Sample records for higher point spin

  1. Topologically massive higher spin gravity

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Lal, Shailesh; Saha, Arunabha; Sahoo, Bindusar

    2011-10-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the presence of a non-trivial trace and its logarithmic partner at the chiral point. The trace modes carry energy opposite in sign to the traceless modes. The logarithmic partner of the traceless mode carries negative energy indicating an instability at the chiral point. We make several comments on the asymptotic symmetry and its possible deformations at this chiral point and speculate on the higher spin generalisation of LCFT2 dual to the spin-3 massive gravity at the chiral point.

  2. Spinning AdS loop diagrams: two point functions

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Sleight, Charlotte; Taronna, Massimo

    2018-06-01

    We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.

  3. Invariant functionals in higher-spin theory

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. A.

    2017-03-01

    A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  4. Interactions in higher-spin gravity: a holographic perspective

    NASA Astrophysics Data System (ADS)

    Sleight, Charlotte

    2017-09-01

    This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.

  5. On four-point interactions in massless higher spin theory in flat space

    NASA Astrophysics Data System (ADS)

    Roiban, R.; Tseytlin, A. A.

    2017-04-01

    We consider a minimal interacting theory of a single tower of spin j = 0, 2, 4,… massless Fronsdal fields in flat space with local Lorentz-covariant cubic interaction vertices. We address the question of constraints on possible quartic interaction vertices imposed by the condition of on-shell gauge invariance of the tree-level four-point scattering amplitudes involving three spin 0 and one spin j particle. We find that these constraints admit a local solution for quartic 000 j interaction term in the action only for j = 2 and j = 4. We determine the non-local terms in four-vertices required in the j ≥ 6 case and suggest that these non-localities may be interpreted as a result of integrating out a tower of auxiliary ghost-like massless higher spin fields in an extended theory with a local action, up to possible higher-point interactions of the ghost fields. We also consider the conformal off-shell extension of the Einstein theory and show that the perturbative expansion of its action is the same as that of the non-local action resulting from integrating out the trace of the graviton field from the Einstein action. Motivated by this example, we conjecture the existence of a similar conformal off-shell extension of a massless higher spin theory that may be related to the above extended theory. It may then have the same infinite-dimensional symmetry as the higher-derivative conformal higher spin theory and may thus lead to a trivial S matrix.

  6. Conformal higher spin theory and twistor space actions

    NASA Astrophysics Data System (ADS)

    Hähnel, Philipp; McLoughlin, Tristan

    2017-12-01

    We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.

  7. Aspects of Higher Spin Symmetry and its Breaking

    NASA Astrophysics Data System (ADS)

    Zhiboedov, Alexander

    This thesis explores different aspects of higher spin symmetry and its breaking in the context of Quantum Field Theory, AdS/CFT and String Theory. In chapter 2, we study the constraints imposed by the existence of a single higher spin conserved current on a three-dimensional conformal field theory (CFT). A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of N free bosons or free fermions. This is an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S-matrix. In chapter 3, we consider three-dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single-trace and multi-trace and obey the usual large N factorization properties. We assume that the only single trace operators are the higher spin currents plus an additional scalar. Using the slightly broken higher spin symmetry we constrain the three-point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O( N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. In chapter 4, we consider several aspects of unitary higher-dimensional conformal field theories. We investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists tau 1, tau2 appear in the spectrum, there are operators whose twists are arbitrarily close to tau1 + tau2. We characterize how tau1 + tau2 is approached at large spin by solving the crossing equations analytically. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking. In chapter 5, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an infinite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients (a-c)/c lesssim 1/Delta gap2 in terms of Deltagap, the dimension of the lightest single particle operator with spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.

  8. Theory of the magnetic susceptibility including zero-point spin fluctuations of itinerant nearly ferromagnetic compounds

    NASA Astrophysics Data System (ADS)

    Konno, Rikio; Hatayama, Nobukuni; Takahashi, Yoshinori

    2018-05-01

    We have investigated the temperature dependence of the magnetic susceptibility of itinerant nearly ferromagnetic compounds based on the spin fluctuation theory. It is based on the conservation of the local spin amplitude that consists of both the thermal and the zero-point components. The linear dependence of the zero-point spin fluctuation amplitude on the inverse of magnetic susceptibility is usually assumed. The purpose of our present study is to include its higher order terms and to see their effects on the magnetic susceptibility. For the thermal amplitude, it shows T2-linear temperature dependence at low temperatures.

  9. Spin-3 topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Wu, Jun-bao

    2011-11-01

    In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS3 vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W3 algebra and central charge cR = 3 l / G.

  10. Higgsing the stringy higher spin symmetry

    DOE PAGES

    Gaberdiel, Matthias R.; Peng, Cheng; Zadeh, Ida G.

    2015-10-01

    It has recently been argued that the symmetric orbifold theory of T 4 is dual to string theory on AdS 3 × S 3 × T 4 at the tensionless point. At this point in moduli space, the theory possesses a very large symmetry algebra that includes, in particular, a W ∞ algebra capturing the gauge fields of a dual higher spin theory. Using conformal perturbation theory, we study the behaviour of the symmetry generators of the symmetric orbifold theory under the deformation that corresponds to switching on the string tension. We show that the generators fall nicely into Reggemore » trajectories, with the higher spin fields corresponding to the leading Regge trajectory. We also estimate the form of the Regge trajectories for large spin, and find evidence for the familiar logarithmic behaviour, thereby suggesting that the symmetric orbifold theory is dual to an AdS background with pure RR flux.« less

  11. Causality constraints on corrections to the graviton three-point coupling

    DOE PAGES

    Camanho, Xián O.; Edelstein, José D.; Maldacena, Juan; ...

    2016-02-03

    In this paper, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond the one present in the Einstein theory. We argue that these are constrained by causality. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an in finite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients |more » $$\\frac{a-c}{c}$$|≲ $$\\frac{1}{2}$$ $${^Δ}_{gap}$$ in terms of Δgap, the dimension of the lightest single trace operator with spin J > 2. Lastly, for inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.« less

  12. Irreversibility and higher-spin conformal field theory

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  13. Anomalous dimensions of spinning operators from conformal symmetry

    NASA Astrophysics Data System (ADS)

    Gliozzi, Ferdinando

    2018-01-01

    We compute, to the first non-trivial order in the ɛ-expansion of a perturbed scalar field theory, the anomalous dimensions of an infinite class of primary operators with arbitrary spin ℓ = 0, 1, . . . , including as a particular case the weakly broken higher-spin currents, using only constraints from conformal symmetry. Following the bootstrap philosophy, no reference is made to any Lagrangian, equations of motion or coupling constants. Even the space dimensions d are left free. The interaction is implicitly turned on through the local operators by letting them acquire anomalous dimensions. When matching certain four-point and five-point functions with the corresponding quantities of the free field theory in the ɛ → 0 limit, no free parameter remains. It turns out that only the expected discrete d values are permitted and the ensuing anomalous dimensions reproduce known results for the weakly broken higher-spin currents and provide new results for the other spinning operators.

  14. Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows

    NASA Astrophysics Data System (ADS)

    Diab, Kenan S.

    In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.

  15. Phases of higher spin black holes: Hawking-Page, transitions between black holes, and a critical point

    NASA Astrophysics Data System (ADS)

    Bañados, Máximo; Düring, Gustavo; Faraggi, Alberto; Reyes, Ignacio A.

    2017-08-01

    We study the thermodynamic phase diagram of three-dimensional s l (N ;R ) higher spin black holes. By analyzing the semiclassical partition function we uncover a rich structure that includes Hawking-Page transitions to the AdS3 vacuum, first order phase transitions among black hole states, and a second order critical point. Our analysis is explicit for N =4 but we extrapolate some of our conclusions to arbitrary N . In particular, we argue that even N is stable in the ensemble under consideration but odd N is not.

  16. Cubic Interactions of Massless Bosonic Fields in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Karapet

    2018-06-01

    In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation is that it is known how to incorporate matter interactions into the description. We derive a complete classification of cubic interactions for arbitrary triples s1 , s2 , s3 of massless fields, which are the building blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any given triple of spins in 3D (with one exception, s1=s2=s3=1 , which allows for two vertices). Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain at least two spins greater than one. This translates into selection rules for three-point functions of higher-spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein backgrounds.

  17. Spin-flop quasi-first order phase transition and putative tricritical point in Gd3Co

    NASA Astrophysics Data System (ADS)

    Samatham, S. Shanmukharao; Barua, Soumendu; Suresh, K. G.

    2017-12-01

    Magnetic nature of Gd3Co is investigated using detailed measurements of temperature and field dependent magnetization. The antiferromagnetic phase is field-instable due to prevailing ferromagnetic exchange correlations above Néel temperature TN ∼ 130K . Below TN , with gradually increasing magnetic fields, the compound undergoes a quasi-first order phase transition from AFM to spin-flop over region and eventually acquires ferromagnetic phase in higher fields. Further the point at which the quasi-first order transition ends and second order transition sets in is the tricritical point, TTCP ∼ 125.6K , HTCP ∼ 4.4kOe .

  18. A transverse separate-spin-evolution streaming instability

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.

    2018-05-01

    By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.

  19. The structural, electronic and magnetic properties of CoS2 under pressure

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Ying; Yang, Yan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic and magnetic properties of CoS2 under pressure have been investigated by the first-principles calculations. The lattice constant and volume decrease with increasing pressure. The CoS2 is stable and behaves a brittle characteristic under the pressures of 0-5 GPa. The CoS2 presents metallic characteristic under the pressures of 1-5 GPa although it is nearly half-metal (HM) under the pressure of 0 GPa. The lowest conduction bands for spin-up and spin-down channels shift towards higher and lower energy region, respectively, with the pressure increasing from 0 to 5 GPa. In spin-up channel the conduction band minimum (CBM) is mainly contributed by Co-3d(eg) orbitals at R point but the valence band maximum (VBM) is contributed by Co-3d(t2g) orbitals near M point. While in spin-down channel the CBM is contributed by S-3p orbitals at Γ point but the VBM is contributed by Co-3d(t2g) orbitals near X point. The CoS2 is still suitable to be used in the supercapacitor under the environmental pressures of 0-5 GPa due to the high conductivity.

  20. Thermal Entanglement in XXZ Heisenberg Model for Coupled Spin-Half and Spin-One Triangular Cell

    NASA Astrophysics Data System (ADS)

    Najarbashi, Ghader; Balazadeh, Leila; Tavana, Ali

    2018-01-01

    In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.

  1. Noncommutative Wilson lines in higher-spin theory and correlation functions of conserved currents for free conformal fields

    NASA Astrophysics Data System (ADS)

    Bonezzi, Roberto; Boulanger, Nicolas; De Filippi, David; Sundell, Per

    2017-11-01

    We first prove that, in Vasiliev’s theory, the zero-form charges studied in Sezgin E and Sundell P 2011 (arXiv:1103.2360 [hep-th]) and Colombo N and Sundell P 20 (arXiv:1208.3880 [hep-th]) are twisted open Wilson lines in the noncommutative Z space. This is shown by mapping Vasiliev’s higher-spin model on noncommutative Yang-Mills theory. We then prove that, prior to Bose-symmetrising, the cyclically-symmetric higher-spin invariants given by the leading order of these n-point zero-form charges are equal to corresponding cyclically-invariant building blocks of n-point correlation functions of bilinear operators in free conformal field theories (CFT) in three dimensions. On the higher spin gravity side, our computation reproduces the results of Didenko V and Skvortsov E 2013 J. High Energy Phys. JHEP04(2013)158 using an alternative method amenable to the computation of subleading corrections obtained by perturbation theory in normal order. On the free CFT side, our proof involves the explicit computation of the separate cyclic building blocks of the correlation functions of n conserved currents in arbitrary dimension d>2 using polarization vectors, which is an original result. It is shown to agree, for d=3 , with the results obtained in Gelfond O A and Vasiliev M A 2013 Nucl. Phys. B 876 871-917 in various dimensions and where polarization spinors were used.

  2. Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath.

    PubMed

    Morello, A; Millán, A; de Jongh, L J

    2014-03-21

    A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

  3. Holography and quantum states in elliptic de Sitter space

    NASA Astrophysics Data System (ADS)

    Halpern, Illan F.; Neiman, Yasha

    2015-12-01

    We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in "elliptic" de Sitter space d{S}_4/{Z}_2 , obtained by identifying antipodal points in dS 4. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable d{S}_4/{Z}_2 . We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in d{S}_4/{Z}_2 , in the limit of free bulk fields. We succeed in deriving an observer's operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.

  4. Emotion dynamics and tinnitus: Daily life data from the “TrackYourTinnitus” application

    PubMed Central

    Probst, Thomas; Pryss, Rüdiger; Langguth, Berthold; Schlee, Winfried

    2016-01-01

    It is well established that emotions influence tinnitus, but the role of emotion dynamics remains unclear. The present study investigated emotion dynamics in N = 306 users of the “TrackYourTinnitus” application who completed the Mini-Tinnitus Questionnaire (Mini-TQ) at one assessment point and provided complete data on at least five assessment points for the following state variables: tinnitus loudness, tinnitus distress, arousal, valence. The repeated arousal and valence ratings were used for two operationalizations of emotion dynamics: intra-individual variability of affect intensity (pulse) as well as intra-individual variability of affect quality (spin). Pearson correlation coefficients showed that the Mini-TQ was positively correlated with pulse (r = 0.19; p < 0.05) as well as with spin (r = 0.12; p < 0.05). Multilevel models revealed the following results: increases in tinnitus loudness were more strongly associated with increases in tinnitus distress at higher levels of pulse as well as at higher levels of spin (both p < 0.05), whereby increases in tinnitus loudness correlated even stronger with increases in tinnitus distress when both pulse as well as spin were high (p < 0.05). Moreover, increases in spin were associated with a less favorable time course of tinnitus loudness (p < 0.05). To conclude, equilibrating emotion dynamics might be a potential target in the prevention and treatment of tinnitus. PMID:27488227

  5. Bounding the space of holographic CFTs with chaos

    DOE PAGES

    Perlmutter, Eric

    2016-10-13

    In this study, thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ L ≤ 2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ L = 2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge andmore » a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS 3 higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W ∞[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ L = 0. Independently, we show that such theories violate unitarity for |λ| > 2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.« less

  6. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    NASA Astrophysics Data System (ADS)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  7. Magnon cotunneling through a quantum dot

    NASA Astrophysics Data System (ADS)

    Karwacki, Łukasz

    2017-11-01

    I consider a single-level quantum dot coupled to two reservoirs of spin waves (magnons). Such systems have been studied recently from the point of view of possible coupling between electronic and magnonic spin currents. However, usually weakly coupled systems were investigated. When coupling between the dot and reservoirs is not weak, then higher order processes play a role and have to be included. Here I consider cotunneling of magnons through a spin-occupied quantum dot, which can be understood as a magnon (spin) leakage current in analogy to leakage currents in charge-based electronics. Particular emphasis has been put on investigating the effect of magnetic field and temperature difference between the magnonic reservoirs.

  8. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  9. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  10. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE PAGES

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  11. Two Observed Consequences of Penetration Electric Fields

    DTIC Science & Technology

    2008-10-11

    satellites are three- axis stabilized spacecraft that fly in circular. Sun -synchronous, polar ( inclination 98.7 ) orbits at an altitude of ~840km. The...350 km. The orbital period was —10 h. CRRES was spin stabilized at a rate of 2 rpm. Its spin axis always pointed within 15 of the Sun . The line of...satellites with flight designations 10 and higher, orbital ascending nodes are on the dusk side of the Earth . Thus, during the Halloween storm DMSP

  12. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due tomore » electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.« less

  13. Towards causal patch physics in dS/CFT

    NASA Astrophysics Data System (ADS)

    Neiman, Yasha

    2018-01-01

    This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev's higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called "elliptic" de Sitter space - a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.

  14. Spin filtering effect generated by the inter-subband spin-orbit coupling in the bilayer nanowire with the quantum point contact

    PubMed Central

    Wójcik, Paweł; Adamowski, Janusz

    2017-01-01

    The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141

  15. Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field.

    PubMed

    Dias, D A; Xavier, J C; Plascak, J A

    2017-01-01

    The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.

  16. Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2016-08-01

    In this paper we investigate, via the calculation of model trajectories appropriate to slow bowling in cricket, the effects on the flight path of the ball before pitching due to changes in the angle of the spin-vector. This was accomplished by allowing the spin-vector to vary in three ways. Firstly, from off-spin, where the spin-vector points horizontally and directly down the pitch, to top-spin where it points horizontally towards the off-side of the pitch. Secondly, from off-spin to side-spin where, for side-spin, the spin-vector points vertically upwards. Thirdly, where the spin-vector points horizontally and at 45° to the pitch (in the general direction of ‘point’, as viewed by the bowler), and is varied towards the vertical, while maintaining the 45° angle in the horizontal plane. It is found that, as is well known, top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways in flight and, perhaps most importantly, off-spin can cause the ball to drift to the off-side of the pitch late in its flight as it begins to fall. At a more subtle level it is found that, if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, there is little change in the side-ways drift. However, a considerable reduction in the length at which the ball pitches occurs, ˜25 cm, an amount that batsmen can ignore at their peril. On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but produces a considerable amount of side-ways drift, ˜10 cm or more. For pure side-spin the side-ways drift is up to ˜30 cm. When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres.

  17. Compensation effects and relation between the activation energy of spin transition and the hysteresis loop width for an iron(ii) complex.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-06-22

    The enthalpy-entropy compensation was observed for the cooperative → spin transition (the phase is a mononuclear complex [FeL2](BF4)2, L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine). The physical origin of this effect is the fact that the → spin transition is the first order phase transition accompanied by noticeable variations in the Tonset↑, ΔH and ΔS values. Higher ΔH and ΔS values are correlated with higher Tonset↑ values. The higher the enthalpy and entropy of the spin transition, the wider the hysteresis loop. The kinetic compensation effect, i.e. a linear relationship between ln A and Ea, was observed for the → spin transition. Moreover, an isokinetic relationship was detected in this system: the Arrhenius lines (ln k vs. 1/T) obtained from magnetochemical data for different samples of the phase undergoing the → transition show a common point of intersection (Tiso = 490 ± 2 K, ln kiso = -6.0 ± 0.2). The validity of this conclusion was confirmed by the Exner-Linert statistical method. This means that the isokinetic relationship and the kinetic compensation effect (ln A vs. Ea) in this system are true ones. The existence of a true kinetic compensation effect is supported independently by the fact that the hysteresis loop width for the cooperative spin transition ↔ increases with increasing activation barrier height. Estimating the energy of excitations for the phase with Tiso ∼ 490 K yields wavenumbers of ca. 340 cm(-1) corresponding to the frequencies of the stretching vibrations of the Fe(LS)-N bonds, i.e. the bonds directly involved in the mechanism of the spin transition. This is the first observation of the kinetic compensation effect (ln A vs. Ea) and the isokinetic relationship for a cooperative spin crossover system showing thermal hysteresis. Our results provide the first experimental evidence that the higher the activation barrier for the spin transition, the wider the hysteresis loop for a series of related spin crossover systems.

  18. Higher-spin theory and holography

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias; Vasiliev, Mikhail

    2013-05-01

    This special issue of Journal of Physics A: Mathematical and Theoretical reviews recent developments in higher-spin gauge theories and their applications to holographic dualities. The analysis of higher-spin theories has a very long history, but it took until the mid 1980s for the first consistent higher-spin interactions to be constructed by Bengtsson, Bengtsson and Brink [1] and Berends, Burgers and van Dam [2]. Somewhat later it was shown by Fradkin and Vasiliev [3] that consistent higher-spin gauge theories that involve gravity should necessarily be defined on a curved background. The first consistent interacting higher-spin theories were then formulated at the classical level by Vasiliev in the early 1990s [4]. These higher-spin theories involve an infinite number of massless higher-spin fields that support higher-spin gauge symmetries, and indeed, are largely characterized by this underlying gauge symmetry. The simplest examples are provided by higher-spin theories on (anti)-de Sitter spaces, and in a sense, this anticipated the AdS/CFT correspondence. Indeed, in the tensionless limit of string theory, the massive excitations of string theory become massless, and hence define higher-spin gauge fields. On the other hand, from the dual gauge theory perspective, this is the limit in which the field theory becomes free, and therefore has many conserved higher-spin currents. By the usual AdS/CFT dictionary, these are dual to the higher-spin gauge symmetries of the bulk description. Following this line of argument, Sundborg [5] and Witten [6] suggested in 2001 that a duality relating a higher-spin theory on AdSd to a weakly coupled (d - 1)-dimensional conformal field theory should exist. A concrete proposal was then made by Klebanov and Polyakov [7] who conjectured that the simplest version of a higher-spin gauge theory on AdS4 should be dual to the 3d O(N ) vector model. Recently, much support for this conjecture was obtained by Giombi and Yin [8], and in turn, this has triggered a significant amount of activity in this general area. Among other things, the constraints that are implied by the higher-spin symmetries were analysed (see the paper by Maldacena and Zhiboedov in this issue [9]), and a fairly concrete proposal for how higher-spin theories are related to string theory was made (see the paper by Chang, Minwalla, Sharma and Yin in this issue [10]). Furthermore, a lower dimensional version of the conjecture was put forward by Gaberdiel and Gopakumar [11] that was subsequently also checked in some detail. These dualities hold the promise of offering insights into the inner workings of the AdS/CFT correspondence since they are complex enough to capture the essence of the duality, while at the same time being sufficiently simple in order to allow for a detailed analysis. Moreover, the methods specifically developed in higher-spin theory may be useful for understanding a general mechanism underlying holography, both in higher-spin models and beyond (see the paper by Vasiliev in this issue [12]). Another fascinating aspect of these higher-spin theories lies in the fact that the higher-spin symmetries mix generically fields of different spin, and in particular, the spin-2 metric and higher-spin excitations are related to one another by gauge transformations. As a result, higher-spin theories require a modification of the standard framework of Riemannian geometry since the usual diffeomorphism-invariant tensors are not gauge invariant any longer. In particular, higher-spin theories may therefore open the way towards understanding fundamental concepts of space-time geometry; for example, they may well have key lessons in store for how string theory resolves space-time singularities. In this issue we have collected together a number of review papers, summarizing the aforementioned recent developments, as well as research papers indicating current directions of interest in the study of higher-spin gauge theories. We hope that it will be useful, both for beginners interested in an introduction to the subject, and for experts already working in the field. Three of the reviews deal with the holographic dualities mentioned above: the paper by Giombi and Yin [13] reviews the situation for AdS4/CFT3, while the review by Gaberdiel and Gopakumar [14] deals with the lower-dimensional AdS3/CFT2 version. In addition, the review by Jevicki, Jin and Ye [15] explains a possible way of proving the duality using collective fields. There are two reviews on the construction of black holes in higher-spin gauge theories: the review by Iazeolla and Sundell [16] reviews the situation for 4d higher-spin theories, while the review by Ammon, Gutperle, Kraus and Perlmutter [17] deals with the three-dimensional case for which much progress has been made recently. Finally, the review of Sagnotti [18] explains various general aspects of higher-spin gauge theories. The research papers deal with different aspects of current developments; some are concerned with the holographic duality, while others develop the general theory of higher-spin fields. References [1] Bengtsson A K H, Bengtsson I and Brink L 1983 Cubic interaction terms for arbitrarily extended supermultiplets Nucl. Phys. B 227 41 [2] Berends F A, Burgers G J H Van Dam H 1984 On spin three self interactions Z. Phys. C 24 247 [3] Fradkin E S Vasiliev M A 1987 On the gravitational interaction of massless higher-spin fields Phys. Lett. B 189 89 [4] Vasiliev M A 1992 More on equations of motion for interacting massless fields of all spins in 3+1 dimensions Phys. Lett. B 285 225 [5] Sundborg B 2001 Stringy gravity, interacting tensionless strings and massless higher spins Nucl. Phys. Proc. Suppl. 102 113 (arXiv:hep-th/0103247) [6] Witten E 2001 Spacetime reconstruction Talk at the John Schwarz 60th Birthday Symp. (http://theory.caltech.edu/jhs60/witten/1.html) [7] Klebanov I R Polyakov A M 2002 AdS dual of the critical O (N ) vector model Phys. Lett. B 550 213 (arXiv:hep-th/0210114) [8] Giombi S Yin X 2010 Higher spin gauge theory and holography: the three-point functions J. High Energy Phys. JHEP09(2010)115 (arXiv:0912.3462 [hep-th]) [9] Maldacena J Zhiboedov A 2013 Constraining conformal field theories with a higher spin symmetry J. Phys. A: Math. Theor. 46 214011 (arXiv:1204.3882 [hep-th]) [10] Chang C-M, Minwalla A, Sharma T Yin X 2013 ABJ triality: from higher spin fields to strings J. Phys. A: Math. Theor. 46 214009 (arXiv:1207.4485 [hep-th]) [11] Gaberdiel M R Gopakumar R 2011 An AdS3 dual for minimal model CFTs Phys. Rev. D 83 066007 (arXiv:1011.2986 [hep-th]) [12] Vasiliev M A 2013 Holography, unfolding and higher-spin theory J. Phys. A: Math. Theor. 46 214013 (arXiv:1203.5554 [hep-th]) [13] Giombi S Yin X 2013 The higher spin/vector model duality J. Phys. A: Math. Theor. 46 214003 (arXiv:1208.4036 [hep-th]) [14] Gaberdiel M R Gopakumar R 2013 Minimal model holography J. Phys. A: Math. Theor. 46 214002 (arXiv:1207.6697 [hep-th]) [15] Jevicki A, Jin K Ye Q 2013 Perturbative and non-perturbative aspects in vector model/higher spin duality J. Phys. A: Math. Theor. 46 214005 (arXiv:1212.5215 [hep-th]) [16] Iazeolla C Sundell P 2013 Biaxially symmetric solutions to 4D higher-spin gravity J. Phys. A: Math. Theor. 46 214004 (arXiv:1208.4077 [hep-th]) [17] Ammon M, Gutperle M, Kraus P Perlmutter E 2013 Black holes in three dimensional higher spin gravity: a review J. Phys. A: Math. Theor. 46 214001 (arXiv:1208.5182 [hep-th]) [18] Sagnotti A 2013 Notes on strings and higher spins J. Phys. A: Math. Theor. 46 214006 (arXiv:1112.4285 [hep-th])

  19. Finite-connectivity spin-glass phase diagrams and low-density parity check codes.

    PubMed

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate , an RS critical transition point at while the critical RSB transition point is located at , to be compared with the corresponding Shannon bound . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  20. The effect of inertia on the Dirac electron, the spin Hall current and the momentum space Berry curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-02-15

    We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less

  1. Algebraically special resonances of the Kerr-black-hole-mirror bomb

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2013-12-01

    A corotating bosonic field interacting with a spinning Kerr black hole can extract rotational energy and angular momentum from the hole. This intriguing phenomenon is known as superradiant scattering. As pointed out by Press and Teukolsky, the black-hole-field system can be made unstable (explosive) by placing a reflecting mirror around the black hole, which prevents the extracted energy from escaping to infinity. This composed black-hole-mirror-field bomb has been studied extensively by many researchers. It is worth noting, however, that most former studies of the black-hole bomb phenomenon have focused on the specific case of confined scalar (spin-0) fields. In the present study we explore the physical properties of the higher-spin (electromagnetic and gravitational) black-hole bombs. It is shown that this composed system is amenable to an analytic treatment in the physically interesting regime of rapidly rotating black holes. In particular, we prove that the composed black-hole-mirror-field bomb is characterized by the unstable resonance frequency ω=mΩH+is·2πTBH (here s and m are, respectively, the spin parameter and the azimuthal harmonic index of the field, and ΩH and TBH are, respectively, the angular-velocity and the temperature of the rapidly spinning black hole). Our results provide evidence that the higher-spin (electromagnetic and gravitational) black-hole-mirror bombs are much more explosive than the extensively studied scalar black-hole-mirror bomb. In particular, it is shown here that the instability growth rates that characterize the higher-spin black-hole bombs are 2 orders of magnitude larger than the instability growth rate of the scalar black-hole bomb.

