotiana species, some genetic characters were found to be transferred from the radiation killed pollen to nonhybrid progeny. Observed transformants were fertile, cytogenetically normal, and had maternal phenotypes except for those specific traits transferred from the donors. Heavily irradiated pollen was believed to discharge its radiation-fragmented DNA (chromatin) into the embryo sac and bring about the transformation of the egg. The frequency of genemore » transfer was reported to be over 50%, and happened for all three characters Pandey studied - self incompatible specificities, flower color, and pollen color. Plant species studied were tomato, pea, apple, rapeseed, and Nicotiana species, including various stocks from Dr. Pandey. Treatments included pollinations with soley irradiated donor pollen, with a mixture of irradiated donor and normal self pollen, with a mixture of normal donor and self pollen, and double pollinations with irradiated donor pollen and normal self pollen, using different time intervals to separate the two pollinations. A total of 6210 pollinations were made, and 17,522 seedlings representing 87,750 potential transformational events were screened. In no case was an unambiguous transformant recovered. This research was unable to confirm or expand upon the findings of Dr. Pandey, or elucidate the mechanisms underlying such phenomena. Alternative explanations for Pandey's data were postulated. This approach to gene transfer by using irradiated pollen appears to be of little practical use to plant breeders.« less

  18. Gravitropism in higher plant shoots. I - A role for ethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Salisbury, Frank B.

    1981-01-01

    Two inhibitors of ethylene synthesis, Co(2+) and aminoethoxyvinylglycine (AVG), and two inhibitors of ethylene action, Ag(+) and CO2, are shown to delay the gravitropic response of cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) stems. Gentle shaking on a mechanical shaker does not inhibit the gravitropic response, but vigorous hand shaking for 120 seconds delays the response somewhat. AVG and Ag(+) further delay the response of mechanically stimulated plants. AVG retards the storage of bending energy but not of stimulus. In gravitropism, graviperception may first stimulate ethylene evolution, which may then influence bending directly, or responses involving ethylene could be more indirect.

  19. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    PubMed

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-02-02

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. © 2016 Authors.

  20. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart

    PubMed Central

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-01-01

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4–9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. PMID:26839417

  1. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship

  2. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth

    DOE PAGES

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; ...

    2017-02-06

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship

  3. Plant neighbor identity influences plant biochemistry and physiology related to defense

    PubMed Central

    2010-01-01

    Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success. PMID:20565801

  4. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  5. Plant blindness and the implications for plant conservation.

    PubMed

    Balding, Mung; Williams, Kathryn J H

    2016-12-01

    Plant conservation initiatives lag behind and receive considerably less funding than animal conservation projects. We explored a potential reason for this bias: a tendency among humans to neither notice nor value plants in the environment. Experimental research and surveys have demonstrated higher preference for, superior recall of, and better visual detection of animals compared with plants. This bias has been attributed to perceptual factors such as lack of motion by plants and the tendency of plants to visually blend together but also to cultural factors such as a greater focus on animals in formal biological education. In contrast, ethnographic research reveals that many social groups have strong bonds with plants, including nonhierarchical kinship relationships. We argue that plant blindness is common, but not inevitable. If immersed in a plant-affiliated culture, the individual will experience language and practices that enhance capacity to detect, recall, and value plants, something less likely to occur in zoocentric societies. Therefore, conservation programs can contribute to reducing this bias. We considered strategies that might reduce this bias and encourage plant conservation behavior. Psychological research demonstrates that people are more likely to support conservation of species that have human-like characteristics and that support for conservation can be increased by encouraging people to practice empathy and anthropomorphism of nonhuman species. We argue that support for plant conservation may be garnered through strategies that promote identification and empathy with plants. © 2016 Society for Conservation Biology.

  6. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    PubMed

    Lev-Yadun, Simcha

    2013-07-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.

  7. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?

    PubMed

    Anstett, Daniel N; Ahern, Jeffrey R; Glinos, Julia; Nawar, Nabanita; Salminen, Juha-Pekka; Johnson, Marc T J

    2015-12-01

    Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences. © 2015 John Wiley & Sons Ltd/CNRS.

  8. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment

    PubMed Central

    van der Heijden, Marcel GA; Bruin, Susanne de; Luckerhoff, Ludo; van Logtestijn, Richard SP; Schlaeppi, Klaus

    2016-01-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions. PMID:26172208

  9. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.

    PubMed

    van der Heijden, Marcel G A; de Bruin, Susanne; Luckerhoff, Ludo; van Logtestijn, Richard S P; Schlaeppi, Klaus

    2016-02-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.

  10. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hamayun, Muhammad; Hussain, Javid; Joo, Gil-Jae; You, Young-Hyun; Kim, Jong-Guk; Lee, In-Jung

    2012-12-01

    Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA(1) and GA(4)) and inactive (GA(9), GA(12), GA(19), GA(20), GA(24), GA(34), and GA(53)) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA(12)→GA(24)→GA(9)→GA(4)→ GA(34)) in the tomato plants as compared to the NB and DW control plants. Abscisic acid, a plant stress hormone, was significantly down-regulated in the presence of Promicromonospora sp. SE188. Contrarily, salicylic acid was significantly higher in the tomato plant after Promicromonospora sp. SE188 inoculation as compared to the controls. Promicromonospora sp. SE188 showed promising stimulation of tomato plant growth. From the results it appears that Promicromonospora sp. SE188 has potential as a bio-fertilizer and should be more broadly tested in field trials for higher crop production in eco-friendly farming systems.

  11. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck

    NASA Astrophysics Data System (ADS)

    Valenti, Stefano; David; Sand, J.; Yang, Sheng; Cappellaro, Enrico; Tartaglia, Leonardo; Corsi, Alessandra; Jha, Saurabh W.; Reichart, Daniel E.; Haislip, Joshua; Kouprianov, Vladimir

    2017-10-01

    During the second observing run of the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger detected by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey that fell within the combined LIGO+Virgo localization region and the larger Fermi gamma-ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a; it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck is unique, with an absolute peak magnitude of M r = -15.8 ± 0.1 and an r-band decline rate of 1.1 mag day-1. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data does not show any sign of transient activity at the location of DLT17ck down to r ˜ 19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy, opening a new path by which to study and understand binary neutron star coalescences, short gamma-ray bursts, and their optical counterparts.

  12. Global pattern of plant utilization across different organisms: Does plant apparency or plant phylogeny matter?

    PubMed

    Dai, Xiaohua; Zhang, Wei; Xu, Jiasheng; Duffy, Kevin J; Guo, Qingyun

    2017-04-01

    The present study is the first to consider human and nonhuman consumers together to reveal several general patterns of plant utilization. We provide evidence that at a global scale, plant apparency and phylogenetic isolation can be important predictors of plant utilization and consumer diversity. Using the number of species or genera or the distribution area of each plant family as the island "area" and the minimum phylogenetic distance to common plant families as the island "distance", we fitted presence-area relationships and presence-distance relationships with a binomial GLM (generalized linear model) with a logit link. The presence-absence of consumers among each plant family strongly depended on plant apparency (family size and distribution area); the diversity of consumers increased with plant apparency but decreased with phylogenetic isolation. When consumers extended their host breadth, unapparent plants became more likely to be used. Common uses occurred more often on common plants and their relatives, showing higher host phylogenetic clustering than uncommon uses. On the contrary, highly specialized uses might be related to the rarity of plant chemicals and were therefore very species-specific. In summary, our results provide a global illustration of plant-consumer combinations and reveal several general patterns of plant utilization across humans, insects and microbes. First, plant apparency and plant phylogenetic isolation generally govern plant utilization value, with uncommon and isolated plants suffering fewer parasites. Second, extension of the breadth of utilized hosts helps explain the presence of consumers on unapparent plants. Finally, the phylogenetic clustering structure of host plants is different between common uses and uncommon uses. The strength of such consistent plant utilization patterns across a diverse set of usage types suggests that the persistence and accumulation of consumer diversity and use value for plant species are

