When More Power Makes Actors Worse off: Turning a Profit in the American Economy
ERIC Educational Resources Information Center
Piskorski, Mikolaj Jan; Casciaro, Tiziana
2006-01-01
We propose a theory which predicts that an increase in an actor's relative power reduces the actor's rewards in high mutual dependence dyads. Our argument is based on the premise that higher relative power gives the more powerful actor a greater share of surplus, but it also reduces dyadic exchange frequency, which lowers the expected magnitude of…
Electro-autotrophic synthesis of higher alcohols
Liao, James C.; Cho, Kwang Myung
2016-11-01
The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.
Electro-autotrophic synthesis of higher alcohols
Liao, James C.; Cho, Kwang Myung
2015-10-06
The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.
[Effect of processing on the antioxidant capacity of the plum (Prunus domestica)].
Valero, Yolmar; Colina, Jhoana; Ineichen, Emilio
2012-12-01
Fruits are considered sources of antioxidant compounds whose properties could impair due to processing. The objective of this work was to determine the effect of blanching and osmotic dehydration on the total polyphenols content, tannins and antioxidant capacity of plums (Prunus domestica) in yellow and red varieties. The total phenolic content in plums was determined according to the Folin-Ciocalteu assay and tannins were determined by vanillin assay. The antiradical efficiency (AE) and ferric reducing power (FRP) were used to estimate the total antioxidant capacity. The content of total polyphenols and tannins were higher in the red plum. The content of polyphenols in the pulp was higher that the peel while for tannins the opposite was observed in both varieties. The red plum had higher antioxidant capacity. The AE was low and slow kinetics for the two varieties. There was a linear correlation between polyphenols and tannins with antiradical efficiency; however, there was no correlation with the reducing power. The total polyphenols content was increased with blanching, while the tannins and the AE decreased, ferric reducing power is unaffected. For osmotic dehydration, the tannins and the AE were decreased, while the total polyphenols content and ferric reducing power are unaffected. It is recommended the blanched as an alternative to consumption and conservation in the plum.
Green Power Partnership Top 30 College & University
The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. The Top 30 College & University list details the largest higher ed green power users in GPP.
The potential impact of new power system technology on the design of a manned space station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
The potential impact of new power system technology on the design of a manned Space Station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis
NASA Astrophysics Data System (ADS)
Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan
2015-09-01
Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.
Power Electronics Thermal Management R&D (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S.
2014-11-01
This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less
High Efficiency Microwave Power Amplifier: From the Lab to Industry
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)
2001-01-01
Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.
Relationship Power and Sexual Violence Among HIV-Positive Women in Rural Uganda
Tsai, Alexander C.; Clark, Gina M.; Boum, Yap; Hatcher, Abigail M.; Kawuma, Annet; Hunt, Peter W.; Martin, Jeffrey N.; Bangsberg, David R.; Weiser, Sheri D.
2016-01-01
Gender-based power imbalances place women at significant risk for sexual violence, however, little research has examined this association among women living with HIV/AIDS. We performed a cross-sectional analysis of relationship power and sexual violence among HIV-positive women on anti-retroviral therapy in rural Uganda. Relationship power was measured using the Sexual Relationship Power Scale (SRPS), a validated measure consisting of two subscales: relationship control (RC) and decision-making dominance. We used multivariable logistic regression to test for associations between the SRPS and two dependent variables: recent forced sex and transactional sex. Higher relationship power (full SRPS) was associated with reduced odds of forced sex (AOR = 0.24; 95 % CI 0.07–0.80; p = 0.020). The association between higher relationship power and transactional sex was strong and in the expected direction, but not statistically significant (AOR = 0.47; 95 % CI 0.18–1.22; p = 0.119). Higher RC was associated with reduced odds of both forced sex (AOR = 0.18; 95 % CI 0.06–0.59; p < 0.01) and transactional sex (AOR = 0.38; 95 % CI 0.15–0.99; p = 0.048). Violence prevention interventions with HIV-positive women should consider approaches that increase women’s power in their relationships. PMID:27052844
Pulse transmission transceiver architecture for low power communications
Dress, Jr., William B.; Smith, Stephen F.
2003-08-05
Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Power Management in Regenerative Life Support Systems
NASA Technical Reports Server (NTRS)
Crawford, Sekou; Pawlowski, Christopher; Finn, Cory; Mead, Susan C. (Technical Monitor)
1999-01-01
Effective management of power can reduce the cost of launch and operation of regenerative life support systems. Variations in power may be quite severe and may manifest as surges or spikes, While the power plant may have some ability to deal with these variations, with batteries for example, over-capacity is expensive and does nothing to address the fundamental issue of excessive demand. Because the power unit must be sized to accommodate the largest demand, avoiding power spikes has the potential to reduce the required size of the power plant while at the same time increasing the dependability of the system. Scheduling of processors can help to reduce potential power spikes. However, not all power-consuming equipment is easily scheduled. Therefore, active power management is needed to further decrease the risk of surges or spikes. We investigate the use of a hierarchical scheme to actively manage power for a model of a regenerative life support system. Local level controllers individually determine subsystem power usage. A higher level controller monitors overall system power and detects surges or spikes. When a surge condition is detected, the higher level controller conducts an 'auction' and describes subsystem power usage to re-allocate power. The result is an overall reduction in total power during a power surge. The auction involves each subsystem making a 'bid' to buy or sell power based on local needs. However, this re-allocation cannot come at the expense of life support function. To this end, participation in the auction is restricted to those processes meeting certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated. We present a simulation model and discuss some of our results.
Ganesan, P; Kumar, Chandini S; Bhaskar, N
2008-05-01
In vitro antioxidant activities of three selected Indian red seaweeds - viz., Euchema kappaphycus, Gracilaria edulis and Acanthophora spicifera were evaluated. Total phenolic content and reducing power of crude methanol extract were determined. The antioxidant activities of total methanol extract and five different solvent fractions (viz., petroleum ether (PE), ethyl acetate (EA), dichloromethane (DCM), butanol (BuOH) and aqueous) were also evaluated. EA fraction of A. spicifera exhibited higher total antioxidant activity (32.01 mg ascorbic acid equivalent/g extract) among all the fractions. Higher phenolic content (16.26 mg gallic acid equivalent/g extract) was noticed in PE fraction of G. edulis. Reducing power of crude methanol extract increased with increasing concentration of the extract. Reducing power and hydroxyl radical scavenging activity of E. kappaphycus were higher compared to standard antioxidant (alpha-tocopherol). The total phenol content of all the seaweeds was significantly different (P<0.05). In vitro antioxidant activities of methanol extracts of all the three seaweeds exhibited dose dependency; and increased with increasing concentration of the extract.
Relationship Power and Sexual Violence Among HIV-Positive Women in Rural Uganda.
Conroy, Amy A; Tsai, Alexander C; Clark, Gina M; Boum, Yap; Hatcher, Abigail M; Kawuma, Annet; Hunt, Peter W; Martin, Jeffrey N; Bangsberg, David R; Weiser, Sheri D
2016-09-01
Gender-based power imbalances place women at significant risk for sexual violence, however, little research has examined this association among women living with HIV/AIDS. We performed a cross-sectional analysis of relationship power and sexual violence among HIV-positive women on anti-retroviral therapy in rural Uganda. Relationship power was measured using the Sexual Relationship Power Scale (SRPS), a validated measure consisting of two subscales: relationship control (RC) and decision-making dominance. We used multivariable logistic regression to test for associations between the SRPS and two dependent variables: recent forced sex and transactional sex. Higher relationship power (full SRPS) was associated with reduced odds of forced sex (AOR = 0.24; 95 % CI 0.07-0.80; p = 0.020). The association between higher relationship power and transactional sex was strong and in the expected direction, but not statistically significant (AOR = 0.47; 95 % CI 0.18-1.22; p = 0.119). Higher RC was associated with reduced odds of both forced sex (AOR = 0.18; 95 % CI 0.06-0.59; p < 0.01) and transactional sex (AOR = 0.38; 95 % CI 0.15-0.99; p = 0.048). Violence prevention interventions with HIV-positive women should consider approaches that increase women's power in their relationships.
High-temperature, high-power-density thermionic energy conversion for space
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.
Cusick, Roland D; Hatzell, Marta; Zhang, Fang; Logan, Bruce E
2013-12-17
Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m(2)-cat) and wastewater (WW: 0.3 to 1.7 W/m(2)), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m(2); WW: 1.9 W/m(2)). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m(2)-mem; WW: 1.7 W/m(2)) and 2-CP (Acetate: 1.3 W/m(2)-mem; WW: 0.6 W/m(2)) reactors were much higher than previous MRCs (0.3-0.5 W/m(2)-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment.
Nano-Enabled Technologies for Naval Aviation Applications
2015-06-05
4. Reduced self- discharge DEW 1. Active materials (silicon based/anode only); 2. Active materials coated on CNTs surface; 3...polymer film capacitors have the potential to provide higher energy density, higher power density, reduce weight, improve duty cycles (fast discharge and...dependent excess of 200C) 4. Nano-particle dispersion 5. Understanding discharge rate 6. Design and control of the interface 1. Increased
Method of Calculating the Correction Factors for Cable Dimensioning in Smart Grids
NASA Astrophysics Data System (ADS)
Simutkin, M.; Tuzikova, V.; Tlusty, J.; Tulsky, V.; Muller, Z.
2017-04-01
One of the main causes of overloading electrical equipment by currents of higher harmonics is the great increasing of a number of non-linear electricity power consumers. Non-sinusoidal voltages and currents affect the operation of electrical equipment, reducing its lifetime, increases the voltage and power losses in the network, reducing its capacity. There are standards that respects emissions amount of higher harmonics current that cannot provide interference limit for a safe level in power grid. The article presents a method for determining a correction factor to the long-term allowable current of the cable, which allows for this influence. Using mathematical models in the software Elcut, it was described thermal processes in the cable in case the flow of non-sinusoidal current. Developed in the article theoretical principles, methods, mathematical models allow us to calculate the correction factor to account for the effect of higher harmonics in the current spectrum for network equipment in any type of non-linear load.
DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backhaus, Scott N.; Swift, Gregory William; Chatzivasileiadis, Spyridon
Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applicationsmore » may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?« less
Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks
Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa
2012-01-01
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971
Using SRAM based FPGAs for power-aware high performance wireless sensor networks.
Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa
2012-01-01
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.
Multi-Megawatt Power System Trade Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis
2001-11-01
As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but domore » not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.« less
The impact of wind power on electricity prices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias
This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less
Processing of thermionic power on an electrically propelled spacecraft
NASA Technical Reports Server (NTRS)
Macie, T. W.
1973-01-01
A study to define the power processing equipment required between a thermionic reactor and an array of mercury-ion thrusters for a nuclear electric propulsion system is reported. Observations and recommendations that resulted from this study were: (1) the preferred thermionic-fuel-element source voltages are 23 V or higher; (2) transistor characteristics exert a strong effect on power processor mass; (3) the power processor mass could be considerably reduced should the magnetic materials that exhibit low losses at high frequencies, that have a high Curie point, and that can operate at 15 to 20 kG become avaliable; (4) electrical component packaging on the radiator could reduce the area that is sensitive to meteoroid penetration, thereby reducing the meteoroid shielding mass requirement; (5) an experimental model of the power processor design should be built and tested to verify the efficiencies, masses, and all the automatic operational aspects of the design.
Realistic Specific Power Expectations for Advanced Radioisotope Power Systems
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.
Optimal Scheduling of Time-Shiftable Electric Loads in Expeditionary Power Grids
2015-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDITIONARY POWER GRIDS by John G...to 09-25-2015 4. TITLE AND SUBTITLE OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDI- TIONARY POWER GRIDS 5. FUNDING NUMBERS 6. AUTHOR(S...eliminate unmanaged peak demand, reduce generator peak-to-average power ratios, and facilitate a persistent shift to higher fuel efficiency. Using
A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.
Eichner, Cornelius; Wald, Lawrence L; Setsompop, Kawin
2014-10-01
Simultaneous multislice (SMS) acquisition enables increased temporal efficiency of MRI. Nonetheless, MultiBand (MB) radiofrequency (RF) pulses used for SMS can cause large energy deposition. Power independent of number of slices (PINS) pulses reduce RF power at cost of reduced bandwidth and increased off-resonance dependency. This work improves PINS design to further reduce energy deposition, off-resonance dependency and peak power. Modifying the shape of MB RF-pulses allows for mixing with PINS excitation, creating a new pulse type with reduced energy deposition and SMS excitation characteristics. Bloch Simulations were used to evaluate excitation and off-resonance behavior of this "MultiPINS" pulse. In this work, MultiPINS was used for whole-brain MB = 3 acquisition of high angular and spatial resolution diffusion MRI at 7 Tesla in 3 min. By using MultiPINS, energy transmission and peak power for SMS imaging can be significantly reduced compared with PINS and MB pulses. For MB = 3 acquisition in this work, MultiPINS reduces energy transmission by up to ∼50% compared with PINS pulses. The energy reduction was traded off to shorten the MultiPINS pulse, yielding higher signal at off-resonances for spin-echo acquisitions. MB and PINS pulses can be combined to enable low energy and peak power SMS acquisition. Copyright © 2014 Wiley Periodicals, Inc.
Way-Scaling to Reduce Power of Cache with Delay Variation
NASA Astrophysics Data System (ADS)
Goudarzi, Maziar; Matsumura, Tadayuki; Ishihara, Tohru
The share of leakage in cache power consumption increases with technology scaling. Choosing a higher threshold voltage (Vth) and/or gate-oxide thickness (Tox) for cache transistors improves leakage, but impacts cell delay. We show that due to uncorrelated random within-die delay variation, only some (not all) of cells actually violate the cache delay after the above change. We propose to add a spare cache way to replace delay-violating cache-lines separately in each cache-set. By SPICE and gate-level simulations in a commercial 90nm process, we show that choosing higher Vth, Tox and adding one spare way to a 4-way 16KB cache reduces leakage power by 42%, which depending on the share of leakage in total cache power, gives up to 22.59% and 41.37% reduction of total energy respectively in L1 instruction- and L2 unified-cache with a negligible delay penalty, but without sacrificing cache capacity or timing-yield.
Reduced local field potential power in the medial prefrontal cortex by noxious stimuli.
Li, Ai-Ling; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo
2016-10-01
Nociceptive signals produced by noxious stimuli at the periphery reach the brain through ascending pathways. These signals are processed by various brain areas and lead to activity changes in those areas. The medial prefrontal cortex (mPFC) is involved in higher cognitive functions and emotional processing. It receives projections from brain areas involved in nociception. In this study, we investigated how nociceptive input from the periphery changes the local field potential (LFP) activity in the mPFC. Three different types of noxious stimuli were applied to the hind paw contralateral to the LFP recording site. They were transcutaneous electrical stimulations, mechanical stimuli and a chemical stimulus (formalin injection). High intensity transcutaneous stimulations (10V to 50V) and noxious mechanical stimulus (pinch) significantly reduced the LFP power during the stimulating period (p<0.05), but not the low intensity subcutaneous stimulations (0.1V to 5V) and other innocuous mechanical stimuli (brush and pressure). More frequency bands were inhibited with increased intensity of transcutaneous electrical stimulation, and almost all frequency bands were inhibited by stimulations at or higher than 30v. Pinch significantly reduced the power for beta band and formalin injection significantly reduced the power of alpha and beta band. Our data demonstrated the noxious stimuli-induced reduction of LFP power in the mPFC, which indicates the active processing of nociceptive information by the mPFC. Copyright © 2016 Elsevier Inc. All rights reserved.
High-speed and low-power repeater for VLSI interconnects
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Mallick, P. S.
2017-10-01
This paper proposes a repeater for boosting the speed of interconnects with low power dissipation. We have designed and implemented at 45 and 32 nm technology nodes. Delay and power dissipation performances are analyzed for various voltage levels at these technology nodes using Spice simulations. A significant reduction in delay and power dissipation are observed compared to a conventional repeater. The results show that the proposed high-speed low-power repeater has a reduced delay for higher load capacitance. The proposed repeater is also compared with LPTG CMOS repeater, and the results shows that the proposed repeater has reduced delay. The proposed repeater can be suitable for high-speed global interconnects and has the capacity to drive large loads.
NASA Astrophysics Data System (ADS)
T., Ii; Inomoto, M.; Gi, K.; Umezawa, T.; Ito, T.; Kadowaki, K.; Kaminou, Y.; Ono, Y.
2013-07-01
A low-energy, high-current neutral beam injection (NBI) was applied to an oblate field-reversed configuration (FRC) for the first time. The NB fast ions reduce growth rates of low-n modes dangerous for the oblate FRC, extending the FRC lifetime by a factor of 1.2. The reduced loss power of 5 MW is much higher than the NBI power of 0.5 MW, indicating that the NBI not only heats the FRC plasma but also improves its stability and transport properties. The NBI also maintains higher pressure and current density profiles of the FRC, improving its flux and energy decay times by a factor of 2.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
Hwang, Seok Joon; Yoon, Won Byong; Lee, Ok-Hwan; Cha, Seung Ju; Kim, Jong Dai
2014-03-01
The objective of this study was to investigate the radical-scavenging-linked antioxidant properties of the extracts from black chokeberry and blueberry cultivated in Korea. The 70% ethanol extracts were prepared from black chokeberry and blueberry, and evaluated for total phenolic content, total flavonoid content, total proanthocyanidin content, and antioxidative activities, using various in vitro assays, such as DPPH(2,2-diphenyl-1-picrylhydrazyl), ABTS(2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulphonic acid)) radical-scavenging activity, FRAP(ferric-reducing antioxidant power) and reducing power. The major phenolic compounds, including cyanidin-3-galactoside, cyanidin-3-arabinoside, neochlorogenic acid, procyanidin B1, were analysed by HPLC with a photodiode array detector. Results showed that total phenol, flavonoid and proanthocyanidin contents of black chokeberry extract were higher than those of blueberry extract. In addition, black chokeberry extract exhibited higher free radical-scavenging activity and reducing power than did blueberry extract. Cyanidin-3-galactoside was identified as a major phenolic compound, with considerable content in black chokeberry, that correlated with its higher antioxidant and radical-scavenging effects. These results suggest that black chokeberry extracts could be considered as a good source of natural antioxidants and functional food ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Zhan-Shan; Pan, Li-Bo
2014-03-01
The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.
NASA Astrophysics Data System (ADS)
Dong, Sheng; Dapino, Marcelo J.
2015-04-01
Ultrasonic lubrication has been proven effective in reducing dynamic friction. This paper investigates the relationship between friction reduction, power consumption, linear velocity, and normal stress. A modified pin-on-disc tribometer was adopted as the experimental set-up, and a Labview system was utilized for signal generation and data acquisition. Friction reduction was quantified for 0.21 to 5.31 W of electric power, 50 to 200 mm/s of linear velocity, and 23 to 70 MPa of normal stress. Friction reduction near 100% can be achieved under certain conditions. Lower linear velocity and higher electric power result in greater friction reduction, while normal stress has little effect on friction reduction. Contour plots of friction reduction, power consumption, linear velocity, and normal stress were created. An efficiency coefficient was proposed to calculate power requirements for a certain friction reduction or reduced friction for a given electric power.
Drijvers, Linda; Mulder, Kimberley; Ernestus, Mirjam
2016-02-01
Reduced forms like yeshay for yesterday often occur in conversations. Previous behavioral research reported a processing advantage for full over reduced forms. The present study investigated whether this processing advantage is reflected in a modulation of alpha (8-12Hz) and gamma (30+Hz) band activity. In three electrophysiological experiments, participants listened to full and reduced forms in isolation (Experiment 1), sentence-final position (Experiment 2), or mid-sentence position (Experiment 3). Alpha power was larger in response to reduced forms than to full forms, but only in Experiments 1 and 2. We interpret these increases in alpha power as reflections of higher auditory cognitive load. In all experiments, gamma power only increased in response to full forms, which we interpret as showing that lexical activation spreads more quickly through the semantic network for full than for reduced forms. These results confirm a processing advantage for full forms, especially in non-medial sentence position. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterization of a High Current, Long Life Hollow Cathode
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.
2006-01-01
The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.
Solid state d.c. power controller design philosophies and their evaluation.
NASA Technical Reports Server (NTRS)
Maus, L. G.; Williams, D. E.
1972-01-01
Evaluation of remote power controllers (RPC), which has enhanced knowledge of the capabilities of various design philosophies and has indicated certain limitations that RPC's exhibit. Additionally, this activity has clearly emphasized that certain RPC design parameters merit further consideration in development. The major design parameters to be analyzed in more detail are the rates of change of the rise and fall times of the output current. The major reason why transient voltages and currents should be reduced is the minimization of the reverse collector-to-emitter voltage. The requirement for higher bus voltage coupled with the present problem of improving the efficiency of power control points out the urgent need for improvement and advancement of higher current, voltage, and gain power semiconductors.
ARC and Melting Efficiency of Plasma ARC Welds
NASA Technical Reports Server (NTRS)
McClure, J. C.; Nunes, A. C.; Evans, D. M.
1999-01-01
A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,
Self-powered integrated systems-on-chip (energy chip)
NASA Astrophysics Data System (ADS)
Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.
2010-04-01
In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.
Pulse transmission receiver with higher-order time derivative pulse correlator
Dress, Jr., William B.; Smith, Stephen F.
2003-09-16
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Heat pipe cooling of power processing magnetics
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Chester, M.
1979-01-01
The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
2002-01-01
A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrow, Ken; Hedman, Bruce
Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and themore » tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of facilities involved, and the geographic distribution. (2) Data Center Energy Use Trends--a discussion of energy use and expected energy growth and the typical energy consumption and uses in data centers. (3) CHP Applicability--Potential configurations, CHP case studies, applicable equipment, heat recovery opportunities (cooling), cost and performance benchmarks, and power reliability benefits (4) CHP Drivers and Hurdles--evaluation of user benefits, social benefits, market structural issues and attitudes toward CHP, and regulatory hurdles. (5) CHP Paths to Market--Discussion of technical needs, education, strategic partnerships needed to promote CHP in the IT community.« less
3 CFR 9073 - Proclamation 9073 of December 31, 2013. National Mentoring Month, 2014
Code of Federal Regulations, 2014 CFR
2014-01-01
... better attendance in school, higher self-esteem, a greater chance of pursuing higher education, and a reduced risk of substance abuse. That is why my Administration is creating new opportunities to give back... school girls with powerful role models. For more information on how to get involved in a mentoring...
Harnessing the Power of Information Technology: Open Business Models in Higher Education
ERIC Educational Resources Information Center
Sheets, Robert G.; Crawford, Stephen
2012-01-01
Higher education is under enormous pressure to improve outcomes and reduce costs. Information technology can help achieve these goals, but only if it is properly harnessed. This article argues that one key to harnessing information technology is business model innovation that results in more "open" and "unbundled" operations in learning and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results inmore » a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less
Maximizing output power of a low-gain laser system.
Carroll, D L; Sentman, L H
1993-07-20
Rigrod theory was used to model outcoupled power from a low-gain laser with good accuracy. For a low-gain overtone cw HF chemical laser, Rigrod theory shows that a higher medium saturation yields a higher overall overtone efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low-absorption-scattering loss overtone mirrors and a 5% penalty in outcoupled power, the intracavity flux and hence the mirror loading may be reduced by more than a factor of 2 when the gain length is long enough to saturate the medium well. For the University of Illinois at Urbana-Champaign overtone laser that has an extensive database with well-characterized mirrors for which the Rigrod parameters g(0) and I(sat) were firmly established, the accuracy to which the reflectivities of high-reflectivity overtone mirrors can be deduced by using measured mirror transmissivities, measured outcoupled power, and Rigrod theory is approximatly ±0.07%. This method of accurately deducing mirror reflectivities may be applicable to other low-gain laser systems that use high-reflectivity mirrors at different wavelengths. The maximum overtone efficiency is estimated to be approximately 80%-100%.
Department of Defense Space Science and Technology Strategy 2015
2015-01-01
solar cells at 34% efficiency enabling higher power spacecraft capability. These solar cells developed by the Air Force Research Laboratory (AFRL...Reduce size, weight, power , cost, and improve thermal management for SATCOM terminals Support intelligence surveillance and reconnaissance (ISR...Improve understanding and awareness of the Earth-to-Sun environment Improve space environment forecast capabilities and tools to predict operational
A Safe and Interactive Method of Illuminating Discharge Tubes for Studying Emission Spectra
ERIC Educational Resources Information Center
Lu, Zhe
2012-01-01
Discharge tubes are useful tools for teaching emission spectra and the discrete energy levels of the Bohr model. A new setup uses a plasma globe to illuminate the discharge tube and allows a higher degree of interactivity owing to the omission of a traditional, high-voltage power source. The decreased power consumption also reduces the heating of…
Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds
NASA Astrophysics Data System (ADS)
Zakonnova, Lyudmila; Nikishkin, Igor; Rostovzev, Alexandr
2017-11-01
One of the frequently encountered problems of power plant small cooling ponds is rapid eutrophication and related intensified development of phytoplankton ("hyperflow") and overgrowing of ponds by higher aquatic vegetation. As a result of hyper-flowering, an enormous amount of detritus settles on the condenser tubes, reducing the efficiency of the power plant operation. The development of higher aquatic vegetation contributes to the appearing of the shoals. As a result the volume, area and other characteristics of the cooling ponds are getting changed. The article describes the environmental problems of small manmade ponds of power plants and coal mines in mining regions. Two approaches to the problem of eutrophication are considered: technological and ecological. The negative effects of herbicides application to aquatic organisms are experimentally proved. An ecological approach to solving the problem by fish-land reclamation method is shown.