  2. REVISITING THE ISN FLOW PARAMETERS, USING A VARIABLE IBEX POINTING STRATEGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T. W.; Möbius, E.; Heirtzler, D.

    2015-05-01

    The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth’s motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influencesmore » the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012–2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude λ{sub ∞} = 74.°5 ± 1.°7 and latitude β{sub ∞} = −5.°2 ± 0.°3, but at a substantially higher ISN temperature than previously reported.« less

  3. Origin of the spin Seebeck effect in compensated ferrimagnets

    PubMed Central

    Geprägs, Stephan; Kehlberger, Andreas; Coletta, Francesco Della; Qiu, Zhiyong; Guo, Er-Jia; Schulz, Tomek; Mix, Christian; Meyer, Sibylle; Kamra, Akashdeep; Althammer, Matthias; Huebl, Hans; Jakob, Gerhard; Ohnuma, Yuichi; Adachi, Hiroto; Barker, Joseph; Maekawa, Sadamichi; Bauer, Gerrit E. W.; Saitoh, Eiji; Gross, Rudolf; Goennenwein, Sebastian T. B.; Kläui, Mathias

    2016-01-01

    Magnons are the elementary excitations of a magnetically ordered system. In ferromagnets, only a single band of low-energy magnons needs to be considered, but in ferrimagnets the situation is more complex owing to different magnetic sublattices involved. In this case, low lying optical modes exist that can affect the dynamical response. Here we show that the spin Seebeck effect (SSE) is sensitive to the complexities of the magnon spectrum. The SSE is caused by thermally excited spin dynamics that are converted to a voltage by the inverse spin Hall effect at the interface to a heavy metal contact. By investigating the temperature dependence of the SSE in the ferrimagnet gadolinium iron garnet, with a magnetic compensation point near room temperature, we demonstrate that higher-energy exchange magnons play a key role in the SSE. PMID:26842873

  4. Reinvestigation of the giant Rashba-split states on Bi-covered Si(111)

    NASA Astrophysics Data System (ADS)

    Berntsen, M. H.; Götberg, O.; Tjernberg, O.

    2018-03-01

    We study the electronic and spin structures of the giant Rashba-split surface states of the Bi/Si(111)-(√{3 }×√{3 }) R 30∘ trimer phase by means of spin- and angle-resolved photoelectron spectroscopy (spin-ARPES). Supported by tight-binding calculations of the surface state dispersion and spin orientation, our findings show that the spin experiences a vortexlike structure around the Γ ¯ point of the surface Brillouin zone—in accordance with the standard Rashba model. Moreover, we find no evidence of a spin vortex around the K ¯ point in the hexagonal Brillouin zone and thus no peculiar Rashba split around this point, something that has been suggested by previous works. Rather the opposite, our results show that the spin structure around K¯ can be fully understood by taking into account the symmetry of the Brillouin zone and the intersection of spin vortices centered around the Γ ¯ points in neighboring Brillouin zones. As a result, the spin structure is consistently explained within the standard framework of the Rashba model although the spin-polarized surface states experience a more complex dispersion compared to free-electron-like parabolic states.

  5. Relation between halo spin and cosmic-web filaments at z ≃ 3

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Prieto, Joaquin; Padilla, Nelson; Jimenez, Raul

    2017-02-01

    We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated 5000 haloes in the mass range 5 × 109 h-1 M⊙ to 5 × 1011 h-1 M⊙ at z = 3 in cosmological N-body simulations. We confirm the relation found by Prieto et al. (2015) where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured Lambda cold dark matter (LCDM) model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.

  6. Higher spin conformal geometry in three dimensions and prepotentials for higher spin gauge fields

    NASA Astrophysics Data System (ADS)

    Henneaux, Marc; Hörtner, Sergio; Leonard, Amaury

    2016-01-01

    We study systematically the conformal geometry of higher spin bosonic gauge fields in three spacetime dimensions. We recall the definition of the Cotton tensor for higher spins and establish a number of its properties that turn out to be key in solving in terms of prepotentials the constraint equations of the Hamiltonian (3 + 1) formulation of four-dimensional higher spin gauge fields. The prepotentials are shown to exhibit higher spin conformal symmetry. Just as for spins 1 and 2, they provide a remarkably simple, manifestly duality invariant formulation of the theory. While the higher spin conformal geometry is developed for arbitrary bosonic spin, we explicitly perform the Hamiltonian analysis and derive the solution of the constraints only in the illustrative case of spin 3. In a separate publication, the Hamiltonian analysis in terms of prepotentials is extended to all bosonic higher spins using the conformal tools of this paper, and the same emergence of higher spin conformal symmetry is confirmed.

  7. Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Bastidas, Victor Manuel; Brandes, Tobias; Buchleitner, Andreas

    2016-04-01

    We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction range and arbitrary spin S , which in the case of S =1 /2 interpolates between the Lipkin-Meshkov-Glick and the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic fields. Further analysis of the higher-order corrections in 1 /√{2 S } enables us to analytically study the dispersion relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to investigate quantum bifurcations, which occur in the semiclassical (S ≫1 ) limit, and quantum phase transitions, which are observed in the thermodynamic (N →∞ ) limit.

  8. Quantum spin circulator in Y junctions of Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.

    2018-06-01

    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.

  9. Universality and phase diagrams of the Baxter-Wu Model in a Crystal Field: spin-1 and spin-3/2

    NASA Astrophysics Data System (ADS)

    Dias, D. A.; Xavier, J. C.; Plascak, J. A.

    2017-11-01

    Conventional finite-size scaling and conformal invariance theory are used in order to study the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model. For spin-1 the results are similar to the Blume-Capel model. However, for spin-3/2, the phase diagram is much richer, and presents, besides a pentacritical point, an additional multicritical endpoint. In both cases, the universality class is the same as the spin-1/2 model, even at the multicritical points.

  10. Quantum group spin nets: Refinement limit and relation to spin foams

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian

    2014-07-01

    So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.

  11. Current interactions from the one-form sector of nonlinear higher-spin equations

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2018-06-01

    The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp ⁡ iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.

  12. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  13. Estimation of bipolar jets from accretion discs around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  14. Interplay between resonant tunneling and spin precession oscillations in all-electric all-semiconductor spin transistors

    NASA Astrophysics Data System (ADS)

    Alomar, M. I.; Serra, Llorenç; Sánchez, David

    2016-08-01

    We investigate the transmission properties of a spin transistor coupled to two quantum point contacts acting as a spin injector and detector. In the Fabry-Pérot regime, transport is mediated by quasibound states formed between tunnel barriers. Interestingly, the spin-orbit interaction of the Rashba type can be tuned in such a way that nonuniform spin-orbit fields can point along distinct directions at different points of the sample. We discuss both spin-conserving and spin-flipping transitions as the spin-orbit angle of orientation increases from parallel to antiparallel configurations. Spin precession oscillations are clearly seen as a function of the length of the central channel. Remarkably, we find that these oscillations combine with the Fabry-Pérot motion, giving rise to quasiperiodic transmissions in the purely one-dimensional case. Furthermore, we consider the more realistic case of a finite width in the transverse direction and find that the coherent oscillations become deteriorated for moderate values of the spin-orbit strength. Our results then determine the precise role of the spin-orbit intersubband coupling potential in the Fabry-Pérot-Datta-Das intermixed oscillations.

  15. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zeren; School of Physics, Peking University, Beijing 100871; Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensivelymore » studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.« less

  16. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    NASA Astrophysics Data System (ADS)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  17. Towards spinning Mellin amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki

    2018-06-01

    We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.

  18. One-loop effective actions and higher spins. Part II

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.

    2018-01-01

    In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.

  19. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe 2O 3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  20. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  1. Throughput increase by adjustment of the BARC drying time with coat track process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Long, Ryan

    2005-05-01

    Throughput of a coater module within the coater track is related to the solvent evaporation rate from the material that is being coated. Evaporation rate is controlled by the spin dynamics of the wafer and airflow dynamics over the wafer. Balancing these effects is the key to achieving very uniform coatings across a flat unpatterned wafer. As today"s coat tracks are being pushed to higher throughputs to match the scanner, the coat module throughput must be increased as well. For chemical manufacturers the evaporation rate of the material depends on the solvent used. One measure of relative evaporation rates is to compare flash points of a solvent. The lower the flash point, the quicker the solvent will evaporate. It is possible to formulate products with these volatile solvents although at a price. Shipping and manufacturing a more flammable product increase chances of fire, thereby increasing insurance premiums. Also, the end user of these chemicals will have to take extra precautions in the fab and in storage of these more flammable chemicals. An alternative coat process is possible which would allow higher throughput in a distinct coat module without sacrificing safety. A tradeoff is required for this process, that being a more complicated coat process and a higher viscosity chemical. The coat process uses the fact that evaporation rate depends on the spin dynamics of the wafer by utilizing a series of spin speeds that first would set the thickness of the material followed by a high spin speed to remove the residual solvent. This new process can yield a throughput of over 150 wafers per hour (wph) given two coat modules. The thickness uniformity of less than 2 nm (3 sigma) is still excellent, while drying times are shorter than 10 seconds to achieve the 150 wph throughput targets.

  2. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution.

    PubMed

    Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran

    2011-08-01

    The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and conductivity measurements. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.

    2017-07-01

    The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α =β , the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a helical spin-density wave excitation with constant pitch P =2 π /Q , Q =4 m α /ℏ2, has already been experimentally realized at this singular point α =β , enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage VT and back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α =β ; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs," i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α =β , thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.

  4. Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions

    NASA Astrophysics Data System (ADS)

    Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke

    2016-09-01

    We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.

  5. Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-05-01

    We have studied the magnetic properties of the mixed spin σ = ± 3/2, ± 1/2 and spin S = ± 5/2, ± 3/2, ± 1/2 Ising ferrimagnetic system in a graphene layer by means of Monte Carlo simulations. The effects of next-nearest neighbors exchange interactions and crystal field anisotropy on the critical and compensation behavior of the system have been investigated. The results show that, for a system with given values of the crystal field anisotropy and exchange interaction constants, a compensation point only exists if the values of the spins in the ground state are such that | S | > | σ | and Jσ is higher than a certain value Jσmin . It was shown that the relationship between Jσmin and JS is linear for a given value of the crystal field constant. The compensation and the critical temperature are very sensitive to the change of JS and Jσ, respectively, while the crystal field anisotropy affects both temperatures to a large extent.

  6. Why do galactic spins flip in the cosmic web? A Theory of Tidal Torques near saddles

    NASA Astrophysics Data System (ADS)

    Pichon, Christophe; Codis, Sandrine; Pogosyan, Dmitry; Dubois, Yohan; Desjacques, Vincent; Devriendt, Julien

    2016-10-01

    Filaments of the cosmic web drive spin acquisition of disc galaxies. The point process of filament-type saddle represent best this environment and can be used to revisit the Tidal Torque Theory in the context of an anisotropic peak (saddle) background split. The constrained misalignment between the tidal tensor and the Hessian of the density field generated in the vicinity of filament saddle points simply explains the corresponding transverse and longitudinal point-reflection symmetric geometry of spin distribution. It predicts in particular an azimuthal orientation of the spins of more massive galaxies and spin alignment with the filament for less massive galaxies. Its scale dependence also allows us to relate the transition mass corresponding to the alignment of dark matter halos' spin relative to the direction of their neighboring filament to this geometry, and to predict accordingly it's scaling with the mass of non linearity, as was measured in simulations.

  7. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    NASA Astrophysics Data System (ADS)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  8. Electron Spin Relaxation Enhancement Measurements of Interspin Distances in Human, Porcine, and Rhodobacter Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO)

    PubMed Central

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S]+ cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S]+ between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S]+ were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S]+ and obtain point dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present. PMID:18037314

  9. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    PubMed

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  10. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less

  11. Classical aspects of higher spin topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Zhang, Jian-Dong

    2012-10-01

    We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern-Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors.

  12. Chiral higher spin theories and self-duality

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry

    2017-12-01

    We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.

  13. One-norm geometric quantum discord and critical point estimation in the XY spin chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com

    2016-11-15

    In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less

  14. Wide field video-rate two-photon imaging by using spinning disk beam scanner

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko

    2018-02-01

    The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.

  15. Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

    DOE PAGES

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    2017-05-31

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  16. Higher spin black holes with soft hair

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo

    2016-10-01

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  17. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    NASA Astrophysics Data System (ADS)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  18. Spin Nernst effect of magnons in collinear antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ran; Okamoto, Satoshi; Xiao, Di

    2016-11-15

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current. We find that magnons around themore » $$\\Gamma$$ point and the $K$ point contribute oppositely to the transverse spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite temperature. As a result, possible material candidates are discussed.« less

  19. Multilevel discretized random field models with 'spin' correlations for the simulation of environmental spatial data

    NASA Astrophysics Data System (ADS)

    Žukovič, Milan; Hristopulos, Dionissios T.

    2009-02-01

    A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of discretization levels, and the initial conditions.

  20. IEEE Particle Accelerator Conference on Accelerator Science and Technology Held in San Francisco, California on 6-9 May 1991. Volume 2

    DTIC Science & Technology

    1991-05-01

    EXPERIMENTAL RESULT phase on injection parameters are measured and are found to agree well with theory . A. Operating characteristics I. INTRODUCTION ...QV . quad, and for two other currents, one higher and one lower. The slope of the curve drawn through these points, THEORY in a graph of position...here: spin resonance tune. Higher order snake resonances are 1. 7)(8,,=sa)- 0 at an imperfection resonance, K = seen clearly. integer. This means that

  1. Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2 heterostructure

    NASA Astrophysics Data System (ADS)

    Du, X.; Wang, Z. Y.; Huang, G. Q.

    2016-11-01

    The spin-polarized band structures of the Pb(111)/MoTe2 heterostructure are studied by the first-principles calculations. Due to strong spin-orbit coupling and space inversion asymmetry, large Rashba spin splitting of electronic bands appears in this hybrid system. The spin splitting is completely out-of-plane and opposite at \\bar{K} and {\\bar{K}}\\prime points. Rashba spin splitting also appears along the in-plane momentum direction around the \\bar{{{Γ }}} point due to the existence of surface potential gradient induced by charge transfer at interface. Furthermore, our calculations show that the spin-polarized bands closely approach the Fermi level in Pb/MoTe2 heterostructure, showing that this heterostructure may be a good candidate in valleytronics or spintronics.

  2. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe 2 As 2 and its relation to high-temperature superconductivity

    DOE PAGES

    Kim, M. G.; Wang, M.; Tucker, G. S.; ...

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe 0.957Cu 0.043) 2As 2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe 2As 2 and superconducting Ba(Fe 1–xNi x) 2As 2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe 0.957Cu 0.043) 2As 2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouplesmore » the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  3. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Ivády, Viktor; Szász, Krisztián; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzén, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam

    2015-09-01

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

  4. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    NASA Astrophysics Data System (ADS)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  6. Strong Enhancement of the Spin Hall Effect by Spin Fluctuations near the Curie Point of FexPt1 -x Alloys

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Ralph, D. C.; Buhrman, R. A.

    2018-03-01

    Robust spin Hall effects (SHE) have recently been observed in nonmagnetic heavy metal systems with strong spin-orbit interactions. These SHE are either attributed to an intrinsic band-structure effect or to extrinsic spin-dependent scattering from impurities, namely, side jump or skew scattering. Here we report on an extraordinarily strong spin Hall effect, attributable to spin fluctuations, in ferromagnetic FexPt1 -x alloys near their Curie point, tunable with x . This results in a dampinglike spin-orbit torque being exerted on an adjacent ferromagnetic layer that is strongly temperature dependent in this transition region, with a peak value that indicates a lower bound 0.34 ±0.02 for the peak spin Hall ratio within the FePt. We also observe a pronounced peak in the effective spin-mixing conductance of the FM /FePt interface, and determine the spin diffusion length in these FexPt1 -x alloys. These results establish new opportunities for fundamental studies of spin dynamics and transport in ferromagnetic systems with strong spin fluctuations, and a new pathway for efficiently generating strong spin currents for applications.

  7. Topological Maxwell Metal Bands in a Superconducting Qutrit

    NASA Astrophysics Data System (ADS)

    Tan, Xinsheng; Zhang, Dan-Wei; Liu, Qiang; Xue, Guangming; Yu, Hai-Feng; Zhu, Yan-Qing; Yan, Hui; Zhu, Shi-Liang; Yu, Yang

    2018-03-01

    We experimentally explore the topological Maxwell metal bands by mapping the momentum space of condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we engineer and observe the topological phase transition from the topological Maxwell metal to a trivial insulator, and report the first experiment to measure the Chern numbers that are higher than one.

  8. Avoided ferromagnetic quantum critical point: unusual short-range ordered state in CeFePO.

    PubMed

    Lausberg, S; Spehling, J; Steppke, A; Jesche, A; Luetkens, H; Amato, A; Baines, C; Krellner, C; Brando, M; Geibel, C; Klauss, H-H; Steglich, F

    2012-11-21

    Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac susceptibility, specific heat, and muon-spin relaxation (μSR). Short-range static magnetism occurs below the freezing temperature T(g) ≈ 0.7 K, which prevents the system from accessing a putative ferromagnetic quantum critical point. In the μSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.

  9. Reassessment of fission fragment angular distributions from continuum states in the context of transition-state theory

    NASA Astrophysics Data System (ADS)

    Vaz, Louis C.; Alexander, John M.

    1983-07-01

    Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.

  10. Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings

    NASA Astrophysics Data System (ADS)

    Hu, Haiping; Hou, Junpeng; Zhang, Fan; Zhang, Chuanwei

    2018-06-01

    The recent discovery of triply degenerate points (TDPs) in topological materials has opened a new perspective toward the realization of novel quasiparticles without counterparts in quantum field theory. The emergence of such protected nodes is often attributed to spin-vector-momentum couplings. We show that the interplay between spin-tensor- and spin-vector-momentum couplings can induce three types of TDPs, classified by different monopole charges (C =±2 , ±1 , 0). A Zeeman field can lift them into Weyl points with distinct numbers and charges. Different TDPs of the same type are connected by intriguing Fermi arcs at surfaces, and transitions between different types are accompanied by level crossings along high-symmetry lines. We further propose an experimental scheme to realize such TDPs in cold-atom optical lattices. Our results provide a framework for studying spin-tensor-momentum coupling-induced TDPs and other exotic quasiparticles.

  11. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs

    PubMed Central

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam

    2017-01-01

    A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685

  12. Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.

    2015-12-01

    The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.

  13. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  14. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-07-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  15. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.

    2015-07-07

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be usedmore » to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.« less

  16. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-01

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca0.82La0.18Fe0.96Ni0.04As2 with bulk superconductivity below Tc=22 K . A two-dimensional spin resonance mode is found around E =11 meV , where the resonance energy is almost temperature independent and linearly scales with Tc along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4 p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the kz dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi

    We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At themore » critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.« less

  18. Phase structure of higher spin black hole

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Wang, Yi-Nan

    2013-03-01

    In this paper, we investigate the phase structure of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin widetilde{4} black holes. Based on dimensional analysis and the requirement of thermodynamic consistency, we derive a universal formula relating the entropy with the conserved charges for arbitrary AdS 3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin widetilde{4} gravity and twelve branches of solutions in the G 2 gravity. In each case, all the branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin widetilde{4} case, we find that at low temperature it lies in the BTZ branch while at high temperature it undergoes a phase transition to one of the two other branches, depending on the signature of the chemical potential, a reflection of charge conjugate asymmetry found before.

  19. Influence of DC-biasing on the performance of graphene spin valve

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Hussain, Tassadaq; Iqbal, Muhammad Javaid

    2018-04-01

    Generating and controlling the spin valve signal are key factors in 'spintronics', which aims to utilize the spin degree of electrons. For this purpose, spintronic devices are constructed that can detect the spin signal. Here we investigate the effect of direct current (DC) on the magnetoresistance (MR) of graphene spin valve. The DC input not only decreases the magnitude of MR but also distorts the spin valve signal at higher DC inputs. Also, low temperature measurements revealed higher MR for the device, while the magnitude is noticed to decrease at higher temperatures. Furthermore, the spin polarization associated with NiFe electrodes is continuously increased at low DC bias and low temperatures. We also demonstrate the ohmic behavior of graphene spin valve by showing linear current-voltage (I-V) characteristics of the junction. Our findings may contribute significantly in modulating and controlling the spin transport properties of vertical spin valve structures.

  20. Cobalt spin states and hyperfine interactions in LaCoO3 investigated by LDA+U calculations

    NASA Astrophysics Data System (ADS)

    Leighton, C.; Hsu, H.; Blaha, P.; Wentzcovitch, R. M.

    2010-12-01

    The spin states of cobalt ions in the bulk and epitaxial-thin-film lanthanum cobaltite (LaCoO3) have been controversial for years. The controversial point is mainly the presence of intermediate-spin (IS) Co in the temperature range of 0-85 K. In this region, bulk LaCoO3 experiences a crossover from a diamagnetic to a paramagnetic phase, and the thin-film LaCoO3 is ferromagnetic and insulator. An approach to probe the Co spin state is thus of interest. With a series of LDA+U calculations, we have demonstrated that the electric field gradient (EFG) at the Co nucleus can be used as a fingerprint to identify the spin state of the Co ion in each case. Therefore, in principle, the spin state of the Co ion can be unambiguously determined from nuclear magnetic resonance (NMR) spectra. Our calculations also suggest that the presence of IS Co in this temperature range is unlikely, based not only on its relatively higher energy, but also on its associated conducting band structure incompatible with the measured insulating conductivity. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The computations were performed mainly at the Minnesota Supercomputing Institute (MSI).

  1. The Mini-Social Phobia Inventory: psychometric properties in an adolescent general population sample.

    PubMed

    Ranta, Klaus; Kaltiala-Heino, Riittakerttu; Rantanen, Päivi; Marttunen, Mauri

    2012-07-01

    Onset of social phobia (SP) typically occurs in adolescence. Short screening instruments for its assessment are needed for use in primary health and school settings. The 3-item Mini-Social Phobia Inventory (SPIN) has demonstrated effectiveness in screening for generalized SP (GSP) in adults. This study examined the psychometrics of the Mini-SPIN in an adolescent general population sample. Three hundred fifty adolescents aged 12 to 17 years were clinically interviewed using the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version for identification of SP and other Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Axis I disorders, blind to their Mini-SPIN status. Associations between SP; subclinical SP; other anxiety, depressive, and disruptive disorders; and Mini-SPIN scores were examined, and diagnostic efficiency statistics were calculated. The association between Mini-SPIN scores and the generalized subtype of SP was also examined. As in adults, the Mini-SPIN items differentiated subjects with SP from those without. A score of 6 points or greater was found optimal in predicting SP with a sensitivity of 86%, specificity of 84%, and positive and negative predictive values of 26% and 99%. The Mini-SPIN also possessed discriminative validity, as scores were higher for adolescents with SP than they were for those with depressive, disruptive, and other anxiety disorders. The Mini-SPIN was also able to differentiate adolescents with GSP from the rest of the sample. The Mini-SPIN has good psychometrics for screening SP in adolescents from general population and may have value in screening for GSP. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Radial quantization of the 3d CFT and the higher spin/vector model duality

    NASA Astrophysics Data System (ADS)

    Hu, Shan; Li, Tianjun

    2014-10-01

    We study the radial quantization of the 3dO(N) vector model. We calculate the higher spin charges whose commutation relations give the higher spin algebra. The Fock states of higher spin gravity in AdS4 are realized as the states in the 3d CFT. The dynamical information is encoded in their inner products. This serves as the simplest explicit demonstration of the CFT definition for the quantum gravity.

  3. Classification of building infrastructure and automatic building footprint delineation using airborne laser swath mapping data

    NASA Astrophysics Data System (ADS)

    Caceres, Jhon

    Three-dimensional (3D) models of urban infrastructure comprise critical data for planners working on problems in wireless communications, environmental monitoring, civil engineering, and urban planning, among other tasks. Photogrammetric methods have been the most common approach to date to extract building models. However, Airborne Laser Swath Mapping (ALSM) observations offer a competitive alternative because they overcome some of the ambiguities that arise when trying to extract 3D information from 2D images. Regardless of the source data, the building extraction process requires segmentation and classification of the data and building identification. In this work, approaches for classifying ALSM data, separating building and tree points, and delineating ALSM footprints from the classified data are described. Digital aerial photographs are used in some cases to verify results, but the objective of this work is to develop methods that can work on ALSM data alone. A robust approach for separating tree and building points in ALSM data is presented. The method is based on supervised learning of the classes (tree vs. building) in a high dimensional feature space that yields good class separability. Features used for classification are based on the generation of local mappings, from three-dimensional space to two-dimensional space, known as "spin images" for each ALSM point to be classified. The method discriminates ALSM returns in compact spaces and even where the classes are very close together or overlapping spatially. A modified algorithm of the Hough Transform is used to orient the spin images, and the spin image parameters are specified such that the mutual information between the spin image pixel values and class labels is maximized. This new approach to ALSM classification allows us to fully exploit the 3D point information in the ALSM data while still achieving good class separability, which has been a difficult trade-off in the past. Supported by the spin image analysis for obtaining an initial classification, an automatic approach for delineating accurate building footprints is presented. The physical fact that laser pulses that happen to strike building edges can produce very different 1st and last return elevations has been long recognized. However, in older generation ALSM systems (<50 kHz pulse rates) such points were too few and far between to delineate building footprints precisely. Furthermore, without the robust separation of nearby trees and vegetation from the buildings, simply extracting ALSM shots where the elevation of the first return was much higher than the elevation of the last return, was not a reliable means of identifying building footprints. However, with the advent of ALSM systems with pulse rates in excess of 100 kHz, and by using spin-imaged based segmentation, it is now possible to extract building edges from the point cloud. A refined classification resulting from incorporating "on-edge" information is developed for obtaining quadrangular footprints. The footprint fitting process involves line generalization, least squares-based clustering and dominant points finding for segmenting individual building edges. In addition, an algorithm for fitting complex footprints using the segmented edges and data inside footprints is also proposed.

  4. Quantum critical point revisited by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  5. Quantum critical point revisited by dynamical mean-field theory

    DOE PAGES

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-31

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  6. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    PubMed

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  7. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    PubMed Central

    Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic

    2016-01-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400

  8. Spin heat capacity of monolayer and AB-stacked bilayer MoS2 in the presence of exchange magnetic field

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-04-01

    Dirac theory and Green's function technique are carried out to compute the spin dependent band structures and corresponding electronic heat capacity (EHC) of monolayer (ML) and AB-stacked bilayer (BL) molybdenum disulfide (MoS2) two-dimensional (2D) crystals. We report the influence of induced exchange magnetic field (EMF) by magnetic insulator substrates on these quantities for both structures. The spin-up (down) subband gaps are shifted with EMF from conduction (valence) band to valence (conduction) band at both Dirac points in the ML because of the spin-orbit coupling (SOC) which leads to a critical EMF in the K point and EHC returns to its initial states for both spins. In the BL case, EMF results split states and the decrease (increase) behavior of spin-up (down) subband gaps has been observed at both K and K‧ valleys which is due to the combined effect of SOC and interlayer coupling. For low and high EMFs, EHC of BL MoS2 does not change for spin-up subbands while increases for spin-down subbands.