  13. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    PubMed Central

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  14. A Search for High-Energy Counterparts to Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Cunningham, Virginia A.; Cenko, Bradley

    2018-01-01

    We report on a search for high-energy counterparts to Fast Radio Bursts (FRBs) with the Fermi Gamma-ray Burst Monitor (GBM), Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT). We find no significant associations for any of the 14 FRBs in our sample, but report upper limits to the high-energy fluence for each on timescales of ∼0.1, 1, 10, and 100 s. We report lower limits on the radio to high-energy fluence, fr / fγ, for timescales of ∼0.1 and 100 s. The non-detection of high-energy emission is expected if FRBs are analogous to the giant pulses seen from the Crab pulsar, but the observed radio fluences of FRBs are orders of magnitude larger than even the most extreme giant pulses would be at the implied cosmological distances. It has also been proposed that events similar to magnetar hyperflares produce FRBs; this might be a viable model, but our fr / fγ lower limits are in tension with the fr / fγ upper limit for the 2004 superburst of SGR 1806‑20, for 6 out of the 12 FRBs that we study. This demonstrates the utility of analyses of high-energy data for FRBs in tracking down the nature of these elusive sources.

  15. Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey: Erratum on 2MASS counterpart designation

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Singh, A.; Stalin, C. S.; Chandra, S.; Gandhi, P.

    2018-03-01

    In ATel #11458, the correct 2MASS counterpart associated with MAXI J1820+070/ASASSN-18ey should have been stated as 2MASS J18202194+0711073. We apologise for any misunderstanding, and thank G. Stringfellow and M. Tanaka for bringing this to our attention. < br > < br > The photometric analyses and discussion in ATel #11458 remain unchanged.

  16. Do First Generation Immigrant Adolescents Face Higher Rates of Bullying, Violence and Suicidal Behaviours Than Do Third Generation and Native Born?

    PubMed

    Pottie, Kevin; Dahal, Govinda; Georgiades, Katholiki; Premji, Kamila; Hassan, Ghayda

    2015-10-01

    We conducted a systematic review to examine first generation immigrant adolescents' likelihood of experiencing bullying, violence, and suicidal behaviours compared to their later-generation and native born counterparts, and to identify factors that may underlie these risks. Eighteen studies met full inclusion criteria. First generation immigrant adolescents experience higher rate of bullying and peer aggression compared to third generation and native counterparts. Refugee status and advanced parental age were associated with increased parent to child aggression among South East Asians. Family cohesion was associated with lower rates of violence. Suicidal ideation was lower across most immigrant adolescents' ethnicities, with the exception of Turkish and South Asian Surinamese female adolescents in the Netherlands. Bullying and peer aggression of immigrant children and adolescents and potential mitigating factors such as family cohesion warrant research and program attention by policymakers, teachers and parents.

  17. Delayed expression of SAGs correlates with longevity in CMS wheat plants compared to its fertile plants.

    PubMed

    Semwal, Vimal Kumar; Singh, Bhupinder; Khanna-Chopra, Renu

    2014-04-01

    Reproductive sinks regulate monocarpic senescence in crop plants. Monocarpic senescence was studied in wheat fertile (cv. HW 2041) and its isonuclear cytoplasmic male sterile (CMS) line. CMS plants exhibited slower rate of senescence accompanied by longer green leaf area duration and slower deceleration in chlorophyll, protein content, PN and rubisco content coupled with lower protease activities than fertile (F) plants. CMS plants also exhibited lower ROS levels and less membrane damage than F plants. CMS plants maintained better antioxidant defense, less oxidative damage in chloroplast and higher transcript levels of both rbcL and rbcS genes during senescence than F plants. F plants exhibited early induction and higher expression of SAGs like serine and cysteine proteases, glutamine synthetases GS1 and GS2, WRKY53 transcription factor and decline in transcript levels of CAT1 and CAT2 genes than CMS plants. Hence, using genetically fertile and its CMS line of wheat it is confirmed that delayed senescence in the absence of reproductive sinks is linked with slower protein oxidation, rubisco degradation and delayed activation of SAGs. Better antioxidant defense in chloroplasts at later stages of senescence was able to mitigate the deleterious effects of ROS in CMS plants. We propose that delayed increase in ROS in cytoplasmic male sterile wheat plants resulted in delayed activation of WRKY53, SAGs and the associated biochemical changes than fertile plants.

  18. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  19. Phomopsis longicolla RNA virus 1 - Novel virus at the edge of myco- and plant viruses.

    PubMed

    Hrabáková, Lenka; Koloniuk, Igor; Petrzik, Karel

    2017-06-01

    The complete nucleotide sequence of a new RNA mycovirus in the KY isolate of Phomopsis longicolla Hobbs 1985 and its protoplasts subcultures p5, p9, and ME711 was discovered. The virus, provisionally named Phomopsis longicolla RNA virus 1 (PlRV1), was localized in mitochondria and was determined to have a genome 2822 nucleotides long. A single open reading frame could be translated in silico by both standard and mitochondrial genetic codes into a product featuring conservative domains for an RNA-dependent RNA polymerase (RdRp). The RdRp of PlRV1 has no counterpart among mycoviruses, but it is about 30% identical with the RdRp of plant ourmiaviruses. Recently, new mycoviruses related to plant ourmiaviruses and forming one clade with PlRV1 have been discovered. This separate clade could represent the crucial link between plant and fungal viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Adaptive evolution of centromere proteins in plants and animals

    PubMed Central

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Results Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi. PMID:15345035

  1. Healthy plants: necessary for a balanced 'One Health' concept.

    PubMed

    Fletcher, Jacqueline; Franz, David; Leclerc, J Eugene

    2009-01-01

    All life forms depend ultimately upon sunlight to create the energy 'currency' required for the functions of living. Green plants can make that conversion directly but the rest of us would perish without access to foods derived, directly or indirectly, from plants. We also require their fibre which we use for clothing, building and other purposes. However, plants, just as humans and animals, are attacked by pathogens that cause a myriad of symptoms that can lead to reduced yields, lower quality products and diminished nutritional value. Plant pathogens share many features with their human and animal counterparts. Some pathogens - whether of humans, animals, or plants - have nimble genomes or the ability to pirate genes from other organisms via mobile elements. Some have developed the ability to cross kingdoms in their host ranges. Many others share virulence factors, such as the type III secretion system (T3SS) or mechanisms for sensing population density, that work equally well in all kingdoms. Certain pathogens of hosts in all kingdoms rely upon insect vectors and use similar mechanisms to ensure dispersal (and sometimes survival) in this way. Plant-pathogen interactions have more direct consequence for humans when the microbes are human pathogens such as Escherichia coli 0157:H7 and Salmonella spp., which can contaminate fresh produce or when they produce metabolites, such as mycotoxins, which are harmful when consumed. Finally, national biosecurity concerns and the need for prevention, preparedness and forensic capabilities cross all kingdom barriers. Thus, our communities that focus on one of these kingdoms have much to learn from one another and a complete and balanced 'One Health' initiative must be tripartite, embracing the essential components of healthy plants, healthy animals and healthy people.

  2. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    PubMed

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing

  3. The infrared counterpart of the eclipsing X-ray binary HO253 + 193

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph

    1992-01-01

    We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.

  4. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  5. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations.

    PubMed

    Barnes, Paul W; Ryel, Ronald J; Flint, Stephan D

    2017-01-01

    Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (T UV A ) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which T UV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial T UV A , measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on T UV A , though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600-3800 m, T UV A was variable (mean range = 6.0-11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus ; however, T UV A was consistently low (3%) and did not vary with elevation in the native V

  6. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    PubMed Central

    Barnes, Paul W.; Ryel, Ronald J.; Flint, Stephan D.