Ultra high speed image processing techniques. [electronic packaging techniques
NASA Technical Reports Server (NTRS)
Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.
1981-01-01
Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.
Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny
2007-09-01
Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.
NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications
NASA Technical Reports Server (NTRS)
Araghi, Koorosh R.
2011-01-01
NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.
NASA Astrophysics Data System (ADS)
Luo, B.; Mehandru, R.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R. C.; Moser, N.; Gillespie, J. K.; Jessen, G. H.; Jenkins, T. J.; Yannuzi, M. J.; Via, G. D.; Crespo, A.
2003-10-01
The dc and power characteristics of AlGaN/GaN MOS-HEMTs with Sc 2O 3 gate dielectrics were compared with that of conventional metal-gate HEMTs fabricated on the same material. The MOS-HEMT shows higher saturated drain-source current (˜0.75 A/mm) and significantly better power-added efficiency (PAE, 27%) relative to the HEMT (˜0.6 A/mm and ˜5%). The Sc 2O 3 also provides effective surface passivation, with higher drain current, lower leakage currents and higher three-terminal breakdown voltage in passivated devices relative to unpassivated devices. The PAE also increases (from ˜5% to 12%) on the surface passivated HEMTs, showing that Sc 2O 3 is an attractive option for reducing gate and surface leakage in AlGaN/GaN heterostructure transistors.
Power efficient optical communications for space applications
NASA Technical Reports Server (NTRS)
Lesh, J. R.
1982-01-01
Optical communications technology promises substantial size, weight and power consumption savings for space to space high data rate communications over presently used microwave technology. These benefits are further increased by making the most efficient use of the available optical signal energy. This presentation will describe the progress to date on a project to design, build and demonstrate in the laboratory an optical communication system capable of conveying 2.5 bits of information per effective received photon. Such high power efficiencies will reduce the need for photon collection at the receiver and will greatly reduce the requirements for optical pointing accuracy, both at the transmitter as well as the receiver. A longer range program to demonstrate even higher photon efficiencies will also be described.
Benefits of 20 kHz PMAD in a nuclear space station
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1987-01-01
Compared to existing systems, high frequency ac power provides higher efficiency, lower cost, and improved safety benefits. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources; photovoltaic, solar dynamic, rotating machines and nuclear. A 25 kW, 20 kHz ac power distribution system testbed was recently (1986) developed. The testbed possesses maximum flexibility, versatility, and transparency to user technology while maintaining high efficiency, low mass, and reduced volume. Several aspects of the 20 kHz power management and distribution (PMAD) system that have particular benefits for a nuclear power Space Station are discussed.
NASA Technical Reports Server (NTRS)
George, Jeffrey
2014-01-01
Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Cadby, Ashley
2017-02-01
Localization based super resolution images of a biological sample is generally achieved by using high power laser illumination with long exposure time which unfortunately increases photo-toxicity of a sample, making super resolution microscopy, in general, incompatible with live cell imaging. Furthermore, the limitation of photobleaching reduces the ability to acquire time lapse images of live biological cells using fluorescence microscopy. Digital Light Processing (DLP) technology can deliver light at grey scale levels by flickering digital micromirrors at around 290 Hz enabling highly controlled power delivery to samples. In this work, Digital Micromirror Device (DMD) is implemented in an inverse Schiefspiegler telescope setup to control the power and pattern of illumination for super resolution microscopy. We can achieve spatial and temporal patterning of illumination by controlling the DMD pixel by pixel. The DMD allows us to control the power and spatial extent of the laser illumination. We have used this to show that we can reduce the power delivered to the sample to allow for longer time imaging in one area while achieving sub-diffraction STORM imaging in another using higher power densities.
Tang, Sai Chun; McDannold, Nathan J.
2015-01-01
This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems. PMID:26640745
Tang, Sai Chun; McDannold, Nathan J
2015-03-01
This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.
The role of a microfinance program on HIV risk behavior among Haitian women.
Rosenberg, Molly S; Seavey, Brian K; Jules, Reginal; Kershaw, Trace S
2011-07-01
Microfinance loans targeted at vulnerable female populations have the potential to foster female economic independence, possibly leading to the negotiation of safer sexual practices and reduced HIV risk. This study assessed the relationship between experience with microfinance loans and HIV risk behavior among 192 female clients of the Haitian microfinance organization Fonkoze. Clients with longer microfinance experience were generally found to have lower indicators of HIV risk behavior and higher indicators of relationship power compared to those with shorter experience. In particular, those with longer memberships were 72% less likely to report partner infidelity, were 3.95 times more likely to use condoms with an unfaithful partner, and had higher average general power index scores compared to those with shorter experience. This study provides evidence that long-term exposure to microfinance is associated with reduced HIV risk behavior in Haitian women and that this reduction may be partly regulated by influencing relationship power. These results suggest the need to further explore the use of microfinance as a tool to prevent the spread of HIV.
The role of capital costs in decarbonizing the electricity sector
NASA Astrophysics Data System (ADS)
Hirth, Lion; Steckel, Jan Christoph
2016-11-01
Low-carbon electricity generation, i.e. renewable energy, nuclear power and carbon capture and storage, is more capital intensive than electricity generation through carbon emitting fossil fuel power stations. High capital costs, expressed as high weighted average cost of capital (WACC), thus tend to encourage the use of fossil fuels. To achieve the same degree of decarbonization, countries with high capital costs therefore need to impose a higher price on carbon emissions than countries with low capital costs. This is particularly relevant for developing and emerging economies, where capital costs tend to be higher than in rich countries. In this paper we quantitatively evaluate how high capital costs impact the transformation of the energy system under climate policy, applying a numerical techno-economic model of the power system. We find that high capital costs can significantly reduce the effectiveness of carbon prices: if carbon emissions are priced at USD 50 per ton and the WACC is 3%, the cost-optimal electricity mix comprises 40% renewable energy. At the same carbon price and a WACC of 15%, the cost-optimal mix comprises almost no renewable energy. At 15% WACC, there is no significant emission mitigation with carbon pricing up to USD 50 per ton, but at 3% WACC and the same carbon price, emissions are reduced by almost half. These results have implications for climate policy; carbon pricing might need to be combined with policies to reduce capital costs of low-carbon options in order to decarbonize power systems.
Sakadjian, B.; Hu, S.; Maryamchik, M.; ...
2015-06-05
Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakadjian, B.; Hu, S.; Maryamchik, M.
Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
Firefly: A HOT camera core for thermal imagers with enhanced functionality
NASA Astrophysics Data System (ADS)
Pillans, Luke; Harmer, Jack; Edwards, Tim
2015-06-01
Raising the operating temperature of mercury cadmium telluride infrared detectors from 80K to above 160K creates new applications for high performance infrared imagers by vastly reducing the size, weight and power consumption of the integrated cryogenic cooler. Realizing the benefits of Higher Operating Temperature (HOT) requires a new kind of infrared camera core with the flexibility to address emerging applications in handheld, weapon mounted and UAV markets. This paper discusses the Firefly core developed to address these needs by Selex ES in Southampton UK. Firefly represents a fundamental redesign of the infrared signal chain reducing power consumption and providing compatibility with low cost, low power Commercial Off-The-Shelf (COTS) computing technology. This paper describes key innovations in this signal chain: a ROIC purpose built to minimize power consumption in the proximity electronics, GPU based image processing of infrared video, and a software customisable infrared core which can communicate wirelessly with other Battlespace systems.
A general solution strategy of modified power method for higher mode solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr
2016-01-15
A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less
Field Programmable Gate Array for Implementation of Redundant Advanced Digital Feedback Control
NASA Technical Reports Server (NTRS)
King, K. D.
2003-01-01
The goal of this effort was to develop a digital motor controller using field programmable gate arrays (FPGAs). This is a more rugged approach than a conventional microprocessor digital controller. FPGAs typically have higher radiation (rad) tolerance than both the microprocessor and memory required for a conventional digital controller. Furthermore, FPGAs can typically operate at higher speeds. (While speed is usually not an issue for motor controllers, it can be for other system controllers.) Other than motor power, only a 3.3-V digital power supply was used in the controller; no analog bias supplies were used. Since most of the circuit was implemented in the FPGA, no additional parts were needed other than the power transistors to drive the motor. The benefits that FPGAs provide over conventional designs-lower power and fewer parts-allow for smaller packaging and reduced weight and cost.
Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya
2015-11-16
An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.
Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts.
Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung
2017-03-01
This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P <0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.
Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution
NASA Astrophysics Data System (ADS)
Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan
2016-07-01
The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.
NASA Astrophysics Data System (ADS)
Frevert, C.; Bugge, F.; Knigge, S.; Ginolas, A.; Erbert, G.; Crump, P.
2016-03-01
Both high-energy-class laser facilities and commercial high-energy pulsed laser sources require reliable optical pumps with the highest pulse power and electro-optical efficiency. Although commercial quasi-continuous wave (QCW) diode laser bars reach output powers of 300…500 W further improvements are urgently sought to lower the cost per Watt, improve system performance and reduce overall system complexity. Diode laser bars operating at temperatures of around 200 K show significant advances in performance, and are particularly attractive in systems that use cryogenically cooled solid state lasers. We present the latest results on 940 nm, passively cooled, 4 mm long QCW diode bars which operate under pulse conditions of 1.2 ms, 10 Hz at an output power of 1 kW with efficiency of 70% at 203 K: a two-fold increase in power compared to 300 K, without compromising efficiency. We discuss how custom low-temperature design of the vertical layers can mitigate the limiting factors such as series resistance while sustaining high power levels. We then focus on the remaining obstacles to higher efficiency and power, and use a detailed study of multiple vertical structures to demonstrate that the properties of the active region are a major performance limit. Specifically, one key limit to series resistance is transport in the layers around the active region and the differential internal efficiency is closely correlated to the threshold current. Tailoring the barriers around the active region and reducing transparency current density thus promise bars with increased performance at temperatures of 200 K as well as 300 K.
Solar assisted heat pumps: A possible wave of the future
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1976-01-01
With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.
EIT Noise Resonance Power Broadening: a probe for coherence dynamics
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; O'Leary, Shannon; Snider, Charles
2012-06-01
EIT noise correlation spectroscopy holds promise as a simple, robust method for performing high resolution spectroscopy used in devices as diverse as magnetometers and clocks. One useful feature of these noise correlation resonances is that they do not power broaden with the EIT window. We report on measurements of the eventual power broadening (at higher optical powers) of these resonances and a simple, quantitative theoretical model that relates the observed power broadening slope with processes such as two-photon detuning gradients and coherence diffusion. These processes reduce the ground state coherence relative to that of a homogeneous system, and thus the power broadening slope of the EIT noise correlation resonance may be a simple, useful probe for coherence dynamics.
Advanced development of a programmable power processor
NASA Technical Reports Server (NTRS)
Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.
1980-01-01
The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.
NASA Astrophysics Data System (ADS)
Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji
2016-12-01
To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.
Low-current traveling wave tube for use in the microwave power module
NASA Technical Reports Server (NTRS)
Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.
1993-01-01
The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.
Novel model of stator design to reduce the mass of superconducting generators
NASA Astrophysics Data System (ADS)
Kails, Kevin; Li, Quan; Mueller, Markus
2018-05-01
High temperature superconductors (HTS), with much higher current density than conventional copper wires, make it feasible to develop very powerful and compact power generators. Thus, they are considered as one promising solution for large (10 + MW) direct-drive offshore wind turbines due to their low tower head mass. However, most HTS generator designs are based on a radial topology, which requires an excessive amount of HTS material and suffers from cooling and reliability issues. Axial flux machines on the other hand offer higher torque/volume ratios than the radial machines, which makes them an attractive option where space and transportation becomes an issue. However, their disadvantage is heavy structural mass. In this paper a novel stator design is introduced for HTS axial flux machines which enables a reduction in their structural mass. The stator is for the first time designed with a 45° angle that deviates the air gap closing forces into the vertical direction reducing the axial forces. The reduced axial forces improve the structural stability and consequently simplify their structural design. The novel methodology was then validated through an existing design of the HTS axial flux machine achieving a ∼10% mass reduction from 126 tonnes down to 115 tonnes. In addition, the air gap flux density increases due to the new claw pole shapes improving its power density from 53.19 to 61.90 W kg‑1. It is expected that the HTS axial flux machines designed with the new methodology offer a competitive advantage over other proposed superconducting generator designs in terms of cost, reliability and power density.
Biomechanical considerations for abdominal loading by seat belt pretensioners.
Rouhana, Stephen W; El-Jawahri, Raed E; Laituri, Tony R
2010-11-01
While seat belts are the most effective safety technology in vehicles today, there are continual efforts in the industry to improve their ability to reduce the risk of injury. In this paper, seat belt pretensioners and current trends towards more powerful systems were reviewed and analyzed. These more powerful systems may be, among other things, systems that develop higher belt forces, systems that remove slack from belt webbing at higher retraction speeds, or both. The analysis started with validation of the Ford Human Body Finite Element Model for use in evaluation of abdominal belt loading by pretensioners. The model was then used to show that those studies, done with lap-only belts, can be used to establish injury metrics for tests done with lap-shoulder belts. Then, previously-performed PMHS studies were used to develop AIS 2+ and AIS 3+ injury risk curves for abdominal interaction with seat belts via logistic regression and reliability analysis with interval censoring. Finally, some considerations were developed for a possible laboratory test to evaluate higher-powered pretensioners.
Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Hasan, Md. Nazmul; Deline, Chris
In the presence of partial shading and other mismatch factors, bypass diodes may not offer complete elimination of excessive power dissipation due to cell reverse biasing, commonly referred to as hot-spotting in photovoltaic (PV) systems. As a result, PV systems may experience higher failure rates and accelerated ageing. In this paper, a cell-level simulation model is used to assess occurrence of hot-spotting events in a representative residential rooftop system scenario featuring a moderate shading environment. The approach is further used to examine how well distributed power electronics converters mitigate the effects of partial shading and other sources of mismatch bymore » preventing activation of bypass diodes and thereby reducing the chances of heavy power dissipation and hot-spotting in mismatched cells. The simulation results confirm that the occurrence of heavy power dissipation is reduced in all distributed power electronics architectures, and that submodule-level converters offer nearly 100% mitigation of hot-spotting. In addition, the paper further elaborates on the possibility of hot-spot-induced permanent damage, predicting a lifetime energy loss above 15%. In conclusion, this energy loss is fully recoverable with submodule-level power converters that mitigate hot-spotting and prevent the damage.« less
Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics
Olalla, Carlos; Hasan, Md. Nazmul; Deline, Chris; ...
2018-03-23
In the presence of partial shading and other mismatch factors, bypass diodes may not offer complete elimination of excessive power dissipation due to cell reverse biasing, commonly referred to as hot-spotting in photovoltaic (PV) systems. As a result, PV systems may experience higher failure rates and accelerated ageing. In this paper, a cell-level simulation model is used to assess occurrence of hot-spotting events in a representative residential rooftop system scenario featuring a moderate shading environment. The approach is further used to examine how well distributed power electronics converters mitigate the effects of partial shading and other sources of mismatch bymore » preventing activation of bypass diodes and thereby reducing the chances of heavy power dissipation and hot-spotting in mismatched cells. The simulation results confirm that the occurrence of heavy power dissipation is reduced in all distributed power electronics architectures, and that submodule-level converters offer nearly 100% mitigation of hot-spotting. In addition, the paper further elaborates on the possibility of hot-spot-induced permanent damage, predicting a lifetime energy loss above 15%. In conclusion, this energy loss is fully recoverable with submodule-level power converters that mitigate hot-spotting and prevent the damage.« less
Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Proctor, Margaret P.
2007-01-01
Seal leakage decreases with increasing surface speed due to reduced clearances from disk centrifugal growth. Annular and labyrinth seal leakage are 2-3 times greater than brush and finger seal leakage. Seal leakage rates increase with increasing temperature because of seal clearance growth due to different coefficients of thermal expansion between the seal and test disk. Seal power loss is not strongly affected by inlet temperature. Seal power loss increases with increasing surface speed, seal pressure differential, mass flow rate or flow factor, and radial clearance. The brush and finger seals had nearly the same power loss. Annular and labyrinth seal power loss were higher than finger or brush seal power loss. The brush seal power loss was the lowest and 15-30% lower than annular and labyrinth seal power loss.
Lee, Joshua F; Brown, Skyler R; Lange, Andrew P; Brothers, R Matthew
2013-12-01
Nonvented "aerodynamic helmets" reduce wind resistance but may increase head (Th) and gastrointestinal (Tgi) temperature and reduce performance when worn in hot conditions. This study tested the hypothesis that Th and Tgi would be greater during low-intensity cycling (LIC) in the heat while wearing an aero helmet (AERO) vs. a traditional vented racing helmet (REG). This study also tested the hypothesis that Th, Tgi, and finish time would be greater, and power output would be reduced during a self-paced time trial in the heat with AERO vs. REG. Ten highly trained heat-acclimated endurance athletes conducted LIC (50% V[Combining Dot Above]O2max, LIC) and a high-intensity 12-km self-paced time trial (12-km TT) on a cycle ergometer in 39° C on 2 different days (AERO and REG), separated by >48 hours. During LIC, Th was higher at minute 7.5 and all time points thereafter in AERO vs. REG (p < 0.05). Similarly, during the 12-km TT, Th was higher at minutes 12.5, 15, and 17.5 in AERO vs. REG (p < 0.05). Heart rate (HR) and Tgi increased during LIC and during 12-km TT (both p < 0.001); however, no significant interaction (helmet × time) existed for HR or Tgi at either intensity (all p > 0.05). No group differences existed for finish time or power output during the 12-km TT (both p > 0.05). In conclusion, Th becomes elevated during cycling in the heat with an aero helmet compared with a traditional vented racing helmet during LIC and high-intensity cycling, yet Tgi and HR responses are similar irrespective of helmet type and Th. Furthermore, the higher Th that develops when an aero helmet is worn during cycling in the heat does not affect power output or cycling performance during short-duration high-intensity events.
Shuang-Chen, Ma; Yao, Juan-Juan; Gao, Li
2012-01-01
Experimental studies were carried out on flue gas denitrification using activated carbon irradiated by microwave. The effects of microwave irradiation power (reaction temperature), the flow rate of flue gas, the concentration of NO and the flue gas coexisting compositions on the adsorption property of activated carbon and denitrification efficiency were investigated. The results show that: the higher of microwave power, the higher of denitrification efficiency; denitrification efficiency would be greater than 99% and adsorption capacity of NO is relatively stable after seven times regeneration if the microwave power is more than 420 W; adsorption capacity of NO in activated carbon bed is 33.24 mg/g when the space velocity reaches 980 per hour; adsorption capacity declines with increasing of the flow rate of flue gas; the change in denitrification efficiency is not obvious with increasing oxygen content in the flue gas; and the maximum adsorption capacity of NO was observed when moisture in flue gas was about 5.88%. However, the removal efficiency of NO reduces with increasing moisture, and adsorption capacity and removal efficiency of NO reduce with increasing of SO2 concentration in the flue gas.
Togni, P; Rijnen, Z; Numan, W C M; Verhaart, R F; Bakker, J F; van Rhoon, G C; Paulides, M M
2013-09-07
Accumulating evidence shows that hyperthermia improves head-and-neck cancer treatment. Over the last decade, we introduced a radiofrequency applicator, named HYPERcollar, which enables local heating also of deep locations in this region. Based on clinical experience, we redesigned the HYPERcollar for improved comfort, reproducibility and operator handling. In the current study, we analyze the redesign from an electromagnetic point of view. We show that a higher number of antennas and their repositioning allow for a substantially improved treatment quality. Combined with the much better reproducibility of the water bolus, this will substantially minimize the risk of underexposure. All improvements combined enable a reduction of hot-spot prominence (hot-spot to target SAR quotient) by 32% at an average of 981 W, which drastically reduces the probability for system power to become a treatment limiting source. Moreover, the power deposited in the target selectively can be increased by more than twofold. Hence, we expect that the HYPERcollar redesign currently under construction allows us to double the clinically applied power to the target while reducing the hot-spots, resulting in higher temperatures and, consequently, better clinical outcome.
10 GHz dual loop opto-electronic oscillator without RF-amplifiers
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary
2008-02-01
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.
Cooling Concepts for High Power Density Magnetic Devices
NASA Astrophysics Data System (ADS)
Biela, Juergen; Kolar, Johann W.
In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.
Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael
2015-03-01
The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E
2014-11-01
Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.
New dynamic FET logic and serial memory circuits for VLSI GaAs technology
NASA Technical Reports Server (NTRS)
Eldin, A. G.
1991-01-01
The complexity of GaAs field effect transistor (FET) very large scale integration (VLSI) circuits is limited by the maximum power dissipation while the uniformity of the device parameters determines the functional yield. In this work, digital GaAs FET circuits are presented that eliminate the DC power dissipation and reduce the area to 50% of that of the conventional static circuits. Its larger tolerance to device parameter variations results in higher functional yield.
Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling
NASA Astrophysics Data System (ADS)
Wang, Yi-Tao; Tang, Jian-Shun; Hu, Gang; Wang, Jian; Yu, Shang; Zhou, Zong-Quan; Cheng, Ze-Di; Xu, Jin-Shi; Fang, Sen-Zhi; Wu, Qing-Lin; Li, Chuan-Feng; Guo, Guang-Can
2016-12-01
The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.
NASA Astrophysics Data System (ADS)
Rahimi, Mohammad; D'Angelo, Adriana; Gorski, Christopher A.; Scialdone, Onofrio; Logan, Bruce E.
2017-05-01
Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m-2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m-2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m-3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process.
High-Power Prismatic Devices for Oblique Peripheral Prisms
Peli, Eli; Bowers, Alex R.; Keeney, Karen; Jung, Jae-Hyun
2016-01-01
ABSTRACT Purpose Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. Methods We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms). Results A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. Conclusions Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other field expansion applications. PMID:26866438
Composite Matrix Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Knowles, Timothy R.
1997-01-01
This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.
Senior Power: Longer Twilight Shortens Prospects for Junior Scholars.
ERIC Educational Resources Information Center
Manzo, Kathleen Kennedy
1994-01-01
Some higher education officials say the end of mandatory retirement may lead to lower faculty turnover and could reduce opportunities for young scholars, mainly members of minorities, women, and younger faculty in the departments for which the individual institution is most respected. (Author/MSE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.R.; Botts, T.E.; Hertzberg, A.
1981-01-01
Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beamingmore » to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.« less
Impute DC link (IDCL) cell based power converters and control thereof
Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad
2016-04-26
Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.
Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.
Khan, Sadeque Reza; Choi, GoangSeog
2016-08-03
High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.
Pulse transmission receiver with higher-order time derivative pulse generator
Dress, Jr., William B.; Smith, Stephen F.
2003-08-12
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
NASA Astrophysics Data System (ADS)
Jeschke, J.; Martens, M.; Hagedorn, S.; Knauer, A.; Mogilatenko, A.; Wenzel, H.; Zeimer, U.; Enslin, J.; Wernicke, T.; Kneissl, M.; Weyers, M.
2018-03-01
AlGaN multiple quantum well laser heterostructures for emission around 240 nm have been grown by metalorganic vapor phase epitaxy on epitaxially laterally overgrown (ELO) AlN/sapphire templates. The edge emitting laser structures showed optically pumped lasing with threshold power densities in the range of 2 MW cm-2. The offcut angle of the sapphire substrates as well as the number and the width of the quantum wells were varied while keeping the total thickness of the gain region constant. A larger offcut angle of 0.2° leads to step bunching on the surface as well as Ga accumulation at the steps, but also to an increased inclination of threading dislocations and coalescence boundaries resulting in a reduced dislocation density and thus a reduced laser threshold in comparison to lasers grown on ELO with an offcut of 0.1°. For low losses, samples with fewer QWs exhibited a lower lasing threshold due to a reduced transparency pump power density while for high losses, caused by a higher threading dislocation density, the quadruple quantum well was favorable due to its higher maximum gain.
NASA Astrophysics Data System (ADS)
Naderi, Ali
2017-12-01
In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
Advanced nickel-hydrogen cell configuration study
NASA Technical Reports Server (NTRS)
1983-01-01
Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.
Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.
2003-01-01
NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.
Development of miniature, high frequency pulse tube cryocoolers
NASA Astrophysics Data System (ADS)
Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.
2010-04-01
Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.