  9. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor.

    PubMed

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-30

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca_{0.82}La_{0.18}Fe_{0.96}Ni_{0.04}As_{2} with bulk superconductivity below T_{c}=22  K. A two-dimensional spin resonance mode is found around E=11  meV, where the resonance energy is almost temperature independent and linearly scales with T_{c} along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the k_{z} dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  10. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  11. Notes on strings and higher spins

    NASA Astrophysics Data System (ADS)

    Sagnotti, A.

    2013-05-01

    This review is devoted to the intriguing and still largely unexplored links between string theory and higher spins, the types of excitations that lie behind their most cherished properties. A closer look at higher spin fields provides some further clues that string theory describes a broken phase of a higher spin gauge theory. Conversely, string amplitudes contain a wealth of information on higher spin interactions that can clarify long-standing issues related to their infrared behavior. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. Based on the lectures presented at the International School for Subnuclear Physics Searching for the Unexpected at LHC and Status of Our Knowledge (Erice, June 24-July 3 2011) and on the talks presented at Strings, Branes and Supergravity (Istanbul, 31 July -5 Aug 2011), at QTS’07: Quantum Theory and Symmetries (Prague, 7-13 Aug. 2011) and at FFP’12: Fundamental Fields and Particles (Udine, 21-23 Nov. 2011).

  12. The Thomas–Fermi quark model: Non-relativistic aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Quan, E-mail: quan_liu@baylor.edu; Wilcox, Walter, E-mail: walter_wilcox@baylor.edu

    The first numerical investigation of non-relativistic aspects of the Thomas–Fermi (TF) statistical multi-quark model is given. We begin with a review of the traditional TF model without an explicit spin interaction and find that the spin splittings are too small in this approach. An explicit spin interaction is then introduced which entails the definition of a generalized spin “flavor”. We investigate baryonic states in this approach which can be described with two inequivalent wave functions; such states can however apply to multiple degenerate flavors. We find that the model requires a spatial separation of quark flavors, even if completely degenerate.more » Although the TF model is designed to investigate the possibility of many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of almost all ground state octet and decuplet baryons. The charge radii of such states are determined and compared with lattice calculations and other models. The low energy fit obtained allows us to extrapolate to the six-quark doubly strange H-dibaryon state, flavor symmetric strange states of higher quark content and possible six quark nucleon–nucleon resonances. The emphasis here is on the systematics revealed in this approach. We view our model as a versatile and convenient tool for quickly assessing the characteristics of new, possibly bound, particle states of higher quark number content. -- Highlights: • First application of the statistical Thomas–Fermi quark model to baryonic systems. • Novel aspects: spin as generalized flavor; spatial separation of quark flavor phases. • The model is statistical, but the low energy baryonic spectrum is successfully fit. • Numerical applications include the H-dibaryon, strange states and nucleon resonances. • The statistical point of view does not encourage the idea of bound many-quark baryons.« less

  13. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Max Planck Institute for Gravitational Physics; Lousto, Carlos O.

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high centralmore » resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.« less

  14. Dirac points, spinons and spin liquid in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Irkhin, V. Yu.; Skryabin, Yu. N.

    2018-05-01

    Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.

  15. How should spin-weighted spherical functions be defined?

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2016-09-01

    Spin-weighted spherical functions provide a useful tool for analyzing tensor-valued functions on the sphere. A tensor field can be decomposed into complex-valued functions by taking contractions with tangent vectors on the sphere and the normal to the sphere. These component functions are usually presented as functions on the sphere itself, but this requires an implicit choice of distinguished tangent vectors with which to contract. Thus, we may more accurately say that spin-weighted spherical functions are functions of both a point on the sphere and a choice of frame in the tangent space at that point. The distinction becomes extremely important when transforming the coordinates in which these functions are expressed, because the implicit choice of frame will also transform. Here, it is proposed that spin-weighted spherical functions should be treated as functions on the spin or rotation groups, which simultaneously tracks the point on the sphere and the choice of tangent frame by rotating elements of an orthonormal basis. In practice, the functions simply take a quaternion argument and produce a complex value. This approach more cleanly reflects the geometry involved, and allows for a more elegant description of the behavior of spin-weighted functions. In this form, the spin-weighted spherical harmonics have simple expressions as elements of the Wigner 𝔇 representations, and transformations under rotation are simple. Two variants of the angular-momentum operator are defined directly in terms of the spin group; one is the standard angular-momentum operator L, while the other is shown to be related to the spin-raising operator ð.

  16. Spin current induced by a charged tip in a quantum point contact

    NASA Astrophysics Data System (ADS)

    Shchamkhalova, B. S.

    2017-03-01

    We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin-orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.

  17. Towards a bootstrap approach to higher orders of epsilon expansion

    NASA Astrophysics Data System (ADS)

    Dey, Parijat; Kaviraj, Apratim

    2018-02-01

    We employ a hybrid approach in determining the anomalous dimension and OPE coefficient of higher spin operators in the Wilson-Fisher theory. First we do a large spin analysis for CFT data where we use results obtained from the usual and the Mellin bootstrap and also from Feynman diagram literature. This gives new predictions at O( ɛ 4) and O( ɛ 5) for anomalous dimensions and OPE coefficients, and also provides a cross-check for the results from Mellin bootstrap. These higher orders get contributions from all higher spin operators in the crossed channel. We also use the bootstrap in Mellin space method for ϕ 3 in d = 6 - ɛ CFT where we calculate general higher spin OPE data. We demonstrate a higher loop order calculation in this approach by summing over contributions from higher spin operators of the crossed channel in the same spirit as before.

  18. Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}

    NASA Astrophysics Data System (ADS)

    Sperling, Marcus; Steinacker, Harold C.

    2018-02-01

    We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \

  19. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  20. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  1. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    PubMed

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2018-04-06

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spin-polarized ground state and exact quantization at ν=5/2

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  3. Magnetic Molecules from Chemist's Point of View

    NASA Astrophysics Data System (ADS)

    Hendrickson, David

    2002-03-01

    A single-molecule magnet (SMM) is a molecule that functions as a nanoscale, single-domain magnetic particle that, below its blocking temperature, exhibits magnetization hysteresis [1]. SMMs have attracted considerable interest because they : (1) can serve as the smallest nanomagnet, monodisperse in size, shape and anisotropy; (2) exhibit quantum tunneling of magnetization (QTM); and (3) may function as memory devices in a quantum computer. SMM’s are synthetically designed nanomagnets, built from a core containing metal ion unpaired spin carriers bridged by oxide or other simple ions which is surrounded by organic ligands. Many systematic changes can be made in the structure of these molecular nanomagnets. Manganese-containing SMM’s are known with from Mn4 to Mn_30 compositions. The magnetic bistability, which is desirable for data storage applications, is achievable at temperatures below 3K. The largest spin of the ground state of a SMM is presently S = 13. Appreciable largely uniaxial magnetoanisotropy in the ground state leads to magnetic bistability. Rather than a continuum of higher energy states separating the “spin-up” and “spin-down” ground states, the quantum nature of the molecular nanomagnets result in a well defined ladder of discrete quantum states. Recent studies have definitively shown that, under conditions that can be controlled via the application of external perturbations, quantum tunneling may occur through the energy separating the “spin-up” and “spin-down” states. The tunneling is due to weak symmetry breaking perturbations that give rise to long-lived quantum states consisting of coherent superpositions of the “spin-up” and “spin-down” states. It is the ability to manipulate these coherent states that makes SMMs particularly attractive for quantum computation. Reference: [1] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, “Single-molecule Magnets”, M.R.S. Bull. 25, 66 (2001).

  4. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi

    2016-02-01

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.

  5. Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim

    2017-07-01

    The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.

  6. Random crystal field effects on the integer and half-integer mixed-spin system

    NASA Astrophysics Data System (ADS)

    Yigit, Ali; Albayrak, Erhan

    2018-05-01

    In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.

  7. Nanostructures: Physics and Technology. 7th International Symposium. St. Petersburg, Russia, June 14-18, 1999 Proceedings

    DTIC Science & Technology

    1999-06-18

    functional theory [8]. The Hamiltonian (Ĥ↑ and Ĥ↓ for spin ↑ and spin ↓ electrons, respectively) is given by: Ĥ↑(↓) = − 2 2 ∇ [ 1 m∗(r) ∇ ] + Ec(r)+ µ...the rapid vanishing of the mean spin of electrons in this state. At the same time, the electron spin polarization at higher energy levels dramat...electrons with spin −1/2 than with spin +1/2, so energy relaxation will lead to a predominant population of higher energy levels by electrons with spin

  8. Spinning-disk confocal microscopy: present technology and future trends.

    PubMed

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. © 2014 Elsevier Inc. All rights reserved.

  9. Survival-mediated capture and fusion cross sections for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Yao, L.; Loveland, W.

    2018-01-01

    The cross section for producing a heavy evaporation residue σEVR in a fusion reaction can be written as a product of three nonseparable factors, i.e., the capture cross section, the fusion probability PCN, and the survival probability Wsur. Each of these factors is dependent on the spin. However, one must remember that the Wsur term is zero or very small for higher spin values, thus effectively limiting the capture and fusion terms. For a series of ˜287 reactions leading to heavy evaporation residues with ZCN≤110 , we point out the implications of this fact for capture cross sections for heavy element formation reactions. From a comparison of calculated and measured evaporation residue cross sections we deduce values of the fusion probability PCN for some of these reactions.

  10. Continuous control of spin polarization using a magnetic field

    NASA Astrophysics Data System (ADS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  11. Heisenberg scaling with weak measurement: a quantum state discrimination point of view

    DTIC Science & Technology

    2015-03-18

    a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between...coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an...release; distribution is unlimited. Heisenberg scaling with weak measurement: a quantum state discrimination point of view The views, opinions and/or

  12. Spinning geodesic Witten diagrams

    DOE PAGES

    Dyer, Ethan; Freedman, Daniel Z.; Sully, James

    2017-11-10

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  13. Local dynamic nuclear polarization using quantum point contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.

    1994-08-15

    We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.

  14. Double-trace flows and the swampland

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Perlmutter, Eric

    2018-03-01

    We explore the idea that large N, non-supersymmetric conformal field theories with a parametrically large gap to higher spin single-trace operators may be obtained as infrared fixed points of relevant double-trace deformations of superconformal field theories. After recalling the AdS interpretation and some potential pathologies of such flows, we introduce a concrete example that appears to avoid them: the ABJM theory at finite k, deformed by \\int O^2, where O is the superconformal primary in the stress-tensor multiplet. We address its relation to recent conjectures based on weak gravity bounds, and discuss the prospects for a wider class of similarly viable flows. Next, we proceed to analyze the spectrum and correlation functions of the putative IR CFT, to leading non-trivial order in 1 /N. This includes analytic computations of the change under double-trace flow of connected four-point functions of ABJM superconformal primaries; and of the IR anomalous dimensions of infinite classes of double-trace composite operators. These would be the first analytic results for anomalous dimensions of finite-spin composite operators in any large N CFT3 with an Einstein gravity dual.

  15. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6

    PubMed Central

    Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.

    2015-01-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018

  16. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Song, M.; Liu, W.

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2NaOsO 6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probemore » spin and orbital/lattice degrees of freedom of Ba 2NaOsO 6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  17. Exact intrinsic localized excitation of an anisotropic ferromagnetic spin chain in external magnetic field with Gilbert damping, spin current and PT -symmetry

    DOE PAGES

    Lakshmanan, Muthusamy; Saxena, Avadh

    2018-04-27

    Inmore » this work, we obtain the exact one-spin intrinsic localized excitation in an anisotropic Heisenberg ferromagnetic spin chain in a constant/variable external magnetic field with Gilbert damping included. We also point out how an appropriate magnitude spin current term in a spin transfer nano-oscillator (STNO) can stabilize the tendency towards damping. Further, we show how this excitation can be sustained in a recently suggested PT -symmetric magnetic nanostructure. We also briefly consider more general spin excitations.« less

  18. Exact intrinsic localized excitation of an anisotropic ferromagnetic spin chain in external magnetic field with Gilbert damping, spin current and PT -symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmanan, Muthusamy; Saxena, Avadh

    Inmore » this work, we obtain the exact one-spin intrinsic localized excitation in an anisotropic Heisenberg ferromagnetic spin chain in a constant/variable external magnetic field with Gilbert damping included. We also point out how an appropriate magnitude spin current term in a spin transfer nano-oscillator (STNO) can stabilize the tendency towards damping. Further, we show how this excitation can be sustained in a recently suggested PT -symmetric magnetic nanostructure. We also briefly consider more general spin excitations.« less

  19. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    PubMed

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  20. Surface hopping trajectory simulations with spin-orbit and dynamical couplings

    NASA Astrophysics Data System (ADS)

    Granucci, Giovanni; Persico, Maurizio; Spighi, Gloria

    2012-12-01

    In this paper we consider the inclusion of the spin-orbit interaction in surface hopping molecular dynamics simulations to take into account spin forbidden transitions. Two alternative approaches are examined. The spin-diabatic one makes use of eigenstates of the spin-free electronic Hamiltonian and of hat{S}^2 and is commonly applied when the spin-orbit coupling is weak. We point out some inconsistencies of this approach, especially important when more than two spin multiplets are coupled. The spin-adiabatic approach is based on the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. Advantages and drawbacks of both strategies are discussed and illustrated with the help of two model systems.

  1. Thermally driven magnetic precession in spin valves

    NASA Astrophysics Data System (ADS)

    Luc, David; Waintal, Xavier

    2014-10-01

    We investigate the angular dependence of the spin torque generated when applying a temperature difference across a spin valve. Our study shows the presence of a nontrivial fixed point in this angular dependence. This fixed point opens the possibility for a temperature gradient to stabilize radio frequency oscillations without the need for an external magnetic field. This so-called "wavy" behavior can already be found upon applying a voltage difference across a spin valve but we find that this effect is much more pronounced with a temperature difference. We find that a spin asymmetry of the Seebeck coefficient of the order of 20 μ VK -1 should be large enough for a temperature gradient of a few degrees to trigger the radio-frequency oscillations. Our semiclassical theory is fully parametrized with experimentally measured(able) parameters and allows one to quantitatively predict the amplitude of the torque.

  2. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less

  3. The reduction of carbon dioxide in iron biocatalyst catalytic hydrogenation reaction: a theoretical study.

    PubMed

    Yang, Longhua; Wang, Hongming; Zhang, Ning; Hong, Sanguo

    2013-08-21

    The reaction mechanism of CO₂ hydrogenation catalyzed by [FeH(PP₃)]BF₄ (PP₃ = P(CH₂CH₂PPh₂)₃) had been investigated by DFT calculations. Our calculations indicated that the reduction of carbon dioxide could be carried out via two spin states, the high-spin (HS) triplet state and the low-spin (LS) singlet state. The minimum energy crossing points (MECPs) on the seam of two intersecting PESs (potential energy surfaces) were searched out. Some interesting phenomena, such as the open-loop phenomenon, and the O-rebound process, were demonstrated to be the important causes of the spin crossover. All these calculations gave us insight into the essence of the related experiment from the macro point of view, and helped to verify which spin states the related complexes pertinent were in. All of these researches would help advance the development of efficient and structurally tailorable CO₂ hydrogenation catalysts.

  4. Local quenches and quantum chaos from higher spin perturbations

    NASA Astrophysics Data System (ADS)

    David, Justin R.; Khetrapal, Surbhi; Kumar, S. Prem

    2017-10-01

    We study local quenches in 1+1 dimensional conformal field theories at large- c by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons theory, representing infalling massive particles with spin-three charge in the BTZ back-ground, we use the Wilson line prescription to compute the single-interval entanglement entropy (EE) and scrambling time following the quench. We find that the change in EE is finite (and real) only if the spin-three charge q is bounded by the energy of the perturbation E, as | q| /c < E 2 /c 2. We show that the Wilson line/EE correlator deep in the quenched regime and its expansion for small quench widths overlaps with the Regge limit for chaos of the out-of-time-ordered correlator. We further find that the scrambling time for the two-sided mutual information between two intervals in the thermofield double state increases with increasing spin-three charge, diverging when the bound is saturated. For larger values of the charge, the scrambling time is shorter than for pure gravity and controlled by the spin-three Lyapunov exponent 4 π/β. In a CFT with higher spin chemical potential, dual to a higher spin black hole, we find that the chemical potential must be bounded to ensure that the mutual information is a concave function of time and entanglement speed is less than the speed of light. In this case, a quench with zero higher spin charge yields the same Lyapunov exponent as pure Einstein gravity.

  5. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Parijat; Bellotti, Enrico

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less

  7. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  8. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    DOE PAGES

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; ...

    2016-02-16

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less

  9. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  10. Thermofield duality for higher spin Rindler Gravity

    DOE PAGES

    Jevicki, Antal; Suzuki, Kenta

    2016-02-15

    In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.

  11. Massless conformal fields, AdS (d+1)/CFT d higher spin algebras and their deformations

    DOE PAGES

    Fernando, Sudarshan; Gunaydin, Murat

    2016-02-04

    Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less

  12. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Singleton, John; ...

    2017-01-05

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states andmore » highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.« less

  13. Heat-driven spin torques in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  14. Spin filtering by field-dependent resonant tunneling.

    PubMed

    Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas

    2010-02-19

    We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.

  15. Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides WX 2 (X = S, Se)

    NASA Astrophysics Data System (ADS)

    Affandi, Y.; Absor, M. A. U.; Abraha, K.

    2018-04-01

    Tungsten dichalcogenides WX 2 (X=S, Se) monolayer (ML) attracted much attention due their large spin splitting, which is promising for spintronics applications. However, manipulation of the spin splitting using an external electric field plays a crucial role in the spintronic device operation, such as the spin-field effect transistor. By using first-principles calculations based on density functional theory (DFT), we investigate the impact of external electric field on the spin splitting properties of the WX 2 ML. We find that large spin-splitting up to 441 meV and 493 meV is observed on the K point of the valence band maximum, for the case of the WS2 and WSe2 ML, respectively. Moreover, we also find that the large spin-orbit splitting is also identified in the conduction band minimum around Q points with energy splitting of 285 meV and 270 meV, respectively. Our calculation also show that existence of the direct semiconducting – indirect semiconducting – metallic transition by applying the external electric field. Our study clarify that the electric field plays a significant role in spin-orbit interaction of the WX 2 ML, which has very important implications in designing future spintronic devices.

  16. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less

  17. Statistical prescission point model of fission fragment angular distributions

    NASA Astrophysics Data System (ADS)

    John, Bency; Kataria, S. K.

    1998-03-01

    In light of recent developments in fission studies such as slow saddle to scission motion and spin equilibration near the scission point, the theory of fission fragment angular distribution is examined and a new statistical prescission point model is developed. The conditional equilibrium of the collective angular bearing modes at the prescission point, which is guided mainly by their relaxation times and population probabilities, is taken into account in the present model. The present model gives a consistent description of the fragment angular and spin distributions for a wide variety of heavy and light ion induced fission reactions.

  18. Bell's Inequalities for Any Spin

    NASA Astrophysics Data System (ADS)

    González-Robles, V. M.

    John Ju Sakurai's classical book in quantum mechanics makes a very illuminative presentation that studies entangled states in a two spin s=1/2 particles system in a singlet state. A Bell's inequality emerges as a consequence. Bell's inequality is a relationship among observables that discriminates between Einstein's locality principle and the nonlocal point of view of orthodox quantum mechanics. Following Sakurai's style we propose, by making natural induction, a generalization for Bell's inequality for any two spin-s particles in a singlet state (s integer or half-integer). This inequality is expressed as a function of a θ parameter, which is a measure of the angle between two possible directions in which the spin is measured. Besides the expression for this general inequality we have found that - (a) for any finite half-integer spin Bell's inequality is violated for some interval of the θ-parameter. The right limit of this interval is fixed and equal to π/2, while the left one comes closer and closer to this value as spin number grows. A function fit shows clearly that the size of this θ-interval over which Bell's inequality is violated diminishes asymptotically to zero as 1/s1/2; (b) an analogous behavior for any finite integer spin. For large spins the disagreement between Einstein's locality principle and the nonlocal point of view in orthodox quantum mechanics disappears.

  19. Spin- and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi

    2017-10-01

    We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.

  20. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  1. Unitarity of spin-2 theories with linearized Weyl symmetry in D=2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmazi, D.

    2009-10-15

    Here we prove unitarity of the recently found fourth-order (in derivatives) self-dual model of spin-2 by investigating the analytic structure of its propagator. The model describes massive particles of helicity +2 (or -2) in D=2+1 dimensions and corresponds to the quadratic truncation of a higher derivative topologically massive gravity about a flat background. It is an intriguing example of a theory where a term in the propagator of the form 1/[{open_square}{sup 2}({open_square}-m{sup 2})] does not lead to ghosts. The crucial role of the linearized Weyl symmetry in getting rid of the ghosts is pointed out. We use a peculiar pairmore » of gauge conditions which fix the linearized reparametrizations and linearized Weyl symmetries separately.« less

  2. Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Qiu, Liang; Quan, Dongxiao; Pan, Fei; Liu, Zhi

    2017-06-01

    We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.

  3. Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos; Habibiyan, Hamidreza

    2018-03-01

    In this work, based on the Kubo-Greenwood formalism and the k . p Hamiltonian model, the impact of Rashba spin-orbit coupling on electronic band structure and electrical conductivity of spin-up and spin-down subbands in counterparts of graphene, including silicene, stanene, and germanene nanosheets has been studied. When Rashba coupling is considered, the effective mass of Dirac fermions decreases significantly and no significant change is caused by this coupling for the subband gaps. All these nanosheets are found to be in topological insulator quantum phase at low staggered on-site potentials due to the applied perpendicular external electric field. We point out that the electrical conductivity of germanene increases gradually with Rashab coupling, while silicene and stanene have some fluctuations due to their smaller Fermi velocity. Furthermore, some critical temperatures with the same electrical conductivity values for jumping to the higher energy levels are observed at various Rashba coupling strengths. For all structures, a broad peak appears at low temperatures in electrical conductivity curves corresponding to the large entropy of systems when the thermal energy reaches to the difference between the energy states. Finally, we have reported that silicene has the larger has the larger electrical conductivity than two others.

  4. Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature

    NASA Astrophysics Data System (ADS)

    Benítez, L. Antonio; Sierra, Juan F.; Savero Torres, Williams; Arrighi, Aloïs; Bonell, Frédéric; Costache, Marius V.; Valenzuela, Sergio O.

    2018-03-01

    A large enhancement in the spin-orbit coupling of graphene has been predicted when interfacing it with semiconducting transition metal dichalcogenides. Signatures of such an enhancement have been reported, but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and tungsten or molybdenum disulphide (WS2, MoS2). We observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, being largest when the spins point out of the graphene plane. This indicates that the strong spin-valley coupling in the transition metal dichalcogenide is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials.

  5. Dynamic Stabilization of a Quantum Many-Body Spin System

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2013-08-01

    We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  7. Pure spin current injection in hydrogenated graphene structures

    NASA Astrophysics Data System (ADS)

    Zapata-Peña, Reinaldo; Mendoza, Bernardo S.; Shkrebtii, Anatoli I.

    2017-11-01

    We present a theoretical study of spin-velocity injection (SVI) of a pure spin current (PSC) induced by linearly polarized light that impinges normally on the surface of two 50% hydrogenated noncentrosymmetric two-dimensional (2D) graphene structures. The first structure, labeled Up and also known as graphone, is hydrogenated only on one side, and the second, labeled Alt, is 25% hydrogenated at both sides. The hydrogenation opens an energy gap on both structures. The PSC formalism has been developed in the length gauge perturbing Hamiltonian, and includes, through the single-particle density matrix, the excited coherent superposition of the spin-split conduction bands inherent to the noncentrosymmetric nature of the structures considered in this work. We analyze two possibilities: in the first, the spin is fixed along a chosen direction, and the resulting SVI is calculated; in the second, we choose the SVI direction along the surface plane, and calculate the resulting spin orientation. This is done by changing the energy ℏ ω and polarization angle α of the incoming light. The results are calculated within a full electronic band structure scheme using the density functional theory (DFT) in the local density approximation (LDA). The maxima of the spin velocities are reached when ℏ ω =0.084 eV and α =35∘ for the Up structure, and ℏ ω =0.720 eV and α =150∘ for the Alt geometry. We find a speed of 668 and 645 km/s for the Up and the Alt structures, respectively, when the spin points perpendicularly to the surface. Also, the response is maximized by fixing the spin-velocity direction along a high-symmetry axis, obtaining a speed of 688 km/s with the spin pointing at 13∘ from the surface normal, for the Up, and 906 km/s and the spin pointing at 60∘ from the surface normal, for the Alt system. These speed values are orders of magnitude larger than those of bulk semiconductors, such as CdSe and GaAs, thus making the hydrogenated graphene structures excellent candidates for spintronics applications.

  8. Manifestations of geometric phases in a proton electric-dipole-moment experiment in an all-electric storage ring

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2017-12-01

    We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.

  9. The Kubo-Greenwood spin-dependent electrical conductivity of 2D transition-metal dichalcogenides and group-IV materials: A Green's function study

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-04-01

    The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.

  10. Semiclassics, Goldstone bosons and CFT data

    NASA Astrophysics Data System (ADS)

    Monin, A.; Pirtskhalava, D.; Rattazzi, R.; Seibold, F. K.

    2017-06-01

    Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by which such operators are associated with a finite density superfluid phase for the theory quantized on the cylinder. The dynamics is dominated by the corresponding Goldstone hydrodynamic mode and the derivative expansion coincides with the inverse charge expansion. We illustrate and further clarify this situation by first considering simple quantum mechanical analogues. We then systematize the approach by employing the coset construction for non-linearly realized space-time symmetries. Focussing on CFT3 we illustrate the case of higher rank and non-abelian groups and the computation of higher point functions. Three point function coefficients turn out to satisfy universal scaling laws and correlations as the charge and spin are varied.

  11. Higgs mechanism for gravity. II. Higher spin connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

    We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less

  12. Spin Hall effect and Landau spectrum of Dirac electrons in bismuth

    NASA Astrophysics Data System (ADS)

    Fuseya, Yuki

    2015-03-01

    Bismuth has played an important role in solid-state physics. Many key phenomena were first discovered in bismuth, such as diamagnetism, Seebeck, Nernst, Shubnikov-de Haas, and de Haas-van Alphen effects. These phenomena result from particular electronic states of bismuth. The strong spin-orbit interaction (~ 1.5eV) causes strong spin-dependent interband couplings resulting in an anomalous spin magnetic moment. We investigate the spin Hall effect and the angular dependent Landau spectrum of bismuth paying special attention to the effect of the anomalous spin magnetic moment. It is shown that the spin Hall insulator is possible and there is a fundamental relationship between the spin Hall conductivity and orbital diamagnetism in the insulating state of the Dirac electrons. Based on this theoretical finding, the magnitude of spin Hall conductivity is estimated for bismuth by that of orbital susceptibility. The magnitude of spin Hall conductivity turns out to be as large as 104Ω-1 cm-1, which is about 100 times larger than that of Pt. It is also shown that the ratio of the Zeeman splitting to the cyclotron energy, which reflects the effect of crystalline spin-orbit interaction, for holes at the T-point can be larger than 1.0 (the maximum of previous theories) and exhibit strong angular dependence, which gives a possible solution to the long-standing mystery of holes at the T-point. In collaboration with Masao Ogata, Hidetoshi Fukuyama, Zengwei Zhu, Benoît Fauqué, Woun Kang, and Kamran Behnia. Supported by JSPS (KAKENHI 24244053, 25870231, and 13428660).