    2017-01-01

    Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280–315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3%) and did not vary with elevation in the native V

  7. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light

    PubMed Central

    Dall'Osto, Luca; Lico, Chiara; Alric, Jean; Giuliano, Giovanni; Havaux, Michel; Bassi, Roberto

    2006-01-01

    Background Lutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising. Results We have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress. Conclusion Lutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching

  8. Soil-to-plant transfer factors of natural radionuclides (226Ra and 40K) in selected Thai medicinal plants.

    PubMed

    Saenboonruang, Kiadtisak; Phonchanthuek, Endu; Prasandee, Kamonkhuan

    2018-04-01

    A soil-to-plant transfer factor (TF) is an important parameter that could be used to estimate radionuclides levels in medicinal plants. This work reports concentrations of natural radionuclides ( 226 Ra and 40 K) and TFs in six Thai medicinal plants grown in central Thailand using an HPGe gamma ray spectrometer. Either root, leaf, or flower parts of each medicinal plant were selected for use in the investigation according to their practical uses in traditional medicine. The results showed that due to K being essential in plants, 40 K had higher arithmetic means of activity concentrations and geometric means of TFs (geometric standard deviations in parentheses) of 610 ± 260 Bq kg -1 dry weight (DW) and 2.0 (1.4), respectively, than 226 Ra, which had the activity concentrations and TFs of 4.8 ± 2.6 Bq kg -1 DW and 0.17 (1.8), respectively. The results also showed that the leaves of medicinal plants had higher activity concentrations and TFs than root and flower parts, probably due to higher metabolic activities in leaves. Furthermore, there was good agreement between the results from the current work and other similar reports on medicinal plants. The information obtained from this work could strengthen knowledge of natural radionuclides in plants and particularly increase available TF data on Thai medicinal plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Evolutionary responses of native plant species to invasive plants: a review.

    PubMed

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  10. Testing Crew Responses to Varied Higher Plant Presentations in the MARS-500 Day Mission Simulation

    NASA Astrophysics Data System (ADS)

    Marquit, J. D.; Bates, S. C.; Gushin, V. I.; Synchev, V. N.; Levinskikh, M. A.; Podolsky, I. G.; Marchant, C. C.; Bingham, G. E.

    2008-06-01

    Maintaining psychological and behavioral health of humans during long-duration space missions is of great importance for the future success of space exploration as the hostile space environment adversely impacts the psychological, social, and physiological well-being of humans in space. Growing and tending plants has been proposed as a countermeasures for the negative impacts of long-duration space missions[3] as interactions with plant life on earth have been found to be beneficial to humans in other settings. Preliminary results from a pilot 14-day chamber study appear to support the notion that interactions with plant life may act as a countermeasure for the negative impacts of life in space. Additional data will be collected during the Mars 500-day Chamber Study at Institute of Biomedical Problems (IMBP).

  11. [Progress on salt resistance in autopolyploid plants].

    PubMed

    Zhu, Hong Ju; Liu, Wen Ge

    2018-04-20

    Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.

  12. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals

    PubMed Central

    Klessig, Daniel F.; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  13. Soil ecosystem function under native and exotic plant assemblages as alternative states of successional grasslands

    NASA Astrophysics Data System (ADS)

    Spirito, Florencia; Yahdjian, Laura; Tognetti, Pedro M.; Chaneton, Enrique J.

    2014-01-01

    Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.

  14. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenti, Stefano; Yang, Sheng; Tartaglia, Leonardo

    During the second observing run of the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger detected by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey that fell within the combined LIGO+Virgo localization region and the larger Fermi gamma-ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a;more » it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck is unique, with an absolute peak magnitude of M {sub r} = −15.8 ± 0.1 and an r -band decline rate of 1.1 mag day{sup −1}. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data does not show any sign of transient activity at the location of DLT17ck down to r ∼ 19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy, opening a new path by which to study and understand binary neutron star coalescences, short gamma-ray bursts, and their optical counterparts.« less

  15. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses.

    PubMed

    Bastías, Daniel A; Alejandra Martínez-Ghersa, M; Newman, Jonathan A; Card, Stuart D; Mace, Wade J; Gundel, Pedro E

    2018-02-01

    The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal-produced alkaloids. Because of the role that alkaloids play in anti-herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N-formyllolines and N-acetylnorlolines) and consequently decreased the endophyte-conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte-conferred resistance against herbivores. © 2017 John Wiley & Sons Ltd.

  16. Multiwavelength counterparts of the point sources in the Chandra Source Catalog

    NASA Astrophysics Data System (ADS)

    Reynolds, Michael; Civano, Francesca Maria; Fabbiano, Giuseppina; D'Abrusco, Raffaele

    2018-01-01

    The most recent release of the Chandra Source Catalog (CSC) version 2.0 comprises more than $\\sim$350,000 point sources, down to fluxes of $\\sim$10$^{-16}$ erg/cm$^2$/s, covering $\\sim$500 deg$^2$ of the sky, making it one of the best available X-ray catalogs to date. There are many reasons to have multiwavelength counterparts for sources, one such reason is that X-ray information alone is not enough to identify the sources and divide them between galactic and extragalactic origin, therefore multiwavelength data associated to each X-ray source is crucial for classification and scientific analysis of the sample. To perform this multiwavelength association, we are going to employ the recently released versatile tool NWAY (Salvato et al. 2017), based on a Bayesian algorithm for cross-matching multiple catalogs. NWAY allows the combination of multiple catalogs at the same time, provides a probability for the matches, even in case of non-detection due to different depth of the matching catalogs, and it can be used by including priors on the nature of the sources (e.g. colors, magnitudes, etc). In this poster, we are presenting the preliminary analysis using the CSC sources above the galactic plane matched to the WISE All-Sky catalog, SDSS, Pan-STARRS and GALEX.

  17. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils.more » In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).« less

  18. Metabolism of diadenosine tetraphosphate (Ap4A) and related nucleotides in plants; review with historical and general perspective.

    PubMed

    Guranowski, Andrzej

    2004-05-01

    This review presents our knowledge of potential biochemical conversions of minor mononucleotides, such as adenosine-5'-tetraphosphate (p4A) and adenosine-5'-pentaphosphate (p5A), and dinucleotides, such as diadenosine-5',5"'-P1,P3-triphosphate (Ap3A) and diadenosine-5',5"'-P1,P4-tetraphosphate (Ap4A), in plants. Although the occurrence of p4A, Ap3A and/or Ap4A has been demonstrated in various bacteria, fungi and animals, identification of these compounds in plants has not been reported as yet. However, the ubiquity of both the compounds and enzymes that can synthesize them (certain ligases and transferases), the demonstration that certain plant ligases can synthesize pnAs and ApnNs in vitro, and the existence in plants of specific and nonspecific degradative enzymes strongly suggest that these various pnNs and NpnN's do indeed occur and play a biological role in plant cells. In fact, some of the plant enzymes involved in the synthesis and degradation of these minor mono- and dinucleotides have been studied even more thoroughly than their counterparts from other organisms.

  19. Microorganism and filamentous fungi drive evolution of plant synapses.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  20. Possibility of Thermomechanical Compressor Application in Desalination Plants

    NASA Astrophysics Data System (ADS)

    Blagin, E. V.; Shimanov, A. A.; Uglanov, D. A.; Korneev, S. S.

    2018-01-01

    This article deals with estimation of thermocompressor operating possibility in desalination plant with mechanical vapour compressor. In this plant thermocompressor is used instead of commonly used centrifugal compressor. Preliminary analysis shows that such plant is able to operate, however, power consumption is 3.5-6.5 higher in comparison with traditional MVC plant. In turn, utilization of thermocompressor allows avoiding usual high-frequency drive of centrifugal compressor. Drives with frequency of 50 Hz are enough for thermocompressor when centrifugal compressor requires drives with frequency up to 500 Hz and higher. Approximate thermocompressor dimensions are estimated.