Saniova, Beata; Drobny, Michal; Drobna, Eva; Hamzik, Julian; Bakosova, Erika; Fischer, Martin
2016-01-01
The main objective was to indicate sufficient general anaesthesia (GA) inhibition for negative experience rejection in GA. We investigated the group of patients (n = 17, mean age 63.59 years, 9 male--65.78 years, 8 female - 61.13 years) during GA in open thorax surgery and analyzed EEG signal by power spectrum (pEEG) delta (DR), and gamma rhythms (GR). EEG was performed: OPO - the day before surgery and in surgery phases OP1-OP5 during GA. Particular GA phases: OP1 = after pre- medication, OP2 = surgery onset, OP3 = surgery with one-side lung ventilation, OP4 = end of surgery, both sides ventilation, OP5 = end of GA. pEEG registering in the left frontal region Fp1-A1 montage in 17 right handed persons. Mean DR power in OP2 phase is significantly higher than in phase OP5 and mean DR power in OP3 is higher than in OP5. One-lung ventilation did not change minimal alveolar concentration and gases should not accelerate decrease in mean DR power. Higher mean value of GR power in OPO than in OP3 was statistically significant. Mean GR power in OP3 is statistically significantly lower than in OP4 correlating with the same gases concentration in OP3 and OP4. Our results showed DR power decreased since OP2 till the end of GA it means inhibition represented by power DR fluently decreasing is sufficient for GA depth. GR power decay near the working memory could reduce conscious cognition and unpleasant explicit experience in GA.
Energy-reduction concept for incandescent lamps
NASA Technical Reports Server (NTRS)
Vorhaben, K. H.
1981-01-01
Reusable infrared reflector maintains filament temperature and reduces power requirements. Fixed installed over light bulb directs energy formerly lost back to lamp filament. This energy aids electric current in heating filament, allowing lower-wattage bulb to produce same amount of light as higher-wattage bulb in ordinary fixture.
High Capacity Battery Cell Flight Qualified
NASA Technical Reports Server (NTRS)
McKissock, Barbara I.
1997-01-01
The High Capacity Battery Cell project is an effort equally funded by the NASA Lewis Research Center and Hughes Space and Communications Company (a unit of Hughes Aircraft Company) to develop and flight qualify a higher capacity nickel hydrogen battery for continuing use on commercial spacecraft. The larger diameter, individual pressure vessel cell will provide approximately twice the power, while occupying the same volume, as the current state-of-the-art nickel hydrogen cell. These cells are also anticipated to reduce battery cost by 20 percent. The battery is currently booked for use on 26 spacecraft, with the first flight scheduled in 1997. A strong requirement for batteries with higher power levels (6 to 12 kW), long life, and reduced cost was identified in studies of the needs of commercial communications spacecraft. With the design developed in this effort, the higher power level was accommodated without having to modify the rest of the existing spacecraft bus. This design scaled-up the existing state-of-the-art nickel hydrogen battery cell from a 3.5-in., 50-Ahr cell to a 5.5-in., 350-Ahr cell. An improvement in cycle life was also achieved by the use of the 26-percent KOH electrolyte design developed by NASA Lewis. The cell design was completed, and flight batteries were built and flight qualified by Hughes Space and Communications Company with input from NASA Lewis. Two batteries were shipped in September 1996 to undergo life cycle testing under the purview of NASA Lewis.
Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System
NASA Astrophysics Data System (ADS)
Chen, Yong; Li, Tengfei; Liu, Huanlin; Li, Yichao
2017-12-01
A fast channel modeling method is studied to solve the problem of reflection channel gain for multiple input multiple output-visible light communications (MIMO-VLC) in the paper. For reducing the computational complexity when associating with the reflection times, no more than 3 reflections are taken into consideration in VLC. We think that higher order reflection link consists of corresponding many times line of sight link and firstly present reflection residual component to characterize higher reflection (more than 2 reflections). We perform computer simulation results for point-to-point channel impulse response, receiving optical power and receiving signal to noise ratio. Based on theoretical analysis and simulation results, the proposed method can effectively reduce the computational complexity of higher order reflection in channel modeling.
Qian, Jing; Han, Zhuo; Wang, Haiwan; Li, Xiaoyan; Wang, Qiuyue
2014-01-01
The topic of how to prevent and reduce burnout has drawn great attention from researchers and practitioners in recent years. However, we know little about how mentoring as a form of social support exerts influence on employee burnout. This study aims to examine the contingency side of the mentoring-burnout relationship by addressing the exploratory question of whether individual differences in power distance and relationship quality play important roles in mentoring effectiveness in terms of reducing a protégé's burnout level. A total of 210 employees from a technology communications company completed the survey questionnaire. (1) A protégés' power distance moderates the negative relationship between mentoring and burnout in such a way that the relationship is stronger for protégés who are lower rather than higher in power distance; (2) mentor-protégé relationship quality moderates the negative relationship between mentoring and burnout in such a way that the relationship is stronger when the relationship quality is higher rather than lower. In sum, our results highlight the importance of studying the contingency side of mentoring effects on protégé burnout. Our findings suggest that the individuals' different cultural values of power distance and mentor-protégé relationship quality are the boundary conditions for the mentoring-burnout relationship. We therefore suggest that research on mentoring-burnout will be advanced by considering the role of the moderating process.
Large-Format AlGaN PIN Photodiode Arrays for UV Images
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Franz, David
2010-01-01
A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.
Methods and Devices for Modifying Active Paths in a K-Delta-1-Sigma Modulator
NASA Technical Reports Server (NTRS)
Ardalan, Sasan (Inventor)
2017-01-01
The invention relates to an improved K-Delta-1-Sigma Modulators (KG1Ss) that achieve multi GHz sampling rates with 90 nm and 45 nm CMOS processes, and that provide the capability to balance performance with power in many applications. The improved KD1Ss activate all paths when high performance is needed (e.g. high bandwidth), and reduce the effective bandwidth by shutting down multiple paths when low performance is required. The improved KD1Ss can adjust the baseband filtering for lower bandwidth, and can provide large savings in power consumption while maintaining the communication link, which is a great advantage in space communications. The improved KD1Ss herein provides a receiver that adjusts to accommodate a higher rate when a packet is received at a low bandwidth, and at a initial lower rate, power is saved by turning off paths in the KD1S Analog to Digital Converter, and where when a higher rate is required, multiple paths are enabled in the KD1S to accommodate the higher band widths.
NASA Astrophysics Data System (ADS)
Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun
2015-04-01
In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be reduced by 17.2% and 14.7%, respectively. The new standard could reduce nitrogen deposition pollution in China. By 2020, for S2, the area with a nitrogen deposition concentration >2.0 tons·km-2 and the total nitrogen deposition in China would be reduced by 28.6% and 16.8%, respectively. The new standards could reduce sulfur deposition pollution in China. By 2020, for S2, the area with a sulfur deposition >1.5 tons·km-2 and the total sulfur deposition in China would be reduced by 55.3% and 21.0%, respectively.
NASA Astrophysics Data System (ADS)
Brewer, Eli Henry
We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The recirculation of cabin air also significantly reduced in-cabin particle concentrations. Recirculation of cabin air is an excellent and immediate solution to increase vehicle mileage and improve cabin air quality.
Where is the ideal location for a US East Coast offshore grid?
NASA Astrophysics Data System (ADS)
Dvorak, Michael J.; Stoutenburg, Eric D.; Archer, Cristina L.; Kempton, Willett; Jacobson, Mark Z.
2012-03-01
This paper identifies the location of an “ideal” offshore wind energy (OWE) grid on the U.S. East Coast that would (1) provide the highest overall and peak-time summer capacity factor, (2) use bottom-mounted turbine foundations (depth ≤50 m), (3) connect regional transmissions grids from New England to the Mid-Atlantic, and (4) have a smoothed power output, reduced hourly ramp rates and hours of zero power. Hourly, high-resolution mesoscale weather model data from 2006-2010 were used to approximate wind farm output. The offshore grid was located in the waters from Long Island, New York to the Georges Bank, ≈450 km east. Twelve candidate 500 MW wind farms were located randomly throughout that region. Four wind farms (2000 MW total capacity) were selected for their synergistic meteorological characteristics that reduced offshore grid variability. Sites likely to have sea breezes helped increase the grid capacity factor during peak time in the spring and summer months. Sites far offshore, dominated by powerful synoptic-scale storms, were included for their generally higher but more variable power output. By interconnecting all 4 farms via an offshore grid versus 4 individual interconnections, power was smoothed, the no-power events were reduced from 9% to 4%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms ≈450 km apart, in regions with offshore wind energy resources driven by both synoptic-scale storms and mesoscale sea breezes, substantial reductions in low/no-power hours and hourly ramp rates can be made.
The Increasing Effects of Computers on Education.
ERIC Educational Resources Information Center
Gannon, John F.
Predicting that the teaching-learning process in American higher education is about to change drastically because of continuing innovations in computer-assisted technology, this paper argues that this change will be driven by inexpensive but powerful computer technology, and that it will manifest itself by reducing the traditional timing of…
Abstract
Glutathione (GSH) is thought to play critical roles in oocyte function including spindle maintenance and provision of reducing power needed to initiate sperm chromatin decondensation. Previous observations that GSH concentrations are higher in mature than immature o...
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
1999-01-01
A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.
Preliminary design study of a higher harmonic blade feathering control system
NASA Technical Reports Server (NTRS)
Powers, R. W.
1980-01-01
The feasibility to incorporate an active higher harmonic control (HHC) system on an OH-6A rotorcraft was demonstrated. The introduction of continuously modulated low amplitude 4P feathering showed potential for reducing rotor transmitted oscillatory loads. The design implementation of this system on a baseline OH-6A required generation of a hydraulic power system, control actuator placement and design integration of an electronic subsystem comprised of an electronic control unit (ECU) and digital microcomputer. Various placements of the HHC actuators in the primary control system are evaluated. Assembly drawings of the actuator concepts and control rigging are presented. The advantages of generating both hydraulic power and 4F control motions in the nonrotating system is confirmed.
NASA Technical Reports Server (NTRS)
Sullivan, Gerry
2001-01-01
For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
NASA Astrophysics Data System (ADS)
Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.
2017-06-01
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.
Rylands, Lee P; Roberts, Simon J; Hurst, Howard T
2015-09-01
The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p ≤ 0.001, 34 ± 9%) and reduced time of power production (p ≤ 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production.
Reliability Considerations of ULP Scaled CMOS in Spacecraft Systems
NASA Technical Reports Server (NTRS)
White, Mark; MacNeal, Kristen; Cooper, Mark
2012-01-01
NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub-micron region. Decreasing the feature size of CMOS devices not only allows more components to be placed on a single chip, but it increases performance by allowing faster switching (or clock) speeds with reduced power compared to larger scaled devices. Higher performance, and lower operating and stand-by power characteristics of Ultra-Low Power (ULP) microelectronics are not only desirable, but also necessary to meet low power consumption design goals of critical spacecraft systems. The integration of these components in such systems, however, must be balanced with the overall risk tolerance of the project.
Research of the cold shield in cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.
2017-12-01
To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.
Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser
NASA Astrophysics Data System (ADS)
Ke, Qing; Tan, Shaoyang; Zhai, Teng; Zhang, Ruikang; Lu, Dan; Ji, Chen
2014-11-01
A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (IQE) while maintaing a low internal loss of the device as well. The P-doping profile and separate confinement heterostructure (SCH) layer band gap are optimized respectively with commercial software Crosslight. Analysis of lasers with different p-doping profiles shows that, although heavy doping in P-cladding layer increases the internal loss of the device, it ensures a high IQE because higher energy barrier at the SCH/P-cladding interface as a result of heavy doping helps reduce the carrier leakage from the waveguide to the InP-cladding layer. The band gap of the SCH layer are also optimized for high slope efficiency. Smaller band gap helps reduce the vertical carrier leakage from the waveguide to the P-cladding layer, but the corresponding higher carrier concentration in SCH layer will cause some radiative recombination, thus influencing the IQE. And as the injection current increases, the carrier concentration increases faster with smaller band gap, therefore, the output power saturates sooner. An optimized band gap in SCH layer of approximately 1.127eV and heavy doping up to 1e18/cm3 at the SCH/P-cladding interface are identified for our high power laser design, and we achieved a high IQE of 94% and internal loss of 2.99/cm for our design.
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
NASA Astrophysics Data System (ADS)
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-01
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.
Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization
NASA Astrophysics Data System (ADS)
Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.
2016-12-01
Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.
A Basic Study on Optimal Investment of Power Sources Considering Environmental Measures
NASA Astrophysics Data System (ADS)
Kato, Moritoshi; Zhou, Yicheng
This paper focuses on economic evaluations of a coal-fired thermal power station with a carbon dioxide capture and storage unit (CCS) by which an existing coal-fired thermal power station (COAL) is replaced. Decision makers decide to construct CCS considering both of contrary elements; one is waiting more favorable conditions such as a higher value of carbon credits which CCS has, another is reducing opportunity costs due to delay of construction of CCS. New methods using a real option approach are proposed. Firstly we calculate an economic value of CCS as an American coal option with dividend considering carbon emission costs of COAL as opportunity costs. Secondly we evaluate construction time of CCS using binominal decision tree taking into account the options. Numerical examples show that a real option value of CCS is from 28% to 44% of sales revenue, which are higher than net present values due to a value on waiting for more favorable conditions. And they also show that an earlier construction is exercised and the value becomes lower, the more challenging the benchmark of carbon emissions is or the higher the change rate of maintenance cost of COAL becomes. An effect of a lifetime of power stations is also analyzed.
Chapter 11: Concentrating Solar Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig S; Stekli, J.; Bueno, P. C.
2017-01-02
This chapter summarizes the applications of the supercritical CO2 (sCO2) Brayton cycle in concentrating solar power (CSP) plants. The design and operation of CSP plants are reviewed to highlight the requirements for the power cycle and attributes that are advantageous for the solar-thermal application. The sCO2 Brayton cycle offers the potential of higher cycle efficiency versus superheated or supercritical steam cycles at temperatures relevant for CSP applications. In addition, Brayton cycle systems using sCO2 are anticipated to have smaller weight and volume, lower thermal mass, and less complex power blocks compared with Rankine cycles due to the higher density ofmore » the fluid and simpler cycle design. The simpler machinery and compact size of the sCO2 process may also reduce the installation, maintenance, and operation cost of the system. Power cycle capacities in the range of 10-150 MWe are anticipated for the CSP application. In this chapter, we explore sCO2 Brayton cycle configurations that have attributes that are desirable from the perspective of a CSP application, such as the ability to accommodate dry cooling and daily cycling, as well as integration with thermal energy storage.« less
Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi
NASA Astrophysics Data System (ADS)
Tridianto, E.; Permatasari, P. D.; Ali, I. R.
2018-03-01
Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.
To Strike a Pose: No Stereotype Backlash for Power Posing Women
Rennung, Miriam; Blum, Johannes; Göritz, Anja S.
2016-01-01
Power posing, the adoption of open and powerful postures, has effects that parallel those of actual social power. This study explored the social evaluation of adopting powerful vs. powerless body postures in men and women regarding perceived warmth, competence, and the likelihood of eliciting admiration, envy, pity, and contempt. Previous findings suggest that the display of power by women may have side effects due to gender stereotyping, namely reduced warmth ratings and negative emotional reactions. An experiment (N = 2,473) asked participants to rate pictures of men and women who adopted high-power or low-power body postures. High-power posers were rated higher on competence, admiration, envy, and contempt compared to low-power posers, whereas the opposite was true for pity. There was no impact of power posing on perceived warmth. Contrary to expectations, the poser’s gender did not moderate any of the effects. These findings suggest that non-verbal displays of power do influence fundamental dimensions of social perception and their accompanying emotional reactions but result in comparably positive and negative evaluations for both genders. PMID:27729887
NASA Astrophysics Data System (ADS)
Franzini, Guilherme Rosa; Santos, Rebeca Caramêz Saraiva; Pesce, Celso Pupo
2017-12-01
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.
Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction
NASA Astrophysics Data System (ADS)
Tung, David C.
Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.
Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.;
2011-01-01
Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
NASA Astrophysics Data System (ADS)
Wu, Shijia; He, Weihua; Yang, Wulin; Ye, Yaoli; Huang, Xia; Logan, Bruce E.
2017-07-01
Microbial fuel cells (MFCs) need to have a compact architecture, but power generation using low strength domestic wastewater is unstable for closely-spaced electrode designs using thin anodes (flat mesh or small diameter graphite fiber brushes) due to oxygen crossover from the cathode. A composite anode configuration was developed to improve performance, by joining the mesh and brushes together, with the mesh used to block oxygen crossover to the brushes, and the brushes used to stabilize mesh potentials. In small, fed-batch MFCs (28 mL), the composite anode produced 20% higher power densities than MFCs using only brushes, and 150% power densities compared to carbon mesh anodes. In continuous flow tests at short hydraulic retention times (HRTs, 2 or 4 h) using larger MFCs (100 mL), composite anodes had stable performance, while brush anode MFCs exhibited power overshoot in polarization tests. Both configurations exhibited power overshoot at a longer HRT of 8 h due to lower effluent CODs. The use of composite anodes reduced biomass growth on the cathode (1.9 ± 0.2 mg) compared to only brushes (3.1 ± 0.3 mg), and increased coulombic efficiencies, demonstrating that they successfully reduced oxygen contamination of the anode and the bio-fouling of cathode.
A low power, low noise Programmable Analog Front End (PAFE) for biopotential measurements.
Adimulam, Mahesh Kumar; Divya, A; Tejaswi, K; Srinivas, M B
2017-07-01
A low power Programmable Analog Front End (PAFE) for biopotential measurements is presented in this paper. The PAFE circuit processes electrocardiogram (ECG), electromyography (EMG) and electroencephalogram (EEG) signals with higher accuracy. It consists mainly of improved transconductance programmable gain instrumentational amplifier (PGIA), programmable high pass filter (PHPF), and second order low pass filter (SLPF). A 15-bit programmable 5-stage successive approximation analog-to-digital converter (SAR-ADC) is implemented for improving the performance, whose power consumption is reduced due to multiple stages and by OTA/Comparator sharing technique between the stages. The power consumption is further reduced by operating the analog portion of PAFE on 0.5V supply voltage and digital portion on 0.3V supply voltage generated internally through a voltage regulator. The proposed low power PAFE has been fabricated in 180nm standard CMOS process. The performance parameters of PAFE in 15-bit mode are found to be, gain of 31-70 dB, input referred noise of 1.15 μVrms, CMRR of 110 dB, PSRR of 104 dB, and signal-to-noise distortion ratio (SNDR) of 83.5dB. The power consumption of the design is 1.1 μW @ 0.5 V supply voltage and it occupies a core silicon area of 1.2 mm 2 .
Popescu, Mihai; Hughes, John D; Popescu, Elena-Anda; Riedy, Gerard; DeGraba, Thomas J
2016-09-01
To determine if changes in cortical alpha-band power in patients with mild traumatic brain injury (mTBI) are associated with the severity of their post-traumatic stress disorder (PTSD) symptoms, and if injury severity and level of exposure to psychologically traumatic events are predictors of these electrophysiological changes. Resting-state magnetoencephalographic recordings were analyzed in 32 patients with mTBI. Alpha-band power was estimated for each patient in 68 cortical regions and was compared between groups of patients with low versus high PTSD symptoms severity. Participants with high PTSD symptom severity showed reduced alpha-band power bilaterally in the superior and middle frontal gyri and frontal poles, and in the left inferior frontal gyrus. Alpha-band power in bilateral middle frontal gyri and frontal poles was negatively correlated with scores reflecting symptoms of emotional numbing. Loss of consciousness (LOC) associated with mTBI and level of exposure to psychologically traumatic events were predictors of decreased prefrontal alpha-band power in some of these regions. Altered prefrontal alpha-band activity, shown to be partly explained by mTBI-related LOC, is associated with PTSD symptoms severity. Our findings will guide future studies addressing the electrophysiological mechanisms underlying a higher incidence of PTSD in patients with mTBI. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Chang, Baohua; Allen, Chris; Blackburn, Jon; Hilton, Paul; Du, Dong
2015-04-01
In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.
Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances
Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.
2017-01-01
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504
Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors
NASA Astrophysics Data System (ADS)
Baba, Masahiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2015-03-01
Metallic niobium powder was produced for applications in electric capacitors via calciothermic reduction of niobium hydroxide in molten CaCl2. Sub-micrometer spherical metallic particles with coral-like morphologies reflected the particle size of the starting oxide powder. A fine powder was obtained from the mixtures of niobium hydroxide and CaO or Ca(OH)2, respectively. Sintered pellets of the metallic powder showed a higher capacitance (CV) than those of the simply reduced powder without pre-treatment, because the shrinkage during sintering was smaller. The CV was as large as that of commercially sintered pellets for tantalum capacitors. Therefore, this niobium powder would act as a higher-voltage capacitor by applying chemical anodic treatment at higher voltages, and lower oxygen content in the reduced power could realize a lower leak current.
Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.
Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E
2017-01-01
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.
Powered two-wheeler drivers' risk of hitting a pedestrian in towns.
Clabaux, Nicolas; Fournier, Jean-Yves; Michel, Jean-Emmanuel
2014-12-01
The risk of collision between pedestrians and powered two-wheelers is poorly understood today. The objective of this research is to determine the risk for powered two-wheeler drivers of hitting and injuring a pedestrian per kilometer driven in towns and to compare this risk with that run by four-wheeled vehicle drivers. Using the bodily injury accidents recorded by the police on nine roads in the city of Marseille in 2011 and a campaign of observations of powered two-wheeler traffic, we estimated the risk per kilometer driven by powered two-wheeler drivers of hitting a pedestrian and compared it with the risk run by four-wheeled vehicle drivers. The results show that the risk for powered two-wheeler drivers of hitting and injuring a pedestrian is significantly higher than the risk run by four-wheeled vehicle drivers. On the nine roads studied, it is on average 3.33 times higher (95% CI: 1.63; 6.78). Taking four more years into account made it possible to consolidate these results and to tighten the confidence interval. There does indeed seem to be problems in the interactions between pedestrians and powered two-wheeler users in urban traffic. These interaction problems lead to a higher risk of hitting and injuring a pedestrian for powered two-wheeler drivers than for four-wheeled vehicle drivers. The analysis of the police reports suggests that part of this increased risk comes from filtering maneuvers by powered two-wheelers. Possible countermeasures deal with the urban street layout. Measures consisting in reducing the width and the number of traffic lanes to a strict minimum and installing medians or pedestrian islands could be an effective way for the prevention of urban accidents between pedestrians and powered two-wheelers. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents
Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook
2017-01-01
Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power POUT of 564 μW and a rectifier output voltage VRECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier. PMID:28422085
Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents.
Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook
2017-04-19
Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power P OUT of 564 μW and a rectifier output voltage V RECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a P OUT of 288 μW and a V RECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier.
Patel, DK; Kumar, R; Prasad, SK; Hemalatha, S
2011-01-01
Objective To examine the antioxidant activity and total phenolic content of different solvent fractions of Pedalium murex (P. murex) Linn fruits (Family: Pedaliaceae) as well as the correlation between the total antioxidant capacity and total phenolic content. Methods In the present study, the antioxidant activities of P. murex were evaluated using six in-vitro assays, namely total antioxidant assay, DPPH assay, reducing power, nitric oxide scavenging, hydrogen peroxide scavenging and deoxyribose scavenging assays, and total phenol contents were also investigated. Results The ethyl acetate (EA) fraction was found to have high levels of phenolic content (298.72±2.09 mg GAE/g). The EA fraction exhibit higher total antioxidant capacity, higher percentage of DPPH radical scavenging activity (135.11±2.95µg/mL), nitric oxide (200.57±4.51µg/mL), hydrogen peroxide (217.91±6.12 µg/mL), deoxyribose (250.01±4.68µg/mL) and higher reducing power. Correlation coefficient (r2=0.914) was found to be significant between total phenolic content and total antioxidant activity. Conclusions In general, the results indicate that the EA fractions are rich in phenolic antioxidants with potent free radical scavenging activity implying their importance to human health. PMID:23569800
Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing
2012-11-22
In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.
Hamer, Mark; Boutcher, Yati N; Boutcher, Stephen H
2005-12-01
This study examined differentiated rating of perceived exertion (RPE), heart rate, and heart-rate variability during light cycle ergometry exercise at two different pedal rates. 30 healthy men (22.6 +/- 0.9 yr.) were recruited from a student population and completed a continuous 20-min. cycle ergometry exercise protocol, consisting of a 4-min. warm-up (60 rev./min., 30 Watts), followed by four bouts of 4 min. at different combinations of pedal rate (40 or 80 rev./min.) and power output (40 or 80 Watts). The order of the four combinations was counterbalanced across participants. Heart rate was measured using a polar heart-rate monitor, and parasympathetic balance was assessed through time series analysis of heart-rate variability. Measures were compared using a 2 (pedal rate) x 2 (power output) repeated-measures analysis of variance. RPE was significantly greater (p<.05) at 80 versus 40 rev./min. at 40 W. For both power outputs heart rate was significantly increased, and the high frequency component of heart-rate variability was significantly reduced at 80 compared with 40 rev./min. These findings indicate the RPE was greater at higher than at lower pedalling rates for a light absolute power output which contrasts with previous findings based on use of higher power output. Also, pedal rate had a significant effect on heart rate and heart-rate variability at constant power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, Scot
Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.
Feedback Augmented Sub-Ranging (FASR) Quantizer
NASA Technical Reports Server (NTRS)
Guilligan, Gerard
2012-01-01
This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2016-09-01
The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.