  13. Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok

    2010-03-01

    We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.

  14. Characterization of grain boundary conductivity of spin-sprayed ferrites using scanning microwave microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu

    2014-05-07

    Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less

  15. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  16. Critical Spin Superflow in a Spinor Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyun; Seo, Sang Won; Shin, Y.

    2017-11-01

    We investigate the critical dynamics of spin superflow in an easy-plane antiferromagnetic spinor Bose-Einstein condensate. Spin-dipole oscillations are induced in a trapped condensate by applying a linear magnetic field gradient and we observe that the damping rate increases rapidly as the field gradient increases above a certain critical value. The onset of dissipation is found to be associated with the generation of dark-bright solitons due to the modulation instability of the counterflow of two spin components. Spin turbulence emerges as the solitons decay because of their snake instability. We identify another critical point for spin superflow, in which transverse magnon excitations are dynamically generated via spin-exchanging collisions, which leads to the transient formation of axial polar spin domains.

  17. A quantum dot close to Stoner instability: The role of the Berry phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Arijit, E-mail: arijitsahahri@gmail.com; Gefen, Yuval; Burmistrov, Igor

    2012-10-15

    The physics of a quantum dot with electron-electron interactions is well captured by the so called 'Universal Hamiltonian' if the dimensionless conductance of the dot is much higher than unity. Within this scheme interactions are represented by three spatially independent terms which describe the charging energy, the spin-exchange and the interaction in the Cooper channel. In this paper we concentrate on the exchange interaction and generalize the functional bosonization formalism developed earlier for the charging energy. This turned out to be challenging as the effective bosonic action is formulated in terms of a vector field and is non-abelian due tomore » the non-commutativity of the spin operators. Here we develop a geometric approach which is particularly useful in the mesoscopic Stoner regime, i.e., when the strong exchange interaction renders the system close to the Stoner instability. We show that it is sufficient to sum over the adiabatic paths of the bosonic vector field and, for these paths, the crucial role is played by the Berry phase. Using these results we were able to calculate the magnetic susceptibility of the dot. The latter, in close vicinity of the Stoner instability point, matches very well with the exact solution [I.S. Burmistrov, Y. Gefen, M.N. Kiselev, JETP Lett. 92 (2010) 179]. - Highlights: Black-Right-Pointing-Pointer We consider a conducting QD whose dynamics is governed by exchange interaction. Black-Right-Pointing-Pointer We study the model within the 'Universal Hamiltonian' framework. Black-Right-Pointing-Pointer The ensuing bosonic action is non-abelian (hence non-trivial). Black-Right-Pointing-Pointer We find that the low energy dynamics is governed by a fluctuating Berry phase term. Black-Right-Pointing-Pointer We calculate the partition function and the zero frequency magnetic susceptibility.« less

  18. Rigorous decoupling between edge states in frustrated spin chains and ladders

    NASA Astrophysics Data System (ADS)

    Chepiga, Natalia; Mila, Frédéric

    2018-05-01

    We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).

  19. Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.

    PubMed

    Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei

    2014-09-26

    We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.

  20. An asymmetric pair of vortices adjacent to a spinning cylinder

    NASA Astrophysics Data System (ADS)

    Iosilevskii, G.; Seginer, A.

    The two-dimensional flow field over a spinning circular cylinder is analyzed using an extension of the Foeppl method. Equilibrium equations for two asymmetric point vortices in the wake of the cylinder are solved for a case when both vortices are equidistant from the cylinder. The two Foeppl solutions for the cylinder are presented. It is observed that the spin does not affect the angle between the two vortices; however, it displaces the vortex pair in the spin direction and the sinus of the displacement angle is proportional to the spin rate.

  1. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew S.

    2018-01-01

    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .

  2. High spin cycles: topping the spin record for a single molecule verging on quantum criticality

    NASA Astrophysics Data System (ADS)

    Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.

    2018-03-01

    The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.

  3. Dwell time, Hartman effect and transport properties in a ferromagnetic phosphorene monolayer

    NASA Astrophysics Data System (ADS)

    Hedayati Kh, Hamed; Faizabadi, Edris

    2018-02-01

    In this paper, spin-dependent dwell time, spin Hartman effect and spin-dependent conductance were theoretically investigated through a rectangular barrier in the presence of an exchange field by depositing a ferromagnetic insulator on the phosphorene layer in the barrier region. The existence of the spin Hartman effect was shown for all energies (energies lower than barrier height) and all incident angles in phosphorene. We also compared our results of the dwell time in the phosphorene structure with similar research performed on graphene. We reported a significant difference between the tunneling time values of incident quasiparticles with spin-up and spin-down. We found that the barrier was almost transparent for incident quasiparticles with a wide range of incident angles and energies higher than the barrier height in phosphorene. We also found that the maximum spin-dependent transmission probability for energies higher than barrier height does not necessarily occur in the zero incident angle. In addition, we showed that the spin conductance for energies higher (lower) than barrier height fluctuates (decays) in terms of barrier thickness. We discovered that, in contrast to graphene, the Klein paradox does not occur in the normal incident in the phosphorene structure. Furthermore, the results demonstrated the achievement of good total conductance at certain thicknesses of the barrier for energies higher than the barrier height. This study could serve as a basis for investigations of the basic physics of tunneling mechanisms and also for using phosphorene as a spin polarizer in designing nanoelectronic devices.

  4. Dwell time, Hartman effect and transport properties in a ferromagnetic phosphorene monolayer.

    PubMed

    Hedayati Kh, Hamed; Faizabadi, Edris

    2018-02-28

    In this paper, spin-dependent dwell time, spin Hartman effect and spin-dependent conductance were theoretically investigated through a rectangular barrier in the presence of an exchange field by depositing a ferromagnetic insulator on the phosphorene layer in the barrier region. The existence of the spin Hartman effect was shown for all energies (energies lower than barrier height) and all incident angles in phosphorene. We also compared our results of the dwell time in the phosphorene structure with similar research performed on graphene. We reported a significant difference between the tunneling time values of incident quasiparticles with spin-up and spin-down. We found that the barrier was almost transparent for incident quasiparticles with a wide range of incident angles and energies higher than the barrier height in phosphorene. We also found that the maximum spin-dependent transmission probability for energies higher than barrier height does not necessarily occur in the zero incident angle. In addition, we showed that the spin conductance for energies higher (lower) than barrier height fluctuates (decays) in terms of barrier thickness. We discovered that, in contrast to graphene, the Klein paradox does not occur in the normal incident in the phosphorene structure. Furthermore, the results demonstrated the achievement of good total conductance at certain thicknesses of the barrier for energies higher than the barrier height. This study could serve as a basis for investigations of the basic physics of tunneling mechanisms and also for using phosphorene as a spin polarizer in designing nanoelectronic devices.

  5. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  6. s± pairing near a Lifshitz transition

    DOE PAGES

    Mishra, Vivek; Scalapino, Douglas J.; Maier, Thomas A.

    2016-08-26

    Observations of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the hole band drops below the Fermi energy raise questions for spin-fluctuation theories. In this paper we discuss spin-fluctuation pairing for a bilayer Hubbard model, which goes through such a Lifshitz transition. Our results show s± pairing with a transition temperature that peaks beyond the Lifshitz point and a gap function that has essentially the same magnitude but opposite sign on the incipient hole band as it does on the electron band thatmore » has a Fermi surface.« less

  7. Theoretical Study of Spin Crossover in 30 Iron Complexes.

    PubMed

    Kepp, Kasper P

    2016-03-21

    Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.

  8. Hanle measurements of electrodeposited Fe/GaAs spin tunnel contacts

    NASA Astrophysics Data System (ADS)

    Majumder, Sarmita; Hohertz, Donna; McNeil, James; SpringThorpe, Anthony; Kavanagh, Karen L.

    2014-03-01

    We report spin transport in electrodeposited Fe/n-GaAs tunnel diodes via three-terminal Hanle measurements. For temperatures between 20 K and 150 K, the spin resistance was up to 20 times higher than expected from theoretical calculations and 1000 times larger compared to a vacuum-deposited counterpart. This higher spin resistance was correlated with a higher contact resistance, and a higher concentration of oxygen impurities in the electrodeposited Fe film and interface, as detected via x-ray photoelectron and Auger spectroscopies, and inferred from Fe film nucleation rates. These results can be explained via a small effective tunnel-contact area of 5%, but extra spin filtering via interfacial states or magnetic oxide layers cannot be ruled out. The spin diffusion times (8.5 ± 0.4 ns to 1.8 ± 0.4 ns, for 20 K to 150 K) extracted from Lorentzian fits were in good agreement with values obtained from earlier 4-terminal Hanle measurements (7.8 ± 0.4 ns to 3.2 ± 0.4 ns, for 25 K to 77 K), both 10 times slower than reported vacuum-deposited contacts.

  9. Observables and microscopic entropy of higher spin black holes

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Jottar, Juan I.; Song, Wei

    2013-11-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[ λ] algebra, and on the sl( N,[InlineMediaObject not available: see fulltext.]) algebra for any choice of sl(2 ,[InlineMediaObject not available: see fulltext.]) embedding.

  10. Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen

    2010-01-01

    We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.

  11. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    PubMed

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  12. Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point

    DOE PAGES

    Jang, Byung -Kweon; Lee, Jin Hong; Chu, Kanghyun; ...

    2016-10-03

    Here, the emergence of a triple phase point in a two-dimensional parameter space (such as pressure and temperature) can offer unforeseen opportunities for the coupling of two seemingly independent order parameters. On the basis of this, we demonstrate the electric control of magnetic order by manipulating chemical pressure: lanthanum substitution in the antiferromagnetic ferroelectric BiFeO 3. Our demonstration relies on the finding that a multiferroic triple phase point of a single spin-disordered phase and two spin-ordered phases emerges near room temperature in Bi 0.9La 0.1FeO 3 ferroelectric thin films. By using spatially resolved X-ray absorption spectroscopy, we provide direct evidencemore » that the electric poling of a particular region of the compound near the triple phase point results in an antiferromagnetic phase while adjacent unpoled regions remain magnetically disordered, opening a promising avenue for magnetoelectric applications at room temperature.« less

  13. AdS/CFT in Fractional Dimension and Higher-Spins at One Loop

    NASA Astrophysics Data System (ADS)

    Skvortsov, Evgeny; Tran, Tung

    2017-08-01

    Large-$N$, $\\epsilon$-expansion or the conformal bootstrap allow one to make sense of some of conformal field theories in non-integer dimension, which suggests that AdS/CFT may also extend to fractional dimensions. It was shown recently that the sphere free energy and the $a$-anomaly coefficient of the free scalar field can be reproduced as a one-loop effect in the dual higher-spin theory in a number of integer dimensions. We extend this result to all integer and also to fractional dimensions. Upon changing the boundary conditions in the higher-spin theory the sphere free energy of the large-$N$ Wilson-Fisher CFT can also be reproduced from the higher-spin side.

  14. Constraints on higher spin CFT2

    NASA Astrophysics Data System (ADS)

    Afkhami-Jeddi, Nima; Colville, Kale; Hartman, Thomas; Maloney, Alexander; Perlmutter, Eric

    2018-05-01

    We derive constraints on two-dimensional conformal field theories with higher spin symmetry due to unitarity, modular invariance, and causality. We focus on CFTs with W_N symmetry in the "irrational" regime, where c > N - 1 and the theories have an infinite number of higher-spin primaries. The most powerful constraints come from positivity of the Kac matrix, which (unlike the Virasoro case) is non-trivial even when c > N - 1. This places a lower bound on the dimension of any non-vacuum higher-spin primary state, which is linear in the central charge. At large c, this implies that the dual holographic theories of gravity in AdS3, if they exist, have no local, perturbative degrees of freedom in the semi-classical limit.

  15. The effect of engine spin direction on the dynamics of powered two wheelers

    NASA Astrophysics Data System (ADS)

    Massaro, Matteo; Marconi, Edoardo

    2018-04-01

    The effect of engine spin direction on the dynamics of powered two wheelers is investigated in terms of steady-state points (equilibria), vibration modes (stability), manoeuvre time (performance/manoeuvrability) and handling. The goal is to assess and quantify the advantage sometimes claimed for the 'counter-rotating' engine configuration, where the engine spins in the opposite direction with respect to wheels, against the 'conventional' configuration, where the engine spins in the same direction of wheels.

  16. Characterization of the Solution Structure of Human Serum Albumin Loaded with a Metal Porphyrin and Fatty Acids

    PubMed Central

    Junk, Matthias J.N.; Spiess, Hans W.; Hinderberger, Dariush

    2011-01-01

    The structure of human serum albumin loaded with a metal porphyrin and fatty acids in solution is characterized by orientation-selective double electron-electron resonance (DEER) spectroscopy. Human serum albumin, spin-labeled fatty acids, and Cu(II) protoporphyrin IX—a hemin analog—form a fully self-assembled system that allows obtaining distances and mutual orientations between the paramagnetic guest molecules. We report a simplified analysis for the orientation-selective DEER data which can be applied when the orientation selection of one spin in the spin pair dominates the orientation selection of the other spin. The dipolar spectra reveal a dominant distance of 3.85 nm and a dominant orientation of the spin-spin vectors between Cu(II) protoporphyrin IX and 16-doxyl stearic acid, the electron paramagnetic resonance reporter group of the latter being located near the entry points to the fatty acid binding sites. This observation is in contrast to crystallographic data that suggest an asymmetric distribution of the entry points in the protein and hence the occurrence of various distances. In conjunction with the findings of a recent DEER study, the obtained data are indicative of a symmetric distribution of the binding site entries on the protein's surface. The overall anisotropic shape of the protein is reflected by one spin-spin vector orientation dominating the DEER data. PMID:21539799

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai,M.; Ptitsyn, V.; Roser, T.

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbitsmore » around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.« less

  18. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  19. Spin polarization of graphene and h -BN on Co(0001) and Ni(111) observed by spin-polarized surface positronium spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.

    2018-05-01

    In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.

  20. Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-05-01

    The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.

  1. Causality constraints in conformal field theory

    DOE PAGES

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ) 4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less

  2. Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices

    NASA Astrophysics Data System (ADS)

    Dias, R. G.; Gouveia, J. D.

    2015-11-01

    We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette.

  3. Optimal region of latching activity in an adaptive Potts model for networks of neurons

    NASA Astrophysics Data System (ADS)

    Abdollah-nia, Mohammad-Farshad; Saeedghalati, Mohammadkarim; Abbassian, Abdolhossein

    2012-02-01

    In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)-adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise-adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred.

  4. Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eelbode, D., E-mail: David.Eelbode@ua.ac.be; Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be; Van der Jeugt, J., E-mail: Joris.VanderJeugt@UGent.be

    2015-10-15

    In a series of recent papers, we have introduced higher spin Dirac operators, which are generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe how the polynomial kernel spaces of such operators decompose in irreducible representations of the spin group. We will hereby make use of results from representation theory.

  5. Investigation of Kibble-Zurek Quench Dynamics in a Spin-1 Ferromagnetic BEC

    NASA Astrophysics Data System (ADS)

    Anquez, Martin; Robbins, Bryce; Hoang, Thai; Yang, Xiaoyun; Land, Benjamin; Hamley, Christopher; Chapman, Michael

    2014-05-01

    We study the temporal evolution of spin populations in small spin-1 87Rb condensates following a slow quench. A ferromagnetic spin-1 BEC exhibits a second-order gapless (quantum) phase transition due to a competition between the magnetic and collisional spin interaction energies. The dynamics of slow quenches through the critical point are predicted to exhibit universal power-law scaling as a function of quench speed. In spatially extended condensates, these excitations are revealed as spatial spin domains. In small condensates, the excitations are manifest in the temporal evolution of the spin populations, illustrating a Kibble-Zurek type scaling. We will present the results of our investigation and compare them to full quantum simulations of the system.

  6. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Kim, Se Kwon; Hirata, Yuushou; Oh, Se-Hyeok; Tono, Takayuki; Kim, Duck-Ho; Okuno, Takaya; Ham, Woo Seung; Kim, Sanghoon; Go, Gyoungchoon; Tserkovnyak, Yaroslav; Tsukamoto, Arata; Moriyama, Takahiro; Lee, Kyung-Jin; Ono, Teruo

    2017-12-01

    Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare earth-3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility is remarkably enhanced up to 20 km s-1 T-1. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Sudarshan; Gunaydin, Murat

    Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less

  8. Exploratory investigation of the incipient spinning characteristics of a typical light general aviation airplane

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.

    1977-01-01

    The incipient spinning characteristics of general aviation airplanes were studied. Angular rates in pitch, yaw, and roll were measured through the stall during the incipient spin and throughout the recovery along with control positions, angle of attack, and angle of sideslip. The characteristic incipient spinning motion was determined from a given set of entry conditions. The sequence of recovery controls were varied at two distinct points during the incipient spin, and the effect on recovery characteristics was examined. Aerodynamic phenomena associated with flow over the aft portion of the fuselage, vertical stabilizer, and rubber are described.

  9. Higher Spin Fields in Three-Dimensional Gravity

    NASA Astrophysics Data System (ADS)

    Lepage-Jutier, Arnaud

    In this thesis, we study the effects of massless higher spin fields in three-dimensional gravity with a negative cosmological constant. First, we introduce gravity in Anti-de Sitter (AdS) space without the higher spin gauge symmetry. We recapitulate the semi-classical analysis that outlines the duality between quantum gravity in three dimensions with a negative cosmological constant and a conformal field theory on the asymptotic boundary of AdS 3. We review the statistical interpretation of the black hole entropy via the AdS/CFT correspondence and the modular invariance of the partition function of a CFT on a torus. For the case of higher spin theories in AdS 3 we use those modular properties to bound the amount of gauge symmetry present. We then discuss briefly cases that can evade this bound.

  10. Size and shape of Brain may be such as to take advantage of two Dimensions of Time

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2014-03-01

    This author had previously Theorized that there are two non-commuting Dimensions of time. One is Clock Time and the other is Information Time (which we generally refer to as Information, like Spin Up or Spin Down). When time does not commute with another Dimension of Time, one takes the Clock Time at one point in space and the Information time is not known; that is different than if one takes the Information time at that point and the Clock time is not known--This is not explicitly about time but rather space. An example of this non-commutation is that if one knows the Spin at one point and the Time at one point of space then simultaneosly, one knows the Spin at another point of Space and the Time there (It is the same time), it is a restatement of the EPR paradox. As a matter of fact two Dimensions of Time would prove the EPR paradox. It is obvious from that argument that if one needed to take advantage of Information, then a fairly large space needs to be used, a large amount of Energy needs to be Generated and a symmetry needs to be established in Space-like the lobes of a Brain in order to detect the fact that the Tclock and Tinfo are not Commuting. This Non-Commuting deposits a large amount of Information simultaneously in that space, and synchronizes the time there.

  11. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    NASA Astrophysics Data System (ADS)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  12. Mixed Spin-1/2 and Spin-5/2 Model by Renormalization Group Theory: Recursion Equations and Thermodynamic Study

    NASA Astrophysics Data System (ADS)

    Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El

    2018-04-01

    Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.

  13. From spinning conformal blocks to matrix Calogero-Sutherland models

    NASA Astrophysics Data System (ADS)

    Schomerus, Volker; Sobko, Evgeny

    2018-04-01

    In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.

  14. Nutation and precession control of the High Energy Solar Physics (HESP) satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C. P.; Robertson, B. P.

    1993-01-01

    The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.

  15. Critical behavior of dissipative two-dimensional spin lattices

    NASA Astrophysics Data System (ADS)

    Rota, R.; Storme, F.; Bartolo, N.; Fazio, R.; Ciuti, C.

    2017-04-01

    We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition.

  16. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    PubMed

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  17. On the Weyl anomaly of 4D conformal higher spins: a holographic approach

    NASA Astrophysics Data System (ADS)

    Acevedo, S.; Aros, R.; Bugini, F.; Diaz, D. E.

    2017-11-01

    We present a first attempt to derive the full (type-A and type-B) Weyl anomaly of four dimensional conformal higher spin (CHS) fields in a holographic way. We obtain the type-A and type-B Weyl anomaly coefficients for the whole family of 4D CHS fields from the one-loop effective action for massless higher spin (MHS) Fronsdal fields evaluated on a 5D bulk Poincaré-Einstein metric with an Einstein metric on its conformal boundary. To gain access to the type-B anomaly coefficient we assume, for practical reasons, a Lichnerowicz-type coupling of the bulk Fronsdal fields with the bulk background Weyl tensor. Remarkably enough, our holographic findings under this simplifying assumption are certainly not unknown: they match the results previously found on the boundary counterpart under the assumption of factorization of the CHS higher-derivative kinetic operator into Laplacians of "partially massless" higher spins on Einstein backgrounds.

  18. Spin Seebeck effect in a metal-single-molecule-magnet-metal junction

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Liu, Lixiang; Su, Xiaoqiang; Dong, Lijuan; Luo, Hong-Gang

    2018-01-01

    We investigate the nonlinear regime of temperature-driven spin-related currents through a single molecular magnet (SMM), which is connected with two metal electrodes. Under a large spin approximation, the SMM is simplified to a natural two-channel model possessing spin-opposite configuration and Coulomb interaction. We find that in temperature-driven case the system can generate spin-polarized currents. More interestingly, at electron-hole symmetry point, the competition of the two channels induces a temperature-driven pure spin current. This device demonstrates that temperature-driven SMM junction shows some results different from the usual quantum dot model, which may be useful in the future design of thermal-based molecular spintronic devices.

  19. Imprints of spinning particles on primordial cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio

    2018-02-01

    If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures using the dS/CFT3 correspondence and the operator product expansion techniques. In particular, we obtain generic results for the case of partially massless higher-spin states.

  20. A tensor product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: evidence for deconfined quantum criticality

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang

    We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.

  1. Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2018-03-01

    We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlond, M.; Bzowski, M.; Moebius, E.

    Post-launch boresight of the IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor observations. Accurate information on the boresight of the neutral gas camera is essential for precise determination of interstellar gas flow parameters. Utilizing spin-phase information from the spacecraft attitude control system (ACS), positions of stars observed by the Star Sensor during two years of IBEX measurements were analyzed and compared with positions obtained from a star catalog. No statistically significant differences were observed beyond those expected from the pre-launch uncertainty in the Star Sensor mounting. Based on the star observations andmore » their positions in the spacecraft reference system, pointing of the IBEX satellite spin axis was determined and compared with the pointing obtained from the ACS. Again, no statistically significant deviations were observed. We conclude that no systematic correction for boresight geometry is needed in the analysis of IBEX-Lo observations to determine neutral interstellar gas flow properties. A stack-up of uncertainties in attitude knowledge shows that the instantaneous IBEX-Lo pointing is determined to within {approx}0.{sup 0}1 in both spin angle and elevation using either the Star Sensor or the ACS. Further, the Star Sensor can be used to independently determine the spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct the spin phase when the Star Tracker (used by the ACS) is disabled by bright objects in its field of view. The Star Sensor can also determine the spin axis during most orbits and thus provides redundancy for the Star Tracker.« less

  3. Nonlinear Bogolyubov-Valatin transformations: Two modes

    NASA Astrophysics Data System (ADS)

    Scharnhorst, K.; van Holten, J.-W.

    2011-11-01

    Extending our earlier study of nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for one fermionic mode, in the present paper, we perform a thorough study of general (nonlinear) canonical transformations for two fermionic modes. We find that the Bogolyubov-Valatin group for n=2 fermionic modes, which can be implemented by means of unitary SU(2n=4) transformations, is isomorphic to SO(6;R)/Z2. The investigation touches on a number of subjects. As a novelty from a mathematical point of view, we study the structure of nonlinear basis transformations in a Clifford algebra [specifically, in the Clifford algebra C(0,4)] entailing (supersymmetric) transformations among multivectors of different grades. A prominent algebraic role in this context is being played by biparavectors (linear combinations of products of Dirac matrices, quadriquaternions, sedenions) and spin bivectors (antisymmetric complex matrices). The studied biparavectors are equivalent to Eddington's E-numbers and can be understood in terms of the tensor product of two commuting copies of the division algebra of quaternions H. From a physical point of view, we present a method to diagonalize any arbitrary two-fermion Hamiltonians. Relying on Jordan-Wigner transformations for two-spin- {1}/{2} and single-spin- {3}/{2} systems, we also study nonlinear spin transformations and the related problem of diagonalizing arbitrary two-spin- {1}/{2} and single-spin- {3}/{2} Hamiltonians. Finally, from a calculational point of view, we pay due attention to explicit parametrizations of SU(4) and SO(6;R) matrices (of respective sizes 4×4 and 6×6) and their mutual relation.

  4. In search of elementary spin 0 particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasny, Mieczyslaw Witold, E-mail: krasny@lpnhep.in2p3.fr; Płaczek, Wiesław

    2015-01-15

    The Standard Model of strong and electroweak interactions uses point-like spin 1/2 particles as the building bricks of matter and point-like spin 1 particles as the force carriers. One of the most important questions to be answered by the present and future particle physics experiments is whether the elementary spin 0 particles exist, and if they do, what are their interactions with the spin 1/2 and spin 1 particles. Spin 0 particles have been searched extensively over the last decades. Several initial claims of their discoveries were finally disproved in the final experimental scrutiny process. The recent observation of themore » excess of events at the LHC in the final states involving a pair of vector bosons, or photons, is commonly interpreted as the discovery of the first elementary scalar particle, the Higgs boson. In this paper we recall examples of claims and subsequent disillusions in precedent searches spin 0 particles. We address the question if the LHC Higgs discovery can already be taken for granted, or, as it turned out important in the past, whether it requires a further experimental scrutiny before the existence of the first ever found elementary scalar particle is proven beyond any doubt. An example of the Double Drell–Yan process for which such a scrutiny is indispensable is discussed in some detail. - Highlights: • We present a short history of searches of spin 0 particles. • We construct a model of the Double Drell–Yan Process (DDYP) at the LHC. • We investigate the contribution of the DDYP to the Higgs searches background.« less

  5. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Mambrini, Matthieu; Orús, Román; Poilblanc, Didier

    2016-11-01

    We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.

  6. Generalised Spin Dynamics and Induced Bounds of Automorphic [A]nX, [AX]n NMR Systems via Dual Tensorial Sets: An Invariant Cardinality Role for CFP

    NASA Astrophysics Data System (ADS)

    Temme, Francis P.