  1. Comparative Analysis of Predicted Plastid-Targeted Proteomes of Sequenced Higher Plant Genomes

    PubMed Central

    Schaeffer, Scott; Harper, Artemus; Raja, Rajani; Jaiswal, Pankaj; Dhingra, Amit

    2014-01-01

    Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding

  2. The role of L-DOPA in plants

    PubMed Central

    Soares, Anderson Ricardo; Marchiosi, Rogério; Siqueira-Soares, Rita de Cássia; Barbosa de Lima, Rogério; Dantas dos Santos, Wanderley; Ferrarese-Filho, Osvaldo

    2014-01-01

    Since higher plants regularly release organic compounds into the environment, their decay products are often added to the soil matrix and a few have been reported as agents of plant-plant interactions. These compounds, active against higher plants, typically suppress seed germination, cause injury to root growth and other meristems, and inhibit seedling growth. Mucuna pruriens is an example of a successful cover crop with several highly active secondary chemical agents that are produced by its seeds, leaves and roots. The main phytotoxic compound encountered is the non-protein amino acid L-3,4-dihydroxyphenylalanine (L-DOPA), which is used in treating the symptoms of Parkinson disease. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin and is released from Mucuna into soils, inhibiting the growth of nearby plant species. This review summarizes knowledge regarding L-DOPA in plants, providing a brief overview about its metabolic actions. PMID:24598311

  3. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Sakamoto, Takanori

    2017-09-01

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at >5σ with bimodal distributions of luminosity and duration, I.e., extended (with a timescale of ≲103 s) and plateau emission (with a timescale of ≳103 s), which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ˜0.01-1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, the future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.

  4. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Sakamoto, Takanori; Ioka, Kunihito, E-mail: kisaka@phys.aoyama.ac.jp, E-mail: tsakamoto@phys.aoyama.ac.jp, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift /BAT and XRT data. The light curves are found to consist of two distinct components at >5 σ with bimodal distributions of luminosity and duration, i.e., extended (with a timescale of ≲10{sup 3} s) and plateau emission (with a timescale of ≳10{sup 3} s),more » which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ∼0.01–1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET /HXM, INTEGRAL /SPI-ACS, Fermi /GBM, MAXI /GSC, Swift /BAT, XRT, the future ISS-Lobster /WFI, Einstein Probe /WXT, and eROSITA .« less

  5. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  6. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type.

    PubMed

    Wang, T; Picard, J C; Tian, X; Darmency, H

    2010-10-01

    It is often alleged that mutations conferring herbicide resistance have a negative impact on plant fitness. A mutant ACCase1781 allele endowing resistance to the sethoxydim herbicide was introgressed from a resistant green foxtail (Setaria viridis (L.) Beauv) population into foxtail millet (S. italica (L.) Beauv.). (1) Better and earlier growth of resistant plants was observed in a greenhouse cabinet. (2) Resistant plants of the advanced BC7 backcross generation showed more vigorous juvenile growth in the field, earlier flowering, more tillers and higher numbers of grains than susceptible plants did, especially when both genotypes were grown in mixture, but their seeds were lighter than susceptible seeds. (3) Field populations originating from segregating hybrids had the expected allele frequencies under normal growth conditions, but showed a genotype shift toward an excess of homozygous resistant plants within 3 years in stressful conditions. Lower seed size, lower germination rate and perhaps unexplored differences in seed longevity and predation could explain how the resistant plants have the same field fitness over the whole life cycle as the susceptible ones although they produce more seeds. More rapid growth kinetics probably accounted for higher fitness of the resistant plants in adverse conditions. The likelihood of a linkage with a beneficial gene is discussed versus the hypothesis of a pleiotropic effect of the ACCase resistance allele. It is suggested that autogamous species like Setaria could not develop a resistant population without the help of a linkage with a gene producing a higher fitness.

  7. Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants.

    PubMed

    Kovácik, Jozef; Klejdus, Borivoj; Stork, Frantisek; Hedbavny, Josef

    2011-05-11

    The effect of nitrogen (nitrate) deficiency (-N) on the accumulation of cadmium (Cd) and nickel (Ni) in chamomile ( Matricaria chamomilla ) plants was studied. Elimination of N from the culture medium led to decreases in N-based compounds (free amino acids and soluble proteins) and increases in C-based compounds (reducing sugars, soluble phenols, coumarins, phenolic acids, and partially flavonoids and lignin), being considerably affected by the metal presence. Proline, a known stress-protective amino acid, decreased in all -N variants. The activity of phenylalanine ammonia-lyase was stimulated only in -N control plants, whereas the activities of polyphenol oxidase and guaiacol peroxidase were never reduced in -N variants in comparison with respective +N counterparts. Among detected phenolic acids, chlorogenic acid strongly accumulated in all N-deficient variants in the free fraction and caffeic acid in the cell wall-bound fraction. Mineral nutrients were rather affected by a given metal than by N deficiency. Shoot and total root Cd and Ni amounts decreased in -N variants. On the contrary, ammonium-fed plants exposed to N deficiency did not show similar changes in Cd and Ni contents. The present findings are discussed with respect to the role of phenols and mineral nutrition in metal uptake.

  8. A Multi-Wavelength Search for a Counterpart of the Unidentified Gamma-ray source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Arzoumanian, Zaven; Lorimer, Duncan; Camilo, Fernando; Elsner, Ronald F.; Kanbach, Gottfried; Reimer, Olaf; Swartz, Douglas A.; Tennant, Allyn F.

    2004-01-01

    In search of the counterpart to the brightest unidentified gamma-ray source 3EG J2020+4017 (2CG078+2) we report on new X-ray and radio observations of the gamma-Cygni field with the Chandra X-ray Observatory and with the Green Bank Telescope (GBT). We also report on reanalysis of archival ROSAT data. With Chandra it became possible for the first time to measure the position of the putative gamma-ray counterpart RX J2020.2+4026 with sub-arcsec accuracy and to deduce its X-ray spectral characteristics. These observations demonstrate that RX J2020.2+4026 is associated with a K field star and therefore is unlikely to be the counterpart of the bright gamma-ray source 2CG078+2 in the SNR G78.2+2.1 as had been previously suggested. The Chandra observation detected 37 additional X-ray sources which were correlated with catalogs of optical and infrared data. Subsequent GBT radio observations covered the complete 99% EGRET likelihood contour of 3EG J2020+4017 with a sensitivity limit of L(sub 820) approx. 0.1 mJy kpc(exp 2) which is lower than most of the recent deep radio search limits. If there is a pulsar operating in 3EG J2020+4017, this sensitivity limit suggests that the pulsar either does not produce significant amounts of radio emission or that its geometry is such that the radio beam does not intersect with the line of sight. Finally, reanalysis of archival ROSAT data leads to a flux upper limit of f(sub x)(0.1-2.4 keV) < 1.8 x 10(exp -13) erg/s/sq cm for a putative point-like X-ray source located within the 68% confidence contour of 3EG J2020+4017. Adopting the SNR age of 5400 yrs and assuming a spin-down to X-ray energy conversion factor of 10(exp -3) this upper limit constraints the parameters of a putative neutron star as a counterpart for 3EG J2020+4017 to be P > or approx. 160/(d/1.5 kpc) ms, P > or approx. 5 x 10(exp -13)/(d/1.5kpc) s s1 and B > or approx. 9 x 10(exp 12)/(d/1.5 kpc) G.

  9. Plants with genetically modified events combined by conventional breeding: an assessment of the need for additional regulatory data.