Berdahl, John P; Hardten, David R; Kramer, Brent A; Potvin, Richard
2017-03-01
To analyze correlations between residual refractive cylinder (and its correction through lens reorientation) with the sphere and cylinder power of the toric intraocular lens (IOL) implanted. An online toric back-calculator (www.astigmatismfix.com) allows users to input toric IOL planning data, along with postoperative IOL orientation and refractive results; these data are used to determine the optimal orientation of the IOL to reduce refractive astigmatism. This was a retrospective data analysis; aggregate historical data were extracted from this calculator to investigate the relationship between residual refractive astigmatism and IOL cylinder and sphere power. A total of 12,812 records, 4,619 of which included IOL sphere power, were available for analysis. There was no significant effect of sphere power on residual refractive astigmatism (P = .25), but lower IOL cylinder powers were associated with significantly lower residual refractive astigmatism (P < .05). The difference between the intended and ideal orientation was higher in the lower IOL cylinder power groups (P < .01). Overcorrection of astigmatism was significantly more likely with higher IOL cylinder power (P < .01), but not with sphere power (P = .33). Reorientation to correct residual refractive cylinder to less than 0.50 diopters (D) was more successful with IOL cylinder powers of 1.50 D or less (P < .01); IOL sphere power had no apparent effect. There were significant effects of IOL cylinder power on residual refractive astigmatism, the difference between intended and ideal orientation, the likelihood of overcorrection, and the likelihood of astigmatism reduction with lens reorientation. IOL sphere power appeared to have no such effects. [J Refract Surg. 2017;33(3):157-162.]. Copyright 2017, SLACK Incorporated.
Effect of gear ratio on peak power and time to peak power in BMX cyclists.
Rylands, Lee P; Roberts, Simon J; Hurst, Howard T
2017-03-01
The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.
Kamarajan, Chella; Pandey, Ashwini K.; Chorlian, David B.; Manz, Niklas; Stimus, Arthur T.; Anokhin, Andrey P.; Bauer, Lance O.; Kuperman, Samuel; Kramer, John; Bucholz, Kathleen K.; Schuckit, Marc A.; Hesselbrock, Victor M.; Porjesz, Bernice
2015-01-01
Background Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. Methods EROs were recorded during a monetary gambling task (MGT) in 12–25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. Results HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. Conclusions As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders. PMID:26580209
Kamarajan, Chella; Pandey, Ashwini K; Chorlian, David B; Manz, Niklas; Stimus, Arthur T; Anokhin, Andrey P; Bauer, Lance O; Kuperman, Samuel; Kramer, John; Bucholz, Kathleen K; Schuckit, Marc A; Hesselbrock, Victor M; Porjesz, Bernice
2015-01-01
Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. EROs were recorded during a monetary gambling task (MGT) in 12-25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders.
Rf system for the NSLS coherent infrared radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, W.; Biscardi, R.; Keane, J.
1995-05-01
The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less
Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan
2017-04-04
A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (-41.54, -41.80, -48.86, and -46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (-25.85, -43.56, -49.04, and -49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation.
Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan
2017-01-01
A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (−1.8 and −0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (−2.95 and −3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (−48.34, −44.21, −48.34, and −46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (−45.61, −41.57, −45.01, and −45.51 dB, respectively). When five-cycle 20 dBm input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (−41.54, −41.80, −48.86, and −46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (−25.85, −43.56, −49.04, and −49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation. PMID:28375165
Practical application of power conditioning to electric propulsion for passenger vehicles
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Lee, F. C.; Nehl, T. W.; Overton, B. P.
1980-01-01
A functional model 15 HP, 120 volt, 4-pole, 7600 r.p.m. samarium-cobalt permanent magnet type brushless dc motor-transistorized power conditioner unit was designed, fabricated and tested for specific use in propulsion of electric passenger vehicles. This new brushless motor system, including its power conditioner package, has a number of important advantages over existing systems such as reduced weight and volume, higher reliability, and potential for improvements in efficiencies. These advantages are discussed in this paper in light of the substantial test data collected during experimentation with the newly developed conditioner motor propulsion system. Details of the power conditioner design philosophy and particulars are given in the paper. Also, described here are the low level electronic design and operation in relation to the remainder of the system.
NASA Technical Reports Server (NTRS)
Bitterlich, E.
1977-01-01
Technical possibilities and economic advantages of integrating hot water storage systems into power plants fired with fossil fuels are discussed. The systems can be charged during times of load reduction and then used for back-up during peak load periods. Investment costs are higher for such systems than for gas turbine power plants fired with natural gas or light oil installed to meet peak load demand. However, by improving specific heat consumption by about 1,000 kcal/k ohm, which thus reduces the related costs, investment costs will be compensated for, so that power production costs will not increase.
Superconducting traveling wave accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, Z.D.
1984-11-01
This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less
Schaerer, Michael; Swaab, Roderick I; Galinsky, Adam D
2015-02-01
The current research shows that having no power can be better than having a little power. Negotiators prefer having some power (weak negotiation alternatives) to having no power (no alternatives). We challenge this belief that having any alternative is beneficial by demonstrating that weak alternatives create low anchors that reduce the value of first offers. In contrast, having no alternatives is liberating because there is no anchor to weigh down first offers. In our experiments, negotiators with no alternatives felt less powerful but made higher first offers and secured superior outcomes compared with negotiators who had weak alternatives. We established the role of anchoring through mediation by first offers and through moderation by showing that weak alternatives no longer led to worse outcomes when negotiators focused on a countervailing anchor or when negotiators faced an opponent with a strong alternative. These results demonstrate that anchors can have larger effects than feelings of power. Absolute powerlessness can be psychologically liberating. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Kwon, Se Ra; Jeon, Ju-Won; Lutkenhus, Jodie
2015-03-01
Sprayable batteries are growing in interest for applications in structural energy storage and power or flexible power. Spray-assisted layer-by-layer (LbL) assembly, in which complementary species are alternately sprayed onto a surface, is particularly amenable toward this application. Here, we report on the fabrication of composite films containing polyaniline nanofibers (PANI NF) and graphene oxide (GO) sheets fabricated via spray-assisted LbL assembly. The resulting films are electrochemical reduced to yield PANI NF/electrochemically reduced graphene (ERGO) electrodes for use as a cathode in non-aqueous energy storage systems. Through the spray-assisted LbL process, the hybrid electrodes could be fabricated 74 times faster than competing dip-assisted LbL assembly. The resulting electrodes are highly porous (0.72 void fraction), and are comprised of 67 wt% PANI NF and 33 wt% ERGO. The sprayed electrodes showed better rate capability, higher specific power, as well as more stable cycle life than dip-assisted LbL electrodes. It is shown here that the spray-assisted LbL approach is well-suited towards the fabrication of paintable electrodes containing polyaniline nanofibers and electrochemically reduced graphene oxide sheets.
Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.
DeMichele, Glenn A; Hu, Zhe; Troyk, Philip R; Chen, Hongnan; Weir, Richard F ff
2014-01-01
The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee's voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a low-power polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control.
Detector Powering in the 21st Century Why stay stuck with the Good old 20th Century methods?
NASA Astrophysics Data System (ADS)
Dhawan, Satish; Sumner, Richard
Future Collider Physics Detectors are envisioned with large granularity but we have a power delivery problem unless we fill a large fraction of the detector volume with copper conductors. LHC detector electronics is powered by transporting direct current over distances of 30 to 150 meters. This is how Thomas Alva Edison powered his light bulb. For example, CMS ECAL uses 50 kiloamps at 2.5 volts, supplied over a cable set with a transmission efficiency of only 30%. The transmission loss becomes waste heat in the detector that has to be removed. We have been exploring methods to transmit the DC power at higher voltage (low current), reducing to the final low voltage (high current) using DC-DC converters. These converters must operate in high magnetic fields and high radiation levels. This requires rad hard components and non-magnetic (air core) inductors.
Environmentally-induced voltage limitations in large space power systems
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1984-01-01
Large power systems proposed for future space missions imply higher operating voltage requirements which, in turn, will interact with the space plasma environment. The effects of these interactions can only be inferred because of the limited data base of ground simulations, small test samples, and two space flight experiments. This report evaluates floating potentials for a 100 kW power system operating at 300, 500, 750, and 1000 volts in relation to this data base. Of primary concern is the possibility of discharging to space. The implications of such discharges were studied at the 500 volt operational setting. It was found that discharging can shut down the power system if the discharge current exceeds the array short circuit current. Otherwise, a power oscillation can result that ranges from 2 to 20 percent, depending upon the solar array area involved in the discharge. Means of reducing the effect are discussed.
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-30
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w. When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ω m,w,σ 8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. Here we find that redshift tomography with the power spectrum reduces the area of the 1σ confidence interval in (Ω m,w) space by a factor ofmore » 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ω m,w) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. In conclusion, we find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.« less
Low-Cost CdTe/Silicon Tandem Solar Cells
Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana; ...
2017-09-06
Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less
Low-Cost CdTe/Silicon Tandem Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana
Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less
ERIC Educational Resources Information Center
Goglio, Valentina; Parigi, Paolo
2016-01-01
This paper sheds light on the development of a peculiar organizational form in the Italian higher education system: satellite campuses. In comparison with other European countries, the Italian system shows peculiarities in terms of differentiation and power distribution among institutional actors. Building on the idea that the opening of a…
Ruhland, Christopher T; Fogal, Mitchell J; Buyarski, Christopher R; Krna, Matthew A
2007-06-29
We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the maximum photochemical efficiency of photosystem II (F(v)/F(m)), bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP) and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B) or by 19% (near-ambient UV-B) over the 52 day experiment (04 July-25 August 2002). Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower F(v)/F(m) values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls).
NASA Astrophysics Data System (ADS)
Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh
2018-06-01
Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.
NASA Astrophysics Data System (ADS)
Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh
2018-02-01
Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...
2017-03-20
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilliestam, Johan; Barradi, Touria; Caldes, Natalia
Concentrating solar power (CSP) is one of the few renewable electricity technologies that can offer dispatchable electricity at large scale. Thus, it may play an important role in the future, especially to balance fluctuating sources in increasingly renewables-based power systems. Today, its costs are higher than those of PV and wind power and, as most countries do not support CSP, deployment is slow. Unless the expansion gains pace and costs decrease, the industry may stagnate or collapse, and an important technology for climate change mitigation has been lost. Keeping CSP as a maturing technology for dispatchable renewable power thus requiresmore » measures to improve its short-term economic attractiveness and to continue reducing costs in the longer term. We suggest a set of three policy instruments - feed-in tariffs or auctions reflecting the value of dispatchable CSP, and not merely its cost; risk coverage support for innovative designs; and demonstration projects - to be deployed, in regions where CSP has a potentially large role to play. This could provide the CSP industry with a balance of attractive profits and competitive pressure, the incentive to expand CSP while also reducing its costs, making it ready for broad-scale deployment when it is needed.« less
Lilliestam, Johan; Barradi, Touria; Caldes, Natalia; ...
2018-02-16
Concentrating solar power (CSP) is one of the few renewable electricity technologies that can offer dispatchable electricity at large scale. Thus, it may play an important role in the future, especially to balance fluctuating sources in increasingly renewables-based power systems. Today, its costs are higher than those of PV and wind power and, as most countries do not support CSP, deployment is slow. Unless the expansion gains pace and costs decrease, the industry may stagnate or collapse, and an important technology for climate change mitigation has been lost. Keeping CSP as a maturing technology for dispatchable renewable power thus requiresmore » measures to improve its short-term economic attractiveness and to continue reducing costs in the longer term. We suggest a set of three policy instruments - feed-in tariffs or auctions reflecting the value of dispatchable CSP, and not merely its cost; risk coverage support for innovative designs; and demonstration projects - to be deployed, in regions where CSP has a potentially large role to play. This could provide the CSP industry with a balance of attractive profits and competitive pressure, the incentive to expand CSP while also reducing its costs, making it ready for broad-scale deployment when it is needed.« less
Daytime adaptive optics for deep space optical communications
NASA Technical Reports Server (NTRS)
Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.
2003-01-01
The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.
An improved Overhauser magnetometer for Earth's magnetic field observation
NASA Astrophysics Data System (ADS)
Fan, Shifang; Chen, Shudong; Zhang, Shuang; Guo, Xin; Cao, Qiong
2016-09-01
Overhauser magnetometer is a kind of high-precision devices for magnetostatic field measurement. It is widely used in geological survey, earth field variations, UXO detection etc. However, the original Overhauser magnetometer JOM-2 shows great shortcomings of low signal to noise ratio (SNR) and high power consumption, which directly affect the performance of the device. In order to increase the sensitivity and reduce power consumption, we present an improved Overhauser magnetometer. Firstly, compared with the original power board which suffers from heavy noise for improper EMC design, an improved power broad with 20mV peak to peak noise is presented in this paper. Then, the junction field effect transistor (JFET) is used as pre-amplifier in our new design, to overcome the higher current noise produced by the original instrumentation amplifier. By adjusting the parameters carefully low noise factor down to 0.5 dB can be obtained. Finally, the new architecture of ARM + CPLD is adopted to replace the original one with DSP+CPLD. So lower power consumption and greater flash memory can be realized. With these measures, an improved Overhauser magnetometer with higher sensitivity and lower power consumption is design here. The experimental results indicate that the sensitivity of the improved Overhauser magnetometer is 0.071nT, which confirms that the new magnetometer is sensitive to earth field measurement.
Electrofishing power requirements in relation to duty cycle
Miranda, L.E.; Dolan, C.R.
2004-01-01
Under controlled laboratory conditions we measured the electrical peak power required to immobilize (i.e., narcotize or tetanize) fish of various species and sizes with duty cycles (i.e., percentage of time a field is energized) ranging from 1.5% to 100%. Electrofishing effectiveness was closely associated with duty cycle. Duty cycles of 10-50% required the least peak power to immobilize fish; peak power requirements increased gradually above 50% duty cycle and sharply below 10%. Small duty cycles can increase field strength by making possible higher instantaneous peak voltages that allow the threshold power needed to immobilize fish to radiate farther away from the electrodes. Therefore, operating within the 10-50% range of duty cycles would allow a larger radius of immobilization action than operating with higher duty cycles. This 10-50% range of duty cycles also coincided with some of the highest margins of difference between the electrical power required to narcotize and that required to tetanize fish. This observation is worthy of note because proper use of duty cycle could help reduce the mortality associated with tetany documented by some authors. Although electrofishing with intermediate duty cycles can potentially increase effectiveness of electrofishing, our results suggest that immobilization response is not fully accounted for by duty cycle because of a potential interaction between pulse frequency and duration that requires further investigation.
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.
2016-12-01
Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html for more information.
Yang, Wulin; Rossi, Ruggero; Tian, Yushi; Kim, Kyoung-Yeol; Logan, Bruce E
2018-02-01
Microbial fuel cell (MFC) cathodes rapidly foul when treating domestic wastewater, substantially reducing power production over time. Here a wipe separator was chemically bonded to an activated carbon air cathode using polyvinylidene fluoride (PVDF) to mitigate cathode fouling and extend cathode performance over time. MFCs with separator-bonded cathodes produced a maximum power density of 190 ± 30 mW m -2 after 2 months of operation using domestic wastewater, which was ∼220% higher than controls (60 ± 50 mW m -2 ) with separators that were not chemically bonded to the cathode. Less biomass (protein) was measured on the bonded separator surface than the non-bonded separator, indicating chemical bonding reduced external bio-fouling. Salt precipitation that contributed to internal fouling was also reduced using separator-bonded cathodes. Overall, the separator-bonded cathodes showed better performance over time by mitigating both external bio-fouling and internal salt fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preparing aircraft propulsion for a new era in energy and the environment
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Nored, D. L.; Grobman, J. S.; Feiler, C. E.; Petrash, D. A.
1980-01-01
Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.
Comparative study of two intraoral laser techniques for soft tissue surgery
NASA Astrophysics Data System (ADS)
Swick, Michael D.; Richter, Alexander
2003-06-01
Historically, 810nm has been the predominant wavelength used for intraoral surgery, when diode lasers have been discussed, due to their large numbers in the market place. The techniques used intraorally with the 810nm diode have been relatively similar in most cases. Low powers, 1 or 2 watts, using continuous wave, are employed. The purpose of this study is to compare the thermal damage of the technique of using continuous wave at low powers, to using higher powers with a pulse mode and water for coolant, with the 980nm diode wavelength. During the study the laser fiber was held immobile eliminating surgical manipulation as an error. The resultant histology proves, while the volume of vaporization dramatically increases, thus giving the clinician the ability to reduce the time for destructive conduction of excess heat for a given procedure, the amount of coagulation actually decreases in width and depth. As an added benefit charring, which has been implicated in delayed healing is virtually eliminated. This evidence, coupled with excellent clinical results, lends validity to the use of pulsed higher powers and water coolant for the 980nm diode laser.
The development of the advanced cryogenic radiometer facility at NRC
NASA Astrophysics Data System (ADS)
Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.
2018-02-01
The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.
Ionosphere/microwave beam interaction study
NASA Technical Reports Server (NTRS)
Gordon, W. E.; Duncan, L. M.
1978-01-01
The microwave beam of the Solar Power Satellite (SPS) is predicted to interact with the ionosphere producing thermal runaway up to an altitude of about 100 kilometers at a power density threshold of 12 mW/cm sq (within a factor of two). The operation of the SPS at two frequencies, 2450 and 5800 MHz, is compared. The ionosphere interaction is less at the higher frequency, but the tropospheric problem scattering from heavy rain and hail is worse at the higher frequency. Microwave signals from communication satellites were observed to scintillate, but there is some concern that the uplink pilot signal may be distorted by the SPS heated ionosphere. The microwave scintillations are only observed in the tropics in the early evenings near the equinoxes. Results indicate that large phase errors in the uplink pilot signal can be reduced.
A high-voltage supply used on miniaturized RLG
NASA Astrophysics Data System (ADS)
Miao, Zhifei; Fan, Mingming; Wang, Yuepeng; Yin, Yan; Wang, Dongmei
2016-01-01
A high voltage power supply used in laser gyro is proposed in this paper. The power supply which uses a single DC 15v input and fly-back topology is adopted in the main circuit. The output of the power supply achieve high to 3.3kv voltage in order to light the RLG. The PFM control method is adopted to realize the rapid switching between the high voltage state and the maintain state. The resonant chip L6565 is used to achieve the zero voltage switching(ZVS), so the consumption is reduced and the power efficiency is improved more than 80%. A special circuit is presented in the control portion to ensure symmetry of the two RLG's arms current. The measured current accuracy is higher than 5‰ and the current symmetry of the two RLG's arms up to 99.2%.
Tucker, Wesley J; Nelson, Michael D; Beaudry, Rhys I; Halle, Martin; Sarma, Satyam; Kitzman, Dalane W; Gerche, Andre La
2016-01-01
Heart failure with preserved ejection (HFpEF) accounts for over 50 % of all HF cases, and the proportion is higher among women and older individuals. A hallmark feature of HFpEF is dyspnoea on exertion and reduced peak aerobic power (VO2peak) secondary to central and peripheral abnormalities that result in reduced oxygen delivery to and/or utilisation by exercising skeletal muscle. The purpose of this brief review is to discuss the role of exercise training to improve VO2peak and the central and peripheral adaptations that reduce symptoms following physical conditioning in patients with HFpEF. PMID:28785460
Gougheri, Hesam Sadeghi; Kiani, Mehdi
2016-08-01
In order to achieve omnidirectional inductive power transmission to biomedical implants, the use of several orthogonal coils in the receiver side (Rx) has been proposed in the past. In this paper, the optimal Rx structure for connecting three orthogonal Rx coils and the power management is found to achieve the maximum power delivered to the load (PDL) in the presence of any Rx coil tilting. Unlike previous works, in which a separate power management has been used for each coil to deliver power to the load, different resonant Rx structures for connecting three Rx coils to a single power management are studied. In simulations, connecting three Rx coils with the diameters of 3 mm, 3.3 mm, and 3.6 mm in series and resonating them with a single capacitor at the operation frequency of 100 MHz led to the maximum PDL for large loads when the implant was tilted for 45o. This optimal Rx structure achieves higher PDL in worst-case scenarios as well as reduces the number of power managements to only one.
Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Proctor, Margaret P.
2006-01-01
Secondary seal leakage in jet engine applications results in power losses to the engine cycle. Likewise, seal power loss in jet engines not only result in efficiency loss but also increase the heat input into the engine resulting in reduced component lives. Experimental work on labyrinth and annular seals was performed at NASA Glenn Research Center to quantify seal leakage and power loss at various temperatures, seal pressure differentials, and surface speeds. Data from annular and labyrinth seals are compared with previous brush and finger seal test results. Data are also compared to literature. Annular and labyrinth seal leakage rates are 2 to 3 times greater than brush and finger seal rates. Seal leakage decreases with increasing speed but increases with increasing test temperature due to thermal expansion mismatch. Also seal power loss increases with surface speed, seal pressure differential, mass flow rate, and radial clearance. Annular and labyrinth seal power losses were higher than those of brush or finger seal data. The brush seal power loss was 15 to 30 percent lower than annular and labyrinth seal power loss.
NASA Astrophysics Data System (ADS)
Wang, Yu-Sheng; Li, Shin-Ming; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Yang, Shin-Yi; Tien, Hsi-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang
2014-08-01
A powerful synthesis strategy is proposed for fabricating porous polyaniline-reduced graphene oxide (PANI-RGO) composites with transparency up to 80% and thickness from 300 to 1000 nm for the counter electrode (CE) of bifacial dye-sensitizing solar cells (DSSCs). The first step is to combine the in-situ positive charge transformation of graphene oxide (GO) through aniline (ANI) prepolymerization and the electrostatic adsorption of ANI oligomer-GO to effectively control the thickness of ultrathin PANI-GO films by adjusting pH of the polymerization media. In the second step, PANI-GO films are reduced with hydroiodic acid to simultaneously enhance the apparent redox activity for the I3-/I- couple and their electronic conductivity. Incorporating the RGO increases the transparency of PANI and facilitates the light-harvesting from the rear side. A DSSC assembled with such a transparent PANI-RGO CE exhibits an excellent efficiency of 7.84%, comparable to 8.19% for a semi-transparent Pt-based DSSC. The high light-harvesting ability of PANI-RGO enhances the efficiency retention between rear- and front-illumination modes to 76.7%, compared with 69.1% for a PANI-based DSSC. The higher retention reduces the power-to-weight ratio and the total cost of bifacial DSSCs, which is also promising in other applications, such as windows, power generators, and panel screens.
NASA Astrophysics Data System (ADS)
Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.
2011-11-01
Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.
Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.
Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints.more » We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.« less
Energy Efficiency Challenges of 5G Small Cell Networks.
Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang
2017-05-01
The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks.
Energy Efficiency Challenges of 5G Small Cell Networks
Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang
2017-01-01
The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks. PMID:28757670
Endothelial protection: avoiding air bubble formation at the phacoemulsification tip.
Kim, Eung Kweon; Cristol, Stephen M; Kang, Shin J; Edelhauser, Henry F; Yeon, Dong-Soo; Lee, Jae Bum
2002-03-01
To investigate the conditions under which bubbles form during phacoemulsification. Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. In the first part of the study, the partial pressure of oxygen (pO(2)) was used as a surrogate measure for the partial pressure of air. Irrigation solutions packaged in glass and plastic containers were studied. A directly vented glass bottle was also tested. The pO(2) of the various irrigation solutions was measured as the containers were emptied. In the second part, phacoemulsification procedures were performed in rabbit eyes with different power settings and different irrigation solutions. Intracameral bubble formation during the procedure was recorded. Following the phacoemulsification procedures, the corneas were stained for F-actin and examined for endothelial injury. The initial pO(2) in irrigation solutions packaged in glass bottles was about half that at atmospheric levels; in solutions packaged in plastic, it was at atmospheric levels. As irrigation solutions were drained from the container, the pO(2) of the solution tended to rise toward atmospheric levels. The rate of pO(2) increase was markedly reduced by using a directly vented glass bottle. In the phacoemulsification procedures, bubble formation was most likely to occur with higher pO(2) and higher power settings. Observation of bubbles by the surgeon was highly correlated with endothelial damage. Keeping the pO(2) low reduced the risk of endothelial damage, especially at higher phacoemulsification powers. The packaging of irrigation solutions was the most important factor in controlling the initial pO(2) of the solution. The pO(2) can be minimized throughout a phacoemulsification procedure by using a directly vented glass bottle.
Rotor dynamic considerations for large wind power generator systems
NASA Technical Reports Server (NTRS)
Ormiston, R. A.
1973-01-01
Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.
2016-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.
ICRF-edge and surface interactions
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.; Myra, J. R.
2011-08-01
This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.