    For uniform spins and their indistinguishable point sets of tensorial bases defining automorphic group-based Liouvillian NMR spin dynamics, the role of recursively-derived coefficients of fractional parentage (CFP) bijections and Schur duality-defined CFP(0)(n) ≡ ¦GI¦(n) group invariant cardinality is central both to understanding the impact of time-reversal invariance(TRI) spin physics, and to analysis as density-matrix formalisms over democratic recoupled (DR) dual tensorial sets, {T{ṽ}k(11.1)(SU2 × ln)}. Over abstract spin space, these tensorial sets are (ṽ) invariant-theoretic forms which lie beyond the Liouvillian graph recoupling and Racah-forms envisaged by Sanctuary [1]. This is a direct consequence of the dominance of the ln group. It leads to new views on the value of projective group actions as mappings over specialised Liouvillian carrier spaces, and on the need for the replacement of Racah-Wigner (R-W) orthogonality for distinct point sets, by criteria based on explicit properties of invariants [J. Phys.: Math. & Theor. A 41, 015210 (2008)] for multiple invariant systems. Ũ × P group actions over disjoint (L) carrier subspaces, leading to exclusively combinatorial views of the nature of quantal completeness for indistinguishable point-based tensorial sets. Such generalised invariant-theoretic approaches lie beyond the range of Lévi-Civitá generator views, or of Lévy-Leblond and Lévy-Nahas [9] with its additional cyclic-commutators defining mono-invariant DR forms. Comparison of the latter with generalised multiple-invariant techniques provides an answer to the question of precisely why [A]n≥4(X) and [AX]n≥4 NMR system spin dynamics are not ameniable to conventional R-W analysis of recoupled discrete-point tensorial systems. Our work augments earlier Hilbert space views, both of Louck and Biedenharn [21] on boson pattern projective mapping, and of Corio [19]. The roles of recent ln group action and (λ ⊢ n)-Schur combinatorial concepts, as well as of polyhedral-combinatorial modelling over invariance algebras, contribute significantly to our understanding of invariant-based techniques of Liouville dual tensorial sets for automorphic NMR spin physics.1

  7. Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins

    NASA Astrophysics Data System (ADS)

    Isoyama, Soichiro; Nakano, Hiroyuki

    2018-01-01

    Black holes (BHs) in an inspiraling compact binary system absorb the gravitational-wave (GW) energy and angular-momentum fluxes across their event horizons and this leads to the secular change in their masses and spins during the inspiral phase. The goal of this paper is to present ready-to-use, 3.5 post-Newtonian (PN) template families for spinning, non-precessing, binary BH inspirals in quasicircular orbits, including the 2.5 PN and 3.5 PN horizon-flux contributions as well as the correction due to the secular change in the BH masses and spins through 3.5 PN order, respectively, in phase. We show that, for binary BHs observable by Advanced LIGO with high mass ratios (larger than  ∼10) and large aligned-spins (larger than  ∼ 0.7 ), the mismatch between the frequency-domain template with and without the horizon-flux contribution is typically above the 3% mark. For (supermassive) binary BHs observed by LISA, even a moderate mass-ratios and spins can produce a similar level of the mismatch. Meanwhile, the mismatch due to the secular time variations of the BH masses and spins is well below the 1% mark in both cases, hence this is truly negligible. We also point out that neglecting the cubic-in-spin, point-particle phase term at 3.5 PN order would deteriorate the effect of BH absorption in the template.

  8. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  9. Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering

    NASA Astrophysics Data System (ADS)

    Atalay, Bora; Berker, A. Nihat

    2018-05-01

    Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .

  10. Topological Z2 resonating-valence-bond spin liquid on the square lattice

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Yao; Poilblanc, Didier

    2018-04-01

    A one-parameter family of long-range resonating-valence-bond (RVB) state on the square lattice was previously proposed to describe a critical spin liquid (SL) phase of the spin-1/2 frustrated Heisenberg model. We provide evidence that this RVB state in fact also realizes a topological (long-range entangled) Z2 SL, limited by two transitions to critical SL phases. The topological phase is naturally connected to the Z2 gauge symmetry of the local tensor. This Rapid Communication shows that, on one hand, spin-1/2 topological SL with C4 v point-group symmetry and S U (2 ) spin rotation symmetry exists on the square lattice and, on the other hand, criticality and nonbipartiteness are compatible. We also point out that strong similarities between our phase diagram and the ones of classical interacting dimer models suggest both can be described by similar Kosterlitz-Thouless transitions. This scenario is further supported by the analysis of the one-dimensional boundary state. Forms of parent Hamiltonians hosting the Z2 SL are suggested.

  11. Finite-size scaling and integer-spin Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Bonner, Jill C.; Müller, Gerhard

    1984-03-01

    Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently, investigations have begun which subject the theoretical basis to systematic and intensive scrutiny to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is an example of a situation where finite-size scaling methods encounter difficulty, related to the occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of the spin-1/2 antiferromagnetic XXZ model where the T=0 critical behavior is exactly known and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling techniques do not convincingly reproduce the exact phase behavior and this is attributable to the essential singularity. The point is relevant in connection with a finite-size scaling analysis of a spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that the T=0 phase behavior of integer-spin Heisenberg chains is significantly different from that of half-integer-spin Heisenberg chains.

  12. Band structure and unconventional electronic topology of CoSi

    NASA Astrophysics Data System (ADS)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  13. Holography in Lovelock Chern-Simons AdS gravity

    NASA Astrophysics Data System (ADS)

    Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan

    2017-08-01

    We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.

  14. Thermoelectric spin voltage in graphene

    NASA Astrophysics Data System (ADS)

    Sierra, Juan F.; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V.; Valenzuela, Sergio O.

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents1,2. Amongst the most intriguing phenomena is the spin Seebeck effect3-5, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect6-8. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport9-11, energy-dependent carrier mobility and unique density of states12,13. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current14-17. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  15. Mismatch in cation size causes rapid anion dynamics in solid electrolytes: the role of the Arrhenius pre-factor.

    PubMed

    Breuer, Stefan; Wilkening, Martin

    2018-03-28

    Crystalline ion conductors exhibiting fast ion dynamics are of utmost importance for the development of, e.g., sensors or rechargeable batteries. In some layer-structured or nanostructured compounds fluorine ions participate in remarkably fast self-diffusion processes. As has been shown earlier, F ion dynamics in nanocrystalline, defect-rich BaF 2 is much higher than that in the coarse-grained counterpart BaF 2 . The thermally metastable fluoride (Ba,Ca)F 2 , which can be prepared by joint high-energy ball milling of the binary fluorides, exhibits even better ion transport properties. While long-range ion dynamics has been studied recently, less information is known about local ion hopping processes to which 19 F nuclear magnetic resonance (NMR) spin-lattice relaxation is sensitive. The present paper aims at understanding ion dynamics in metastable, nanocrystalline (Ba,Ca)F 2 by correlating short-range ion hopping with long-range transport properties. Variable-temperature NMR line shapes clearly indicate fast and slow F spin reservoirs. Surprisingly, from an atomic-scale point of view increased ion dynamics at intermediate values of composition is reflected by increased absolute spin-lattice relaxation rates rather than by a distinct minimum in activation energy. Hence, the pre-factor of the underlying Arrhenius relation, which is determined by the number of mobile spins, the attempt frequency and entropy effects, is identified as the parameter that directly enhances short-range ion dynamics in metastable (Ba,Ca)F 2 . Concerted ion migration could also play an important role to explain the anomalies seen in NMR spin-lattice relaxation.

  16. Interaction of lipids with the neurotensin receptor 1.

    PubMed

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony

    2016-06-01

    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Spin generalization of the Calogero–Moser hierarchy and the matrix KP hierarchy

    NASA Astrophysics Data System (ADS)

    Pashkov, V.; Zabrodin, A.

    2018-05-01

    We establish a correspondence between rational solutions to the matrix KP hierarchy and the spin generalization of the Calogero–Moser system on the level of hierarchies. Namely, it is shown that the rational solutions to the matrix KP hierarchy appear to be isomorphic to the spin Calogero–Moser system in a sense that the dynamics of poles of solutions to the matrix KP hierarchy in the higher times is governed by the higher Hamiltonians of the spin Calogero–Moser integrable hierarchy with rational potential.

  18. Gluon amplitudes as 2 d conformal correlators

    NASA Astrophysics Data System (ADS)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  19. Thermodynamics of higher spin black holes in AdS3

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.

  20. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.

    2016-08-01

    The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.

  1. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is significant. For a given amount of spin the amount of side-ways movement increases as the bowler's delivery arm becomes more horizontal. This technique could also be exploited by normal spin bowlers as well as swing bowlers.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasner, Evan; Bearden, Sean; Žutić, Igor, E-mail: zigor@buffalo.edu

    Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers.

  3. General results for higher spin Wilson lines and entanglement in Vasiliev theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegde, Ashwin; Kraus, Per; Perlmutter, Eric

    Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical W N vacuum block, and our results provide an explicit result for this object.« less

  4. General results for higher spin Wilson lines and entanglement in Vasiliev theory

    DOE PAGES

    Hegde, Ashwin; Kraus, Per; Perlmutter, Eric

    2016-01-28

    Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical W N vacuum block, and our results provide an explicit result for this object.« less

  5. Input-output theory for spin-photon coupling in Si double quantum dots

    NASA Astrophysics Data System (ADS)

    Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido

    2017-12-01

    The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.

  6. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  7. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-05-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  8. Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  9. Spin analysis of concentrated traction contacts

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1983-01-01

    Spin, the result of a mismatch in contact radii on either side of the point of rolling, has a detrimental effect on traction contact performance. It occurs in concentrated contacts having conical or contoured rolling elements, such as those in traction drives or angular contact bearings, and is responsible for an increase in contact heating and power loss. The kinematics of spin producing contact geometries and the subsequent effect on traction and power loss are investigated. The influence of lubricant traction characteristics and contact geometries that minimize spin are also addressed.

  10. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  11. Combined NMR and EPR Spectroscopy to Determine Structures of Viral Fusion Domains in Membranes

    PubMed Central

    Tamm, Lukas K.; Lai, Alex L.; Li, Yinling

    2008-01-01

    Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case. PMID:17963720

  12. [Validation of the portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN)].

    PubMed

    D'El Rey, Gustavo José Fonseca; Matos, Cláudia Wilmor

    2009-01-01

    Social phobia (also known as social anxiety disorder) is a severe mental disorder that brings distress and disability. The aim of this study was validate to the Portuguese language the Mini-Social Phobia Inventory (Mini-SPIN) in a populational sample. We performed a discriminative validity study of the Mini-SPIN in a sample of 644 subjects (Mini-SPIN positive group: n = 218 and control/negative group: n = 426) of a study of anxiety disorders' prevalence in the city of Santo André-SP. The Portuguese version of the Mini-SPIN (with score of 6 points, suggested in the original English version) demonstrated a sensitivity of 95.0%, specificity of 80.3%, positive predictive value of 52.8%, negative predictive value of 98.6% and incorrect classification rate of 16.9%. With score of 7 points, was observed an increase in the specificity and positive predictive value (88.6% and 62.7%), while the sensitivity and negative predictive value (84.8% and 96.2%) remained high. The Portuguese version of the Mini-SPIN showed satisfactory psychometric qualities in terms of discriminative validity. In this study, the cut-off of 7, was considered to be the most suitable to screening of the generalized social phobia.

  13. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Zhengcheng; Wen Xiaogang

    2009-10-15

    We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less

  14. An algebraic approach to the analytic bootstrap

    DOE PAGES

    Alday, Luis F.; Zhiboedov, Alexander

    2017-04-27

    We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. Here, we analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers ofmore » operators in the crossed channel. We apply this method to the critical O(N ) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N ) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.« less

  15. Radar-derived asteroid shapes point to a 'zone of stability' for topography slopes and surface erosion rates

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Graves, K.; Bowling, T.

    2014-07-01

    Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates (left plot) and will tend to move down and to the left in shape/spin space as the body evolves (right plot), barring other influences such as YORP spin-up [6]. Moderate rotators (Group B: green points) have slopes that are influenced equally by gravity and spin, lie in or near the self-correcting MSS zone (right plot), and will generally experience the lowest erosion rates (left plot). These objects comprise 12 (43%) of the 28 bodies studied, perhaps indicating some prevalence for the MSS zone. On the other hand, a sample of 1300 asteroid shape and spin parameters (small grey points), derived from asteroid lightcurve data [7], do not show this same degree of correlation, perhaps indicating the relative weakness of erosion-driven shape modification as compared to other influences. We will continue to investigate this phenomenon as the number of detailed shape models from ground-based radar and other observations continues to increase.

  16. Microwave Magnetic Materials for Radar and Signal Processing Devices - Thin Film and Bulk Oxides and Metals

    DTIC Science & Technology

    2007-11-29

    films, (3) low field effective linewidth in polycrystalline ferrites, (4) Fermi-Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet...Fermi- Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet (YIG) film strips in a feedback ring system, (5) the Hamiltonian...XRD data. point in field was so small that field modulation and lock -in The FMR field is taken at the peak loss point in the (b) detection methods

  17. Hypercuboidal renormalization in spin foam quantum gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2017-06-01

    In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.

  18. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    DTIC Science & Technology

    2016-03-31

    Electron spin resonance and spin–valley physics in a silicon double quantum dot, Nature Communications, (05 2014): 0. doi: 10.1038/ncomms4860 Ming...new scheme to better manipulate the exchange-only qubit using a pulsed RF source [5], known as a resonant -exchange-qubit [6,7], in GaAs further...triple points into a quadruple point [10], as shown in Fig. 1. We can also gate control the tunnel coupling over a broad energy range. The

  19. Gravity dual of spin and charge density waves

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2014-12-01

    At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.

  20. Action-angle variables for the harmonic oscillator: Ambiguity spin × duplication spin

    NASA Astrophysics Data System (ADS)

    de Oliveira, César R.; Malta, Coraci P.

    1984-07-01

    The difficulties of obtaining for the harmonic oscillator a well-defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T. H. Seligman ( Ann. Phys. (N.Y.)114 (1978), 243) through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton ( Ann. Phys. (N.Y.)124 (1980), 324) also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. Here the relation between the ambiguity spin and the duplication spin is investigated by introducing these two types of spins in the canonical transformation to action-angle variables. In this way both well-defined unitary transformation and phase operators were obtained.

  1. Topological winding properties of spin edge states in the Kane-Mele graphene model

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Hao, Ningning; Zhang, Ping

    2009-09-01

    We study the spin edge states in the quantum spin-Hall (QSH) effect on a single-atomic layer graphene-ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the Bloch function on the complex-energy Riemann surface (RS). The topological aspect of the QSH phase can be distinguished by the difference of the winding numbers of the spin edge states with different polarized directions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys. Rev. Lett. 95, 146802 (2005)].

  2. Suppression of the impurity-induced local magnetism by the opening of a spin pseudogap in Ni-doped Sr2CuO3

    NASA Astrophysics Data System (ADS)

    Utz, Yannic; Hammerath, Franziska; Nishimoto, Satoshi; Hess, Christian; Beesetty, Neela Sekhar; Saint-Martin, Romuald; Revcolevschi, Alexandre; Büchner, Bernd; Grafe, Hans-Joachim

    2015-08-01

    The S =1 /2 antiferromagnetic Heisenberg spin chain compound Sr2CuO3 doped with 1 % and 2 % of Ni impurities has been studied by means of 63Cu nuclear magnetic resonance. A strong decrease of the spin-lattice relaxation rate T1-1 at low temperatures points toward a spin gap, while a stretching exponent λ <1 and a frequency dependence of T1-1 indicate that this spin gap varies spatially and should rather be characterized as a spin pseudogap. The magnitude of the spin pseudogap scales with doping level. Our results therefore evidence the finite-size character of this phenomenon. Moreover, an unusual narrowing of the low-temperature NMR lines reveals the suppression of the impurity-induced staggered paramagnetic response with increasing doping level.

  3. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  4. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  5. Relativistic spin-orbit interactions of photons and electrons

    NASA Astrophysics Data System (ADS)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  6. Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Bai, Y. H.; George, Thomas F.

    2017-10-01

    All-optical spin reversal presents a new opportunity for spin manipulations, free of a magnetic field. Most of all-optical-spin-reversal ferromagnets are found to have a perpendicular magnetic anisotropy (PMA), but it has been unknown whether PMA is necessary for spin reversal. Here we theoretically investigate magnetic thin films with either PMA or in-plane magnetic anisotropy (IMA). Our results show that spin reversal in IMA systems is possible, but only with a longer laser pulse and within a narrow laser parameter region. Spin reversal does not show a strong helicity dependence where the left- and right-circularly polarized light lead to the identical results. By contrast, the spin reversal in PMA systems is robust, provided both the spin angular momentum and laser field are strong enough while the magnetic anisotropy itself is not too strong. This explains why experimentally the majority of all-optical spin-reversal samples are found to have strong PMA and why spins in Fe nanoparticles only cant out of plane. It is the laser-induced spin-orbit torque that plays a key role in the spin reversal. Surprisingly, the same spin-orbit torque results in laser-induced spin rectification in spin-mixed configuration, a prediction that can be tested experimentally. Our results clearly point out that PMA is essential to spin reversal, though there is an opportunity for in-plane spin reversal.

  7. Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.

    2018-03-01

    We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

  8. Numerical Researches on Dynamical Systems with Relativistic Spin

    NASA Astrophysics Data System (ADS)

    Han, W. B.

    2010-04-01

    It is well known that spinning compact binaries are one of the most important research objects in the universe. Especially, EMRIs (extreme mass ratio inspirals) involving stellar compact objects which orbit massive black holes, are considered to be primary sources of gravitational radiation (GW) which could be detected by the space-based interferometer LISA. GW signals from EMRIs can be used to test general relativity, measure the masses and spins of central black holes and study essential physics near horizons. Compared with the situation without spin, the complexity of extreme objects, most of which rotate very fast, is much higher. So the dynamics of EMRI systems are numerically and analytically studied. We focus on how the spin effects on the dynamics of these systems and the produced GW radiations. Firstly, an ideal model of spinning test particles around Kerr black hole is considered. For equatorial orbits, we present the correct expression of effective potential and analyze the stability of circular orbits. Especially, the gravitational binding energy and frame-dragging effect of extreme Kerr black hole are much bigger than those without spin. For general orbits, spin can monotonically enlarge orbital inclination and destroy the symmetry of orbits about equatorial plane. It is the most important that extreme spin can produce orbital chaos. By carefully investigating the relations between chaos and orbital parameters, we point out that chaos usually appears for orbits with small pericenter, big eccentricity and orbital inclination. It is emphasized that Poincaré section method is invalid to detect the chaos of spinning particles, and the way of systems toward chaos is the period-doubling bifurcation. Furthermore, we study how spins effect on GW radiations from spinning test particles orbiting Kerr black holes. It is found that spins can increase orbit eccentricity and then make h+ component be detected more easily. But for h× component, because spins change orbital inclination in a complicated way, it is more difficult to build GW signal templates. Secondly, based on the scalar gravity theory, a numerical relativistic model of EMRIs is constructed to consider the self-gravity and radiation reaction of low-mass objects. Finally, we develop a new method with multiple steps for Hamilton systems to meet the needs of numerical researches. This method can effectively maintain each conserved quantity of the separable Hamilton system. In addition, for constrained system with a few first integrals, we present a new numerical stabilization method named as adjustment-stabilization method, which can maintain all known conserved quantities in a given dynamical system and greatly improve the numerical accuracy. Our new method is the most complete stabilization method up to now.

  9. Electromagnetic multipole moments of elementary spin-1/2, 1, and 3/2 particles

    NASA Astrophysics Data System (ADS)

    Delgado-Acosta, E. G.; Kirchbach, M.; Napsuciale, M.; Rodríguez, S.

    2012-06-01

    We study multipole decompositions of the electromagnetic currents of spin-1/2, 1, and 3/2 particles described in terms of representation-specific wave equations which are second order in the momenta and which emerge within the recently elaborated Poincaré covariant-projector method, where the respective Lagrangians explicitly depend on the Lorentz group generators of the representations of interest. The currents are then the ordinary linear Noether currents related to phase invariance, and present themselves always as two-terms motion-plus spin-magnetization currents. The spin-magnetization currents appear weighted by the gyromagnetic ratio g, a free parameter in the method which we fix either by unitarity of forward Compton scattering amplitudes in the ultraviolet for spin-1 and spin-3/2, or in the spin-1/2 case, by their asymptotic vanishing, thus ending up in all three cases with the universal g value of g=2. Within the method under discussion, we calculate the electric multipoles of the above spins for the spinor, the four-vector, and the four-vector-spinor representations, and find it favorable in some aspects, specifically in comparison with the conventional Proca and Rarita-Schwinger frameworks. We furthermore attend to the most general non-Lagrangian spin-3/2 currents, which are allowed by Lorentz invariance to be up to third order in the momenta and construct the linear-current equivalent of identical multipole moments of one of them. We conclude that nonlinear non-Lagrangian spin-3/2 currents are not necessarily more general and more advantageous than the linear spin-3/2 Lagrangian current emerging within the covariant-projector formalism. Finally, we test the representation dependence of the multipoles by placing spin-1 and spin-3/2 in the respective (1,0)⊕(0,1) and (3/2,0)⊕(0,3/2) single-spin representations. We observe representation independence of the charge monopoles and the magnetic dipoles, in contrast to the higher multipoles, which turn out to be representation-dependent. In particular, we find the bi-vector (1,0)⊕(0,1) to be characterized by an electric quadrupole moment of opposite sign to the one found in (1/2,1/2), and consequently to the W boson. This observation allows us to explain the positive electric quadrupole moment of the ρ meson extracted from recent analyses of the ρ meson electric form factor. Our finding points toward the possibility that the ρ-meson could transform as part of an antisymmetric tensor with an a1 mesonlike state as its representation companion, a possibility consistent with the empirically established ρ and a1 vector meson dominance of the hadronic vector and axial-vector currents.

  10. Magnetization due to localized states on graphene grain boundary

    PubMed Central

    Dutta, Sudipta; Wakabayashi, Katsunori

    2015-01-01

    Magnetism in graphene has been found to originate from various defects, e.g., vacancy, edge formation, add-atoms etc. Here, we discuss about an alternate route of achieving magnetism in graphene via grain boundary. During chemical vapor deposition of graphene, several graphene nucleation centers grow independently and face themselves with unusual bonding environment, giving rise to the formation of grain boundaries. We investigate the origin of magnetism in such grain boundaries within first-principles calculations, by letting two nucleation centers interact with each other at their interface. We observe formation of unprecedented point defect, consisting of fused three-membered and larger carbon rings, which induces net magnetization to graphene quantum dots. In case of periodic lattices, the appearance of array of point defects leads to the formation of magnetic grain boundaries. The net magnetization on these defects arises due to the deviation from bipartite characteristics of pristine graphene. We observe magnetic grain boundary induced dispersion less flat bands near Fermi energy, showing higher localization of electrons. These flat bands can be accessed via small doping, leading to enhanced magnetism. Moreover, the grain boundaries can induce asymmetric spin conduction behavior along the cross boundary direction. These properties can be exploited for sensor and spin-filtering applications. PMID:26145161

  11. Magnetic quasi-long-range ordering in nematic systems due to competition between higher-order couplings

    NASA Astrophysics Data System (ADS)

    Žukovič, Milan; Kalagov, Georgii

    2018-05-01

    Critical properties of the two-dimensional X Y model involving solely nematic-like terms of the second and third orders are investigated by spin-wave analysis and Monte Carlo simulation. It is found that, even though neither of the nematic-like terms alone can induce magnetic ordering, their coexistence and competition leads to an extended phase of the magnetic quasi-long-range-order phase, wedged between the two nematic-like phases induced by the respective couplings. Thus, except for the multicritical point, at which all the phases meet, for any finite value of the coupling parameters ratio there are two phase transition: one from the paramagnetic phase to one of the two nematic-like phases followed by another one at lower temperatures to the magnetic phase. The finite-size scaling analysis indicates that the phase transitions between the magnetic and nematic-like phases belong to the Ising and three-state Potts universality classes. Inside the competition-induced algebraic magnetic phase, the spin-pair correlation function is found to decay even much more slowly than in the standard X Y model with purely magnetic interactions. Such a magnetic phase is characterized by an extremely low vortex-antivortex pair density attaining a minimum close to the point at which the two couplings are of about equal strength.

  12. Spin-Orbit Torques in ferrimagnetic GdFeCo

    NASA Astrophysics Data System (ADS)

    Roschewsky, Niklas; Lambert, Charles-Henri; Salahuddin, Sayeef

    Recently spin-orbit torques in antiferromagnets received a lot of attention due to intrinsic high frequency dynamics as well as robustness against perturbations from external magnetic fields. Here, we report on spin-orbit torque (SOT) switching in ferrimagnetic Gdx (Fe90Co10)100-x films on both sides of the magnetic compensation point. In addition to current driven switching experiments we performed harmonic Hall measurements of the effective SOT fields. We find that both the Slonczewski torque as well as the field-like torque diverge at the magnetization compensation point. However, the effective spin Hall angle ξ = (2 | e | / ℏ) MStFM (Heff / | jHM |) is found to be roughly constant across the investigated composition range. This provides important insight into the the angular momentum transfer process in ferrimagnets. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the NEMM program (KC2204).

  13. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    NASA Astrophysics Data System (ADS)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  14. The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2016-12-01

    The critical and compensation behaviors, of a spherical ferrimagnetic nanoparticle, consisting of a ferromagnetic core of spin-1/2 A atoms, a ferromagnetic shell of spin-1 B atoms and a disordered interface in between that is characterized by a random arrangement of A and B atoms of ApB1-p type and a negative A - B coupling, are studied. The ground state phase diagrams of the system have been determined in the (JAB, D/jA) and (JB, D/jA) planes. Monte Carlo simulation based on Metropolis algorithm has been used to study the effects of the concentration parameter p, the crystal field, the coupling between B - B atoms jB and the antiferromagnetic interface coupling jAB on the phase diagrams and the magnetic properties of the system. It has been found that one, two or even three compensation point(s) can appear for appropriate values of the system parameters.

  15. Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.

    PubMed

    Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd

    2016-04-01

    In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.

  16. Optical Control of One and Two Hole Spins in Interacting Quantum Dots

    DTIC Science & Technology

    2011-11-01

    highly anisotropic , with an approximately Ising-like (ASzIz) form 15. This is predicted to greatly reduce dephasing in a transverse magnetic field16, even...spin Rabi oscillations) confirm that this pulse sequence can optically rotate the hole spin to any point on the Bloch sphere and thus satisfy the... anisotropic contribution of 10% to the isotropic Heisenberg exchange. This anisotropic exchange is another manifestation of the stronger spin–orbit char

  17. Theory of ground state factorization in quantum cooperative systems.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  18. Integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes.

    PubMed

    Kubizňák, David; Cariglia, Marco

    2012-02-03

    We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.

  19. Spin reorientation of a nonsymmetric body with energy dissipation

    NASA Technical Reports Server (NTRS)

    Cenker, R. J.

    1973-01-01

    Stable rotating semi-rigid bodies were demonstrated analytically, and verified in flights such as Explorer 1 and ATS-5 satellites. The problem arises from the two potential orientations which the final spin vector can take after large angle reorientation from minor to major axis, i.e., along the positive or negative axis of the maximum inertia. Reorientation of a satellite initially spinning about the minor axis using an energy dissipation device may require that the final spin orientation be controlled. Examples of possible applications are the Apogee Motor Assembly with Paired Satellites (AMAPS) configuration, where proper orientation of the thruster is required; and reorientation of ATS-5, where the spin sensitive nature of the despin device (yo-yo mechanism) requires that the final spin vector point is a specified direction.

  20. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    NASA Astrophysics Data System (ADS)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  1. Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling.

    PubMed

    Mitrikas, George; Efthimiadou, Eleni K; Kordas, George

    2014-02-14

    We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the (1)H and (29)Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 μs is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two other sources of decoherence: first, a classical magnetic field noise imposed by the (1)H nuclear spins of the cage organic substituents, which can be described by a virtual fluctuating magnetic field with the proton Larmor frequency, and second, decoherence due to anisotropic hyperfine coupling between the electron and the inner (29)Si spins of the cage.

  2. High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device

    NASA Astrophysics Data System (ADS)

    Silva, P. V.; Saraiva-Souza, A.; Maia, D. W.; Souza, F. M.; Filho, A. G. Souza; Meunier, V.; Girão, E. C.