    PubMed

    Pilacinski, W; Crawford, A; Downey, R; Harvey, B; Huber, S; Hunst, P; Lahman, L K; MacIntosh, S; Pohl, M; Rickard, C; Tagliani, L; Weber, N

    2011-01-01

    Crop varieties with multiple GM events combined by conventional breeding have become important in global agriculture. The regulatory requirements in different countries for such products vary considerably, placing an additional burden on regulatory agencies in countries where the submission of additional data is required and delaying the introduction of innovative products to meet agricultural needs. The process of conventional plant breeding has predictably provided safe food and feed products both historically and in the modern era of plant breeding. Thus, previously approved GM events that have been combined by conventional plant breeding and contain GM traits that are not likely to interact in a manner affecting safety should be considered to be as safe as their conventional counterparts. Such combined GM event crop varieties should require little, if any, additional regulatory data to meet regulatory requirements. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  11. Plants. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    Designed to serve as a resource tool in a high school vocational agriculture curriculum dealing with the environment as it relates to agriculture, this unit is concerned with plants. Plants are defined and their characteristics described. A section on the effects of environment on higher plants covers temperature, light, water, nutrients, air,…

  12. Expression of a Heterologous S-Adenosylmethionine Decarboxylase cDNA in Plants Demonstrates That Changes in S-Adenosyl-l-Methionine Decarboxylase Activity Determine Levels of the Higher Polyamines Spermidine and Spermine1

    PubMed Central

    Thu-Hang, Pham; Bassie, Ludovic; Safwat, Gehan; Trung-Nghia, Pham; Christou, Paul; Capell, Teresa

    2002-01-01

    We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also involved in their biosynthesis. Transgenic rice (Oryza sativa) plants engineered with the heterologous Datura stramonium S-adenosylmethionine decarboxylase (samdc) cDNA exhibited accumulation of the transgene steady-state mRNA. Transgene expression did not affect expression of the orthologous samdc gene. Significant increases in SAMDC activity translated to a direct increase in the level of spermidine, but not spermine, in leaves. Seeds recovered from a number of plants exhibited significant increases in spermidine and spermine levels. We demonstrate that overexpression of the D. stramonium samdc cDNA in transgenic rice is sufficient for accumulation of spermidine in leaves and spermidine and spermine in seeds. These findings suggest that increases in enzyme activity in one of the two components of the later parts of the pathway leading to the higher polyamines is sufficient to alter their levels mostly in seeds and, to some extent, in vegetative tissue such as leaves. Implications of our results on the design of rational approaches for the modulation of the polyamine pathway in plants are discussed in the general framework of metabolic pathway engineering. PMID:12177487

  13. Microorganism and filamentous fungi drive evolution of plant synapses

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell–cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes. PMID:23967407

  14. Comparing U.S. Army Systems with Foreign Counterparts: Identifying Possible Capability Gaps and Insights from Other Armies

    DTIC Science & Technology

    2015-01-01

    C O R P O R A T I O N Research Report Comparing U.S. Army Systems with Foreign Counterparts Identifying Possible Capability Gaps and Insights from...Couffer; photo by E. Heidtmann, CC BY 3.0; photo by Black Mammmba, CC BY 3.0; and photo by Vitaly V. Kuzmin, CC BY 3.0. M1A2 Abrams Leopard 2A6 Merkava...photo by Mass Communication Specialist 1st Class Daniel N . Woods; photo by Daniel Steger, CC BY-SA 2.5; “MIL_Finlândia-Army_Demo Day 2005 Rovajärvellä

  15. What Good Is Christian Higher Education?

    ERIC Educational Resources Information Center

    Schreiner, Laurie A.

    2018-01-01

    This article presents the results of an analysis of recent survey data collected from CCCU students and alumni to address the research question, "To what extent are CCCU students and alumni significantly different from their counterparts in other types of universities, based on data collected through national surveys?" Survey data from…

  16. Gravitropism in higher plant shoots. V - Changing sensitivity to auxin

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Gillespie, Linda; Rorabaugh, Patricia

    1988-01-01

    The relationship in plants between the sensitivity to auxin and differential growth and bending was investigated experimentally. Decapitated and marked sunflower hypocotyl sections were immersed in buffered auxin solutions of different concentrations (0, 10 to the -8th, or 0.001 molar) and were photographed at 1/2 hr intervals; the negatives were analyzed with a digitizer/computer to evaluate surface-length changes in terms of Michaelis-Menten enzyme kinetics. It was found that bending decreased with increasing concentration of auxin. Increasing the auxin concentration inhibits the elongation growth of lower surfaces but promotes upper-surface growth, indicating that the lower surfaces have a greater Km sensitivity to applied auxin than the upper surfaces. At optimum auxin levels (maximum growth), the growth of bottom surfaces exceeded that of top surfaces, indicating that bottom tissues had a greater Vmax sensitivity.

  17. Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends from Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci.

    PubMed

    Silva, Diego B; Weldegergis, Berhane T; Van Loon, Joop J A; Bueno, Vanda H P

    2017-01-01

    Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C 18 -fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.

  18. Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II

    DOE PAGES

    Mummadisetti, Manjula P.; Frankel, Laurie K.; Bellamy, Henry D.; ...

    2014-10-27

    We used protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry to examine the structure of PsbP and PsbQ when they are bound to Photosystem II, in this paper. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve to stabilize the structure of the N terminus and may facilitate PsbP binding and function. These interactions place strong structural constraints on the organization of PsbP when associated with the Photosystem II complex. Additionally, amino acid residues inmore » the structurally unresolved loop 3A domain of PsbP ( 90K– 107V), 93Y and 96K, are in close proximity (≤11.4 Å) to the N-terminal 1E residue of PsbQ. Our findings are the first, to our knowledge, to identify a putative region of interaction between these two components. Cross-linked domains within PsbQ were also identified, indicating that two PsbQ molecules can interact in higher plants in a manner similar to that observed by Liu et al. [(2014) Proc Natl Acad Sci 111(12):4638–4643] in cyanobacterial Photosystem II. Furthermore, this interaction is consistent with either intra-Photosystem II dimer or inter-Photosystem II dimer models in higher plants. Finally, OH• produced by synchrotron radiolysis of water was used to oxidatively modify surface residues on PsbP and PsbQ. Finally, domains on the surface of both protein subunits were resistant to modification, indicating that they were shielded from water and appear to define buried regions that are in contact with other Photosystem II components.« less

  19. Exploring the antimalarial potential of whole Cymbopogon citratus plant therapy.

    PubMed

    Chukwuocha, Uchechukwu M; Fernández-Rivera, Omar; Legorreta-Herrera, Martha

    2016-12-04

    Cymbopogon citratus (lemon grass) has been used in traditional medicine as an herbal infusion to treat fever and malaria. Generally, whole plant extracts possess higher biological activity than purified compounds. However, the antimalarial activity of the whole C. citratus plant has not been experimentally tested. To evaluate the antimalarial activity of an herbal infusion and the whole Cymbopogon citratus plant in two experimental models of malaria. The plant was dried for 10 days at room temperature and was then milled and passed through brass sieves to obtain a powder, which was administered to CBA/Ca mice with a patent Plasmodium chabaudi AS or P. berghei ANKA infection. We analysed the effects of two different doses (1600 and 3200mg/kg) compared with those of the herbal infusion and chloroquine, used as a positive control. We also assessed the prophylactic antimalarial activities of the whole C. citratus plant and the combination of the whole plant and chloroquine. The C. citratus whole plant exhibited prolonged antimalarial activity against both P. chabaudi AS and P. berghei ANKA. The low dose of the whole C. citratus plant displayed higher antimalarial activity than the high dose against P. berghei ANKA. As a prophylactic treatment, the whole plant exhibited higher antimalarial activity than either the herbal infusion or chloroquine. In addition, the combination of the whole C. citratus plant and chloroquine displayed higher activity than chloroquine alone against P. berghei ANKA patent infection. We demonstrated the antimalarial activity of the whole C. citratus plant in two experimental models. The whole C. citratus plant elicited higher anti-malarial activity than the herbal infusion or chloroquine when used as a prophylactic treatment. The antimalarial activity of the whole C. citratus plant supports continued efforts towards developing whole plant therapies for the management of malaria and other infectious diseases prevalent in resource

  20. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    PubMed

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  1. Testing Two Methods that Relate Herbivorous Insects to Host Plants

    PubMed Central

    White, Peter J. T.