Latorres, J M; Rios, D G; Saggiomo, G; Wasielesky, W; Prentice-Hernandez, C
2018-02-01
Protein hydrolysates from white shrimp ( Litopenaeus vannamei ) with different degrees of hydrolysis (DH-10 and 20%) were prepared using the enzymes Alcalase 2.4 L and Protamex. The hydrolysates were evaluated for amino acid composition, solubility, foaming properties, emulsifying and antioxidant activity. All the hydrolysates showed high concentrations of Glutamic Acid, Aspartic acid, Arginine, Glycine, Lysine, Proline. It was found that the increase in the production of negatively charged amino acids was related to increase in DH. The hydrophobic amino acids were higher for hydrolysates obtained with Alcalase (10% DH) and Protamex (20% DH). The results indicated that higher degree of hydrolysis showed positive relation with the protein solubility of the hydrolysates, while negatively influenced foam and emulsification properties. The antioxidant properties presented by the white shrimp protein hydrolysates were influenced by the composition and peptides size. Hydrolysates with higher peptide chain showed the highest antioxidant power for the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging and reducing power, while hydrolysates with lower peptide chain showed higher antioxidant power for 2,2'-azinobis (3-ethylbenzothiazoline sulfonic acid) radical scavenging. All hydrolysates showed dose-dependent antioxidant activities. Therefore, the results of the present study suggest that white shrimp is a potential source of protein hydrolysates as bioactive ingredients for the use in the formulation of functional foods as well as natural antioxidants in lipid food systems.
Fabrication Of High-Tc Superconducting Integrated Circuits
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.
1992-01-01
Microwave ring resonator fabricated to demonstrate process for fabrication of passive integrated circuits containing high-transition-temperature superconductors. Superconductors increase efficiencies of communication systems, particularly microwave communication systems, by reducing ohmic losses and dispersion of signals. Used to reduce sizes and masses and increase aiming accuracies and tracking speeds of millimeter-wavelength, electronically steerable antennas. High-Tc superconductors preferable for such applications because they operate at higher temperatures than low-Tc superconductors do, therefore, refrigeration systems needed to maintain superconductivity designed smaller and lighter and to consume less power.
Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Girard, S. N.; Meng, F.
Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitu- tion of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1 xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50 200 nm size are found within themore » HMS matrix. It is found that the power factor does not change markedly at low Re content of x 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1 xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1 xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.« less
Effects of porous films on the light reflectivity of pigmentary titanium dioxide particles
NASA Astrophysics Data System (ADS)
Liang, Yong; Qiao, Bing; Wang, Tig-Jie; Gao, Han; Yu, Keyi
2016-11-01
The light reflectivity of the film-coated titanium dioxide particles (TiO2) as a function of the film refractive index was derived and calculated using a plane film model. For the refractive index in the range of 1.00-2.15, the lower the film refractive index is, the higher is the light reflectivity of the film. It is inferred that the lower apparent refractive index of the porous film resulted in the higher reflectivity of light, i.e., the higher hiding power of the titanium dioxide particles. A dense film coating on TiO2 particles with different types of oxides, i.e., SiO2, Al2O3, MgO, ZnO, ZrO2, TiO2, corresponding to different refractive indices of the film from 1.46 to 2.50, was achieved, and the effects of refractive index on the hiding power from the model prediction were confirmed. Porous film coating of TiO2 particles was achieved by adding the organic template agent triethanolamine (TEA). The hiding power of the coated TiO2 particles was increased from 88.3 to 90.8 by adding the TEA template to the film coating (5-20 wt%). In other words, the amount of titanium dioxide needed was reduced by approximately 10% without a change in the hiding power. It is concluded that the film structure coated on TiO2 particle surface affects the light reflectivity significantly, namely, the porous film exhibits excellent performance for pigmentary titanium dioxide particles with high hiding power.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Rubenka
Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).
rpe v5: an emulator for reduced floating-point precision in large numerical simulations
NASA Astrophysics Data System (ADS)
Dawson, Andrew; Düben, Peter D.
2017-06-01
This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.
Characterizing wind power resource reliability in southern Africa
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
2015-08-29
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Characterizing wind power resource reliability in southern Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... communication signals used by low frequency mysticetes when they occur near the noise band and thus reduce the communication space of animals (e.g., Clark et al. 2009) and cause increased stress levels (e.g., Foote et al... well as additional lower-powered and higher frequency survey equipment for collecting bathymetric and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... communication signals used by low frequency mysticetes when they occur near the noise band and thus reduce the communication space of animals (e.g., Clark et al. 2009) and cause increased stress levels (e.g., Foote et al... additional lower-powered and higher frequency survey equipment for collecting bathymetric and shallow sub...
Pulse transmission transmitter including a higher order time derivate filter
Dress, Jr., William B.; Smith, Stephen F.
2003-09-23
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Jenkins, Martin
2016-01-01
Objective. In clinical trials of RA, it is common to assess effectiveness using end points based upon dichotomized continuous measures of disease activity, which classify patients as responders or non-responders. Although dichotomization generally loses statistical power, there are good clinical reasons to use these end points; for example, to allow for patients receiving rescue therapy to be assigned as non-responders. We adopt a statistical technique called the augmented binary method to make better use of the information provided by these continuous measures and account for how close patients were to being responders. Methods. We adapted the augmented binary method for use in RA clinical trials. We used a previously published randomized controlled trial (Oral SyK Inhibition in Rheumatoid Arthritis-1) to assess its performance in comparison to a standard method treating patients purely as responders or non-responders. The power and error rate were investigated by sampling from this study. Results. The augmented binary method reached similar conclusions to standard analysis methods but was able to estimate the difference in response rates to a higher degree of precision. Results suggested that CI widths for ACR responder end points could be reduced by at least 15%, which could equate to reducing the sample size of a study by 29% to achieve the same statistical power. For other end points, the gain was even higher. Type I error rates were not inflated. Conclusion. The augmented binary method shows considerable promise for RA trials, making more efficient use of patient data whilst still reporting outcomes in terms of recognized response end points. PMID:27338084
Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei
2015-05-19
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
On-chip very low junction temperature GaN-based light emitting diodes by selective ion implantation
NASA Astrophysics Data System (ADS)
Cheng, Yun-Wei; Chen, Hung-Hsien; Ke, Min-Yung; Chen, Cheng-Pin; Huang, JianJang
2008-08-01
We propose an on-wafer heat relaxation technology by selectively ion-implanted in part of the p-type GaN to decrease the junction temperature in the LED structure. The Si dopant implantation energy and concentration are characterized to exhibit peak carrier density 1×1018 cm-3 at the depth of 137.6 nm after activation in nitrogen ambient at 750 °C for 30 minutes. The implantation schedule is designed to neutralize the selected region or to create a reverse p-n diode in the p-GaN layer, which acts as the cold zone for heat dissipation. The cold zone with lower effective carrier concentration and thus higher resistance is able to divert the current path. Therefore, the electrical power consumption through the cold zone was reduced, resulting in less optical power emission from the quantum well under the cold zone. Using the diode forward voltage method to extract junction temperature, when the injection current increases from 10 to 60 mA, the junction temperature of the ion-implanted LED increases from 34.3 °C to 42.3 °C, while that of the conventional one rises from 30.3 °C to 63.6 °C. At 100 mA, the output power of the ion-implanted device is 6.09 % higher than that of the conventional device. The slight increase of optical power is due to the increase of current density outside the cold zone region of the implanted device and reduced junction temperature. The result indicates that our approach improves thermal dissipation and meanwhile maintains the linearity of L-I curves.
Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.; Arvesen, Anders; Heath, Garvin A.; Bergesen, Joseph D.; Ramirez, Andrea; Vega, Mabel I.; Shi, Lei
2015-01-01
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. PMID:25288741
NASA Astrophysics Data System (ADS)
Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.
2016-12-01
Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.
The influence of mass configurations on velocity amplified vibrational energy harvesters
NASA Astrophysics Data System (ADS)
O'Donoghue, D.; Frizzell, R.; Kelly, G.; Nolan, K.; Punch, J.
2016-05-01
Vibrational energy harvesters scavenge ambient vibrational energy, offering an alternative to batteries for the autonomous operation of low power electronics. Velocity amplified electromagnetic generators (VAEGs) utilize the velocity amplification effect to increase power output and operational bandwidth, compared to linear resonators. A detailed experimental analysis of the influence of mass ratio and number of degrees-of-freedom (dofs) on the dynamic behaviour and power output of a macro-scale VAEG is presented. Various mass configurations are tested under drop-test and sinusoidal forced excitation, and the system performances are compared. For the drop-test, increasing mass ratio and number of dofs increases velocity amplification. Under forced excitation, the impacts between the masses are more complex, inducing greater energy losses. This results in the 2-dof systems achieving the highest velocities and, hence, highest output voltages. With fixed transducer size, higher mass ratios achieve higher voltage output due to the superior velocity amplification. Changing the magnet size to a fixed percentage of the final mass showed the increase in velocity of the systems with higher mass ratios is not significant enough to overcome the reduction in transducer size. Consequently, the 3:1 mass ratio systems achieved the highest output voltage. These findings are significant for the design of future reduced-scale VAEGs.
Encouraging vehicle-to-grid (V2G) participation through premium tariff rates
NASA Astrophysics Data System (ADS)
Richardson, David B.
2013-12-01
The provision of vehicle-to-grid (V2G) services to an electric grid by electric vehicles (EVs) can potentially reduce the cost of vehicle ownership through revenue generation. Recent studies indicate that yearly vehicle profit from V2G may not be sufficient to induce widespread participation. This paper investigates the feasibility of a premium tariff rate for V2G power, similar to current feed-in-tariff (FIT) programs for renewable energy. Using Ontario, Canada as a case study, an hourly time-series model for a fleet of commuter EVs is created. Tariff rates for V2G peak power are calculated based on the same return on investment as the current FIT for renewable energy in Ontario. The tariff rates are competitive with the renewable energy tariffs, especially when EVs are allowed to provide ancillary services to the grid in addition to peak power. Despite the guaranteed rate of return, yearly vehicle profit is low. Two variations are considered to increase vehicle profit, thereby enhancing the attractiveness of V2G. A higher return on investment is favored over direct benefits offered to EV owners. A higher return on investment may be justifiable based on the higher level of risk inherent in V2G when compared to renewable energy.
Power Amplifier Linearizer for High Frequency Medical Ultrasound Applications
Choi, Hojong; Jung, Hayong; Shung, K. Kirk
2015-01-01
Power amplifiers (PAs) are used to produce high-voltage excitation signals to drive ultrasonic transducers. A larger dynamic range of linear PAs allows higher contrast resolution, a highly desirable characteristic in ultrasonic imaging. The linearity of PAs can be improved by reducing the nonlinear harmonic distortion components of high-voltage output signals. In this paper, a linearizer circuit is proposed to reduce output signal harmonics when working in conjunction with a PA. The PA performance with and without the linearizer was measured by comparing the output power 1-dB compression point (OP1dB), and the second- and third-order harmonic distortions (HD2 and HD3, respectively). The results show that the PA with the linearizer circuit had higher OP1dB (31.7 dB) and lower HD2 (−61.0 dB) and HD3 (−42.7 dB) compared to those of the PA alone (OP1dB (27.1 dB), HD2 (−38.2 dB), and HD3 (−36.8 dB)) at 140 MHz. A pulse-echo measurement was also performed to further evaluate the capability of the linearizer circuit. The HD2 of the echo signal received by the transducer using a PA with the linearizer (−24.8 dB) was lower than that obtained for the PA alone (−16.6 dB). The linearizer circuit is capable of improving the linearity performance of PA by lowering harmonic distortions. PMID:26622209
Infusing fundamental cause theory with features of Pierre Bourdieu's theory of symbolic power.
Veenstra, Gerry
2018-02-01
The theory of fundamental causes is one of the more influential attempts to provide a theoretical infrastructure for the strong associations between indicators of socioeconomic status (education, income, occupation) and health. It maintains that people of higher socioeconomic status have greater access to flexible resources such as money, knowledge, prestige, power, and beneficial social connections that they can use to reduce their risks of morbidity and mortality and minimize the consequences of disease once it occurs. However, several key aspects of the theory remain underspecified, compromising its ability to provide truly compelling explanations for socioeconomic health inequalities. In particular, socioeconomic status is an assembly of indicators that do not necessarily cohere in a straightforward way, the flexible resources that disproportionately accrue to higher status people are not clearly defined, and the distinction between socioeconomic status and resources is ambiguous. I attempt to address these definitional issues by infusing fundamental cause theory with features of a well-known theory of socioeconomic stratification in the sociological literature-Pierre Bourdieu's theory of symbolic power.
Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables.
Kim, Sang Jin; Shin, Dong Heon; Choi, Yong Seok; Rho, Hokyun; Park, Min; Moon, Byung Joon; Kim, Youngsoo; Lee, Seuoung-Ki; Lee, Dong Su; Kim, Tae-Wook; Lee, Sang Hyun; Kim, Keun Soo; Hong, Byung Hee; Bae, Sukang
2018-03-27
Recent development in mobile electronic devices and electric vehicles requires electrical wires with reduced weight as well as enhanced stability. In addition, since electric energy is mostly generated from power plants located far from its consuming places, mechanically stronger and higher electric power transmission cables are strongly demanded. However, there has been no alternative materials that can practically replace copper materials. Here, we report a method to prepare ultrastrong graphene fibers (GFs)-Cu core-shell wires with significantly enhanced electrical and mechanical properties. The core GFs are synthesized by chemical vapor deposition, followed by electroplating of Cu shells, where the large surface area of GFs in contact with Cu maximizes the mechanical toughness of the core-shell wires. At the same time, the unique electrical and thermal characteristics of graphene allow a ∼10 times higher current density limit, providing more efficient and reliable delivery of electrical energies through the GFs-Cu wires. We believe that our results would be useful to overcome the current limit in electrical wires and cables for lightweight, energy-saving, and high-power applications.
Optimization of a RF-generated CF4/O2 gas plasma sterilization process.
Lassen, Klaus S; Nordby, Bolette; Grün, Reinar
2003-05-15
A sterilization process with the use of RF-generated (13.56 MHz) CF(4)/O(2) gas plasma was optimized in regards to power, flow rate, exposure time, and RF-system type. The dependency of the sporicidal effect on the spore inoculum positioning in the chamber of the RF systems was also investigated. Dried Bacillus stearothermophilus ATCC 7953 endospores were used as test organisms. The treatments were evaluated on the basis of survival curves and corresponding D values. The only parameter found to affect the sterilization process was the power of the RF system. Higher power resulted in higher kill. Finally, when the samples were placed more than 3-8 cm away from a centrally placed electrode in System 2, the sporicidal effect was reduced. The results are discussed and compared to results from the present literature. The RF excitation source is evaluated to be more appropriate for sterilization processes than the MW source. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 239-244, 2003
Modeling plasma-assisted growth of graphene-carbon nanotube hybrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewari, Aarti
2016-08-15
A theoretical model describing the growth of graphene-CNT hybrid in a plasma medium is presented. Using the model, the growth of carbon nanotube (CNT) on a catalyst particle and thereafter the growth of the graphene on the CNT is studied under the purview of plasma sheath and number density kinetics of different plasma species. It is found that the plasma parameter such as ion density; gas ratios and process parameter such as source power affect the CNT and graphene dimensions. The variation in growth rates of graphene and CNT under different plasma power, gas ratios, and ion densities is analyzed.more » Based on the results obtained, it can be concluded that higher hydrocarbon ion densities and gas ratios of hydrocarbon to hydrogen favor the growth of taller CNTs and graphene, respectively. In addition, the CNT tip radius reduces with hydrogen ion density and higher plasma power favors graphene with lesser thickness. The present study can help in better understanding of the graphene-CNT hybrid growth in a plasma medium.« less
Enhanced power factor of higher manganese silicide via melt spin synthesis method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Li, Qiang, E-mail: liqiang@bnl.gov; Shi, Xun
We report on the thermoelectric properties of the higher manganese silicide MnSi{sub 1.75} synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example, the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5 × 10{sup 20 }cm{sup −3} at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper.« less
Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2004-01-01
NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.
Organic transistors manufactured using inkjet technology with subfemtoliter accuracy
Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Zschieschang, Ute; Klauk, Hagen; Someya, Takao
2008-01-01
A major obstacle to the development of organic transistors for large-area sensor, display, and circuit applications is the fundamental compromise between manufacturing efficiency, transistor performance, and power consumption. In the past, improving the manufacturing efficiency through the use of printing techniques has inevitably resulted in significantly lower performance and increased power consumption, while attempts to improve performance or reduce power have led to higher process temperatures and increased manufacturing cost. Here, we lift this fundamental limitation by demonstrating subfemtoliter inkjet printing to define metal contacts with single-micrometer resolution on the surface of high-mobility organic semiconductors to create high-performance p-channel and n-channel transistors and low-power complementary circuits. The transistors employ an ultrathin low-temperature gate dielectric based on a self-assembled monolayer that allows transistors and circuits on rigid and flexible substrates to operate with very low voltages. PMID:18362348
Low-Power Polling Mode of the Next-Generation IMES2 Implantable Wireless EMG Sensor
DeMichele, Glenn A.; Hu, Zhe; Troyk, Philip R.; Chen, Hongnan; Weir, Richard F. ff.
2015-01-01
The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee’s voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a lowpower polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control. PMID:25570642
Leadership is associated with lower levels of stress
Sherman, Gary D.; Lee, Jooa J.; Cuddy, Amy J. C.; Renshon, Jonathan; Oveis, Christopher; Gross, James J.; Lerner, Jennifer S.
2012-01-01
As leaders ascend to more powerful positions in their groups, they face ever-increasing demands. As a result, there is a common perception that leaders have higher stress levels than nonleaders. However, if leaders also experience a heightened sense of control—a psychological factor known to have powerful stress-buffering effects—leadership should be associated with reduced stress levels. Using unique samples of real leaders, including military officers and government officials, we found that, compared with nonleaders, leaders had lower levels of the stress hormone cortisol and lower reports of anxiety (study 1). In study 2, leaders holding more powerful positions exhibited lower cortisol levels and less anxiety than leaders holding less powerful positions, a relationship explained significantly by their greater sense of control. Altogether, these findings reveal a clear relationship between leadership and stress, with leadership level being inversely related to stress. PMID:23012416
NASA Astrophysics Data System (ADS)
Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.
2017-08-01
The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.
Liu, Susu; Liu, Xianhua; Wang, Ying; Zhang, Pingping
2016-12-01
The goal of this work was to develop a method for the direct power generation using macroalgae Enteromorpha prolifera. The process conditions for the saccharification of macroalgae were optimized and a type of alkaline fuel cell contained no precious metal catalysts was developed. Under optimum conditions (170°C and 2% hydrochloric acid for 45min), dilute acid hydrolysis of the homogenized plants yielded 272.25g reducing sugar/kg dry algal biomass. The maximum power density reached 3.81W/m 2 under the condition of 3M KOH and 18.15g/L reducing sugar in hydrolysate, higher than any other reported algae-fed fuel cells. This study represents the first report on direct electricity generation from macroalgae using alkaline fuel cells, suggesting that there is great potential for the production of renewable energy using marine biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covele, Brent; Kotschenreuther, M.; Mahajan, S.
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Keser, Serhat; Celik, Sait; Turkoglu, Semra
2013-03-01
Grape is one of the world's largest fruit crops, with an approximate annual production of 58 million metric tons, and it is well known that the grape skins, seeds and stems, waste products generated during wine and grape juice processing, are rich sources of polyphenols. It contains flavonoids, phenolic acids and stilbenes. In this study, we tried to determine antioxidant properties and phenolic contents of grape and grape products (fresh fruit, seed, dried fruit, molasses, pestil, vinegar) of ethanol and water extracts. Antioxidant properties of extracts were investigated by DPPH(√), ABTS(√+), superoxide, H(2)O(2) scavenging, reducing power, metal chelating activity and determination of total phenolic contents. The seed extracts revealed highest ABTS(√+), DPPH(√), H(2)O(2) scavenging and reducing power activities. Furthermore, these extracts showed higher total phenolic contents than other grape product extracts.
What Do Animal Studies Tell Us about the Mechanism of Myopia-Protection by Light?
Norton, Thomas T
2016-09-01
: Human studies have provided strong evidence that exposure to time outdoors is protective against the onset of myopia. A causal factor may be that the light levels outdoors (30,000-130,000 lux) are much higher than light levels indoors (typically less than 500 lux). Studies using animal models have found that normal animals exposed to low illuminance levels (50 lux) can develop myopia. The myopia and axial elongation, produced in animals by monocular form deprivation, is reduced by light levels in the 15,000 to 25,000 range. Myopia induced with a negative-power lens seems less affected, perhaps because the lens provides a powerful target for the emmetropization mechanism. Animal studies suggest that raising the light levels may have their effect by increasing retinal dopamine activity, probably via the D2 receptor pathway, altering gene expression in the retina and reducing the signals that produce axial elongation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, J. L.; Sutton, T. M.
2013-07-01
In Monte Carlo iterated-fission-source calculations relative uncertainties on local tallies tend to be larger in lower-power regions and smaller in higher-power regions. Reducing the largest uncertainties to an acceptable level simply by running a larger number of neutron histories is often prohibitively expensive. The uniform fission site method has been developed to yield a more spatially-uniform distribution of relative uncertainties. This is accomplished by biasing the density of fission neutron source sites while not biasing the solution. The method is integrated into the source iteration process, and does not require any auxiliary forward or adjoint calculations. For a given amountmore » of computational effort, the use of the method results in a reduction of the largest uncertainties relative to the standard algorithm. Two variants of the method have been implemented and tested. Both have been shown to be effective. (authors)« less
Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps
NASA Astrophysics Data System (ADS)
Ratcliffe, Alexander K.; Taylor, Richard L.; Hope, Joseph J.; Carvalho, André R. R.
2018-06-01
Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10-5 are shown to be possible with 250 mW laser power and a trap separation of 100 μ m . The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.
Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms
Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C.; Periasamy, Vengadesh
2014-01-01
The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093
Improved Stirling engine performance using jet impingement
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Britt, E. J.; Thieme, L. G.
1982-01-01
Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms.
Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C; Periasamy, Vengadesh
2014-12-22
The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.
The value of plug-in hybrid electric vehicles as grid resources
Sioshansi, Ramteen; Denholm, Paul
2010-07-01
Here, plug-in hybrid electric vehicles (PHEVs) can become valuable resources for an electric power system by providing vehicle to grid (V2G) services, such as energy storage and ancillary services. We use a unit commitment model of the Texas power system to simulate system operations with different-sized PHEV fleets that do and do not provide V2G services, to estimate the value of those services. We demonstrate that a PHEV fleet can provide benefits to the system, mainly through the provision of ancillary services, reducing the need to reserve conventional generator capacity. Moreover, our analysis shows that PHEV owners are made bettermore » off by providing V2G services and we demonstrate that these benefits can reduce the time it takes to recover the higher upfront capital cost of a PHEV when compared to other vehicle types.« less
Sexual Relationship Power, Intimate Partner Violence, and Condom Use Among Minority Urban Girls
Teitelman, Anne M.; Ratcliffe, Sarah J.; Morales-Aleman, Mercedes M.; Sullivan, Cris M.
2011-01-01
This study examined the association between sexual relationship power, intimate partner violence, and condom use among African American and Hispanic urban girls. In this sample of 56 sexually active girls, 50% did not use condoms consistently and therefore were at higher risk for acquiring HIV or sexually transmitted diseases (STDs). Teens who experienced more intimate partner violence had a significantly higher likelihood of inconsistent condom use and therefore a greater risk for HIV/STDs. Girls' sense of sexual control in their relationships was not directly associated with inconsistent condom use but was inversely related to verbal and emotional abuse. Interventions aimed at reducing HIV/STD risk for adolescent girls need to address patterns of dominance and control in adolescent relationships as well as multiple forms of partner violence. This suggests the need for multilevel intervention approaches that promote girls' agency and multiple ways to keep girls safe from perpetrators of partner abuse. PMID:18349344
NASA Technical Reports Server (NTRS)
Matheny, N. W.; Gatlin, D. H.
1978-01-01
A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.
High-power and steady-state operation of ICRF heating in the large helical device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.
2015-12-10
Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less
Johansson, Benny
2008-10-01
This study explores the effects of vortex-water transpired from indoor greenery to office air, in relation to heart rate and heart rate variability during exposure to an electromagnetic field (EMF) from a visual display terminal (VDT). The study followed a randomized prospective single group cross-over design. Fifty (50) healthy volunteers, seated in any ordinary working posture in front of a VDT. Electrocardiography was measured in five 10-minute sequential tests. The VDT was turned off during the first test and switched on for the subsequent four tests. During tests 3 and 4, one of two Begonia Eliator plants, irrigated with either tap water or vortex-rotated (active) tap water during growth, was placed adjacent to the VDT. Heart rate, heart rate variability (HRV) and power spectral density (PSD) were analyzed. The heart rate was unchanged at the start of EMF exposure. The time domain measurements indicated a significant decrease in heart rate and a significant increase in HRV, accompanied by higher vagal tone in the presence, and finally in the absence, of the active plant. PSD parameters revealed significantly higher total power, as well as an increase in low frequencies (LF) and high frequencies (HF) in the condition induced by the active plant as well as after its removal. Very low frequencies (VLF) increased at EMF exposure whereas normally HF power decreased, accompanied by a rise in LF power and LF/HF ratio. HF power was higher at exposure to the active compared to the control plant. Spectral power density diagrams revealed an intensified spectral power band at frequencies of around 0.1 Hz at the condition of both plants, indicating systemic autonomic stability. The findings suggest that the parasympathetic response was associated with reduced heart rate, implicating restoration and maintenance of metabolic energy resources mediated by an involuntary adaptation to active plant-related stimuli.