    2018-04-01

    Spin-polarized transport through a rhombic graphene quantum dot (rGQD) attached to armchair graphene nanoribbon (AGNR) electrodes is investigated by means of the Green's function technique combined with single-band tight-binding (TB) approach including a Hubbard-like term. The Hubbard repulsion was included within the mean-field approximation. Compared to anti-ferromagnetic (AFM), we show that the ferromagnetic (FM) ordering of the rGQD corresponds to a smaller bandgap, thus resulting in an efficient spin injector. As a consequence, the electron transport spectrum reveals a spin valve effect, which is controlled by doping with B/N atoms creating a p-n-type junction. The calculations point out that such systems can be used as spin-filter devices with efficiency close to a 100 % .

  3. Spin-lattice relaxation of individual solid-state spins

    NASA Astrophysics Data System (ADS)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  4. Three-dimensional fractional-spin gravity

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2014-02-01

    Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.

  5. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, L.F.

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less

  7. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.

    PubMed

    Okuma, Nobuyuki

    2017-09-08

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  8. Spin correlations in quantum wires

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  9. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Okuma, Nobuyuki

    2017-09-01

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  10. Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2018-05-01

    We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.

  11. Interaction of pulsating and spinning waves in condensed phase combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.

    1986-10-01

    The authors employ a nonlinear stability analysis in the neighborhood of a multiple bifurcation point to describe the interaction of pulsating and spinning modes of condensed phase combustion. Such phenomena occur in the synthesis of refractory materials. In particular, they consider the propagation of combustion waves in a long thermally insulated cylindrical sample and show that steady, planar combustion is stable for a modified activation energy/melting parameter less than a critical value. Above this critical value primary bifurcation states, corresponding to time-periodic pulsating and spinning modes of combustion, emanate from the steadily propagating solution. By varying the sample radius, themore » authors split a multiple bifurcation point to obtain bifurcation diagrams which exhibit secondary, tertiary, and quarternary branching to various types of quasi-periodic combustion waves.« less

  12. Quantum critical point and spin fluctuations in lower-mantle ferropericlase

    PubMed Central

    Lyubutin, Igor S.; Struzhkin, Viktor V.; Mironovich, A. A.; Gavriliuk, Alexander G.; Naumov, Pavel G.; Lin, Jung-Fu; Ovchinnikov, Sergey G.; Sinogeikin, Stanislav; Chow, Paul; Xiao, Yuming; Hemley, Russell J.

    2013-01-01

    Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth’s lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe2+ ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe2+ in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe2+ at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = Pc) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives Pc = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth’s lower mantle. PMID:23589892

  13. Dynamical correlation functions of the quadratic coupling spin-Boson model

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α < {α }{{c}}, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α ={α }{{c}} of the boson-unstable quantum phase transition, the critical exponents y O of these correlation functions are obtained as {y}{{{σ }}x}={y}{{{σ }}z}=1-2s and {y}X=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of {C}{{{σ }}x}(ω ) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  14. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    PubMed Central

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  15. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  16. Temperature dependence of pure spin current and spin-mixing conductance in the ferromagnetic—normal metal structure

    NASA Astrophysics Data System (ADS)

    Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.

    2018-06-01

    Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.

  17. Nonequilibrium Phase Transition in a Periodically Driven XY Spin Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Ilievski, Enej

    2011-08-01

    We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-(1)/(2) chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system’s parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.

  18. Emergent magnetism at transition-metal–nanocarbon interfaces

    PubMed Central

    Al Ma’Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Flokstra, Machiel; Stewart, Rhea; Ali, Mannan; Burnell, Gavin; Hickey, B. J.

    2017-01-01

    Charge transfer at metallo–molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc–C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo–carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2−π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz–π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices. PMID:28507160

  19. A passive pendulum wobble damper for a low spin rate Jupiter flyby spacecraft

    NASA Technical Reports Server (NTRS)

    Fowler, R. C.

    1972-01-01

    When the spacecraft has a low spin rate and precise pointing requirements, the wobble angle must be damped in a time period equivalent to a very few wobble cycles. The design, analysis, and test of a passive pendulum wobble damper are described.

  20. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  1. Robust superconductivity with nodes in the superconducting topological insulator CuxBi2Se3 : Zeeman orbital field and nonmagnetic impurities

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki

    2015-02-01

    We study the robustness against nonmagnetic impurities in the topological superconductor with point nodes, focusing on an effective model of CuxBi2Se3 . We find that the topological superconductivity with point nodes is not fragile against nonmagnetic impurities, although the superconductivity with nodes in past studies is usually fragile. Exchanging the role of spin with the one of orbital, and vice versa, we find that in the "dual" space the topological superconductor with point nodes is regarded as the intraorbital spin-singlet s -wave one. From the viewpoint of the dual space, we deduce that the point-node state is not fragile against nonmagnetic impurity, when the orbital imbalance in the normal states is small. Since the spin imbalance is induced by the Zeeman magnetic field, we shall name this key quantity for the impurity effects the Zeeman "orbital" field. The numerical calculations support that the deduction is correct. If the Zeeman orbital field is small, the topological superconductivity is not fragile in dirty materials, even with nodes. Thus, the topological superconductors cannot be simply regarded as one of the conventional unconventional superconductors.

  2. Scanning tunneling spectroscopy and Dirac point resonances due to a single Co adatom on gated graphene

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Alireza; Kirczenow, George

    2012-06-01

    Based on the standard tight-binding model of the graphene π-band electronic structure, the extended Hückel model for the adsorbate and graphene carbon atoms, and spin splittings estimated from density functional theory (DFT), the Dirac point resonances due to a single cobalt atom on graphene are studied. The relaxed geometry of the magnetic adsorbate and the graphene is calculated using DFT. The system shows strong spin polarization in the vicinity of the graphene Dirac point energy for all values of the gate voltage, due to the spin splitting of Co 3d orbitals. We also model the differential conductance spectra for this system that have been measured in the scanning tunneling microscopy (STM) experiments of Brar [Nat. Phys.1745-247310.1038/nphys1807 7, 43 (2011)]. We interpret the experimentally observed behavior of the S-peak in the STM differential conductance spectrum as evidence of tunneling between the STM tip and a cobalt-induced Dirac point resonant state of the graphene, via a Co 3d orbital. The cobalt ionization state which is determined by the energy position of the resonance can be tuned by gate voltage, similar to that seen in the experiment.

  3. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  4. Partition functions with spin in AdS2 via quasinormal mode methods

    DOE PAGES

    Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng

    2016-10-12

    We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less

  5. X-ray reflection from cold white dwarfs in magnetic cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Hayashi, Takayuki; Kitaguchi, Takao; Ishida, Manabu

    2018-02-01

    We model X-ray reflection from white dwarfs (WDs) in magnetic cataclysmic variables (mCVs) using a Monte Carlo simulation. A point source with a power-law spectrum or a realistic post-shock accretion column (PSAC) source irradiates a cool and spherical WD. The PSAC source emits thermal spectra of various temperatures stratified along the column according to the PSAC model. In the point-source simulation, we confirm the following: a source harder and nearer to the WD enhances the reflection; higher iron abundance enhances the equivalent widths (EWs) of fluorescent iron Kα1, 2 lines and their Compton shoulder, and increases the cut-off energy of a Compton hump; significant reflection appears from an area that is more than 90° apart from the position right under the point X-ray source because of the WD curvature. The PSAC simulation reveals the following: a more massive WD basically enhances the intensities of the fluorescent iron Kα1, 2 lines and the Compton hump, except for some specific accretion rate, because the more massive WD makes a hotter PSAC from which higher-energy X-rays are preferentially emitted; a larger specific accretion rate monotonically enhances the reflection because it makes a hotter and shorter PSAC; the intrinsic thermal component hardens by occultation of the cool base of the PSAC by the WD. We quantitatively estimate the influences of the parameters on the EWs and the Compton hump with both types of source. We also calculate X-ray modulation profiles brought about by the WD spin. These depend on the angles of the spin axis from the line of sight and from the PSAC, and on whether the two PSACs can be seen. The reflection spectral model and the modulation model involve the fluorescent lines and the Compton hump and can directly be compared to the data, which allows us to estimate these geometrical parameters with unprecedented accuracy.

  6. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  7. Coupled spin and electron-phonon interaction at the Tl/Si(111) surface from relativistic first-principles calculations

    NASA Astrophysics Data System (ADS)

    Garcia-Goiricelaya, Peio; Gurtubay, Idoia G.; Eiguren, Asier

    2018-05-01

    We investigate the role played by the electron spin and the spin-orbit interaction in the exceptional electron-phonon coupling at the Tl/Si(111) surface. Our first-principles calculations demonstrate that the particular spin pattern of this system dominates the whole low-energy electron-phonon physics, which is remarkably explained by forbidden spin-spin scattering channels. In particular, we show that the strength of the electron-phonon coupling appears drastically weakened for surface states close to the K ¯ and K'¯ valleys, which is unambiguously attributed to the spin polarization through the associated modulation due to the spinor overlaps. However, close to the Γ ¯ point, the particular spin pattern in this area is less effective in damping the electron-phonon matrix elements, and the result is an exceptional strength of the electron-phonon coupling parameter λ ˜1.4 . These results are rationalized by a simple model for the electron-phonon matrix elements including the spinor terms.

  8. Quantum spin liquids: a review.

    PubMed

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  9. Do Gluons Carry Proton Spin? - Toward Resolving the Spin Crisis (445th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilevsky, Alexander

    2009-01-21

    Just as Earth and other planets spin within the solar system, subatomic quark and gluon particles spin within the protons and neutrons that spin within the nucleus of an atom. Quantum Chromodynamics (QCD) is a theory that describes interactions between subatomic particles and it has played a defining role in understanding the spin of protons and neutrons, which make up most of the visible mass in the universe. Experiments first completed at CERN and furthered at several other laboratories around the world revealed that surprisingly, quarks and their partnering anti-quarks are responsible for only 20 to 30 percent of protonmore » spin. These findings pointed to what would become known as "spin crisis." More recent experiments at BNL's Relativistic Heavy Ion Collider (RHIC), the first collider to smash protons that are "polarized," or made to spin in the same orientation, have helped to isolate the role of the gluon's spin within the spinning proton in hopes of resolving this crisis. In his lecture, Bazilevsky will explain how data from RHIC's PHENIX and STAR detectors help to reveal the role of gluons in the proton's spin. Bazilevsky will also discuss long- and short-term plans to attain a deeper look into the proton spin structure, utilizing RHIC and its future upgrades« less

  10. Observational signature of high spin at the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  11. Dynamic nuclear polarization at high Landau levels in a quantum point contact

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.

    2018-05-01

    We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.

  12. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.

    PubMed

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin

    2014-03-01

    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    DOE PAGES

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less

  14. Extremal higher spin black holes

    NASA Astrophysics Data System (ADS)

    Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.

    2016-04-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.

  15. Spin Complicates Eccentric BH-NS Mergers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a neutron star (NS) has a glancing encounter with a black hole (BH), its spin has a significant effect on the outcome, according to new simulations run by William East of Stanford University and his collaborators. Spotting an Eccentric Merger. In a traditional BH-NS merger, the two objects orbit each other quasi-circularly as they spiral in. But there's another kind of merger that's possible in high-density environments like galactic nuclei or globular clusters: a dynamical capture merger, in which a NS and BH pass each other just close enough that the gravity of the black hole "catches" the NS, leading the two objects to merge with very eccentric orbits. During an eccentric merger, the NS can be torn apart -- at which point some fraction of the tidally-disrupted material will escape the system, while some fraction instead accretes back onto the BH. Knowing these fractions is important for being able to model the expected electromagnetic signatures for the merger: the unbound material can power transients like kilonovae, whereas the accreting material may be the cause of short gamma-ray bursts. The amount of material available for events like these would change their observable strengths. Testing the Effects of Spin. To see whether NS spin has an impact on the behavior of the merger, East and collaborators use a general-relativistic hydrodynamic code to simulate the glancing encounter of a BH and a NS with dimensionless spin between a=0 (non-spinning) and a=0.756 (rotation period of 1 ms). They also vary the separation of the first encounter. The group finds that changing the NS's spin can change a number of outcomes of the merger. To start with, it can affect whether the NS is captured by the BH, or if the encounter is glancing and then both objects carry on their merry way. And if the NS is trapped by the BH and torn apart, then the higher the NS's spin, the more matter outside of the BH ends up unbound, instead of getting trapped into an accretion disk around the BH. As a result of these simulations, the authors argue that the spin of NSs in dynamical capture mergers is crucially important for correctly modeling the observational signatures that might come out of them. Citation: William E. East et al. 2015 ApJ, 807, L3.

  16. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  17. Integrability of Spinning Particle Motion in Higher-Dimensional Rotating Black Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Cariglia, Marco

    2012-02-01

    We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.061102] on complete integrability of geodesic motion in these spacetimes.

  18. Tunable strength saddle-point contacts impact on quantum rings transmission

    NASA Astrophysics Data System (ADS)

    González, J. J.; Diago-Cisneros, L.

    2016-09-01

    A particular subject of investigation is the role of several sadle-point contact (QPC) parameters on the scattering properties of an Aharonov-Bohm-Aharonov-Casher quantum ring (QR) under Rashba-type spin orbit interaction. We discuss the interplay of the conductance with the confinement strengths and height of the QPC, which yields new and tunable harmonic and non-harmonics patterns, while one manipulates these constriction parameters. This phenomenology may be of utility to implement a novel way to modulate spin interference effects in semiconducting QRs, providing an appealing test-platform for spintronics applications.

  19. Quantum-ring spin interference device tuned by quantum point contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diago-Cisneros, Leo; Mireles, Francisco

    2013-11-21

    We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a functionmore » of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.« less

  20. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    NASA Astrophysics Data System (ADS)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  1. Electronic spin transport in gate-tunable black phosphorus spin valves

    NASA Astrophysics Data System (ADS)

    Liu, Jiawei; Avsar, Ahmet; Tan, Jun You; Oezyilmaz, Barbaros

    High charge mobility, the electric field effect and small spin-orbit coupling make semiconducting black phosphorus (BP) a promising material for spintronics device applications requiring long spin distance spin communication with all rectification and amplification actions. Towards this, we study the all electrical spin injection, transport and detection under non-local spin valve geometry in fully encapsulated ultra-thin BP devices. We observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. These values are an order of magnitude higher than what have been measured in typical graphene spin valve devices. Moreover, the spin transport depends strongly on charge carrier concentration and can be manipulated in a spin transistor-like manner by controlling electric field. This behaviour persists even at room temperature. Finally, we will show that similar to its electrical and optical properties, spin transport property is also strongly anisotropic.

  2. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  3. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields.

    PubMed

    Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  4. Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.

    PubMed

    Henley, Christopher L

    2006-02-03

    The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.

  5. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  6. Interface-induced phenomena in magnetism

    DOE PAGES

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; ...

    2017-06-05

    Our article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important conceptsmore » include spin accumulation, spin currents, spin transfer torque, and spin pumping. We provide an overview for the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. Our article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.« less

  7. Interface-Induced Phenomena in Magnetism

    PubMed Central

    Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S. D.; Fullerton, Eric E.; Leighton, Chris; MacDonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, Bert; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. PMID:28890576

  8. Directional interlayer spin-valley transfer in two-dimensional heterostructures

    DOE PAGES

    Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...

    2016-12-14

    Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less

  9. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  10. 7TH International Symposium: Nanostructure: Physics and Technology

    DTIC Science & Technology

    1999-01-01

    within the density functional theory [8]. The Hamiltonian (fit and/H 4 for spin 4" and spin 4. electrons, respectively) is given by: fi) - i2--V[ + E,(r...population of higher energy levels by electrons with spin -1/2. This results in increased polarization of luminescence which may exceed 50% (see curve 1 in...that higher energy lines quench at high field. In addition a change in the linewidth of the emission is found for high electric fields. Introduction

  11. Towards Lagrangian formulations of mixed-symmetry higher spin fields on AdS-space within BFV-BRST formalism

    NASA Astrophysics Data System (ADS)

    Reshetnyak, A. A.

    2010-11-01

    The spectrum of superstring theory on the AdS 5 × S 5 Ramond-Ramond background in tensionless limit contains integer and half-integer higher-spin fields subject at most to two-rows Young tableaux Y( s 1, s 2). We review the details of a gauge-invariant Lagrangian description of such massive and massless higher-spin fields in anti-de-Sitter spaces with arbitrary dimensions. The procedure is based on the construction of Verma modules, its oscillator realizations and of a BFV-BRST operator for non-linear algebras encoding unitary irreducible representations of AdS group.

  12. Towards a bulk description of higher spin SYK

    NASA Astrophysics Data System (ADS)

    González, Hernán A.; Grumiller, Daniel; Salzer, Jakob

    2018-05-01

    We consider on the bulk side extensions of the Sachdev-Ye-Kitaev (SYK) model to Yang-Mills and higher spins. To this end we study generalizations of the Jackiw-Teitelboim (JT) model in the BF formulation. Our main goal is to obtain generalizations of the Schwarzian action, which we achieve in two ways: by considering the on-shell action supplemented by suitable boundary terms compatible with all symmetries, and by applying the Lee-Wald-Zoupas formalism to analyze the symplectic structure of dilaton gravity. We conclude with a discussion of the entropy (including log-corrections from higher spins) and a holographic dictionary for the generalized SYK/JT correspondence.

  13. Spin filter and spin valve in ferromagnetic graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less

  14. Computation of supersonic laminar viscous flow past a pointed cone at angle of attack in spinning and coning motion

    NASA Technical Reports Server (NTRS)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.

  15. Fisher information in a quantum-critical environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Zhe; Ma Jian; Lu Xiaoming

    2010-08-15

    We consider a process of parameter estimation in a spin-j system surrounded by a quantum-critical spin chain. Quantum Fisher information lies at the heart of the estimation task. We employ Ising spin chain in a transverse field as the environment which exhibits a quantum phase transition. Fisher information decays with time almost monotonously when the environment reaches the critical point. By choosing a fixed time or taking the time average, one can see the quantum Fisher information presents a sudden drop at the critical point. Different initial states of the environment are considered. The phenomenon that the quantum Fisher information,more » namely, the precision of estimation, changes dramatically can be used to detect the quantum criticality of the environment. We also introduce a general method to obtain the maximal Fisher information for a given state.« less

  16. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  17. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  18. Transportation using spinning tethers with emphasis on phasing and plane change

    NASA Technical Reports Server (NTRS)

    Henderson, David G.

    1989-01-01

    This paper studies the potential uses of spinning tethers as components in a transportation system. Additional degrees of freedom in the selection of transfer orbits as well as phasing control are introduced by allowing both the spin rate of the tethers to be controllable and by allowing the ejection and capture points to be anywhere along the tether length. Equations are derived for the phasing of the planar transfer problem. A construction algorithm for nonplanar transfers is developed and nonplanar phasing conditions are examined.

  19. Exact solution for spin precession in the radiationless relativistic Kepler problem

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2014-11-01

    There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.

  20. Spin injection and detection in lateral spin valves with hybrid interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Le; Liu, Wenyu; Ying, Hao; Chen, Luchen; Lu, Zhanjie; Han, Shuo; Chen, Shanshan; Zhao, Bing; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Spin injection and detection in lateral spin valves with hybrid interfaces comprising a Co/Ag transparent contact and a Co/MgO/Ag junction (III) are investigated at room temperature in comparison with pure Co/Ag transparent contacts (I) and Co/MgO/Ag junctions (II). The measured spin-accumulation signals of a type III device are five times higher than those for type I. The extracted spin diffusion length in Ag is 180 nm for all three types of devices. The enhancement of the spin signal of the hybrid structure is mainly attributed to the increase of the interfacial spin polarization from the Co/MgO/Ag junction.

  1. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  2. Diabolical points in multi-scatterer optomechanical systems

    PubMed Central

    Chesi, Stefano; Wang, Ying-Dan; Twamley, Jason

    2015-01-01

    Diabolical points, which originate from parameter-dependent accidental degeneracies of a system's energy levels, have played a fundamental role in the discovery of the Berry phase as well as in photonics (conical refraction), in chemical dynamics, and more recently in novel materials such as graphene, whose electronic band structure possess Dirac points. Here we discuss diabolical points in an optomechanical system formed by multiple scatterers in an optical cavity with periodic boundary conditions. Such configuration is close to experimental setups using micro-toroidal rings with indentations or near-field scatterers. We find that the optomechanical coupling is no longer an analytic function near the diabolical point and demonstrate the topological phase arising through the mechanical motion. Similar to a Fabry-Perot resonator, the optomechanical coupling can grow with the number of scatterers. We also introduce a minimal quantum model of a diabolical point, which establishes a connection to the motion of an arbitrary-spin particle in a 2D parabolic quantum dot with spin-orbit coupling. PMID:25588627

  3. Three Dimensional Photonic Dirac Points in Metamaterials

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Yang, Biao; Xia, Lingbo; Gao, Wenlong; Liu, Hongchao; Chen, Jing; Xiang, Yuanjiang; Zhang, Shuang

    2017-11-01

    Topological semimetals, representing a new topological phase that lacks a full band gap in bulk states and exhibiting nontrivial topological orders, recently have been extended to photonic systems, predominantly in photonic crystals and to a lesser extent metamaterials. Photonic crystal realizations of Dirac degeneracies are protected by various space symmetries, where Bloch modes span the spin and orbital subspaces. Here, we theoretically show that Dirac points can also be realized in effective media through the intrinsic degrees of freedom in electromagnetism under electromagnetic duality. A pair of spin-polarized Fermi-arc-like surface states is observed at the interface between air and the Dirac metamaterials. Furthermore, eigenreflection fields show the decoupling process from a Dirac point to two Weyl points. We also find the topological correlation between a Dirac point and vortex or vector beams in classical photonics. The experimental feasibility of our scheme is demonstrated by designing a realistic metamaterial structure. The theoretical proposal of the photonic Dirac point lays the foundation for unveiling the connection between intrinsic physics and global topology in electromagnetism.

  4. SGR 1822-1606 (Swift 1822.3-1606): Spin-down rate and inferred dipole field strength

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Strohmayer, Tod; Kouveliotou, Chryssa

    2011-07-01

    We have been monitoring the new source Swift 1822.3-1606 (Cummings et al. GCN 12159) with RXTE. We acquired a total exposure of 20.6 ks in 5 pointings, spanning a time baseline of 5 days. We clearly detect the 8.44 s pulsations reported earlier (Pagani et al. ATel #3489, Gogus et al ATel #3491, Rea et al Atel #3501). We employed an epoch folding technique to determine the spin ephemeris. Our preliminary analysis reveal the spin period, P = 8.4377158(9) s and the spin-down rate, Pdot = 2.2(5) x 10-11 s/s (Epoch: 55758.5 MJD).

  5. Multioverlap Simulations of the 3D Edwards-Anderson Ising Spin Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, B.A.; Berg, B.A.; Janke, W.

    1998-05-01

    We introduce a novel method for numerical spin glass investigations: Simulations of two replica at fixed temperature, weighted to achieve a broad distribution of the Parisi overlap parameter q (multioverlap). We demonstrate the feasibility of the approach by studying the 3D Edwards-Anderson Ising (J{sub ik}={plus_minus}1) spin glass in the broken phase ({beta}=1). This makes it possible to obtain reliable results about spin glass tunneling barriers. In addition, our results indicate a nontrivial scaling behavior of the canonical q distributions not only at the freezing point but also deep in the broken phase. {copyright} {ital 1998} {ital The American Physical Society}

  6. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  7. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  8. Universal spin-momentum locked optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin, E-mail: zjacob@purdue.edu

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reportedmore » phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.« less

  9. Storing quantum information in spins and high-sensitivity ESR

    NASA Astrophysics Data System (ADS)

    Morton, John J. L.; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.

  10. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    PubMed

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  11. Storing quantum information in spins and high-sensitivity ESR.

    PubMed

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  12. Lee-Wick black holes

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu

    2017-01-01

    We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  13. Gluon and Wilson loop TMDs for hadrons of spin ≤ 1

    NASA Astrophysics Data System (ADS)

    Boer, Daniël; Cotogno, Sabrina; van Daal, Tom; Mulders, Piet J.; Signori, Andrea; Zhou, Ya-Jin

    2016-10-01

    In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small x, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small- x `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small- x limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-1 /2 and spin-1 hadrons), and tensor polarized (relevant for spin-1 hadrons). The latter are of interest for studies with a future Electron-Ion Collider with polarized deuterons.

  14. In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.

    PubMed

    Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung

    2013-07-01

    Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Quantum criticality among entangled spin chains

    DOE PAGES

    Blanc, N.; Trinh, J.; Dong, L.; ...

    2017-12-11

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  16. Quantum criticality among entangled spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, N.; Trinh, J.; Dong, L.

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  17. Quantum criticality among entangled spin chains

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  18. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    NASA Astrophysics Data System (ADS)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  19. Critical Two-Point Function for Long-Range O( n) Models Below the Upper Critical Dimension

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin; Slade, Gordon; Wallace, Benjamin C.

    2017-12-01

    We consider the n-component |φ|^4 lattice spin model (n ≥ 1) and the weakly self-avoiding walk (n=0) on Z^d, in dimensions d=1,2,3. We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as r^{-(d+α )} with α \\in (0,2). The upper critical dimension is d_c=2α . For ɛ >0, and α = 1/2 (d+ɛ ), the dimension d=d_c-ɛ is below the upper critical dimension. For small ɛ , weak coupling, and all integers n ≥ 0, we prove that the two-point function at the critical point decays with distance as r^{-(d-α )}. This "sticking" of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.

  20. Transport phenomena in helical edge state interferometers: A Green's function approach

    NASA Astrophysics Data System (ADS)

    Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael

    2013-10-01

    We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.

  1. Flat space (higher spin) gravity with chemical potentials

    NASA Astrophysics Data System (ADS)

    Gary, Michael; Grumiller, Daniel; Riegler, Max; Rosseel, Jan

    2015-01-01

    We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.

  2. Spin Filtering in Storage Rings

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. N.; Pavlov, F. F.

    The spin filtering in storage rings is based on a multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by the spin-dependent transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer,1 is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of a stored beam which incorporates the scattering within the beam. We show how the interplay of the transmission and scattering within the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons,2 we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR.3.

  3. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    PubMed

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  4. Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders

    DOE PAGES

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; ...

    2017-09-11

    Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less

  5. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitamura, H.; Watanuki, R.; Kaneko, Koji

    Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  6. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE PAGES

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; ...

    2014-10-01

    Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  7. Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko

    Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less

  8. Spin-exchange-induced spin-orbit coupling in a superfluid mixture

    NASA Astrophysics Data System (ADS)

    Chen, Li; Zhu, Chuanzhou; Zhang, Yunbo; Pu, Han

    2018-03-01

    We investigate the ground-state properties of a dual-species spin-1/2 Bose-Einstein condensate. One of the species is subjected to a pair of Raman laser beams that induces spin-orbit (SO) coupling, whereas the other species is not coupled to the Raman laser. In certain limits, analytical results can be obtained. It is clearly shown that, through the interspecies spin-exchange interaction, the second species also exhibits SO coupling. This mixture system displays a very rich phase diagram, with many of the phases not present in an SO-coupled single-species condensate. Our work provides a way of creating SO coupling in atomic quantum gases, and opens up an avenue of research in SO-coupled superfluid mixtures. From a practical point of view, the spin-exchange-induced SO coupling may overcome the heating issue for certain atomic species when subjected to Raman beams.