    2013-01-01

    Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830

  2. Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Year-round observations at Gosan, Jeju Island

    NASA Astrophysics Data System (ADS)

    Tyagi, Poonam; Kawamura, Kimitaka; Kariya, Tadashi; Bikkina, Srinivas; Fu, Pingqing; Lee, Meehye

    2017-04-01

    Atmospheric transport of soil microorganisms and higher plant waxes in East Asia significantly influences the aerosol composition over the North Pacific. This study investigates the year-round atmospheric abundances of hydroxy fatty acids (FAs), tracers of soil microorganisms (β-isomers), and plant waxes (α- and ω-isomers), in total suspended particles collected at Gosan, Jeju Island, during April 2001 to March 2002. These hydroxy FAs showed a pronounced seasonality, higher concentrations in winter/spring and lower concentrations in summer/autumn, which are consistent with other tracers of soil microbes (trehalose), resuspended dust (nss-Ca2+), and stable carbon isotopic composition (δ13C) of total carbon. The molecular distributions of β-hydroxy FAs (predominance of C12 and C16 in winter/spring and summer/autumn, respectively) are consistent with those from a remote island (Chichijima) in the North Pacific and Asian dust standards (CJ-1 and CJ-2). This observation together with back trajectories over Gosan reveal that desert sources in China during winter and arid regions of Mongolia and Russian Far East during spring are the major contributors of soil microbes over the North Pacific. Predominance of ω-isomers (83%) over β-hydroxy FAs (16%) revealed a major contribution of terrestrial lipids from higher plant waxes over soil microbes in the East Asian outflow.

  3. Effects of Government Regulations on Higher Education.

    ERIC Educational Resources Information Center

    Bernhard, John T.; Hannah, Robert W.

    Results of a self-study conducted by Western Michigan University on the effects of government regulations on higher education are presented. The self-study, conducted with the aid of questionnaires, followup visits, or telephone calls, addressed the following main concerns: (1) academic programs; (2) maintenance, buildings, physical plant, and…

  4. The Role of Gravity on the Reproduction of Arabidopsis Plants

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1985-01-01

    The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.

  5. Intra-plant floral variation in Cleome viscosa L. and its possible significance in breeding system.

    PubMed

    Saroop, Shveta; Kaul, Veenu

    2015-07-01

    Cleome viscosa L., an annual rainy season weed, is cosmopolitan in distribution. Two naturally growing populations of C. viscosa from Jammu, J & K, India have been studied for floral variation at an intra-plant level and its possible role in its life cycle. Plants of both the populations bear flowers which exhibit tremendous intra-plant variation in size (large and small) and sex (hermaphrodite, staminate and pistillate). The average number of flowers per plant varied significantly and so did their structural and functional details. Greater propensity, however, was towards hermaphroditism at both plant and flower levels. The large and small sized flowers differed in their morphology and reproductive features; the former were significantly larger than the latter. Anthesis, anther dehiscence and stigma receptivity were coupled in all flower types. This functional aspect along with the structural proximity between stamens at two lengths and pistil further facilitated self-pollination. However, conspicuous floral display attracted diverse pollinator fauna (Apis dorsata, Halictus albescens, Nomia curvipes and N. elliotii) which in turn mediated cross pollination. Nevertheless, each floral type contributed towards plant's fitness in its own way. Hermaphrodite flowers exhibited both self and cross pollination and assured survival by setting fruits and seeds with the large sized counterparts more productive. All these floral variations seemed to impart flexibility to the pollination system and provide fitness over the short flowering season.

  6. Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants.

    PubMed

    Radhakrishnan, Ramalingam; Pae, Suk-Bok; Shim, Kang-Bo; Baek, In-Youl

    2013-07-01

    Fusarium-infected sesame plants have significantly higher contents of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, Arg, and Pro), compared with their respective levels in the healthy control. These higher levels of amino acids induced by Fusarium infection were decreased when Penicillium was co-inoculated with Fusarium. Compared with the control, Fusarium-infected plants showed higher contents of palmitic (8%), stearic (8%), oleic (7%), and linolenic acids (4%), and lower contents of oil (4%) and linoleic acid (11%). Co-inoculation with Penicillium mitigated the Fusarium-induced changes in fatty acids. The total chlorophyll content was lower in Fusarium- and Penicillium-infected plants than in the healthy control. The accumulation of carotenoids and γ-amino butyric acid in Fusarium-infected plants was slightly decreased by co-inoculation with Penicillium. Sesamin and sesamolin contents were higher in Penicillium- and Fusarium- infected plants than in the control. To clarify the mechanism of the biocontrol effect of Penicillium against Fusarium by evaluating changes in primary and secondary metabolite contents in sesame plants.

  7. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, Maureen; Fridriksson, Joel K.; Homan, Jeroen

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelettemore » spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.« less

  8. Late-time X-ray signatures of compact binary mergers: potential counterparts of gravitational wave events

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2017-09-01

    Merging compact binaries (NS-NS or NS-BH) offer the best prospects for detection of EM signals accompanying gravitational wave (GW) events. They may be seen as bright short-GRBs (SGRBs), but this is likely to be rare due to beaming. Alternatively, more isotropic near-IR emission is predicted to result from the 'kilonova' produced by radioactive decay of neutron star ejecta. However, recent XMM observations have shown unexplained excess X-ray emission several days post-burst in two low-z SGRBs. This may indicate ongoing engine activity which both enhances the nIR emission, and crucially provides a potential new isotropic X-ray signature of compact binary mergers. We propose a detailed study of a further z<0.35 SGRB, to explore this phenomenon and inform future searches for GW counterparts.

  9. Search for an IR counterpart to the newly discovered transient Swift J11822.3-1606

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, R. M.; Lucas, P. W.; Maccarone, T.

    2011-07-01

    We have searched for potential near-infrared counterparts to the new Galactic Center X-ray transient, Swift J1822.3-1606 (ATEL #3488, #3489, #3490, #3491, #3493, #3495, #3496, #3501) using the UKIDSS Galactic Plane Survey (GPS) Catalog (Lucas et al., 2008, MNRAS, 391, 136). Within the enhanced Swift-XRT error circle (1.8" radius) centered at RA 18:22:18.00, Dec -16:04:26.8 (ATel #3493), there are two infrared stellar sources in the UKIDSS GPS catalog: RA Dec J H K star 1 18:22:17.9 -16:04:25.9 13.90 12.37 11.65 star 2 18:22:18:0 -16:04:28.2 16.50 15.44 14.97 These are the same as "S1" and "S2" identified by Gorosabel et al.

  10. Single-stranded DNA condensed with poly-L-lysine results in nanometric particles that are significantly smaller, more stable in physiological ionic strength fluids and afford higher efficiency of gene delivery than their double-stranded counterparts.

    PubMed

    Molas, M; Bartrons, R; Perales, J C

    2002-08-15

    Nonviral gene transfer vectors have been actively studied in the past years in order to obtain structural entities with minimum size and defined shape. The final size of a gene transfer vector, which is compacted into unimolecular complexes, is directly proportional to the mass of the nucleic acid to be compacted. Thus, the purpose of this study was to assess the possibility of producing ssDNA vectors and their biophysical and biological characterization. We have obtained ssDNA/poly-L-lysine complexes that are significantly smaller than their double-stranded counterparts. We have also identified a lesser aggregative behavior of compacted single-stranded vs. double-stranded DNA vectors in the presence of physiological NaCl concentrations. Expression of compacted ssDNA is observed in hepatoma cell lines. Moreover, we have successfully delivered galactosylated ssDNA complexes into cells that express the asialoglycoprotein receptor via receptor-mediated endocytosis. The reduced size and biophysical behavior of ssDNA vectors may provide an advantage for transfection of eukaryotic cells.