  9. The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Peng-Bin, E-mail: hepengbin@hnu.edu.cn; Yan, Han; Cai, Meng-Qiu

    The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot bemore » efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.« less

  10. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.

    PubMed

    Reichl, Matthew D; Del Genio, Charo I; Bassler, Kevin E

    2010-10-01

    Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbinding phase transition. When the two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical lines as they approach the KT point is described by a crossover exponent φ=2.52±0.05. Finally, we suggest that the transition between the two phases with long-range order is first-order, making the KT-point where all three phases meet a bicritical point.

  11. Spin dynamics in helical molecules with nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Albares, P.; Estévez, P. G.; Cerveró, J. M.; Gaul, C.; Diez, E.; Domínguez-Adame, F.

    2018-04-01

    It is widely admitted that the helical conformation of certain chiral molecules may induce a sizable spin selectivity observed in experiments. Spin selectivity arises as a result of the interplay between a helicity-induced spin–orbit coupling (SOC) and electric dipole fields in the molecule. From the theoretical point of view, different phenomena might affect the spin dynamics in helical molecules, such as quantum dephasing, dissipation and the role of metallic contacts. With a few exceptions, previous studies usually neglect the local deformation of the molecule about the carrier, but this assumption seems unrealistic to describe charge transport in molecular systems. We introduce an effective model describing the electron spin dynamics in a deformable helical molecule with weak SOC. We find that the electron–lattice interaction allows the formation of stable solitons such as bright solitons with well defined spin projection onto the molecule axis. We present a thorough study of these bright solitons and analyze their possible impact on the spin dynamics in deformable helical molecules.

  12. Magnetic and Electric Transverse Spin Density of Spatially Confined Light

    NASA Astrophysics Data System (ADS)

    Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter

    2018-04-01

    When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.

  13. Entanglement in the Anisotropic Kondo Necklace Model

    NASA Astrophysics Data System (ADS)

    Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.

    We study the entanglement in the one-dimensional Kondo necklace model with exact diagonalization, calculating the concurrence as a function of the Kondo coupling J and an anisotropy η in the interaction between conduction spins, and we review some results previously obtained in the limiting cases η = 0 and 1. We observe that as J increases, localized and conduction spins get more entangled, while neighboring conduction spins diminish their concurrence; localized spins require a minimum concurrence between conduction spins to be entangled. The anisotropy η diminishes the entanglement for neighboring spins when it increases, driving the system to the Ising limit η = 1 where conduction spins are not entangled. We observe that the concurrence does not give information about the quantum phase transition in the anisotropic Kondo necklace model (between a Kondo singlet and an antiferromagnetic state), but calculating the von Neumann block entropy with the density matrix renormalization group in a chain of 100 sites for the Ising limit indicates that this quantity is useful for locating the quantum critical point.

  14. Quantum decoherence dynamics of divacancy spins in silicon carbide

    DOE PAGES

    Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less

  15. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  16. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides.

    PubMed

    de la Barrera, Sergio C; Sinko, Michael R; Gopalan, Devashish P; Sivadas, Nikhil; Seyler, Kyle L; Watanabe, Kenji; Taniguchi, Takashi; Tsen, Adam W; Xu, Xiaodong; Xiao, Di; Hunt, Benjamin M

    2018-04-12

    Systems simultaneously exhibiting superconductivity and spin-orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin-orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin-orbit coupling in the atomic layer limit, metallic 2H-TaS 2 and 2H-NbSe 2 . We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin-orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.

  17. Rashba effect and enriched spin-valley coupling in Ga X /M X2 (M = Mo, W; X = S, Se, Te) heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyun; Schwingenschlögl, Udo

    2018-04-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional Ga X /MX 2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between Ga X and MX 2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K' valleys (out-of-plane spin direction) makes Ga X /MX 2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  18. Quantum decoherence dynamics of divacancy spins in silicon carbide.

    PubMed

    Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29 Si and 13 C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

  19. Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa

    2011-09-01

    According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

  20. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  1. Magnetic field manipulation of spin current in a single-molecule magnet tunnel junction with two-electron Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin

    2018-04-01

    In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.

  2. Complexes and saddle point structures, vibrational frequencies and relative energies of intermediates for CH2Br + HBr «-» CH3Br + Br

    NASA Astrophysics Data System (ADS)

    Espinosa-Garcia, J.

    Ab initio molecular orbital theory was used to study parts of the reaction between the CH2Br radical and the HBr molecule, and two possibilities were analysed: attack on the hydrogen and attack on the bromine of the HBr molecule. Optimized geometries and harmonic vibrational frequencies were calculated at the second-order Moller-Plesset perturbation theory levels, and comparison with available experimental data was favourable. Then single-point calculations were performed at several higher levels of calculation. In the attack on the hydrogen of HBr, two stationary points were located on the direct hydrogen abstraction reaction path: a very weak hydrogen bonded complex of reactants, C···HBr, close to the reactants, followed by the saddle point (SP). The effects of level of calculation (method + basis set), spin projection, zeropoint energy, thermal corrections (298K), spin-orbit coupling and basis set superposition error (BSSE) on the energy changes were analysed. Taking the reaction enthalpy (298K) as reference, agreement with experiment was obtained only when high correlation energy and large basis sets were used. It was concluded that at room temperature (i.e., with zero-point energy and thermal corrections), when the BSSE was included, the complex disappears and the activation enthalpy (298K) ranges from 0.8kcal mol-1 to 1.4kcal mol-1 above the reactants, depending on the level of calculation. It was concluded also that this result is the balance of a complicated interplay of many factors, which are affected by uncertainties in the theoretical calculations. Finally, another possible complex (X complex), which involves the alkyl radical being attracted to the halogen end of HBr (C···BrH), was explored also. It was concluded that this X complex does not exist at room temperature.

  3. Spin polarized surface resonance bands in single layer Bi on Ge(1 1 1)

    NASA Astrophysics Data System (ADS)

    Bottegoni, F.; Calloni, A.; Bussetti, G.; Camera, A.; Zucchetti, C.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2016-05-01

    The spin features of surface resonance bands in single layer Bi on Ge(1 1 1) are studied by means of spin- and angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy. We characterize the occupied and empty surface states of Ge(1 1 1) and show that the deposition of one monolayer of Bi on Ge(1 1 1) leads to the appearance of spin-polarized surface resonance bands. In particular, the C 3v symmetry, which Bi adatoms adopt on Ge(1 1 1), allows for the presence of Rashba-like occupied and unoccupied electronic states around the \\overline{\\text{M}} point of the Bi surface Brillouin zone with a giant spin-orbit constant |{α\\text{R}}| =≤ft(1.4+/- 0.1\\right) eV · Å.

  4. AR Sco as a possible seed of highly magnetized white dwarf

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata; Rao, A. R.; Bhatia, Tanayveer Singh

    2017-12-01

    We explore the possibility that the recently discovered white dwarf pulsar AR Sco acquired its high spin and magnetic field due to repeated episodes of accretion and spin-down. An accreting white dwarf can lead to a larger mass and consequently a smaller radius thus causing an enhanced rotation period and a magnetic field. This spinning magnetic white dwarf temporarily can inhibit accretion, spin down and eventually, the accretion can start again due to the shrinking of the binary period by gravitational radiation. A repetition of the above cycle can eventually lead to a high magnetic field white dwarf, recently postulated to be the reason for overluminous type Ia supernovae. We also point out that these high magnetic field spinning white dwarfs are attractive sites for gravitational radiation.

  5. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    DOE PAGES

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide; ...

    2017-11-16

    Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less

  6. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide

    Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less

  7. Experimental observation of magnetoelectricity in spin ice Dy 2Ti 2O 7

    DOE PAGES

    Lin, L.; Xie, Y. L.; Wen, J. -J.; ...

    2015-12-14

    The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy 2Ti 2O 7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at T c1 = 25 K and T c2 =13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significantmore » suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our findings can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.« less

  8. Polarisation in spin-echo experiments: Multi-point and lock-in measurements

    NASA Astrophysics Data System (ADS)

    Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William

    2018-02-01

    Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.

  9. Spin-polarized confined states in Ag films on Fe(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moras, Paolo; Bihlmayer, G.; Vescovo, Elio

    Spin- and angle-resolved photoemission spectroscopy of thin Ag(111) films on ferromagnetic Fe(110) shows a series of spin-polarized peaks. These features derive from Ag sp-bands, which form quantum well states and resonances due to confinement by a spin-dependent interface potential barrier. The spin-up states are broader and located at higher binding energy than the corresponding spin-down states at Gamma, although the differences attenuate near the Fermi level. The spin-down states display multiple gap openings, which interrupt their parabolic-like dispersion. As a result, first-principles calculations attribute these findings to the symmetry- and spin-selective hybridization of the Ag states with the exchange-split bandsmore » of the substrate.« less

  10. Spin-polarized confined states in Ag films on Fe(110)

    DOE PAGES

    Moras, Paolo; Bihlmayer, G.; Vescovo, Elio; ...

    2017-11-16

    Spin- and angle-resolved photoemission spectroscopy of thin Ag(111) films on ferromagnetic Fe(110) shows a series of spin-polarized peaks. These features derive from Ag sp-bands, which form quantum well states and resonances due to confinement by a spin-dependent interface potential barrier. The spin-up states are broader and located at higher binding energy than the corresponding spin-down states at Gamma, although the differences attenuate near the Fermi level. The spin-down states display multiple gap openings, which interrupt their parabolic-like dispersion. As a result, first-principles calculations attribute these findings to the symmetry- and spin-selective hybridization of the Ag states with the exchange-split bandsmore » of the substrate.« less

  11. Baryonic and mesonic 3-point functions with open spin indices

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas

    2018-03-01

    We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.

  12. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    NASA Astrophysics Data System (ADS)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  13. Quantum Spin Stabilized Magnetic Levitation

    NASA Astrophysics Data System (ADS)

    Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

  14. Quantum Spin Stabilized Magnetic Levitation.

    PubMed

    Rusconi, C C; Pöchhacker, V; Kustura, K; Cirac, J I; Romero-Isart, O

    2017-10-20

    We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

  15. ABJ theory in the higher spin limit

    NASA Astrophysics Data System (ADS)

    Hirano, Shinji; Honda, Masazumi; Okuyama, Kazumi; Shigemori, Masaki

    2016-08-01

    We study the conjecture made by Chang, Minwalla, Sharma, and Yin on the duality between the {N}=6 Vasiliev higher spin theory on AdS4 and the {N}=6 Chern-Simons-matter theory, so-called ABJ theory, with gauge group U( N) × U( N + M). Building on our earlier results on the ABJ partition function, we develop the systematic 1 /M expansion, corresponding to the weak coupling expansion in the higher spin theory, and compare the leading 1 /M correction, with our proposed prescription, to the one-loop free energy of the {N}=6 Vasiliev theory. We find an agreement between the two sides up to an ambiguity that appears in the bulk one-loop calculation.

  16. High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra.

    PubMed

    Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S.

    1999-12-27

    A general solution of the exchange problem in the high-nuclearity spin clusters (HNSC) containing arbitrary number of exchange-coupled centers and topology is developed. All constituent magnetic centers are supposed to possess well-isolated orbitally non-degenerate ground states so that the isotropic Heisenberg-Dirac-Van Vleck (HDVV) term is the leading part of the exchange spin Hamiltonian. Along with the HDVV term, we consider higher-order isotropic exchange terms (biquadratic exchange), as well as the anisotropic terms (anisotropic and antisymmetric exchange interactions and local single-ion anisotropies). All these terms are expressed as irreducible tensor operators (ITO). This allows us to take full advantage of the spin symmetry of the system. At the same time, we have also benefitted by taking into account the point group symmetry of the cluster, which allows us to work with symmetrized spin functions. This results in an additional reduction of the matrices to diagonalize. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk magnetic properties (magnetic susceptibility, magnetization, and magnetic specific heat) as well as the spectroscopic properties of HNSC. Special attention is paid to calculate the magnetic excitations observed by inelastic neutron scattering (INS), their intensities, and their Q and temperature dependencies. This spectroscopic technique provides direct access to the energies and wave functions of the different spin states of the cluster; thus, it can be applied to spin clusters in order to obtain deep and detailed information on the nature of the magnetic exchange phenomenon. The general expression for the INS cross-section of spin clusters interacting by all kinds of exchange interactions, including also the single-ion zero-field splitting term, is derived for the first time. A closed-form expression is also derived for the particular case in which only the isotropic exchange interactions are involved. Finally this approach has been used to model the magnetic properties as well as the INS spectra of the polyoxometalate anion [Ni(9)(OH)(3)(H(2)O)(6)(HPO(4))(2)(PW(9)O(34))(3)](16)(-), which contains a central magnetic cluster formed by nine exchange-coupled Ni(II) ions surrounded by diamagnetic phosphotungstate ligands (PW(9)O(34))(9)(-).

  17. Measuring mechanical motion with a single spin

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.; Kolkowitz, S.; Unterreithmeier, Q. P.; Rabl, P.; Bleszynski Jayich, A. C.; Harris, J. G. E.; Lukin, M. D.

    2012-12-01

    We study theoretically the measurement of a mechanical oscillator using a single two-level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen-vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature (Kolkowitz et al 2012 Science 335 1603). Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero-point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero-point motion. Throughout the paper, we focus on the experimental implementation of a nitrogen-vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. The implications for the preparation of nonclassical states of a mechanical oscillator are also discussed.

  18. Analytic renormalized bipartite and tripartite quantum discords with quantum phase transition in XXZ spins chain

    NASA Astrophysics Data System (ADS)

    Joya, Wajid; Khan, Salman; Khalid Khan, M.; Alam, Sher

    2017-05-01

    The behavior of bipartite quantum discord (BQD) and tripartite quantum discord (TQD) in the Heisenberg XXZ spins chain is investigated with the increasing size of the system using the approach of the quantum renormalization group method. Analytical relations for both BQD and TQD are obtained and the results are checked through numerical optimization. In the thermodynamics limit, both types of discord exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated discord and zero discord. The first derivative of both discords becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Qualitatively identical, the amount of saturated BQD strongly depends on the relative positions of spins inside a block. TQD can be a better candidate than BQD both for analyzing QPT and implementing quantum information tasks. The scaling behavior in the vicinity of the critical point is discussed.

  19. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.

    PubMed

    Le, Hung M; Dinh, Thach S; Le, Hieu V

    2011-10-13

    The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very low dissociation probability up to 2.4 eV of internal energy during the investigating period (5 ps), which suggests that dissociation does not occur directly from the singlet ground-state, but it involves the excited triplet-state as an intermediate step and requires more reaction time to occur.

  20. A Probabilistic Model of Spin and Spin Measurements

    NASA Astrophysics Data System (ADS)

    Niehaus, Arend

    2016-01-01

    Several theoretical publications on the Dirac equation published during the last decades have shown that, an interpretation is possible, which ascribes the origin of electron spin and magnetic moment to an autonomous circular motion of the point-like charged particle around a fixed centre. In more recent publications an extension of the original so called "Zitterbewegung Interpretation" of quantum mechanics was suggested, in which the spin results from an average of instantaneous spin vectors over a Zitterbewegung period. We argue that, the corresponding autonomous motion of the electron should, if it is real, determine non-relativistic spin measurements. Such a direct connection with the established formal quantum mechanical description of spin measurements, into which spin is introduced as a "non-classical" quantity has, to our knowledge, not been reported. In the present work we show that, under certain "model assumptions" concerning the proposed autonomous motion, results of spin measurements, including measurements of angular correlations in singlet systems, can indeed be correctly described using classical probabilities. The success of the model is evidence for the "reality" of the assumed autonomous motion. The resulting model violates the Bell—inequalities to the same extent as quantum mechanics.

  1. Spinning particle and gauge theories as integrability conditions

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.

  2. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    NASA Astrophysics Data System (ADS)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  3. 76 FR 67200 - Prospective Grant of Exclusive License: Electron Paramagnetic Resonance Devices and Systems for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... that is a unique combination of: (1) multi-gradient Single Point Imaging involving global phase...-encoding gradients. The combination approach of single point imaging with the spin-echo signal detection...

  4. Moderate MAS enhances local (1)H spin exchange and spin diffusion.

    PubMed

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Detection of current induced spin polarization in epitaxial Bi2Te3 thin film

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Rai, Amritesh; Heon Shin, Seung; Majumder, Sarmita; Register, Leonard F.; Banerjee, Sanjay K.

    2017-03-01

    We electrically detect charge current induced spin polarization on the surface of a molecular beam epitaxy grown Bi2Te3 thin film in a two-terminal device with a ferromagnetic MgO/Fe contact and a nonmagnetic Ti/Au contact. The two-point resistance, measured in an applied magnetic field, shows a hysteresis tracking the magnetization of Fe. A theoretical estimate is obtained for the change in resistance on reversing the magnetization direction of Fe from coupled spin-charge transport equations based on the quantum kinetic theory. The order of magnitude and the sign of the hysteresis are consistent with the spin-polarized surface state of Bi2Te3.

  6. Critical excitation spectrum of a quantum chain with a local three-spin coupling.

    PubMed

    McCabe, John F; Wydro, Tomasz

    2011-09-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D(4),A(4)) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  7. Anomalous diffusion analysis of the lifting events in the event-chain Monte Carlo for the classical XY models

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Higuchi, Saburo

    2017-11-01

    We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable specifying the spin to be updated changes its value to one of its interacting neighbor spins. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical XY model in 1, 2, and 3 dimensions to find that it is superdiffusive near the critical point of the underlying spin system. It is suggested that the performance improvement of the ECMC is related to this anomalous behavior.

  8. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  9. Self-oscillation in spin torque oscillator stabilized by field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  10. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    NASA Astrophysics Data System (ADS)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  11. Charge-induced spin torque in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.

  12. Minimal unitary representation of 5d superconformal algebra F(4) and AdS 6/CFT 5 higher spin (super)-algebras

    DOE PAGES

    Fernando, Sudarshan; Günaydin, Murat

    2014-11-28

    We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less

  13. Field-induced reentrant superconductivity driven by quantum tricritical fluctuations in URhGe

    NASA Astrophysics Data System (ADS)

    Tokunaga, Y.; Aoki, D.; Mayaffre, H.; Krämer, S.; Julien, M.-H.; Berthier, C.; Horvatić, M.; Sakai, H.; Hattori, T.; Kambe, S.; Araki, S.

    2018-05-01

    We review our 59Co NMR study in a URhGe single crystal doped with 10% cobalt. The spin-spin relaxation time (T2) measurements have revealed a divergence of electronic spin fluctuations in the vicinity of a field-induced tricritical point (TCP) locating around 13 T. The fluctuations is developed in the same limited field region around the TCP as that where a reentrant superconductivity (RSC) is observed in URhGe. The finding strongly suggests these quantum fluctuations as the pairing glue responsible for the RSC.

  14. Equilibrium dynamics of the sub-Ohmic spin-boson model under bias

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \

  15. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  16. Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection

    NASA Astrophysics Data System (ADS)

    Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael

    2018-03-01

    Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.

  17. Exploring CP violation with Bc decays

    NASA Astrophysics Data System (ADS)

    Fleischer, Robert; Wyler, Daniel

    2000-09-01

    We point out that the pure ``tree'' decays B+/-c-->D+/-sD are particularly well suited to extract the Cabibbo-Kobayashi-Maskawa angle γ through amplitude relations. In contrast with conceptually similar strategies using B+/--->K+/-D or Bd-->K*0D decays, the advantage of the Bc approach is that the corresponding triangles have three sides of comparable length and do not involve small amplitudes. Decays of the type B+/-c-->D+/-D, the U-spin counterparts of B+/-c-->D+/-sD, can be added to the analysis, as well as channels, where the D+/-s and D+/- mesons are replaced by higher resonances.

  18. Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields

    DOE PAGES

    Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.

    2016-03-09

    Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less

  19. Solution of the Lindblad equation for spin helix states.

    PubMed

    Popkov, V; Schütz, G M

    2017-04-01

    Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.

  20. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  1. A first theoretical realization of honeycomb topological magnon insulator.

    PubMed

    Owerre, S A

    2016-09-28

    It has been recently shown that in the Heisenberg (anti)ferromagnet on the honeycomb lattice, the magnons (spin wave quasipacticles) realize a massless two-dimensional (2D) Dirac-like Hamiltonian. It was shown that the Dirac magnon Hamiltonian preserves time-reversal symmetry defined with the sublattice pseudo spins and the Dirac points are robust against magnon-magnon interactions. The Dirac points also occur at nonzero energy. In this paper, we propose a simple realization of nontrivial topology (magnon edge states) in this system. We show that the Dirac points are gapped when the inversion symmetry of the lattice is broken by introducing a next-nearest neighbour Dzyaloshinskii-Moriya (DM) interaction. Thus, the system realizes magnon edge states similar to the Haldane model for quantum anomalous Hall effect in electronic systems. However, in contrast to electronic spin current where dissipation can be very large due to Ohmic heating, noninteracting topological magnons can propagate for a long time without dissipation as magnons are uncharged particles. We observe the same magnon edge states for the XY model on the honeycomb lattice. Remarkably, in this case the model maps to interacting hardcore bosons on the honeycomb lattice. Quantum magnetic systems with nontrivial magnon edge states are called topological magnon insulators. They have been studied theoretically on the kagome lattice and recently observed experimentally on the kagome magnet Cu(1-3, bdc) with three magnon bulk bands. Our results for the honeycomb lattice suggests an experimental procedure to search for honeycomb topological magnon insulators within a class of 2D quantum magnets and ultracold atoms trapped in honeycomb optical lattices. In 3D lattices, Dirac and Weyl points were recently studied theoretically, however, the criteria that give rise to them were not well-understood. We argue that the low-energy Hamiltonian near the Weyl points should break time-reversal symmetry of the pseudo spins. Thus, recovering the same criteria in electronic systems.

  2. Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng

    2016-10-01

    Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.

  3. Coarse graining flow of spin foam intertwiners

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  4. Proximity-induced mixed odd- and even-frequency pairing in monolayer NbSe2

    NASA Astrophysics Data System (ADS)

    Aliabad, Mojtaba Rahimi; Zare, Mohammad-Hossein

    2018-06-01

    Monolayer superconducting transition-metal dichalcogenide NbSe2 is a candidate for a nodal topological superconductor by magnetic field. Because of the so-called Ising spin-orbit coupling that strongly pins the electron spins to the out-of-plane direction, Cooper pairs in monolayer superconductor NbSe2 are protected against an applied in-plane magnetic field much larger than the Pauli limit. In monolayer NbSe2, in addition to the Fermi pockets at the corners of Brillouin zone with opposite crystal momentum similar to other semiconducting transition-metal dichalcogenids, there is an extra Fermi pocket around the Γ point with much smaller spin splitting, which could lead to an alternative strategy for pairing possibilities that are manipulable by a smaller magnetic field. By considering a monolayer NbSe2-ferromagnet substrate junction, we explore the modified pairing correlations on the pocket at Γ point in hole-doped monolayer NbSe2. The underlying physics is fascinating as there is a delicate interplay of the induced exchange field and the Ising spin-orbit coupling. We realize a mixed singlet-triplet superconductivity, s +f , due to the Ising spin-orbit coupling. Moreover, our results reveal the admixture state including both odd- and even-frequency components, associated with the ferromagnetic proximity effect. Different frequency symmetries of the induced pairing correlations can be realized by manipulating the magnitude and direction of the induced magnetization.

  5. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  6. Field-Theoretical Studies of a doped Mott Insulator

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir

    2006-06-01

    In this thesis, the magnetic and the transport properties of La(2-x)Sr(x)CuO(4) in the undoped and lightly doped regime are investigated. In Chapter 2, we consider the role of the Dzyaloshinskii-Moriya (DM) and the pseudodipolar (XY) interactions in determining the magnetic properties of the undoped material, La(2)CuO(4), motivated by recent experiments, which show a complete anisotropy in the magnetic susceptibility response. We start with the microscopic spin model, which, besides the Heisenberg superexchange interaction, contains the anisotropic DM and the XY interactions. We map this microscopic model into a corresponding field theory, which turns out to be a generalized nonlinear sigma model. The effect of the anisotropies is to introduce gaps for the spin excitations, which are responsible for the ground-state properties of the material. When a magnetic field is applied, the DM anisotropy leads to an unexpected linear coupling of the staggered magnetization to the magnetic field, which is responsible for a completely anisotropic magnetic susceptibility, in agreement with experiments. In Chapter 3, we investigate the effect of the DM and the XY anisotropies on the magnetism when Sr doping is introduced in La(2)CuO(4). Our starting point is the nonlinear sigma model, which includes these anisotropies, and also the dopant holes, represented via an effective dipole field which couples to the background magnetization current. In the antiferromagnetic phase, x<2%, the dipole-magnetization current coupling leads to a decrease of the spin gaps, in good agreement with recent experiments. The DM gap gives rise to the stability of the antiferromagnetic state up to the doping level x=2%, at which the dipole field acquires a nonzero expectation value, causing a change in the magnetic ground state of the system. Beyond this doping concentration, the spins rearrange to form an incommensurate helicoidal state, which gives rise to two incommensurate peaks in the spin-glass phase of La(2-x)Sr(x)CuO(4), as observed by neutron scattering experiments. The incommensurability is related to the doping and the XY gap in a way that allows us to explain the linear doping dependence of the incommensurability at higher doping, as well as the deviation from the linear behavior at the onset of the spin-glass phase. We propose a measurement of the doping dependence of the incommensurability in the magnetic field as a smoking-gun experiment that would discriminate between the helicoidal and the stripe scenarios in the spin-glass phase of La(2-x)Sr(x)CuO(4). In Chapter 4, we study the dynamics of topological defects of a frustrated spin system displaying helicoidal order. As a starting point we consider the SO(3) nonlinear sigma model to describe long-wavelength fluctuations around the noncollinear spin state. This model allows for vortex-like topological defects, associated with the change of chirality of the noncollinear state. We consider single vortices and vortex-antivortex pairs, and quantize them using the collective coordinate method, which allows us to represent the defect as a particle coupled to a bath of harmonic oscillators. As a result, the defect motion is damped due to the scattering by the magnons. Finally, motivated by recent experiments, we consider an application of the model for describing the transport in lightly doped La(2-x)Sr(x)CuO(4).

  7. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  8. MAGNETIC PROPERTIES OF RARE EARTH ALUMINUM COMPOUNDS WITH MgCu$sub 2$ STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, H.J.; Wernick, J.H.; Nesbitt, E.A.

    1962-03-01

    The magnetic moments of some RAl/sub 2/ (R = rare earth element) cubic Laves phase compounds were measured at temperatures from 1.4 to 300 deg K. The measurements indicate that the spin moments of the rare earth ions are coupled ferromagnetically. The Curie points of the RAl/sub 2/ compounds are found to be uniformly higher than the corresponding Laves compounds, ROs/sub 2/, Rlr/sub 2/ and RRu/sub 2/. Solid solutions of some of the compounds were also investigated. For example, in the Gd/sub x/Pr/sub (1-x)/Al/sub 2/ compounds, the magnetic moments of the Gd ions are antiparallel to those of the Prmore » ions because J is antiparallel to S in the ground state of the Pr ion. Compensation points were observed in this system. (auth)« less

  9. The absence of intraband scattering in a consistent theory of Gilbert damping in pure metallic ferromagnets.

    PubMed

    Edwards, D M

    2016-03-02

    Damping of magnetization dynamics in a ferromagnetic metal, arising from spin-orbit coupling, is usually characterised by the Gilbert parameter α. Recent calculations of this quantity, using a formula due to Kambersky, find that it is infinite for a perfect crystal owing to an intraband scattering term which is of third order in the spin-orbit parameter ξ. This surprising result conflicts with recent work by Costa and Muniz who study damping numerically by direct calculation of the dynamical transverse susceptibility in the presence of spin-orbit coupling. We resolve this inconsistency by following the approach of Costa and Muniz for a slightly simplified model where it is possible to calculate α analytically. We show that to second order in ξ one retrieves the Kambersky result for α, but to higher order one does not obtain any divergent intraband terms. The present work goes beyond that of Costa and Muniz by pointing out the necessity of including the effect of long-range Coulomb interaction in calculating damping for large ξ. A direct derivation of the Kambersky formula is given which shows clearly the restriction of its validity to second order in ξ so that no intraband scattering terms appear. This restriction has an important effect on the damping over a substantial range of impurity content and temperature. The experimental situation is discussed.