  11. Strategies for Prompt Searches for GRB Afterglows: The Discovery of GRB 001011 Optical/Near-Infrared Counterpart Using Colour-Colour Selection

    NASA Technical Reports Server (NTRS)

    Gorosabel, J.; Fynbo, J. U.; Hjorth, J.; Wolf, C.; Andersen, M. I.; Pedersen, H.; Christensen, L.; Jensen, B. L.; Moller, P.; Afonso, J.; hide

    2001-01-01

    We report the discovery of the optical and near-infrared counterpart to GRB 001011. The GRB 001011 error box determined by Beppo-SAX was simultaneously imaged in the near-infrared by the 3.58-m. New Technology Telescope and in the optical by the 1.54-m Danish Telescope - 8 hr after the gamma-ray event. We implement the colour-colour discrimination technique proposed by Rhoads (2001) and extend it using near-IR data as well. We present the results provided by an automatic colour-colour discrimination pipe-line developed to discern the different populations of objects present in the GRB 001011 error box. Our software revealed three candidates based on single-epoch images. Second-epoch observations carried out approx. 3.2 days after the burst revealed that the most likely candidate had faded thus identifying it with the counterpart to the GRB. In deep R-band images obtained 7 months after the burst a faint (R=25.38 plus or minus 0.25) elongated object, presumably the host galaxy of GRB 001011, was detected at the position of the afterglow. The GRB 001011 afterglow is the first discovered with the assistance of colour-colour diagram techniques. We discuss the advantages of using this method and its application to boxes determined by future missions.

  12. Is UV-induced DNA damage greater at higher elevation?

    PubMed

    Wang, Qing-Wei; Hidema, Jun; Hikosaka, Kouki

    2014-05-01

    • Although ultraviolet radiation (UV) is known to have negative effects on plant growth, there has been no direct evidence that plants growing at higher elevations are more severely affected by ultraviolet-B (UV-B) radiation, which is known to increase with elevation. We examined damage to DNA, a primary target of UV-B, in the widespread species Polygonum sachalinense (Fallopia sachalinensis) and Plantago asiatica at two elevations.• We sampled leaves of both species at 300 and 1700 m above sea level every 2 h for 11 d across the growing season and determined the level of cyclobutane pyrimidine dimer (CPD), a major product of UV damage to DNA.• The CPD level was significantly influenced by the time of day, date, elevation, and their interactions in both species. The CPD level tended to be higher at noon or on sunny days. DNA damage was more severe at 1700 m than at 300 m: on average, 8.7% greater at high elevation in P. asiatica and 7.8% greater in P. sachalinense Stepwise multiple regression analysis indicated that the CPD level was explained mainly by UV-B and had no significant relationship with other environmental factors such as temperature and photosynthetically active radiation.• UV-induced DNA damage in plants is greater at higher elevations. © 2014 Botanical Society of America, Inc.

  13. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    PubMed

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  14. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    PubMed

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  15. Golgi-Mediated Synthesis and Secretion of Matrix Polysaccharides of the Primary Cell Wall of Higher Plants

    PubMed Central

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier

    2012-01-01

    The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin. PMID:22639665

  16. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants.

    PubMed

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier

    2012-01-01

    The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.

  17. Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes.

    PubMed

    Moles, Angela T; Wallis, Ian R; Foley, William J; Warton, David I; Stegen, James C; Bisigato, Alejandro J; Cella-Pizarro, Lucrecia; Clark, Connie J; Cohen, Philippe S; Cornwell, William K; Edwards, Will; Ejrnaes, Rasmus; Gonzales-Ojeda, Therany; Graae, Bente J; Hay, Gregory; Lumbwe, Fainess C; Magaña-Rodríguez, Benjamín; Moore, Ben D; Peri, Pablo L; Poulsen, John R; Veldtman, Ruan; von Zeipel, Hugo; Andrew, Nigel R; Boulter, Sarah L; Borer, Elizabeth T; Campón, Florencia Fernández; Coll, Moshe; Farji-Brener, Alejandro G; De Gabriel, Jane; Jurado, Enrique; Kyhn, Line A; Low, Bill; Mulder, Christa P H; Reardon-Smith, Kathryn; Rodríguez-Velázquez, Jorge; Seabloom, Eric W; Vesk, Peter A; van Cauter, An; Waldram, Matthew S; Zheng, Zheng; Blendinger, Pedro G; Enquist, Brian J; Facelli, Jose M; Knight, Tiffany; Majer, Jonathan D; Martínez-Ramos, Miguel; McQuillan, Peter; Prior, Lynda D

    2011-08-01

    • It has long been believed that plant species from the tropics have higher levels of traits associated with resistance to herbivores than do species from higher latitudes. A meta-analysis recently showed that the published literature does not support this theory. However, the idea has never been tested using data gathered with consistent methods from a wide range of latitudes. • We quantified the relationship between latitude and a broad range of chemical and physical traits across 301 species from 75 sites world-wide. • Six putative resistance traits, including tannins, the concentration of lipids (an indicator of oils, waxes and resins), and leaf toughness were greater in high-latitude species. Six traits, including cyanide production and the presence of spines, were unrelated to latitude. Only ash content (an indicator of inorganic substances such as calcium oxalates and phytoliths) and the properties of species with delayed greening were higher in the tropics. • Our results do not support the hypothesis that tropical plants have higher levels of resistance traits than do plants from higher latitudes. If anything, plants have higher resistance toward the poles. The greater resistance traits of high-latitude species might be explained by the greater cost of losing a given amount of leaf tissue in low-productivity environments. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  18. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range

    PubMed Central

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I.

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions. PMID:27242863

  19. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range.

    PubMed

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.

  20. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates.

    PubMed

    García-Verdugo, C; Sajeva, M; La Mantia, T; Harrouni, C; Msanda, F; Caujapé-Castells, J

    2015-02-01

    Ecological and evolutionary studies largely assume that island populations display low levels of neutral genetic variation. However, this notion has only been formally tested in a few cases involving plant taxa, and the confounding effect of selection on genetic diversity (GD) estimates based on putatively neutral markers has typically been overlooked. Here, we generated nuclear microsatellite and plastid DNA sequence data in Periploca laevigata, a plant taxon with an island-mainland distribution area, to (i) investigate whether selection affects GD estimates of populations across contrasting habitats; and (ii) test the long-standing idea that island populations have lower GD than their mainland counterparts. Plastid data showed that colonization of the Canary Islands promoted strong lineage divergence within P. laevigata, which was accompanied by selective sweeps at several nuclear microsatellite loci. Inclusion of loci affected by strong divergent selection produced a significant downward bias in the GD estimates of the mainland lineage, but such underestimates were substantial (>14%) only when more than one loci under selection were included in the computations. When loci affected by selection were removed, we did not find evidence that insular Periploca populations have less GD than their mainland counterparts. The analysis of data obtained from a comprehensive literature survey reinforced this result, as overall comparisons of GD estimates between island and mainland populations were not significant across plant taxa (N = 66), with the only exception of island endemics with narrow distributions. This study suggests that identification and removal of markers potentially affected by selection should be routinely implemented in estimates of GD, particularly if different lineages are compared. Furthermore, it provides compelling evidence that the expectation of low GD cannot be generalized to island plant populations. © 2015 John Wiley & Sons Ltd.

  1. Thirsty Plants in Arid Places

    ERIC Educational Resources Information Center

    Schaffer, Linda; Kingsley, Karla V.

    2009-01-01

    In order to demonstrate how plants remove water from the soil and release it to the atmosphere, students compared open- and closed-growing systems using drought-tolerant and higher water requirement plants. Then, students designed a drought-tolerant garden demonstrating what they had learned. Through this experience, students not only learned…

  2. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    PubMed Central

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  3. Plants as green phones

    PubMed Central

    Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-01-01

    Plants can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or ‘green phones’ between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects. PMID:19513244

  4. Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods

    PubMed Central

    Ebeling, Anne; Meyer, Sebastian T.; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W.