  10. Electro-spray deposition of a mesoporous TiO2 charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells.

    PubMed

    Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk

    2015-12-28

    The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.

  11. Quantum Phase Transition and Local Entanglement in Extended Hubbard Model on Anisotropic Triangular Lattices

    NASA Astrophysics Data System (ADS)

    Gao, Ji-Ming; Tang, Rong-An; Zhang, Zheng-Mei; Xue, Ju-Kui

    2016-11-01

    Using a mean-field theory based upon Hartree—Fock approximation, we theoretically investigate the competition between the metallic conductivity, spin order and charge order phases in a two-dimensional half-filled extended Hubbard model on anisotropic triangular lattice. Bond order, double occupancy, spin and charge structure factor are calculated, and the phase diagram of the extended Hubbard model is presented. It is found that the interplay of strong interaction and geometric frustration leads to exotic phases, the charge fluctuation is enhanced and three kinds of charge orders appear with the introduction of the nearest-neighbor interaction. Moreover, for different frustrations, it is also found that the antiferromagnetic insulating phase and nonmagnetic insulating phase are rapidly suppressed, and eventually disappeared as the ratio between the nearest-neighbor interaction and on-site interaction increases. This indicates that spin order is also sensitive to the nearest-neighbor interaction. Finally, the single-site entanglement is calculated and it is found that a clear discontinuous of the single-site entanglement appears at the critical points of the phase transition. Supported by National Natural Science Foundation of China under Grant Nos.11274255, 11475027 and 11305132, Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, and Technology of Northwest Normal University, China under Grants No. NWNU-LKQN-11-26

  12. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  13. Multiple-rotor-cycle 2D PASS experiments with applications to (207)Pb NMR spectroscopy.

    PubMed

    Vogt, F G; Gibson, J M; Aurentz, D J; Mueller, K T; Benesi, A J

    2000-03-01

    Thetwo-dimensional phase-adjusted spinning sidebands (2D PASS) experiment is a useful technique for simplifying magic-angle spinning (MAS) NMR spectra that contain overlapping or complicated spinning sideband manifolds. The pulse sequence separates spinning sidebands by their order in a two-dimensional experiment. The result is an isotropic/anisotropic correlation experiment, in which a sheared projection of the 2D spectrum effectively yields an isotropic spectrum with no sidebands. The original 2D PASS experiment works best at lower MAS speeds (1-5 kHz). At higher spinning speeds (8-12 kHz) the experiment requires higher RF power levels so that the pulses do not overlap. In the case of nuclei such as (207)Pb, a large chemical shift anisotropy often yields too many spinning sidebands to be handled by a reasonable 2D PASS experiment unless higher spinning speeds are used. Performing the experiment at these speeds requires fewer 2D rows and a correspondingly shorter experimental time. Therefore, we have implemented PASS pulse sequences that occupy multiple MAS rotor cycles, thereby avoiding pulse overlap. These multiple-rotor-cycle 2D PASS sequences are intended for use in high-speed MAS situations such as those required by (207)Pb. A version of the multiple-rotor-cycle 2D PASS sequence that uses composite pulses to suppress spectral artifacts is also presented. These sequences are demonstrated on (207)Pb test samples, including lead zirconate, a perovskite-phase compound that is representative of a large class of interesting materials. Copyright 2000 Academic Press.

  14. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  15. Spin-orbit proximity effect in graphene

    NASA Astrophysics Data System (ADS)

    Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.

    2014-09-01

    The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.

  16. High temperature spin-glass-like transition in La0.67Sr0.33MnO3 nanofibers near the Curie point.

    PubMed

    Lu, Ruie; Yang, Sen; Li, Yitong; Chen, Kaiyun; Jiang, Yun; Fu, Bi; Zhang, Yin; Zhou, Chao; Xu, Minwei; Zhou, Xuan

    2017-06-28

    The glassy transition of superparamagnetic (SPM) (r < r 0 ) nanoparticle systems usually occurs at a very low temperature that greatly limits its application to high temperatures. In this work, we report a spin-glass-like (SGL) behavior near the Curie point (T C ), i.e., T 0 = 330 K, in La 0.67 Sr 0.33 MnO 3 (LSMO) nanofibers (NFs) composed of nanoparticles beyond the SPM size (r ≫ r 0 ), resulting in a significant increase of the glass transition temperature. This SGL transition near the T C of bulk LSMO can be explained to be the scenario of locally ordered clusters embedded in a disordered host, in which the assembly of nanoparticles has a magnetic core-shell model driven by surface spin glass. The presence of a surface spin glass of nanoparticles was proved by the Almeida-Thouless line δT f ∝ H 2/3 , exchange bias, and reduced saturation magnetization of the NF system. Composite dynamics were found - that is, both the SPM and the super-spin-glass (SSG) behavior are found in such an NF system. The bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature curves at the ZFC peak, and the flatness of FC magnetization involve SSG, while the frequency-dependent ac susceptibility anomaly follows the Vogel-Fulcher law that implies weak dipole interactions of the SPM model. This finding can help us to find a way to search for high temperature spin glass materials.

  17. Social Benefits of Space Spin-Offs: An Introduction

    NASA Technical Reports Server (NTRS)

    Cheeks, Nona

    2005-01-01

    This PowerPoint presentation defines technology transfer and discusses spin-out/off pros/cons involving whether to include a project within NASA or to contract outside NASA. The author discusses what would making the technology transfer happen by suggesting to evaluate NASA technologies/needs and find partners with ability to do business with NASA. The presentation concludes with recent Goddard successes.

  18. Spinning Moons

    NASA Image and Video Library

    2015-11-10

    Most inner moons in the solar system keep one face pointed toward their central planet; this frame from an animation by NASA New Horizons shows that certainly isnt the case with the small moons of Pluto, which behave like spinning tops. Pluto is shown at center with, in order, from smaller to wider orbit: Charon, Styx, Nix, Kerberos, Hydra. http://photojournal.jpl.nasa.gov/catalog/PIA20152

  19. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  20. Disordered artificial spin ices: Avalanches and criticality (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less

  1. Virtual walks in spin space: A study in a family of two-parameter models

    NASA Astrophysics Data System (ADS)

    Mullick, Pratik; Sen, Parongama

    2018-05-01

    We investigate the dynamics of classical spins mapped as walkers in a virtual "spin" space using a generalized two-parameter family of spin models characterized by parameters y and z [de Oliveira et al., J. Phys. A 26, 2317 (1993), 10.1088/0305-4470/26/10/006]. The behavior of S (x ,t ) , the probability that the walker is at position x at time t , is studied in detail. In general S (x ,t ) ˜t-αf (x /tα) with α ≃1 or 0.5 at large times depending on the parameters. In particular, S (x ,t ) for the point y =1 ,z =0.5 corresponding to the Voter model shows a crossover in time; associated with this crossover, two timescales can be defined which vary with the system size L as L2logL . We also show that as the Voter model point is approached from the disordered regions along different directions, the width of the Gaussian distribution S (x ,t ) diverges in a power law manner with different exponents. For the majority Voter case, the results indicate that the the virtual walk can detect the phase transition perhaps more efficiently compared to other nonequilibrium methods.

  2. Criticality of the mean-field spin-boson model: boson state truncation and its scaling analysis

    NASA Astrophysics Data System (ADS)

    Hou, Y.-H.; Tong, N.-H.

    2010-11-01

    The spin-boson model has nontrivial quantum phase transitions at zero temperature induced by the spin-boson coupling. The bosonic numerical renormalization group (BNRG) study of the critical exponents β and δ of this model is hampered by the effects of boson Hilbert space truncation. Here we analyze the mean-field spin boson model to figure out the scaling behavior of magnetization under the cutoff of boson states N b . We find that the truncation is a strong relevant operator with respect to the Gaussian fixed point in 0 < s < 1/2 and incurs the deviation of the exponents from the classical values. The magnetization at zero bias near the critical point is described by a generalized homogeneous function (GHF) of two variables τ = α - α c and x = 1/ N b . The universal function has a double-power form and the powers are obtained analytically as well as numerically. Similarly, m( α = α c ) is found to be a GHF of γ and x. In the regime s > 1/2, the truncation produces no effect. Implications of these findings to the BNRG study are discussed.

  3. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point outmore » that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.« less

  4. Crystal orientation induced spin Rabi beat oscillations of point defects at the c-Si(111)/ SiO 2 interface

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; Boehme, Christoph

    2011-03-01

    Spin-dependent electronic transitions such as certain charge carrier recombination and transport processes in semiconductors are usually governed by the Pauli blockade within pairs of two paramagnetic centers. One implication of this is that the manipulation of spin states, e.g. by magnetic resonant excitation, can produce changes to electric currents of the given semiconductor material. If both spins are changed at the same time, quantum beat effects such as beat oscillation between resonantly induced spin Rabi nutation becomes detectable through current measurements. Here, we report on electrically detected spin Rabi beat oscillation caused by pairs of 31 P donor states and Pb interface defects at the phosphorous doped Si(111)/ Si O2 interface. Due to the g-factor anisotropy of the Pb center we can tune the intra pair Larmor frequency difference (so called Larmor separation) through orientation of the sample with regard to the external magnetic field. As the Larmor separation governs the spin Rabi beat oscillation, we show experimentally how the crystal orientation can influence the beat effect.

  5. Does space-time torsion determine the minimum mass of gravitating particles?

    NASA Astrophysics Data System (ADS)

    Böhmer, Christian G.; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2018-03-01

    We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.

  6. Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal.

    PubMed

    Laraoui, Abdelghani; Hodges, Jonathan S; Meriles, Carlos A

    2012-07-11

    Semiconductor nanoparticles host a number of paramagnetic point defects and impurities, many of them adjacent to the surface, whose response to external stimuli could help probe the complex dynamics of the particle and its local, nanoscale environment. Here, we use optically detected magnetic resonance in a nitrogen-vacancy (NV) center within an individual diamond nanocrystal to investigate the composition and spin dynamics of the particle-hosted spin bath. For the present sample, a ∼45 nm diamond crystal, NV-assisted dark-spin spectroscopy reveals the presence of nitrogen donors and a second, yet-unidentified class of paramagnetic centers. Both groups share a common spin lifetime considerably shorter than that observed for the NV spin, suggesting some form of spatial clustering, possibly on the nanoparticle surface. Using double spin resonance and dynamical decoupling, we also demonstrate control of the combined NV center-spin bath dynamics and attain NV coherence lifetimes comparable to those reported for bulk, Type Ib samples. Extensions based on the experiments presented herein hold promise for applications in nanoscale magnetic sensing, biomedical labeling, and imaging.

  7. Does space-time torsion determine the minimum mass of gravitating particles?

    PubMed

    Böhmer, Christian G; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J

    2018-01-01

    We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.

  8. Spin-Ice Thin Films: Large-N Theory and Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Lantagne-Hurtubise, Étienne; Rau, Jeffrey G.; Gingras, Michel J. P.

    2018-04-01

    We explore the physics of highly frustrated magnets in confined geometries, focusing on the Coulomb phase of pyrochlore spin ices. As a specific example, we investigate thin films of nearest-neighbor spin ice, using a combination of analytic large-N techniques and Monte Carlo simulations. In the simplest film geometry, with surfaces perpendicular to the [001] crystallographic direction, we observe pinch points in the spin-spin correlations characteristic of a two-dimensional Coulomb phase. We then consider the consequences of crystal symmetry breaking on the surfaces of the film through the inclusion of orphan bonds. We find that when these bonds are ferromagnetic, the Coulomb phase is destroyed by the presence of fluctuating surface magnetic charges, leading to a classical Z2 spin liquid. Building on this understanding, we discuss other film geometries with surfaces perpendicular to the [110] or the [111] direction. We generically predict the appearance of surface magnetic charges and discuss their implications for the physics of such films, including the possibility of an unusual Z3 classical spin liquid. Finally, we comment on open questions and promising avenues for future research.

  9. Rashba quantum wire: exact solution and ballistic transport.

    PubMed

    Perroni, C A; Bercioux, D; Ramaglia, V Marigliano; Cataudella, V

    2007-05-08

    The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is made with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analysed by injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin-selective bound states.

  10. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E.; Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Lyubashevsky, D. E.

    2016-05-15

    It is shown that A. Bohr’s classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L{sub m} in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  11. Mixed-order phase transition in a minimal, diffusion-based spin model.

    PubMed

    Fronczak, Agata; Fronczak, Piotr

    2016-07-01

    In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.

  12. Detection of fractional solitons in quantum spin Hall systems

    NASA Astrophysics Data System (ADS)

    Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.

    2018-03-01

    We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.

  13. Entanglement of two blocks of spins in the critical Ising model

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.

    2008-11-01

    We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.

  14. Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, A., E-mail: a.sola@inrim.it; Kuepferling, M.; Basso, V.

    2015-05-07

    In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heatmore » flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8×10{sup −7} V K{sup −1}.« less

  15. Spin interferometry in anisotropic spin-orbit fields

    NASA Astrophysics Data System (ADS)

    Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku

    2018-03-01

    Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.

  16. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  17. Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate

    PubMed Central

    Zhang, Yongping; Chen, Gang; Zhang, Chuanwei

    2013-01-01

    Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point. PMID:23727689

  18. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-03-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.

  19. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    PubMed Central

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  20. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.

    PubMed

    Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N

    2016-03-31

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.

  1. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    PubMed

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  2. SU(4) Kondo effect in double quantum dots with ferromagnetic leads

    NASA Astrophysics Data System (ADS)

    Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu

    2018-02-01

    We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.

  3. Chaotic nature of the spin-glass phase

    NASA Technical Reports Server (NTRS)

    Bray, A. J.; Moore, M. A.

    1987-01-01

    The microscopic structure of the ordered phase of spin glasses is investigated theoretically in the framework of the T = 0 fixed-point model (McMillan, 1984; Fisher and Huse, 1986; and Bray and Moore, 1986). The sensitivity of the ground state to changes in the interaction strengths at T = 0 is explored, and it is found that for sufficiently large length scales the ground state is unstable against arbitrarily weak perturbations to the bonds. Explicit results are derived for d = 1, and the implications for d = 2 and d = 3 are considered in detail. It is concluded that there is no hidden order pattern for spin glasses at all T less than T(C), the ordered-phase spin correlations being chaotic functions of spin separation at fixed temperature or of temperature (for a given pair of spins) at scale lengths L greater than (T delta T) exp -1/zeta, where zeta = d(s)/2 - y, d(s) is the interfacial fractal dimension, and -y is the thermal eigenvalue at T = 0.

  4. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  5. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  6. Averaged null energy condition from causality

    DOE PAGES

    Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-07-14

    Unitary, Lorentz-invariant quantum field theories in at spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy,more » $$\\int$$duT uu, must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form RduX uuu∙∙∙u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.« less

  7. Detection, discrimination, and real-time tracking of cracks in rotating disks

    NASA Astrophysics Data System (ADS)

    Haase, Wayne C.; Drumm, Michael J.

    2002-06-01

    The purpose of this effort was to develop a system* to detect, discriminate and track fatigue cracks in rotating disks. Aimed primarily at jet engines in flight applications, the system also has value for detecting cracks in a spin pit during low cycle fatigue testing, and for monitoring the health of steam turbines and land-based gas turbine engines for maintenance purposes. The results of this effort produced: a physics-based model that describes the change in the center of mass of a rotating disk using damping ratio, initial unbalance and crack size as parameters; the development of a data acquisition and analysis system that can detect and discriminate a crack using a single cycle of data; and initial validation of the model through testing in a spin pit. The development of the physics-based model also pointed to the most likely regimes for crack detection; identified specific powers of (omega) search for in specific regimes; dictated a particular type of data acquisition for crack discrimination; and demonstrated a need for a higher signal-to-noise ratio in the measurement of the basic vibration signal.

  8. Metabolic profiling of apples from different production systems before and after controlled atmosphere (CA) storage studied by 1H high resolution-magic angle spinning (HR-MAS) NMR.

    PubMed

    Vermathen, Martina; Marzorati, Mattia; Diserens, Gaëlle; Baumgartner, Daniel; Good, Claudia; Gasser, Franz; Vermathen, Peter

    2017-10-15

    Determination of metabolic alterations in apples induced by such processes as different crop protection strategies or storage, are of interest to assess correlations with fruit quality or fruit disorders. Preliminary results proposed the metabolic discrimination of apples from organic (BIO), integrated (IP) and low-input (LI) production. To determine contributions of temporal metabolic developments and to define the type of metabolic changes during storage, 1 H high resolution-magic angle spinning (HR-MAS) NMR spectroscopy of apple pulp was performed before and after two time points of controlled atmosphere storage. Statistical analysis revealed similar metabolic changes over time for IP-, LI- and BIO-samples, mainly decreasing lipid and sucrose, and increasing fructose, glucose and acetaldehyde levels, which are potential contributors to fruit aroma. Across the production systems, BIO apples had consistently higher levels of fructose and monomeric phenolic compounds but lower levels of condensed polyphenols than LI and IP apples, while the remaining metabolites assimilated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Averaged null energy condition from causality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    Unitary, Lorentz-invariant quantum field theories in at spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy,more » $$\\int$$duT uu, must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form RduX uuu∙∙∙u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.« less

  10. Averaged null energy condition from causality

    NASA Astrophysics Data System (ADS)

    Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-07-01

    Unitary, Lorentz-invariant quantum field theories in flat spacetime obey mi-crocausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy, ∫ duT uu , must be non-negative. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to n-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form ∫ duX uuu··· u ≥ 0. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment on the relation to the recent derivation of the averaged null energy condition from relative entropy, and suggest a more general connection between causality and information-theoretic inequalities in QFT.

  11. A Possible Magnetar Nature for IGR J16358-4726

    NASA Technical Reports Server (NTRS)

    Patel, S. K.; Zurita, J.; DelSanto, M.; Finger, M.; Kouveliotou, C.; Eichler, D.; Gogus, E.; Ubertini, P.; Walter, R.; Woods, P.; hide

    2007-01-01

    We present detailed spectral and timing analysis of the hard X-ray transient IGR J16358-4726 using multisatellite archival observations. A study of the source flux time history over 6 yr suggests that lower luminosity transient outbursts can be occurring in intervals of at most 1 yr. Joint spectral fits of the higher luminosity outburst using simultaneous Chandra ACIS and INTEGRAL ISGRI data reveal a spectrum well described by an absorbed power-law model with a high-energy cutoff plus an Fe line. We detected the 1.6 hr pulsations initially reported using Chandra ACIS also in the INTEGRAL ISGRI light curve and in subsequent XMM-Newton observations. Using the INTEGRAL data, we identified a spin-up of 94 s (P(sup(.)) = 1.6 x 10(exp -4), which strongly points to a neutron star nature for IGR J16358-4726. Assuming that the spin-up is due to disk accretion, we estimate that the source magnetic field ranges between 10(exp 13) and 10(exp 15) G, depending on its distance, possibly supporting a magnetar nature for IGR J16358-4726.

  12. Magnetic Field Dependence of Excitations Near Spin-Orbital Quantum Criticality

    NASA Astrophysics Data System (ADS)

    Biffin, A.; Rüegg, Ch.; Embs, J.; Guidi, T.; Cheptiakov, D.; Loidl, A.; Tsurkan, V.; Coldea, R.

    2017-02-01

    The spinel FeSc2 S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.

  13. Off-forward gluonic structure of vector mesons

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Pefkou, D.; Shanahan, P. E.

    2017-06-01

    The spin-independent and transversity generalized form factors (GFFs) of the ϕ meson are studied using lattice QCD calculations with light quark masses corresponding to a pion mass mπ˜450 (5 ) MeV . One transversity and three spin-independent GFFs related to the lowest moments of leading-twist spin-independent and transversity gluon distributions are obtained at six nonzero values of the momentum transfer up to 1.2 GeV 2 . These quantities are compared with the analogous spin-independent quark GFFs and the electromagnetic form factors determined on the same lattice ensemble. The results show quantitative distinction between the spatial distribution of transversely polarized gluons, unpolarized gluons, and quarks and point the way towards further investigations of the gluon structure of nucleons and nuclei.

  14. Mechanical spin bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1998-01-01

    A spin bearing assembly including, a pair of mutually opposing complementary bearing support members having mutually spaced apart bearing support surfaces which may be, for example, bearing races and a set of spin bearings located therebetween. Each spin bearing includes a pair of end faces, a central rotational axis passing through the end faces, a waist region substantially mid-way between the end faces and having a first thickness dimension, and discrete side surface regions located between the waist region and the end faces and having a second thickness dimension different from the first thickness dimension of the waist region and wherein the side surface regions further have respective curvilinear contact surfaces adapted to provide a plurality of bearing contact points on the bearing support members.

  15. Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture

    NASA Astrophysics Data System (ADS)

    Soriano, David; Ortmann, Frank; Roche, Stephan

    2012-12-01

    We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.

  16. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  17. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings

    NASA Astrophysics Data System (ADS)

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-01

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.

  18. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.

    PubMed

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-24

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd

  19. Orbital selective spin-texture in a topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less

  20. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  1. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE PAGES

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-19

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  2. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    NASA Astrophysics Data System (ADS)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-01

    We apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models—the square- and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-1 Ising (BSI) model, and the two-dimensional X Y model—and we examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow the exploration of different phases and symmetry-breaking, but they can distinguish phase-transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which is particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the "charge" correlations (vorticity) in the BSI model (X Y model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the "autoencoder method," and we demonstrate that it too can be trained to capture phase transitions and critical points.

  3. A Non-Abelian Geometric Phase for Spin Systems

    NASA Astrophysics Data System (ADS)

    H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.

  4. Entanglement, holography and causal diamonds

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  5. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, Alex; Riotto, Antonio, E-mail: kehagias@central.ntua.gr, E-mail: Antonio.Riotto@unige.ch

    Cosmological perturbations of massive higher-spin fields are generated during inflation, but they decay on scales larger than the Hubble radius as a consequence of the Higuchi bound. By introducing suitable couplings to the inflaton field, we show that one can obtain statistical correlators of massive higher-spin fields which remain constant or decay very slowly outside the Hubble radius. This opens up the possibility of new observational signatures from inflation.

  7. FRW and domain walls in higher spin gravity

    NASA Astrophysics Data System (ADS)

    Aros, R.; Iazeolla, C.; Noreña, J.; Sezgin, E.; Sundell, P.; Yin, Y.

    2018-03-01

    We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in ( A) dS 4 . We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.

  8. Aging dynamics of quantum spin glasses of rotors

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu

    2001-12-01

    We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.

  9. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3

    NASA Astrophysics Data System (ADS)

    Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng

    2017-03-01

    Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.

  10. Magnetic properties of checkerboard lattice: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2017-12-01

    The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.

  11. Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Je, Soong-Geun; Rojas-Sánchez, Juan-Carlos; Pham, Thai Ha; Vallobra, Pierre; Malinowski, Gregory; Lacour, Daniel; Fache, Thibaud; Cyrille, Marie-Claire; Kim, Dae-Yun; Choe, Sug-Bong; Belmeguenai, Mohamed; Hehn, Michel; Mangin, Stéphane; Gaudin, Gilles; Boulle, Olivier

    2018-02-01

    We investigate spin-orbit torque (SOT)-induced switching in rare-earth-transition metal ferrimagnetic alloys using W/CoTb bilayers. The switching current is found to vary continuously with the alloy concentration, and no reduction in the switching current is observed at the magnetic compensation point despite a very large SOT efficiency. A model based on coupled Landau-Lifschitz-Gilbert (LLG) equations shows that the switching current density scales with the effective perpendicular anisotropy which does not exhibit strong reduction at the magnetic compensation, explaining the behavior of the switching current density. This model also suggests that conventional SOT effective field measurements do not allow one to conclude whether the spins are transferred to one sublattice or just simply to the net magnetization. The effective spin Hall angle measurement shows an enhancement of the spin Hall angle with the Tb concentration which suggests an additional SOT contribution from the rare earth Tb atoms.

  12. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  13. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    NASA Astrophysics Data System (ADS)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  14. Quantum phase transition in dimerised spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  15. FAST TRACK COMMUNICATION: A Temperley-Lieb quantum chain with two- and three-site interactions

    NASA Astrophysics Data System (ADS)

    Ikhlef, Y.; Jacobsen, J. L.; Saleur, H.

    2009-07-01

    We study the phase diagram of a quantum chain of spin-1/2 particles whose world lines form a dense loop gas with loop weight n. In addition to the usual two-site interaction corresponding to the XXZ spin chain, we introduce a three-site interaction. The resulting model contains a Majumdar-Ghosh-like gapped phase and a new integrable point, which we solve exactly. We also locate a critical line realizing dilute O(n) criticality, without introducing explicit dilution in the loops. Our results have implications for anisotropic spin chains, as well as anyonic quantum chains.

  16. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

  17. orbital selective correlation reduce in collapse tetragonal phase of CaFe2(As0.935P0.065)2 and electronic structure reconstruction studied by angel resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Lingkun

    We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.

  18. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less

  19. Self-assembly of gelator molecules in liquid crystals studied by ESR

    NASA Astrophysics Data System (ADS)

    Andreis, Mladen; Carić, Dejana; Vujičić, Nataša Šijaković; Jokić, Milan; Žinić, Mladen; Kveder, Marina

    2012-07-01

    Thermotropic liquid crystal trans-4-heptylcyclohexanecarboxylic acid (HCCA) doped with 4-oxo-2,2,6,6,-tetramethyl-1-piperidinyloxy spin probe (Tempone) is investigated by electron spin resonance (ESR) spectroscopy in the presence of chiral bisoxalamide gelator 1 during both cooling and heating cycles. In the temperature range 295-383 K, where HCCA displays isotropic, nematic, smectic B and crystalline phases, the impact of 1 self-organization was detected via (non) homogeneous partitioning of the spin probe in the environments varying in the polarity, an effect dependent on the gelator concentration. In particular, the evidence of the onset of the gelator network self-assembly in the nematic phase was detected by ESR at higher temperatures than the ones reported so far by other experimental techniques. Additionally, the spectral analysis points to the switching of the polarity in the vicinity of the spin probe when the transfer of chirality from 1 to HCCA upon cooling of the sample from isotropic to chiral nematic phase appears and when the event of LC gelation results in the achiral nematic phase during chiral gel fibers formation. When the gelation proceeds in the smectic phase, the melting of the gelator network is studied in the nematic phase during the heating cycle. Furthermore, the event of HCCA crystallization is shown to be strongly affected by the presence of 1 as well. The experimental evidence is provided that gelator network confines the HCCA into the domains within the bulk crystalline matrix where the local molecular dynamics are still not frozen. Therefore, we propose that non-homogeneous polarity profile of molecular organization/packing within LC gels could be determinable for the physical properties of various LC gel phases.

  20. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

Top