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning. PMID:25226237

  5. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  6. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  7. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer.

    PubMed

    Schnarrenberger, Claus; Martin, William

    2002-02-01

    The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha

  8. Medicare Prescription Drug Plan Enrollees Report Less Positive Experiences Than Their Medicare Advantage Counterparts.

    PubMed

    Elliott, Marc N; Landon, Bruce E; Zaslavsky, Alan M; Edwards, Carol; Orr, Nathan; Beckett, Megan K; Mallett, Joshua; Cleary, Paul D

    2016-03-01

    Since 2006, Medicare beneficiaries have been able to obtain prescription drug coverage through standalone prescription drug plans or their Medicare Advantage (MA) health plan, options exercised in 2015 by 72 percent of beneficiaries. Using data from community-dwelling Medicare beneficiaries older than age sixty-four in 700 plans surveyed from 2007 to 2014, we compared beneficiaries' assessments of Medicare prescription drug coverage when provided by standalone plans or integrated into an MA plan. Beneficiaries in standalone plans consistently reported less positive experiences with prescription drug plans (ease of getting medications, getting coverage information, and getting cost information) than their MA counterparts. Because MA plans are responsible for overall health care costs, they might have more integrated systems and greater incentives than standalone prescription drug plans to provide enrollees medications and information effectively, including, since 2010, quality bonus payments to these MA plans under provisions of the Affordable Care Act. Project HOPE—The People-to-People Health Foundation, Inc.

  9. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    DOE PAGES

    Pan, Y. -C.; Kilpatrick, C. D.; Simon, J. D.; ...

    2017-10-16

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10 farcs 2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass ofmore » $$\\mathrm{log}(M/{M}_{\\odot })={10.49}_{-0.20}^{+0.08}$$ and star formation rate of 0.003 $${M}_{\\odot }$$ yr -1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude $${M}_{V}\\gt -5.8$$ mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.« less

  10. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y. -C.; Kilpatrick, C. D.; Simon, J. D.

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10 farcs 2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass ofmore » $$\\mathrm{log}(M/{M}_{\\odot })={10.49}_{-0.20}^{+0.08}$$ and star formation rate of 0.003 $${M}_{\\odot }$$ yr -1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude $${M}_{V}\\gt -5.8$$ mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.« less

  11. Comparative study of He bubble formation in nanostructured reduced activation steel and its coarsen-grained counterpart

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Zhang, J. H.; Ji, Y. Z.; Xia, L. D.; Liu, H. P.; Yun, D.; He, C. H.; Zhang, C.; Yang, Z. G.

    2018-03-01

    High temperature (550 °C) He ions irradiation was performed on nanostructured (NS) and coarsen-grained (CG) reduced activation steel to investigate the effects of GBs/interfaces on the formation of bubbles during irradiation. Experimental results showed that He bubbles were preferentially trapped at dislocations and/or grain boundaries (GBs) for both of the samples. Void denuded zones (VDZs) were observed in the CG samples, while VDZs near GBs were unobvious in NS sample. However, both the average bubble size and the bubble density in peak damage region of the CG sample were significantly larger than that observed in the NS sample, which indicated that GBs play an important role during the irradiation, and the NS steel had better irradiation resistance than its CG counterpart.

  12. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    PubMed

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  13. Natural plant chemicals: source of industrial and medicinal materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.

    1985-01-01

    Many higher plants produce economically important organic compounds such as oils, resins, tannins, natural rubber, gums, waxes, dyes, flavors and fragrances, pharmaceuticals, and pesticides. However, most species of higher plants have never been described, much less surveyed for chemical or biologically active constituents, and new sources of commercially valuable materials remain to be discovered. Advances in biotechnology, particularly methods for culturing plants cells and tissues, should provide new means for the commercial processing of even rare plants and the chemicals they produce. These new technologies will extend and enhance the usefulness of plants as renewable resources of valuable chemicals. Inmore » the future, biologically active plant-derived chemicals can be expected to play an increasingly significant role in the commercial development of new products for regulating plant growth and for insect and weed control. 65 references.« less

  14. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    PubMed

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Unveiling an X-ray counterpart to the Unid. TeV source HESS J1852-000

    NASA Astrophysics Data System (ADS)

    Kosack, Karl

    2011-10-01

    We propose to use XMM-Newton to attempt to identify the hard-spectrum very-high- energy (VHE) gamma-ray source HESS J1852-000, which has currently no clear counterpart in lower-energy wavebands. The VHE source lies near the shell-type supernova remnant Kes 78, which may be associated with part of the VHE emission, e.g. through the illumination of nearby molecular clouds by escaping hadrons, via direct shock interaction, or via an as-yet-undetected nearby pulsar wind nebula. We present an analysis of archival XMM data from the region near Kes 78 that shows evidence for X-ray emission from part of the shell, and we propose a pointing that would complement the existing data while covering the peaks of the VHE gamma-ray emission as well as several weak X-ray and radio hotspots.

  16. Modeling the plant uptake of organic chemicals, including the soil-air-plant pathway.

    PubMed

    Collins, Chris D; Finnegan, Eilis

    2010-02-01

    The soil-air-plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil-air-plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log K(OA) > 9 and log K(AW) < -3. For those pollutants with log K(OA) < 9 and log K(AW) > -3 there was a higher deposition of pollutant via the soil-air-plant pathway than for those chemicals with log K(OA) > 9 and log K(AW) < -3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil-root-shoot pathway. The incorporation of the soil-air-plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log K(OA). One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg(-1).

  17. Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil

    NASA Astrophysics Data System (ADS)

    Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas

    2017-04-01

    There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and

  18. Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA

    PubMed Central

    Shultz, Randall W.; Tatineni, Vinaya M.; Hanley-Bowdoin, Linda; Thompson, William F.

    2007-01-01

    Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants. PMID:17556508

  19. Can we match ultraviolet face images against their visible counterparts?

    NASA Astrophysics Data System (ADS)

    Narang, Neeru; Bourlai, Thirimachos; Hornak, Lawrence A.

    2015-05-01

    In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. However, face recognition (FR) for face images captured using different camera sensors, and under variable illumination conditions, and expressions is very challenging. In this paper, we investigate the advantages and limitations of the heterogeneous problem of matching ultra violet (from 100 nm to 400 nm in wavelength) or UV, face images against their visible (VIS) counterparts, when all face images are captured under controlled conditions. The contributions of our work are three-fold; (i) We used a camera sensor designed with the capability to acquire UV images at short-ranges, and generated a dual-band (VIS and UV) database that is composed of multiple, full frontal, face images of 50 subjects. Two sessions were collected that span over the period of 2 months. (ii) For each dataset, we determined which set of face image pre-processing algorithms are more suitable for face matching, and, finally, (iii) we determined which FR algorithm better matches cross-band face images, resulting in high rank-1 identification rates. Experimental results show that our cross spectral matching (the heterogeneous problem, where gallery and probe sets consist of face images acquired in different spectral bands) algorithms achieve sufficient identification performance. However, we also conclude that the problem under study, is very challenging, and it requires further investigation to address real-world law enforcement or military applications. To the best of our knowledge, this is first time in the open literature the problem of cross-spectral matching of UV against VIS band face images is being investigated.

  20. National Plant Genome Initiative: 2003-2008

    DTIC Science & Technology

    2003-01-01

    maize, wheat, barley and sorghum. ! New fundamental science discoveries including: (1) the structure and organization of centromeres in higher plants ...JAN 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE National Plant Genome Initiative: 2003-2008 5a...National Science Foundation. National Plant Genome Initiative: 2003 - 2008 National Science and Technology Council Committee on Science Interagency