Power Reduction of the Air-Breathing Hall-Effect Thruster
NASA Astrophysics Data System (ADS)
Kim, Sungrae
Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.
Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less
Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H
2010-07-01
Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Perry, Mark C; Straker, Leon M; O'Sullivan, Peter B; Smith, Anne J; Hands, Beth
2008-01-01
Background Adolescent neck/shoulder pain (NSP) is a common and sometimes debilitating problem. Several risk factors for this condition have been investigated, but no studies have previously evaluated associations between fitness, motor competence, body composition and adolescent NSP. Methods 1608 males and females of mean age 14 years answered questions on their history of NSP (4 measures), and were tested for aerobic fitness, upper and lower limb power, trunk endurance, grip strength, shoulder flexibility, motor competence and anthropometric factors. Univariate and multivariate logistic regressions were used to test for associations between NSP and physical variables. Results There were significant gender differences for most physical and pain variables. After multivariate analysis, males had lower odds of NSP if they had reduced back endurance [OR: 0.66 (95% CI: 0.46–0.97)], reduced persistent control [0.42 (0.19–0.95], and increased muscle power [0.33 (0.12–0.94)], and higher odds of NSP if they had a higher basketball throw [2.47 (1.22–5.00)] and jump performance [3.47 (1.55–7.74)]. Females had lower odds for NSP if they had a reduced jump performance [0.61(0.41–0.92)], a better basketball throw [0.60(0.40–0.90)], lower shoulder flexibility [0.54 (0.30–0.98)] and a higher aerobic capacity [0.61 (0.40–0.93)], and higher odds for NSP if they had greater abdominal endurance [1.57(1.07–2.31)] and greater bimanual dexterity [1.77(1.18–2.65)]. Females showed a U shaped relationship between NSP and back endurance [low: 2.12 (1.20–3.74); high 2.12 (1.18–3.83)]. Conclusion Adolescent NSP was associated with fitness and motor competence, although the associations varied with gender, and their strength was limited. PMID:18702827
Perry, Mark C; Straker, Leon M; O'Sullivan, Peter B; Smith, Anne J; Hands, Beth
2008-08-15
Adolescent neck/shoulder pain (NSP) is a common and sometimes debilitating problem. Several risk factors for this condition have been investigated, but no studies have previously evaluated associations between fitness, motor competence, body composition and adolescent NSP. 1608 males and females of mean age 14 years answered questions on their history of NSP (4 measures), and were tested for aerobic fitness, upper and lower limb power, trunk endurance, grip strength, shoulder flexibility, motor competence and anthropometric factors. Univariate and multivariate logistic regressions were used to test for associations between NSP and physical variables. There were significant gender differences for most physical and pain variables. After multivariate analysis, males had lower odds of NSP if they had reduced back endurance [OR: 0.66 (95% CI: 0.46-0.97)], reduced persistent control [0.42 (0.19-0.95], and increased muscle power [0.33 (0.12-0.94)], and higher odds of NSP if they had a higher basketball throw [2.47 (1.22-5.00)] and jump performance [3.47 (1.55-7.74)]. Females had lower odds for NSP if they had a reduced jump performance [0.61(0.41-0.92)], a better basketball throw [0.60(0.40-0.90)], lower shoulder flexibility [0.54 (0.30-0.98)] and a higher aerobic capacity [0.61 (0.40-0.93)], and higher odds for NSP if they had greater abdominal endurance [1.57(1.07-2.31)] and greater bimanual dexterity [1.77(1.18-2.65)]. Females showed a U shaped relationship between NSP and back endurance [low: 2.12 (1.20-3.74); high 2.12 (1.18-3.83)]. Adolescent NSP was associated with fitness and motor competence, although the associations varied with gender, and their strength was limited.
Solar energy powered microbial fuel cell with a reversible bioelectrode.
Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N
2010-01-01
The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.
The Case for Deep Space Telecommunications Relay Stations
NASA Technical Reports Server (NTRS)
Chandler, Charles W.; Miranda, Felix A. (Technical Monitor)
2004-01-01
Each future mission to Jupiter and beyond must carry the traditional suite of telecommunications systems for command and control and for mission data transmission to earth. The telecommunications hardware includes the large antenna and the high-power transmitters that enable the communications link. Yet future spacecraft will be scaled down from the hallmark missions of Galileo and Cassini to Jupiter and Saturn, respectively. This implies that a higher percentage of the spacecraft weight and power must be dedicated to telecommunications system. The following analysis quantifies this impact to future missions and then explores the merits of an alternative approach using deep space relay stations for the link back to earth. It will be demonstrated that a telecommunications relay satellite would reduce S/C telecommunications weight and power sufficiently to add one to two more instruments.
ERIC Educational Resources Information Center
De Wit, David J.; Karioja, Kim; Rye, B. J.; Shain, Martin
2011-01-01
Emotional support from classmates and teachers is a powerful protective factor in averting or reducing student mental health problems. Yet, longitudinal evidence indicates that there is decreased support from these groups as students advance to higher grade levels, a change that may be linked to diminishing mental health. This study followed 2,616…
ERIC Educational Resources Information Center
de Siqueira, Angela C.
Since the 1960s, the World Bank has been involved in educational policy around the world. Applying a human capital theory/manpower forecasting approach, the World Bank has focused on the infrastructure, that is, buildings and equipment, in vocational and higher education. At the same time, the power and influence of UNICEF and UNESCO, the main…
NASA Technical Reports Server (NTRS)
Khan, P.; Epp, L.
2006-01-01
Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power >140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours to about 15 minutes per adder.
NASA Astrophysics Data System (ADS)
Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie
Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.
Higher Velocity High-Foot Implosions on the National Ignition Facility Laser
NASA Astrophysics Data System (ADS)
Callahan, Debra
2014-10-01
After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.
2015-03-01
High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.
Ion energies in high power impulse magnetron sputtering with and without localized ionization zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi
2015-03-23
High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.
Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap.
Norrgard, E B; McCarron, D J; Steinecker, M H; Tarbutt, M R; DeMille, D
2016-02-12
We demonstrate a scheme for magneto-optically trapping strontium monofluoride (SrF) molecules at temperatures one order of magnitude lower and phase space densities 3 orders of magnitude higher than obtained previously with laser-cooled molecules. In our trap, optical dark states are destabilized by rapidly and synchronously reversing the trapping laser polarizations and the applied magnetic field gradient. The number of molecules and trap lifetime are also significantly improved from previous work by loading the trap with high laser power and then reducing the power for long-term trapping. With this procedure, temperatures as low as 400 μK are achieved.
NASA Astrophysics Data System (ADS)
Seneviratne, Sashieka
With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.
NASA Astrophysics Data System (ADS)
Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.
2014-03-01
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.
Wang, Sen; Wu, Zhong-Shuai; Zheng, Shuanghao; Zhou, Feng; Sun, Chenglin; Cheng, Hui-Ming; Bao, Xinhe
2017-04-25
Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand of smart integrated electronics. However, single-step scalable fabrication of MSCs with both high energy and power densities is still challenging. Here we demonstrate the scalable fabrication of graphene-based monolithic MSCs with diverse planar geometries and capable of superior integration by photochemical reduction of graphene oxide/TiO 2 nanoparticle hybrid films. The resulting MSCs exhibit high volumetric capacitance of 233.0 F cm -3 , exceptional flexibility, and remarkable capacity of modular serial and parallel integration in aqueous gel electrolyte. Furthermore, by precisely engineering the interface of electrode with electrolyte, these monolithic MSCs can operate well in a hydrophobic electrolyte of ionic liquid (3.0 V) at a high scan rate of 200 V s -1 , two orders of magnitude higher than those of conventional supercapacitors. More notably, the MSCs show landmark volumetric power density of 312 W cm -3 and energy density of 7.7 mWh cm -3 , both of which are among the highest values attained for carbon-based MSCs. Therefore, such monolithic MSC devices based on photochemically reduced, compact graphene films possess enormous potential for numerous miniaturized, flexible electronic applications.
Thermal pollution impacts on rivers and power supply in the Mississippi River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miara, Ariel; Vorosmarty, Charles J.; Macknick, Jordan E.
Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05 degrees) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable ofmore » uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. Furthermore, these dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome climate-water constraints on productivity and bring to fruition energy and environmental win-win opportunities.« less
Thermal pollution impacts on rivers and power supply in the Mississippi River watershed
Miara, Ariel; Vorosmarty, Charles J.; Macknick, Jordan E.; ...
2018-03-08
Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05 degrees) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable ofmore » uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. Furthermore, these dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome climate-water constraints on productivity and bring to fruition energy and environmental win-win opportunities.« less
Thermal pollution impacts on rivers and power supply in the Mississippi River watershed
NASA Astrophysics Data System (ADS)
Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin
2018-03-01
Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome climate-water constraints on productivity and bring to fruition energy and environmental win-win opportunities.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.
2017-11-01
In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.
NASA Astrophysics Data System (ADS)
Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian
2017-05-01
The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.
Fish schooling as a basis for vertical axis wind turbine farm design.
Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O
2010-09-01
Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.
Monitoring of hot pipes at the power plant Neurath using guided waves
NASA Astrophysics Data System (ADS)
Weihnacht, Bianca; Klesse, Thomas; Neubeck, Robert; Schubert, Lars
2013-04-01
In order to reduce the CO2-emissions and to increase the energy efficiency, the operating temperatures of power plants will be increased up to 720°C. This demands for novel high-performance steels in the piping systems. Higher temperatures lead to a higher risk of damage and have a direct impact on the structure stability and the deposition structure. Adequately trusted results for the prediction of the residual service life of those high strength steels are not available so far. To overcome these problems the implementation of an online monitoring system in addition to periodic testing is needed. RWE operates the lignite power plant Neurath. All test and research activities have to be checked regarding their safety and have to be coordinated with the business operation of the plant. An extra bypass was established for this research and made the investigations independent from the power plant operating. In order to protect the actuators and sensors from the heat radiated from the pipe, waveguides were welded to the bypass. The data was evaluated regarding their dependencies on the environmental influences like temperature and correction algorithms were developed. Furthermore, damages were introduced into the pipe with diameters of 8 mm to 10 mm and successfully detected by the acoustic method.
NASA Astrophysics Data System (ADS)
Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG
2018-03-01
A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.
Enabling CoO improvement thru green initiatives
NASA Astrophysics Data System (ADS)
Gross, Eric; Padmabandu, G. G.; Ujazdowski, Richard; Haran, Don; Lake, Matt; Mason, Eric; Gillespie, Walter
2015-03-01
Chipmakers continued pressure to drive down costs while increasing utilization requires development in all areas. Cymer's commitment to meeting customer's needs includes developing solutions that enable higher productivity as well as lowering cost of lightsource operation. Improvements in system power efficiency and predictability were deployed to chipmakers' in 2014 with release of our latest Master Oscillating gas chamber. In addition, Cymer has committed to reduced gas usage, completing development in methods to reduce Helium gas usage while maintaining superior bandwidth and wavelength stability. The latest developments in lowering cost of operations are paired with our advanced ETC controller in Cymer's XLR 700ix product.
NASA Technical Reports Server (NTRS)
Robson, R. R.
1982-01-01
The efficiency of transistorized Series Resonant Inverters (SRIs), which is higher than that of silicon-controlled rectifier alternatives, reduces spacecraft radiator requirements by 40% and may eliminate the need for heat pipes on 30-cm ion thruster systems. Recently developed 10- and 25-kW inverters have potential applications in gas thrusters, and represent the first spaceborne SRI designs for such power levels. Attention is given to the design and control system approaches employed in these inverter designs to improve efficiency and reduce weight, along with the impact of such improved parameters on electric propulsion systems.
Effect of TE Mode Power on the PEP II LER BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Cho-K
2011-08-26
The beam chamber of the PEP-II B-Factory Low Energy Ring (LER) arc sections is connected to an antechamber for the absorption of synchrotron radiation on discrete photon stops. The presence of the antechamber substantially reduces the cutoff frequency of the vacuum chamber and, in particular, allows the propagation of higher-order-mode (HOM) TE power generated by beamline components at the BPM signal processing frequency. Calculations of the transmission properties of the TE mode in different sections of the vacuum chamber show that the power is trapped between widely separated bellows in the arc sections. Because of the narrow signal bandwidth andmore » weak coupling of the TE mode to the BPM buttons, the noise contributed by the HOM TE power will not produce a noticeable effect on the BPM position signal voltage. The LER arc vacuum chamber employs an antechamber with a discrete photon stop for absorption of synchrotron radiation and with pumps for maintaining pressure below 10 nTorr [1]. The horizontal dimensions of the antechambers at the pumping chamber section and the magnet chamber section are larger or comparable to that of the beam chamber. Because of the increase in the horizontal dimension, the cutoff frequency of the TE10-like mode (in rectangular coordinates) of the vacuum chamber is considerably reduced and, in particular, is less than the BPM signal processing frequency at 952 MHz. TE power propagating in the vacuum chamber will penetrate through the BPM buttons and will affect the pickup signal if its magnitude is not properly controlled. It is the purpose of this note to clarify various issues pertaining to this problem. TE power is generated when the beam passes a noncylindrically symmetric beamline component such as the RF cavity, the injection region, the IR crotch and the IP region. The beampipes connected to these components have TE cutoff frequencies greater than 952 MHz (for example, the TE cutoff frequency of the RF cavity beampipe is 1.8 GHz), and hence no TE power at this frequency propagates from the component. TE power can also be generated by the scattering of TM power through these beamline components. Since the cutoff frequency of the TM mode is in general higher than that of the TE mode, this mechanism is not pertinent to the problem related to the BPM signal. Consequently, the TE power that needs to be considered is mainly generated by components of the LER arc vacuum chamber, where the TE cutoff frequency is less than the BPM processing frequency.« less
A SiC MOSFET Based Inverter for Wireless Power Transfer Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L
2014-01-01
In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less
Stegemöller, Elizabeth L; Allen, David P; Simuni, Tanya; MacKinnon, Colum D
2016-01-01
Impaired repetitive movement in persons with Parkinson's disease (PD) is associated with reduced amplitude, paradoxical hastening and hesitations or arrest at higher movement rates. This study examined the effects of movement rate and medication on movement-related cortical oscillations in persons with PD. Nine participants with PD were studied off and on medication and compared to nine control participants. Participants performed index finger movements cued by tones from 1 to 3 Hz. Movement-related oscillations were derived from electroencephalographic recordings over the region of the contralateral sensorimotor cortex (S1/M1) during rest, listening, or synchronized movement. At rest, spectral power recorded over the region of the contralateral S1/M1 was increased in the alpha band and decreased in the beta band in participants with PD relative to controls. During movement, the level of alpha and beta band power relative to baseline was significantly reduced in the PD group, off and on medication, compared to controls. Reduced movement amplitude and hastening at movement rates near 2 Hz was associated with abnormally suppressed and persistent desynchronization of oscillations in alpha and beta bands. Motor cortical oscillations in the alpha and beta bands are abnormally suppressed in PD, particularly during higher rate movements. These findings contribute to the understanding of mechanisms underlying impaired repetitive movement in PD. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Swept sine testing of rotor-bearing system for damping estimation
NASA Astrophysics Data System (ADS)
Chandra, N. Harish; Sekhar, A. S.
2014-01-01
Many types of rotating components commonly operate above the first or second critical speed and they are subjected to run-ups and shutdowns frequently. The present study focuses on developing FRF of rotor bearing systems for damping estimation from swept-sine excitation. The principle of active vibration control states that with increase in angular acceleration, the amplitude of vibration due to unbalance will reduce and the FRF envelope will shift towards the right (or higher frequency). The frequency response function (FRF) estimated by tracking filters or Co-Quad analyzers was proved to induce an error into the FRF estimate. Using Fast Fourier Transform (FFT) algorithm and stationary wavelet transform (SWT) decomposition FRF distortion can be reduced. To obtain a theoretical clarity, the shifting of FRF envelope phenomenon is incorporated into conventional FRF expressions and validation is performed with the FRF estimated using the Fourier Transform approach. The half-power bandwidth method is employed to extract damping ratios from the FRF estimates. While deriving half-power points for both types of responses (acceleration and displacement), damping ratio (ζ) is estimated with different approximations like classical definition (neglecting damping ratio of order higher than 2), third order (neglecting damping ratios with order higher than 4) and exact (no assumptions on damping ratio). The use of stationary wavelet transform to denoise the noise corrupted FRF data is explained. Finally, experiments are performed on a test rotor excited with different sweep rates to estimate the damping ratio.
Antia, Bassey Sunday; Ita, Basil Nse; Udo, Uwemedimo Emmanuel
2015-01-01
Abstract The stembarks of Harungana madagascariensis were analyzed for their content of chemical constituents, antinutrients, vitamin levels, and in vitro antioxidant properties in two solvent systems. Phytochemical screening revealed higher levels of alkaloids, saponins, and flavonoids in the methanolic (MHM) extract than in the dichloromethane (DCM) extract. The methanolic extract had higher contents of minerals, vitamins, and antinutrients except K, vitamin B1, and phytic acid, respectively. Antioxidant potentials of the stembark extracts were assessed by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, metal chelating activity, and ferric reducing power. The methanolic extract showed a better antioxidant activity (IC50=87.66±0.97 μg/mL) in the DPPH system. The metal chelating activity was higher in the methanolic extract (92.4% at 20 mg/mL), but lower than the control ethylenediaminetetraacetic acid (EDTA). The methanolic extract also showed greater ferric reducing power and was richer in phenolics (132.24±0.61 mgGAE/g) and flavonoids (259.05±2.85 mgQE/g). Antinutrient analysis of the extracts indicated low levels of phytic acid, oxalates, and hydrocyanides below the lethal doses. The LD50 (i.p. mice) of the extracts showed relatively low toxicity in the range 1000–1414 mg/kg. These results support the ethnomedicinal uses of this plant in the treatment of diseases related to oxidative stress and suggest that consumption of H. madagascariensis is not harmful nutritively. PMID:25785542
Antia, Bassey Sunday; Ita, Basil Nse; Udo, Uwemedimo Emmanuel
2015-05-01
The stembarks of Harungana madagascariensis were analyzed for their content of chemical constituents, antinutrients, vitamin levels, and in vitro antioxidant properties in two solvent systems. Phytochemical screening revealed higher levels of alkaloids, saponins, and flavonoids in the methanolic (MHM) extract than in the dichloromethane (DCM) extract. The methanolic extract had higher contents of minerals, vitamins, and antinutrients except K, vitamin B1, and phytic acid, respectively. Antioxidant potentials of the stembark extracts were assessed by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, metal chelating activity, and ferric reducing power. The methanolic extract showed a better antioxidant activity (IC50=87.66±0.97 μg/mL) in the DPPH system. The metal chelating activity was higher in the methanolic extract (92.4% at 20 mg/mL), but lower than the control ethylenediaminetetraacetic acid (EDTA). The methanolic extract also showed greater ferric reducing power and was richer in phenolics (132.24±0.61 mgGAE/g) and flavonoids (259.05±2.85 mgQE/g). Antinutrient analysis of the extracts indicated low levels of phytic acid, oxalates, and hydrocyanides below the lethal doses. The LD50 (i.p. mice) of the extracts showed relatively low toxicity in the range 1000-1414 mg/kg. These results support the ethnomedicinal uses of this plant in the treatment of diseases related to oxidative stress and suggest that consumption of H. madagascariensis is not harmful nutritively.
Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.
Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku
2017-01-01
The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.
Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M
2014-02-01
Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.
GaAs VLSI technology and circuit elements for DSP
NASA Astrophysics Data System (ADS)
Mikkelson, James M.
1990-10-01
Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. McKellar; Manohar S. Sohal; Lila Mulloth
2010-03-01
NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less
Wideband 10.6 micrometers Backscatter Range Interim Report
1976-11-02
oucput, a local oscillator, a radar return, and a correlation infrared detector . The unique part of this radar is the wideband chirped waveform on a...backscatter system photoconductors Ge:Cu is superior to HgCdTe photovoltaic detectors because of its superior (larger) shunt resistance which reduces...the Johnson noise of the detector and its ability to withstand higher optical powers without damage. 18 P160-908 Fig. 6. Chirp waveform
Evaluation of System Architectures for the Army Aviation Ground Power Unit
2014-12-01
this state of operation induces wear that reduces pump life. Variable capacity control methods using a constant displacement pump are drive speed...options for use with constant displacement pumps, the fluid or magnetic coupling devices are the most attractive. Variable frequency control cannot...compressor prior to the combustor. The cmTent system turbine exhaust temperature controls to 1250°F, much higher than the compressor exit
Bae, Haejin; Jayaprakasha, G K; Jifon, John; Patil, Bhimanagouda S
2012-10-15
Peppers (Capsicum spp.) are a rich source of diverse bioactive compounds with potential health-promoting properties. This study investigated the extraction efficiency of five solvents on antioxidant activities from cayenne (CA408 and Mesilla), jalapeño (Ixtapa) and serrano (Tuxtlas) pepper cultivars. Freeze-dried peppers were extracted using a Soxhlet extractor with five solvents: hexane, ethyl acetate, acetone, methanol, and methanol:water (80:20). The levels of specific bioactive compounds (phenolics, capsaicinoids, carotenoids and flavonoids) were determined by HPLC and antioxidant activities were assayed by three methods. For all pepper cultivars tested, hexane extracts had the highest levels of capsaicinoids and carotenoids, but methanol extracts had the maximum levels of flavonoids. Hexane extracts showed higher 2,2-diphenyl-1-pricrylhydrozyl (DPPH) radical-scavenging activity and higher reducing power, and acetone extracts (from Mesilla pepper) had a high reducing power. All pepper extracts, except hexane, were effective in preventing deoxyribose degradation, and the inhibition was increased by high concentrations of extracts. The results of the present study indicated that, among the different measures of antioxidant activity, DPPH radical-scavenging activity was strongly correlated with total bioactive compounds (capsaicinoids, carotenoids, flavonoids and total phenolics) in pepper cultivars. Copyright © 2012 Elsevier Ltd. All rights reserved.
Strauss, Rupert W; Muñoz, Beatriz; Jha, Anamika; Ho, Alexander; Cideciyan, Artur V; Kasilian, Melissa L; Wolfson, Yulia; Sadda, SriniVas; West, Sheila; Scholl, Hendrik P N; Michaelides, Michel
2016-08-01
To compare grading results between short-wavelength reduced-illuminance and conventional autofluorescence imaging in Stargardt macular dystrophy. Reliability study. setting: Moorfields Eye Hospital, London (United Kingdom). Eighteen patients (18 eyes) with Stargardt macular dystrophy. A series of 3 fundus autofluorescence images using 3 different acquisition parameters on a custom-patched device were obtained: (1) 25% laser power and total sensitivity 87; (2) 25% laser power and freely adjusted sensitivity; and (3) 100% laser power and freely adjusted total sensitivity (conventional). The total area of 2 hypoautofluorescent lesion types (definitely decreased autofluorescence and poorly demarcated questionably decreased autofluorescence) was measured. Agreement in grading between the 3 imaging methods was assessed by kappa coefficients (κ) and intraclass correlation coefficients. The mean ± standard deviation area for images acquired with 25% laser power and freely adjusted total sensitivity was 2.04 ± 1.87 mm(2) for definitely decreased autofluorescence (n = 15) and 1.86 ± 2.14 mm(2) for poorly demarcated questionably decreased autofluorescence (n = 12). The intraclass correlation coefficient (95% confidence interval) was 0.964 (0.929, 0.999) for definitely decreased autofluorescence and 0.268 (0.000, 0.730) for poorly demarcated questionably decreased autofluorescence. Short-wavelength reduced-illuminance and conventional fundus autofluorescence imaging showed good concordance in assessing areas of definitely decreased autofluorescence. However, there was significantly higher variability between imaging modalities for assessing areas of poorly demarcated questionably decreased autofluorescence. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Peripheral Design of Progressive Addition Lenses and the Lag of Accommodation in Myopes.
Schilling, Tim; Ohlendorf, Arne; Varnas, Saulius R; Wahl, Siegfried
2017-07-01
Insufficient accommodative response is assumed to result in myopia progression. We have investigated if the accommodative lag in myopes is different between a single vision lens (SVL) and the progressive addition lens PAL 2, clinically trialled for its ability to reduce progression of myopia, and if there exist differences in accommodative lag between PAL 2 and other PALs with the same addition power (+1.50 D). The influence of spherical SVL and four different designs of PALs that differ in the near zone width (PAL 1) or that have different signs and magnitude of horizontal gradients of mean power adjacent to their near vision zones (PAL 3 and PAL 4) on the accommodative response was investigated for different near viewing distances (40, 33, and 25 cm) in 31 subjects, aged 18 to 25 years. The SVL correction resulted in insufficient accommodative response for the near object viewing distances tested. PAL 2 did significantly reduce accommodative lag for all near object distances tested. The PAL design with a more negative horizontal mean power gradient (PAL 4) provided a lower lag of accommodation when compared with PAL 2 at the shortest object distance of 25 cm (P = 0.03) and was able to reduce the lag of accommodation to a level below the depth of focus for the higher near working distances tested. Designs of PAL with more negative horizontal mean power gradients are the most effective in lowering the lag of accommodation in myopes. This could make them good test candidates for myopia control applications.
Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications
NASA Astrophysics Data System (ADS)
Muruganandi, G.; Saravanan, M.; Vinitha, G.; Jessie Raj, M. B.; Sabari Girisun, T. C.
2018-01-01
By simple hydrothermal method, nanorods of barium boate were successfully loaded on reduced graphene oxide sheets. Powder XRD confirms the incorporation of barium borate (2θ = 29°, (202)) along with the transition of graphene oxide (2θ = 12°, (001)) into reduced graphene oxide (2θ = 25°, (002)). In the FTIR spectra, presence of characteristic absorption peaks of rGO (1572 and 2928 cm-1) and barium borate (510, 760 and 856 cm-1) further evidences the formation of BBO:rGO nanocomposite. FESEM images potray the existence of graphene sheets as thin layers and growth of barium borate as nanorods on the sheets of reduced graphene oxide. Ground state absorption studies reveal the hypsochromic shift in the absorption maxima of the graphene layers due to reduction of graphene oxide and hypochromic shift in the absorbance intensity due to the inclusion of highly transparent barium bortae. The photoluminescence of BBO:rGO shows maximum emission in the UV region arising from the direct transitions involving the valence band and conduction band in the band gap region. Z-scan technique using CW diode pumped Nd:YAG laser (532 nm, 50 mW) exposes that both nanocomposite and individual counterpart possess saturable absorption and self-defocusing behavior. Third-order nonlinear optical coefficients of BBO:rGO nanocomposite is found to be higher than bare graphene oxide. In particular the nonlinear refractive index of nanocomposite is almost four times higher than GO which resulted in superior optical power limiting action. Strong nonlinear refraction (self-defocusing) and lower onset limiting thershold makes the BBO:rGO nanocomposite preferable candidate for laser safety devices.
Gülçin, Ilhami; Büyükokuroglu, M Emin; Oktay, Münir; Küfrevioglu, O Irfan
2003-05-01
The aim of this study is to examine possible antioxidant and analgesic activities of turpentine exudes from Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe (TPN). Total antioxidant activity, reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities were studied. The total antioxidant activity increased with the increasing amount of extracts (100, 300, and 500 microg) added to linoleic acid emulsion. All of the doses of TPN showed higher antioxidant activity than alpha-tocopherol. The samples showed 49, 70, and 91% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, the 300 microg of alpha-tocopherol showed 40% inhibition on peroxidation of linoleic acid emulsion. There is correlation between antioxidant activity and the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities. Like antioxidant activity, the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities of TPN depending on concentration and increasing with increased concentration of TPN. These properties may be the major reasons for the inhibition of lipid peroxidation. The results obtained in the present study indicate that the TPN has a potential source of natural antioxidant. In addition, analgesic effect of TPN was investigated in present study and TPN had strong analgesic effect. The analgesic effect of TPN compared with metamizol as a standard analgesic compound.
PAH emissions from coal combustion and waste incineration.
Hsu, Wei Ting; Liu, Mei Chen; Hung, Pao Chen; Chang, Shu Hao; Chang, Moo Been
2016-11-15
The characteristics of PAHs that are emitted by a municipal waste incinerator (MWI) and coal-fired power plant are examined via intensive sampling. Results of flue gas sampling reveal the potential for PAH formation within the selective catalytic reduction (SCR) system of a coal-fired power plant. In the large-scale MWI, the removal efficiency of PAHs achieved with the pilot-scaled catalytic filter (CF) exceeds that achieved by activated carbon injection with a bag filter (ACI+BF) owing to the effective destruction of gas-phase contaminants by a catalyst. A significantly lower PAH concentration (1640ng/g) was measured in fly ash from a CF module than from an ACI+BF system (5650ng/g). Replacing the ACI+BF system with CF technology would significantly reduce the discharge factor (including emission and fly ash) of PAHs from 251.6 to 77.8mg/ton-waste. The emission factors of PAHs that are obtained using ACI+BF and the CF system in the MWI are 8.05 and 7.13mg/ton, respectively. However, the emission factor of MWI is significantly higher than that of coal-fired power plant (1.56mg/ton). From the perspective of total environmental management to reduce PAH emissions, replacing the original ACI+BF process with a CF system is expected to reduce environmental impact thereof. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Nam; Jung, Eunjin; Han, Min; Deul Ryu, Beo; Bok Ko, Kang; Park, Young Jae; Cuong, TranViet; Cho, Jaehee; Kim, Hyunsoo; Hong, Chang-Hee
2015-07-01
Thermal management has become a crucial area for further development of high-power light-emitting didoes (LEDs) due to the high operating current densities that are required and result in additional joule heating. This increased joule heating negatively affects the performance of the LEDs since it greatly decreases both the optical performance and the lifetime. To circumvent this problem, a reduced graphene oxide (rGO) layer can be inserted to act as a heat spreader. In this study, current-voltage and light-output-current measurements are systematically performed at different temperatures from 30 to 190 °C to investigate the effect that the embedded rGO pattern has on the device performance. At a high temperature and high operating current, the junction temperature (Tj) is 23% lower and the external quantum efficiency (EQE) is 24% higher for the rGO embedded LEDs relative to those of conventional LEDs. In addition, the thermal activation energy of the rGO embedded LEDs exhibits a 30% enhancement as a function of the temperature at a bias of -5 V. This indicates that the rGO pattern plays an essential role in decreasing the junction temperature and results in a favorable performance in terms of the temperature of the high power GaN-based LED junction.
Rahman, Md Mominur; Habib, Md Razibul; Hasan, Md Anayet; Al Amin, Mohammad; Saha, Ayan; Mannan, Adnan
2014-01-01
Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens are medicinal plants commonly used as traditional medicine for the treatment of various diseases. The present study was designed to investigate the antioxidant activities of Ethanolic extract of A. bilimbi, G. sylvestre and C. frutescens. The antioxidant activity of the extracts were evaluated using total phenolic and flavonoid contents, ferric reducing power and the free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). Total phenolic and flavonoid contents were higher in G. sylvestre (53.63636 ± 0.454545 mg/g gallic acid equivalent) and C. frutescens (26.66667 ± 2.081666 mg/g quercetin equivalent) respectively. Reducing power of the crude ethanol extracts increased with the concentrations of the extracts and all the extracts showed moderate free radical scavenging activity against DPPH. The plant extract displayed moderate phenolic and flavonoid contents compared to gallic acid and quercetin equivalent respectively, whereas also exhibited significant scavenging of DPPH radical and reducing power compared with ascorbic acid as standard. Our study suggests that G. sylvestre has significant antioxidant activity. The antioxidant compound of this plant might be a therapeutic candidate against oxidative stress related diseases. Different sub-fraction of A. bilimbi and C. frutescens should be studied further to assess the effect. Further study is necessary for isolation and characterization of the active antioxidant agents for better treatment.
Ultrafast disk technology enables next generation micromachining laser sources
NASA Astrophysics Data System (ADS)
Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk
2013-02-01
Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.
Agarwal, Charu; Máthé, Katalin; Hofmann, Tamás; Csóka, Levente
2018-03-01
Ultrasonication was used to extract bioactive compounds from Cannabis sativa L. such as polyphenols, flavonoids, and cannabinoids. The influence of 3 independent factors (time, input power, and methanol concentration) was evaluated on the extraction of total phenols (TPC), flavonoids (TF), ferric reducing ability of plasma (FRAP) and the overall yield. A face-centered central composite design was used for statistical modelling of the response data, followed by regression and analysis of variance in order to determine the significance of the model and factors. Both the solvent composition and the time significantly affected the extraction while the sonication power had no significant impact on the responses. The response predictions obtained at optimum extraction conditions of 15 min time, 130 W power, and 80% methanol were 314.822 mg GAE/g DW of TPC, 28.173 mg QE/g DW of TF, 18.79 mM AAE/g DW of FRAP, and 10.86% of yield. A good correlation was observed between the predicted and experimental values of the responses, which validated the mathematical model. On comparing the ultrasonic process with the control extraction, noticeably higher values were obtained for each of the responses. Additionally, ultrasound considerably improved the extraction of cannabinoids present in Cannabis. Low frequency ultrasound was employed to extract bioactive compounds from the inflorescence part of Cannabis. The responses evaluated were-total phenols, flavonoids, ferric reducing assay and yield. The solvent composition and time significantly influenced the extraction process. Appreciably higher extraction of cannabinoids was achieved on sonication against control. © 2018 Institute of Food Technologists®.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elcock, D.
2010-09-17
This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that aremore » associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.« less
NASA Astrophysics Data System (ADS)
Cho, C. Y.; Chang, C. C.; Chen, Y. F.
2013-04-01
We originally employ a compact combination of a Nd:YAG crystal and a Nd:YVO4 crystal to develop an efficient dual-wavelength laser operating at 946 and 1064 nm. We exploit a short Nd:YAG crystal to generate 946 nm laser by reducing the reabsorption loss and a follow-up Nd:YVO4 crystal to generate a 1064 nm laser by absorbing the residual pump light. The output power ratio between the 946 and 1064 nm emissions can be flexibly adjusted from 0.3 to 0.9 by varying the separation between the two output couplers. At an incident pump power of 17 W, the total output power is generally higher than 5.2 W, with an overall optical-to-optical efficiency greater than 30%.
Correction to the Beer-Lambert-Bouguer law for optical absorption.
Abitan, Haim; Bohr, Henrik; Buchhave, Preben
2008-10-10
The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America
The 20 GHz spacecraft FET solid state transmitter
NASA Technical Reports Server (NTRS)
1983-01-01
The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.
Description of the SSF PMAD DC testbed control system data acquisition function
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Mackin, Michael; Wright, Theodore
1992-01-01
The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.
Gibson, Crystal; Callands, Tamora A; Magriples, Urania; Divney, Anna; Kershaw, Trace
2015-01-01
Intimate partner violence (IPV) victimization and perpetration and power imbalances in parenting partners may result in poor outcomes for parents and children. Previous work in this area has focused on the maternal experiences, neglecting to examine paternal effects. The present study aimed to elucidate the role of IPV, power, and equity in parenting and child outcomes in an urban sample of adolescent parents. 159 male and 182 female parents in a relationship were recruited through university-affiliated hospitals. Power, equity, and IPV were measured at 6 months post-partum and were used as predictors for parenting and child outcomes 12 months post-partum using general estimating equations. Gender interactions and mediation effects of depression were also assessed. Higher perceived relationship equity was related to better infant temperament (B = 0.052, SE = 0.023, p = 0.02) whereas higher partner power was related to poorer social development (B = -0.201, SE = 0.088, p = 0.02) and fine motor development (B = -0.195, SE = 0.078, p = 0.01). IPV victimization was associated with poor infant temperament (B = -2.925, SE = 1.083, p = 0.007) and lower parenting competence (B = -3.508, SE = 1.142, p = 0.002). Depression mediated the relationship between IPV and parenting and IPV and infant temperament. No gender effects were found. IPV, inequities, and power imbalances were disadvantageous for parenting and child outcomes. Our results suggest that these dynamics may negatively affect both males and females. Interventions to reduce violence in both partners and promote equity in relationships could benefit couples and their children.
Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton.
Galle, Samuel; Malcolm, Philippe; Derave, Wim; De Clercq, Dirk
2014-11-01
A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15%) at 5 km h(-1) and 5% of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 ± 2.49; 8.14 ± 2.24 mmol L(-1)), heart rate (respectively, 190.00 ± 6.50; 191.78 ± 6.50 bpm), Borg score (respectively, 18.57 ± 0.79; 18.93 ± 0.73) and VO₂ peak (respectively, 40.55 ± 2.78; 40.55 ± 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 ± 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities.
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.
2014-12-01
Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.
Experimental study of efficiency of solar panel by phase change material cooling
NASA Astrophysics Data System (ADS)
Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng
2017-07-01
The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.
NASA Astrophysics Data System (ADS)
Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori
2018-05-01
Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.
Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components
NASA Astrophysics Data System (ADS)
Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.
2018-01-01
There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.
Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that wouldmore » be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.« less
Burger, Joanna; Gochfeld, Michael
2015-01-01
Governmental officials, health and safety professionals, early responders, and the public are interested in the perceptions and concerns of people faced with a crisis, especially during and immediately after a disaster strikes. Reliable information can lead to increased individual and community preparedness for upcoming crises. The objective of this research was to evaluate concerns of coastal and central New Jersey residents within the first 100 days of Superstorm Sandy’s landfall. Respondents living in central New Jersey and Jersey shore communities were differentially impacted by the storm, with shore residents having higher evacuation rates (47% vs. 13%), more flood waters in their homes, longer power outages (average 23 vs. 6 days), and longer periods without Internet (29 vs. 6 days). Ratings of concerns varied both among and within categories as a function of location (central vs. coastal New Jersey), stressor level (ranging from 1 to 3 for combinations of power outages, high winds, and flooding), and demographics. Respondents were most concerned about property damage, health, inconveniences, ecological services, and nuclear power plants in that order. Respondents from the shore gave higher ratings to the concerns within each major category, compared to those from central Jersey. Four findings have implications for understanding future risk, recovery, and resiliency: (1) respondents with the highest stressor level (level 3) were more concerned about water damage than others, (2) respondents with flood damage were more concerned about water drainage and mold than others, (3) respondents with the highest stressor levels rated all ecological services higher than others, and (4) shore respondents rated all ecological services higher than central Jersey residents. These data provide information to design future preparedness plans, improve resiliency for future severe weather events, and reduce public health risk. PMID:27011757
Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.
Zhang, Li Li; Zhao, Xin; Stoller, Meryl D; Zhu, Yanwu; Ji, Hengxing; Murali, Shanthi; Wu, Yaping; Perales, Stephen; Clevenger, Brandon; Ruoff, Rodney S
2012-04-11
We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies. © 2012 American Chemical Society
Ni2P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells.
Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei
2015-10-12
PtRu is regarded as the best catalyst for direct methanol fuel cells, but the performance decay resulting from the loss of Ru seriously hinders commercial applications. Herein, we demonstrated that the presence of Ni2 P largely reduces Ru loss, which thus makes the application of PtRu much stronger in direct methanol fuel cells. Outstanding catalytic activity and stability were observed by cyclic voltammetry. Upon integrating the catalyst material into a practical direct methanol fuel cell, the highest maximum power density was achieved on the PtRu-Ni2P/C catalyst among the reference catalysts at different temperatures. A maximum power density of 69.9 mW cm(-2) at 30 °C was obtained on PtRu-Ni2P/C, which is even higher than the power density of the state-of-the-art commercial PtRu catalyst at 70 °C (63.1 mW cm(-2)). Moreover, decay in the performance resulting from Ru loss was greatly reduced owing to the presence of Ni2 P, which is indicative of very promising applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Screening of Bioactive Compounds of Medicinal Mushrooms Collected on Tunisian Territory.
Khadhri, Ayda; Aouadhi, Chedia; Aschi-Smiti, Samira
2017-01-01
This study is, to our knowledge, the first to investigate the pharmacological importance of wild Tunisian mushrooms. Ethanolic extracts of 5 Tunisian mushrooms-Phellinus torulosus, Fomes fomentarius, Trametes versicolor, Pisolithus albus, and Fomitopsis pinicola-were collected from the Kroumirie Region (North Tunisia). The dry basidomes of mushrooms were extracted using ethanol and evaluated for total polyphenol, flavonoid, flavonol, tannin, proanthocyanidin, and anthocyanin content. In addition, their antioxidant activities were determined using 3 assays (testing 2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging, the reducing power of iron, and the iron-chelating power). Their antimicrobial activities were assessed against 8 bacterial species. The results revealed the presence of significant differences between the secondary metabolites and biological activities of the different tested extracts. In addition, significant correlations were observed between antioxidant activities and phenolic contents. Crude ethanol extracts prepared from basidomes of F. fomentarius and Ph. torulosus have higher total phenolic content and antioxidant activity per the DPPH and metal-chelating activity assays. The reducing power assay showed that the ethanolic extract of F. pinicola had the highest activity. Ethanolic extracts of the 5 mushrooms have antibacterial activity against the evaluated strains.
Power exhaust scenarios and control for projected high-power NSTX-U operation
NASA Astrophysics Data System (ADS)
Menard, Jonathan; Gerhardt, S. P.; Myers, C. E.; Reinke, M. L.; Brooks, A.; Mardenfeld, M.; NSTX Upgrade Team
2017-10-01
An important goal of the NSTX Upgrade (NSTX-U) research program is to characterize energy confinement in the low-aspect-ratio spherical tokamak configuration over a significantly expanded range of plasma current, toroidal field, and heating power, while increasing flattop durations up to 5 seconds. However, the narrowing of the scrape-off layer at higher current combined with an improved understanding of expected halo-current loads has motivated a significant re-design of NSTX-U plasma facing components in the high-heat-flux regions of the divertor. In order to reduce the expected divertor heat flux to acceptable levels, a combination of mitigation techniques will be used: increased divertor poloidal flux expansion, increased divertor radiation, and controlled strike-point sweeping. The machine requirements for these various mitigation techniques are studied here using a newly implemented reduced heat-flux model. Systematic equilibrium scans are used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes. Free-boundary control schemes to constrain the strike-point location and field-line angle-of-incidence will also be discussed. Work supported by DOE contract DE-AC02- 09CH11466.
Nuclear Electric Propulsion for Deep Space Exploration
NASA Astrophysics Data System (ADS)
Schmidt, G.
Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.
Moving to a low-carbon future: perspectives on nuclear and alternative power sources.
Morgan, M Granger
2007-11-01
This paper summarizes key findings from climate science to make the case that the United States (and ultimately the world) will need to dramatically reduce carbon dioxide emissions from the energy system over the next few decades. While transportation energy is an important consideration, the focus of this paper is on electric power. Today, the United States generates just over half of its electric power from coal. The average size-weighted age of the fleet of U.S. coal plants is 35 y, and many will have to be replaced in the next few years. If that capacity were to be replaced with new conventional coal plants, it would commit the nation (and the world) to many more decades of high carbon-dioxide emissions, or it would make the cost of meeting a future carbon-dioxide emission constraint much higher than it needs to be. A range of low- and no-carbon energy technologies offers great potential to create a portfolio of options that can dramatically reduce emissions. A few of the advantages and disadvantages of these technologies are discussed. Policy and regulatory advances that will be needed to move the energy system to a low-carbon future are identified.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
Shi, Xiaoya; Shi, Xun; Li, Yulong; ...
2014-12-30
We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less
NASA Astrophysics Data System (ADS)
Eichhorn, M.; Taruffi, A.; Bauer, C.
2017-04-01
The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.
Javed, Mehjbeen; Ahmad, Irshad; Usmani, Nazura; Ahmad, Masood
2016-05-01
Metal bioaccumulation and induction of biomarkers such as lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione S transferase (GST), reduced glutathione (GSH) and DNA damage are potential indicators of stress in Channa punctatus exposed to effluents. In canal water, receiving thermal power plant discharges, Fe and Ni concentrations exceeded the recommended guidelines set by the United Nations Environment Programme Global Environment Monitoring System (UNEPGEMS). Fe was highly bioavailable and accumulated in all organs (liver, kidney, muscle and integument). The highest metal pollution index (MPI) value of 41.2 was observed in kidney and the lowest 13.5 in muscle tissue. LPO, SOD, CAT and GST levels were significantly higher in liver and kidney, whereas GSH levels declined significantly compared to fish from the reference site. Concomitant damage to DNA was observed with significantly higher mean tail length in the exposed fish gill cells (26.5µm) and in liver (20.8µm) compared to reference fish. Therefore, it can be concluded that the thermal power plant effluent had the potential to cause oxidative stress and DNA damage in C. punctatus. Copyright © 2016 Elsevier Inc. All rights reserved.
Control of electrothermal heating during regeneration of activated carbon fiber cloth.
Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J
2011-01-15
Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Shi, Xun; Li, Yulong
We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less
Effect of guar and xanthan gums on functional properties of mango (Mangifera indica) kernel starch.
Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Hasnain, Abid
2016-12-01
The effects of different concentrations of guar and xanthan gums on functional properties of mango kernel starch (MKS) were studied. Both guar and xanthan gum enhanced the water absorption of MKS. The addition of xanthan gum appeared to reduce the SP (swelling power) and solubility at higher temperatures while guar gum significantly enhanced the SP as well as solubility of MKS. The addition of both gums produced a reinforcing effect on peak viscosity of MKS as compared to control. Pasting temperature of MKS was higher than that of starch modified by gums indicating ease of gelatinization. Guar gum played an accelerative effect on setback but xanthan gum delayed the setback phenomenon during the cooling of the starch paste. Both gums were found to be effective in reducing the syneresis while gel firmness was markedly improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Luqman, Suaib; Srivastava, Suchita; Kumar, Ritesh; Maurya, Anil Kumar; Chanda, Debabrata
2012-01-01
We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance. PMID:22216055
A new concept in Bitter disk design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.J.; Schneider-Muntau, H.J.; Eyssa, Y.M.
1996-07-01
A new concept in cooling hole design in Bitter disks that allows for much higher power densities and results in considerably lower hoop stresses has been developed and successfully tested at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The new cooling hole shape allows for extreme power densities (up to 12 W.mm{sup 3}) at a moderate heat flux of only 5 W/mm{sup 2}. The new concept also reduces the hoop stress by about 30--50% by making a Bitter disk compliant in the radial direction through staggering small width and closely spaced elongated cooling holes. Finally, the designmore » is optimized for equal temperature.« less
NASA Technical Reports Server (NTRS)
Goett, Harry J; Delaney, Noel K
1944-01-01
Report presents the results of tests of a model of a single-engine airplane with two different tilts of the propeller axis. The results indicate that on a typical design a 5 degree downward tilt of the propeller axis will considerably reduce the destabilization effects of power. A comparison of the experimental results with those computed by use of existing theory is included. A comparison of the experimental results with those computed by use of existing theory is included. It is shown that the results can be predicted with an accuracy acceptable for preliminary design purposes, particularly at the higher powers where the effects are of significant magnitude.
Microwave Frequency Multiplier
NASA Astrophysics Data System (ADS)
Velazco, J. E.
2017-02-01
High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing concerns. We present a theoretical analysis for the beam-wave interactions in the MFM's input and output cavities. We show the conditions required for successful frequency multiplication inside the output cavity. Computer simulations using the plasma physics code MAGIC show that 100 kW of Ka-band (32-GHz) output power can be produced using an 80-kW X-band (8-GHz) signal at the MFM's input. The associated MFM efficiency - from beam power to Ka-band power - is 83 percent. Thus, the overall klystron-MFM efficiency is 42 percent - assuming that a klystron with an efficiency of 50 percent delivers the input signal.
Thermal Management and Reliability of Power Electronics and Electric Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant
2016-09-19
Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.« less
Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo
Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand,more » with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.« less
A power-efficient ZF precoding scheme for multi-user indoor visible light communication systems
NASA Astrophysics Data System (ADS)
Zhao, Qiong; Fan, Yangyu; Deng, Lijun; Kang, Bochao
2017-02-01
In this study, we propose a power-efficient ZF precoding scheme for visible light communication (VLC) downlink multi-user multiple-input-single-output (MU-MISO) systems, which incorporates the zero-forcing (ZF) and the characteristics of VLC systems. The main idea of this scheme is that the channel matrix used to perform pseudoinverse comes from the set of optical Access Points (APs) shared by more than one user, instead of the set of all involved serving APs as the existing ZF precoding schemes often used. By doing this, the waste of power, which is caused by the transmission of one user's data in the un-serving APs, can be avoided. In addition, the size of the channel matrix needs to perform pseudoinverse becomes smaller, which helps to reduce the computation complexity. Simulation results in two scenarios show that the proposed ZF precoding scheme has higher power efficiency, better bit error rate (BER) performance and lower computation complexity compared with traditional ZF precoding schemes.
Power sharing. A transformational strategy for nurse retention, effectiveness, and extra effort.
Trofino, Joan
2003-01-01
Power sharing with staff nurses is an essential strategy for organizational transformation. The current competitive health care environment requires a powerful team of participants, including staff at all levels, to provide health care in mutual partnership. The challenges of today's competitive and global environment call for collegial relationships among nurse executive leadership, middle nurse managers, and staff nurses. Research has demonstrated that middle nurse managers maintain primary responsibility for staff nurse retention. A higher retention rate was reported among nurses who were very satisfied with their nurse managers. Nurses considered favorably nurse managers who value staff contributions, promote information sharing, and exert influence for a stable work environment. Furthermore, as staff nurse satisfaction increased, effectiveness and extra effort also increased when staff nurses perceived transformational leadership strategies. Strategies for power sharing include serving as role models and mentors, energizing staff, resisting attitudes of staff ownership, reducing staff nurse stress of leader presence, and information sharing and commendations at meetings.
Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells
NASA Astrophysics Data System (ADS)
Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong
One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.
Life cycle assessment of sewage sludge co-incineration in a coal-based power station.
Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei
2013-09-01
A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wind Energy Deployment in Isolated Islanded Power Systems: Challenges & Realities (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
Rising costs of fuels, energy surety, and the carbon impacts of diesel fuel are driving remote and islanded communities dependent on diesel power generation to look for alternatives. Over the past few years, interest in using wind energy to reduce diesel fuel consumption has increased dramatically, potentially providing economic, environmental, social, and security benefits to the energy supply of isolated and islanded communities. However, the task of implementing such systems has remained elusive and subject to many cases of lower-than-expected performance. This poster describes the current status of integrating higher contribution wind technology into islanded power systems, the progress ofmore » recent initiatives implemented by the U.S. Department of Energy and Interior, and some of the lingering technical and commercial challenges. Operating experience from a number of power systems is described. The worldwide market for wind development in islanded communities (some of these supplying large domestic loads) provides a strong market niche for the wind industry, even in the midst of a slow global recovery.« less
Impact of uncoordinated plug-in electric vehicle charging on residential power demand
NASA Astrophysics Data System (ADS)
Muratori, Matteo
2018-03-01
Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.
Observations of electron heating during 28 GHz microwave power application in proto-MPEX
Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.; ...
2018-02-01
The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less
Observations of electron heating during 28 GHz microwave power application in proto-MPEX
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team
2018-02-01
The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
Method of air preheating for combustion power plant and systems comprising the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei
Disclosed herein is a heat exchanger for transferring heat between a first gas flow and a second gas flow, the heat exchanger comprising at least two sectors; a first sector that is operative to receive a combustion air stream; and a second sector that is opposed to the first sector and that is operative to receive either a reducer gas stream or an oxidizer gas stream, and a pressurized layer disposed between the first sector and the second sector; where the pressurized layer is at a higher pressure than combustion air stream, the reducer gas stream and the oxidizer gasmore » stream.« less
Comet brightness parameters: Definition, determination, and correlations
NASA Technical Reports Server (NTRS)
Meisel, D. D.; Morris, C. S.
1976-01-01
The power-law definition of comet brightness is reviewed and possible systematic influences are discussed that can affect the derivation of m sub o and n values from visual magnitude estimates. A rationale for the Bobrovnikoff aperture correction method is given and it is demonstrated that the Beyer extrafocal method leads to large systematic effects which if uncorrected by an instrumental relationship result in values significantly higher than those derived according to the Bobrovnikoff guidelines. A series of visual brightness parameter sets are presented which have been reduced to the same photometric system. Recommendations are given to insure that future observations are reduced to the same system.
Technology Directions for the 21st Century. Volume 4
NASA Technical Reports Server (NTRS)
Crimi, Giles; Verheggen, Henry; Botta, Robert; Paul, Heywood; Vuong, Xuyen
1998-01-01
Data compression is an important tool for reducing the bandwidth of communications systems, and thus for reducing the size, weight, and power of spacecraft systems. For data requiring lossless transmissions, including most science data from spacecraft sensors, small compression factors of two to three may be expected. Little improvement can be expected over time. For data that is suitable for lossy compression, such as video data streams, much higher compression factors can be expected, such as 100 or more. More progress can be expected in this branch of the field, since there is more hidden redundancy and many more ways to exploit that redundancy.
Turbulence Measurements by Interferometry and Far-forward Scattering on the HSX Stellarator
NASA Astrophysics Data System (ADS)
Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.
2017-10-01
After neo-classical transport was reduced by restoring symmetry along the helical axis, a primary physics goal for HSX is to study how 3-D shaping can reduce turbulence thereby requiring measurement of turbulence with kyρs up to 1. For characteristic HSX parameters (Te 200 eV at r/a 0.5 where the density gradient peaks), this condition corresponds to ky up to 7 cm-1. To accommodate this goal, a new 9-chord HSX interferometer/far-forward scattering system has been designed to measure density turbulence at higher k. The new system employing two high-power (30 mW each, 320 GHz), solid-state sources with frequency offset up to 6 MHz. This will permit true heterodyne detection, thereby realizing faster measurement time response, increased bandwidth and reduced noise. High power sources and high sensitivity planar-diode mixers will allow us to reduce the aperture of the receiver optics to a few mm thereby increasing the maximum wavenumber to k 15 cm-1. Reconfiguring the interferometer system into a finite-angle collective scattering arrangement is also planned as it will increase the measured k-spectrum up to 18 cm-1 with some spatial resolution (core or edge). Supported by USDOE Grants DE-FG03-01ER54615 and DE-FG02-93ER54222.
Bending mode flutter in a transonic linear cascade
NASA Astrophysics Data System (ADS)
Govardhan, Raghuraman; Jutur, Prahallada
2017-11-01
Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.
FY98 Aero Propulsion & Power Technology Area Plan.
1997-11-01
controlled area turbine nozzle (HPT & LPT) - second quarter FY98 a Fabrication/test of gamma titanium aluminide exhaust flap/liner - third quarter...both a commercial business jet and an unmanned air vehicle (Dark Star). - "Super-cooled" turbine blade designs permit 3000 F higher gas temperature for...increased thrust, or 30% reduction in blade cooling air for reduced fuel consumption, or two-to four- fold increase in turbine blade life - all at a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, J. P.
2013-07-01
Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.
Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.
Campanelli, L; Cea, P; Tedesco, L
2006-09-29
The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.
NASA Technical Reports Server (NTRS)
Gunawardena, J. A.
1992-01-01
This cache mechanism is transparent but does not contain associative circuits. It does not rely on locality of reference of instructions or data. No redundant instructions or data are encached. Items in the cache are accessed without address arithmetic. A cache miss is detected by the simplest test; compare two bits. These features would result in faster access, higher hit rate, reduced chip area, and less power dissipation in comparison with associative systems of similar size.
Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.
Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A
2016-01-01
In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P < .0001) different mean (SD) measurements: 1.49 (0.15) Nm and 3.73 (0.79) Nm. Use under drill power at controlled low velocity and at high velocity also resulted in significantly (P < .0001) different mean (SD) measurements: 1.47 (0.14) Nm and 5.37 (0.90) Nm. Maximum single measurement obtained was 9.0 Nm using drill power at high velocity. Locking screw insertion with improper technique may result in higher than expected torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.
NASA Astrophysics Data System (ADS)
Satrio, Reza Indra; Subiyanto
2018-03-01
The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.
MAGNETIC SCALING LAWS FOR THE ATMOSPHERES OF HOT GIANT EXOPLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menou, Kristen
2012-02-01
We present scaling laws for advection, radiation, magnetic drag, and ohmic dissipation in the atmospheres of hot giant exoplanets. In the limit of weak thermal ionization, ohmic dissipation increases with the planetary equilibrium temperature (T{sub eq} {approx}> 1000 K) faster than the insolation power does, eventually reaching values {approx}> 1% of the insolation power, which may be sufficient to inflate the radii of hot Jupiters. At higher T{sub eq} values still magnetic drag rapidly brakes the atmospheric winds, which reduces the associated ohmic dissipation power. For example, for a planetary field strength B = 10 G, the fiducial scaling lawsmore » indicate that ohmic dissipation exceeds 1% of the insolation power over the equilibrium temperature range T{sub eq} {approx} 1300-2000 K, with a peak contribution at T{sub eq} {approx} 1600 K. Evidence for magnetically dragged winds at the planetary thermal photosphere could emerge in the form of reduced longitudinal offsets for the dayside infrared hotspot. This suggests the possibility of an anticorrelation between the amount of hotspot offset and the degree of radius inflation, linking the atmospheric and interior properties of hot giant exoplanets in an observationally testable way. While providing a useful framework to explore the magnetic scenario, the scaling laws also reveal strong parameter dependencies, in particular with respect to the unknown planetary magnetic field strength.« less
Electrical load management at the Goldstone DSN Complex
NASA Technical Reports Server (NTRS)
Rayburn, J. C.
1981-01-01
A Power Load Management Plan was deveoped which utilizes the unique power generating capabilities of the stations to reduce the stress on the local utility's reserve capacity and reduce the cost of electrical power at the stations. The plan has greatly reduced the cost of Goldstone electrical power by completely eliminating the use of commercial power during the local utility's high usage periods each day.
Effect of timing of hip extension assistance during loaded walking with a soft exosuit.
Ding, Ye; Panizzolo, Fausto A; Siviy, Christopher; Malcolm, Philippe; Galiana, Ignacio; Holt, Kenneth G; Walsh, Conor J
2016-10-03
Recent advances in wearable robotic devices have demonstrated the ability to reduce the metabolic cost of walking by assisting the ankle joint. To achieve greater gains in the future it will be important to determine optimal actuation parameters and explore the effect of assisting other joints. The aim of the present work is to investigate how the timing of hip extension assistance affects the positive mechanical power delivered by an exosuit and its effect on biological joint power and metabolic cost during loaded walking. In this study, we evaluated 4 different hip assistive profiles with different actuation timings: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP). Eight healthy participants walked on a treadmill at a constant speed of 1.5 m · s -1 while carrying a 23 kg backpack load. We tested five different conditions: four with the assistive profiles described above and one unpowered condition where no assistance was provided. We evaluated participants' lower limb kinetics, kinematics, metabolic cost and muscle activation. The variation of timing in the hip extension assistance resulted in a different amount of mechanical power delivered to the wearer across conditions; with the ESLP condition providing a significantly higher amount of positive mechanical power (0.219 ± 0.006 W · kg -1 ) with respect to the other powered conditions. Biological joint power was significantly reduced at the hip (ESEP and ESLP) and at the knee (ESEP, ESLP and LSEP) with respect to the unpowered condition. Further, all assistive profiles significantly reduced the metabolic cost of walking compared to the unpowered condition by 5.7 ± 1.5 %, 8.5 ± 0.9 %, 6.3 ± 1.4 % and 7.1 ± 1.9 % (mean ± SE for ESEP, ESLP, LSEP, LSLP, respectively). The highest positive mechanical power delivered by the soft exosuit was reported in the ESLP condition, which showed also a significant reduction in both biological hip and knee joint power. Further, the ESLP condition had the highest average metabolic reduction among the powered conditions. Future work on autonomous hip exoskeletons may incorporate these considerations when designing effective control strategies.
Covele, Brent; Kotschenreuther, M.; Mahajan, S.; ...
2017-06-23
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice
Wan, Chunlei; Tian, Ruoming; Kondou, Mami; ...
2017-10-18
Hybrid inorganic–organic superlattice with an electron-transmitting but phonon-blocking structure has emerged as a promising flexible thin film thermoelectric material. However, the substantial challenge in optimizing carrier concentration without disrupting the superlattice structure prevents further improvement of the thermoelectric performance. Here we demonstrate a strategy for carrier optimization in a hybrid inorganic–organic superlattice of TiS 2[tetrabutylammonium] x [hexylammonium] y, where the organic layers are composed of a random mixture of tetrabutylammonium and hexylammonium molecules. By vacuum heating the hybrid materials at an intermediate temperature, the hexylammonium molecules with a lower boiling point are selectively de-intercalated, which reduces the electron density duemore » to the requirement of electroneutrality. The tetrabutylammonium molecules with a higher boiling point remain to support and stabilize the superlattice structure. Furthermore, the carrier concentration can thus be effectively reduced, resulting in a remarkably high power factor of 904 µW m –1 K –2 at 300 K for flexible thermoelectrics, approaching the values achieved in conventional inorganic semiconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covele, Brent; Kotschenreuther, M.; Mahajan, S.
The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less
Outsourcing punishment to God: beliefs in divine control reduce earthly punishment
Laurin, Kristin; Shariff, Azim F.; Henrich, Joseph; Kay, Aaron C.
2012-01-01
The sanctioning of norm-transgressors is a necessary—though often costly—task for maintaining a well-functioning society. Prior to effective and reliable secular institutions for punishment, large-scale societies depended on individuals engaging in ‘altruistic punishment’—bearing the costs of punishment individually, for the benefit of society. Evolutionary approaches to religion suggest that beliefs in powerful, moralizing Gods, who can distribute rewards and punishments, emerged as a way to augment earthly punishment in large societies that could not effectively monitor norm violations. In five studies, we investigate whether such beliefs in God can replace people's motivation to engage in altruistic punishment, and their support for state-sponsored punishment. Results show that, although religiosity generally predicts higher levels of punishment, the specific belief in powerful, intervening Gods reduces altruistic punishment and support for state-sponsored punishment. Moreover, these effects are specifically owing to differences in people's perceptions that humans are responsible for punishing wrongdoers. PMID:22628465
Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail
2014-01-01
Aim: The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. Materials and Methods: For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin—Cioacalteu’s reagent. Results: The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. Conclusion: It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. PMID:26401347
Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail
2014-01-01
The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu's reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents.
Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Chunlei; Tian, Ruoming; Kondou, Mami
Hybrid inorganic–organic superlattice with an electron-transmitting but phonon-blocking structure has emerged as a promising flexible thin film thermoelectric material. However, the substantial challenge in optimizing carrier concentration without disrupting the superlattice structure prevents further improvement of the thermoelectric performance. Here we demonstrate a strategy for carrier optimization in a hybrid inorganic–organic superlattice of TiS 2[tetrabutylammonium] x [hexylammonium] y, where the organic layers are composed of a random mixture of tetrabutylammonium and hexylammonium molecules. By vacuum heating the hybrid materials at an intermediate temperature, the hexylammonium molecules with a lower boiling point are selectively de-intercalated, which reduces the electron density duemore » to the requirement of electroneutrality. The tetrabutylammonium molecules with a higher boiling point remain to support and stabilize the superlattice structure. Furthermore, the carrier concentration can thus be effectively reduced, resulting in a remarkably high power factor of 904 µW m –1 K –2 at 300 K for flexible thermoelectrics, approaching the values achieved in conventional inorganic semiconductors.« less
Biophysical properties of carboxymethyl derivatives of mannan and dextran.
Korcová, Jana; Machová, Eva; Filip, Jaroslav; Bystrický, Slavomír
2015-12-10
Mannan from Candida albicans, dextran from Leuconostoc spp. and their carboxymethyl (CM)-derivatives were tested on antioxidant and thrombolytic activities. As antioxidant tests, protection of liposomes against OH radicals and reducing power assay were used. Dextran and mannan protected liposomes in dose-dependent manner. Carboxymethylation significantly increased antioxidant properties of both CM-derivatives up to concentration of 10mg/mL, higher concentrations did not change the protection of liposomes. The reducing power of CM-mannan (DS 0.92) was significantly lower (P<0.05) than underivatized mannan. No reductive activity was found for dextran and CM-dextran. All CM-derivatives demonstrated statistically significant increasing activity compared with underivatized polysaccharides. The highest thrombolytic activity was found using CM-mannan (DS 0.92). The clot lysis here amounted to 68.78 ± 6.52% compared with 0.9% NaCl control (18.3 ± 6.3%). Three-dimensional surface profiles of mannan, dextran, and their CM-derivatives were compared by atomic force microscopy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Agrawal, Himani; Joshi, Robin; Gupta, Mahesh
2016-08-01
Pearl millet (Pennisetum glaucum) is a rich source of protein, used for present study to hydrolyze protein, peptide separation and its functional activity. Antioxidative bioactive peptide was successfully identified from pearl millet using trypsin enzyme. Different antioxidative potential of isolated peptide were assessed based on activity of DPPH radical, ABTS radical, hydroxyl radical, Fe(2+) chelating ability and reducing power. Bioactive peptide separated by gel-filtration chromatography, showed the higher antioxidant activity as tested by different free radicals. The activity of pearl millet protein hydrolysate fraction was found for DPPH assay (67.66%), ABTS assay (78.81%), Fe(2+) chelating ability (51.20%), hydroxyl assay (60.95%) and reducing power (0.375nm) was further purified using reversed-phase UFLC and subjected to matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for sequential identification of the peptide. The sequence SDRDLLGPNNQYLPK was identified as antioxidant peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.
100 km CEPC parameters and lattice design
NASA Astrophysics Data System (ADS)
Wang, D.; Gao, J.; Yu, C. H.; Zhang, Y.; Wang, Y. W.; Su, F.; Y Zhai, J.; Bai, S.; Geng, H. P.; Bian, T. J.; Wang, N.; Cui, X. H.; Zhang, C.; Qin, Q.
2017-07-01
The 100km double ring configuration with shared superconducting RF system has been defined as baseline by the circular electron positron collider (CEPC) steering committee. Based on this new scheme, we will get higher luminosity for Higgs (+170%) keeping the beam power in preliminary conceptual design report (Pre-CDR) or to reduce the beam power (19 MW) while keeping same luminosity. CEPC will be compatible with W and Z experiment. The luminosity for Z is designed at the level of 1035 cm-2s-1. The requirement for the energy acceptance of Higgs has been reduced to 1.5% by enlarging the ring to 100 km. The optics of arc and final focus system (FFS) with crab sextupoles has been designed, and also some primary dynamic aperture (DA) results were introduced. Work supported by the National Key Programme for S&T Research and Development (Grant NO. 2016YFA0400400) and the National Natural Science Foundation of China (11505198, 11575218, 11605210 and 11605211).
A role for high frequency superconducting devices in free space power transmission systems
NASA Technical Reports Server (NTRS)
Christian, Jose L., Jr.; Cull, Ronald C.
1988-01-01
Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
NASA Astrophysics Data System (ADS)
Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.
2018-05-01
An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.
Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...
2018-04-20
Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less
Fully moderated T-statistic for small sample size gene expression arrays.
Yu, Lianbo; Gulati, Parul; Fernandez, Soledad; Pennell, Michael; Kirschner, Lawrence; Jarjoura, David
2011-09-15
Gene expression microarray experiments with few replications lead to great variability in estimates of gene variances. Several Bayesian methods have been developed to reduce this variability and to increase power. Thus far, moderated t methods assumed a constant coefficient of variation (CV) for the gene variances. We provide evidence against this assumption, and extend the method by allowing the CV to vary with gene expression. Our CV varying method, which we refer to as the fully moderated t-statistic, was compared to three other methods (ordinary t, and two moderated t predecessors). A simulation study and a familiar spike-in data set were used to assess the performance of the testing methods. The results showed that our CV varying method had higher power than the other three methods, identified a greater number of true positives in spike-in data, fit simulated data under varying assumptions very well, and in a real data set better identified higher expressing genes that were consistent with functional pathways associated with the experiments.
Command Interface ASIC - Analog Interface ASIC Chip Set
NASA Technical Reports Server (NTRS)
Ruiz, Baldes; Jaffe, Burton; Burke, Gary; Lung, Gerald; Pixler, Gregory; Plummer, Joe; Katanyoutanant,, Sunant; Whitaker, William
2003-01-01
A command interface application-specific integrated circuit (ASIC) and an analog interface ASIC have been developed as a chip set for remote actuation and monitoring of a collection of switches, which can be used to control generic loads, pyrotechnic devices, and valves in a high-radiation environment. The command interface ASIC (CIA) can be used alone or in combination with the analog interface ASIC (AIA). Designed primarily for incorporation into spacecraft control systems, they are also suitable for use in high-radiation terrestrial environments (e.g., in nuclear power plants and facilities that process radioactive materials). The primary role of the CIA within a spacecraft or other power system is to provide a reconfigurable means of regulating the power bus, actuating all valves, firing all pyrotechnic devices, and controlling the switching of power to all switchable loads. The CIA is a mixed-signal (analog and digital) ASIC that includes an embedded microcontroller with supporting fault-tolerant switch control and monitoring circuitry that is capable of connecting to a redundant set of interintegrated circuit (I(sup 2)C) buses. Commands and telemetry requests are communicated to the CIA. Adherence to the I(sup 2)C bus standard helps to reduce development costs by facilitating the use of previously developed, commercially available components. The AIA is a mixed-signal ASIC that includes the analog circuitry needed to connect the CIA to a custom higher powered version of the I(sup 2)C bus. The higher-powered version is designed to enable operation with bus cables longer than those contemplated in the I(sup 2)C standard. If there are multiple higher-power I(sup 2)C-like buses, then there must an AIA between the CIA and each such bus. The AIA includes two identical interface blocks: one for the side-A I(sup 2)C clock and data buses and the other for the side B buses. All the AIAs on each side are powered from a common power converter module (PCM). Sides A and B of the I(sup 2)C buses are electrically isolated from each other (see figure). They are also isolated from the CIA by use of transformer coupling of signals between the AIA blocks and the CIA.
Oboh, G; Raddatz, H; Henle, T
2009-01-01
Corchorus olitorius (jute) is a native plant of tropical Africa and Asia, and has since spread to Australia, South America and some parts of Europe. Its leafy vegetable is popularly used in soup preparation and folk medicine for the treatment of fever, chronic cystitis, cold and tumours. A comparative study of the antioxidant properties of hydrophilic extract (HE) and lipophilic extract (LE) constituents of the leafy vegetable has been assessed. HE and LE of the leaf were prepared using water and hexane, respectively and their antioxidant properties were determined. HE had a significantly higher (P<0.05) 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability (aqueous, 9.6-84.4%; hexane, 2.0-20.4%), reducing power (aqueous, 0.67 mmol ascorbic acid equivalent/g; hexane, 0.49 mmol ascorbic acid equivalent/g) and trolox equivalent antioxidant capacity (aqueous, 2.3 mmol/g; hexane, 1.1 mmol/g) than LE; conversely, LE had a significantly higher (P<0.05) OH. scavenging activity (44.5-46.2%) than HE (11.6-32.3%), while there was no significant difference (P>0.05) in their Fe(II) chelating ability (HE, 57.7-66.7%; LE, 56.4-61.1%). The higher 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, reducing power and trolox equivalent antioxidant capacity of the hydrophilic extract may be due to its significantly higher (P<0.05) total phenol (630.8 mg/100 g), total flavonoid (227.8 mg/100 g) and non-flavonoid polyphenols (403.0 mg/100 g), and its high ascorbic acid content (32.6 mg/100 g). While the higher OH. scavenging ability of LE may be due to its high total carotenoid content (42.5 mg/100 g). Therefore, the additive/synergistic antioxidant activities of the hydrophilic and lipophilic constituents may contribute to the medicinal properties of C. olitorius leaf.
Lunar Surface Stirling Power Systems Using Isotope Heat Sources
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2010-01-01
For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
Lunar Surface Stirling Power Systems Using Am-241
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2009-01-01
For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
Vulnerability of US and European electricity supply to climate change
NASA Astrophysics Data System (ADS)
van Vliet, Michelle T. H.; Yearsley, John R.; Ludwig, Fulco; Vögele, Stefan; Lettenmaier, Dennis P.; Kabat, Pavel
2012-09-01
In the United States and Europe, at present 91% and 78% (ref. ) of the total electricity is produced by thermoelectric (nuclear and fossil-fuelled) power plants, which directly depend on the availability and temperature of water resources for cooling. During recent warm, dry summers several thermoelectric power plants in Europe and the southeastern United States were forced to reduce production owing to cooling-water scarcity. Here we show that thermoelectric power in Europe and the United States is vulnerable to climate change owing to the combined impacts of lower summer river flows and higher river water temperatures. Using a physically based hydrological and water temperature modelling framework in combination with an electricity production model, we show a summer average decrease in capacity of power plants of 6.3-19% in Europe and 4.4-16% in the United States depending on cooling system type and climate scenario for 2031-2060. In addition, probabilities of extreme (>90%) reductions in thermoelectric power production will on average increase by a factor of three. Considering the increase in future electricity demand, there is a strong need for improved climate adaptation strategies in the thermoelectric power sector to assure futureenergy security.
Cengiz, Asim
2015-05-01
[Purpose] This study aimed to verify the effects of self-directed weight loss on lower- and upper-body power, fatigue index, and heart rate recovery immediately before a meaningful competition (12 hours of recovery). In addition, this study tested the hypothesis that weight loss provides advantages in strength and power, as the relative power of the wrestlers is higher than that of opponents in the same weight class who do not reduce weight. [Subjects and Methods] Eleven well-trained wrestlers volunteered for the study. At baseline, their mean ± SD age, body mass, and height were 20.45 ± 2.69 years, 74.36 ± 9.22 kg, and 177 ± 5.71 cm, respectively. Repeated-measures one-way analysis of variance was performed to analyze differences. [Results] Rapid weight loss achieved by restriction of energy and fluid intake resulted in exercise-impaired decreases in peak power and increased fatigue index. Moreover, weight loss by dehydration negatively affected cardiovascular stability. [Conclusion] Most of the negative effects of rapid weight loss disappear after a 12-hour recovery period, and relative peak power increases after weight loss.
Radioisotope Power System Pool Concept
NASA Technical Reports Server (NTRS)
Rusick, Jeffrey J.; Bolotin, Gary S.
2015-01-01
Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.
Differential Go/NoGo Activity in Both Contingent Negative Variation and Spectral Power
Funderud, Ingrid; Lindgren, Magnus; Løvstad, Marianne; Endestad, Tor; Voytek, Bradley; Knight, Robert T.; Solbakk, Anne-Kristin
2012-01-01
We investigated whether both the contingent negative variation (CNV), an event-related potential index of preparatory brain activity, and event-related oscillatory EEG activity differentiated Go and NoGo trials in a delayed response task. CNV and spectral power (4–100 Hz) were calculated from EEG activity in the preparatory interval in 16 healthy adult participants. As previously reported, CNV amplitudes were higher in Go compared to NoGo trials. In addition, event-related spectral power of the Go condition was reduced in the theta to low gamma range compared to the NoGo condition, confirming that preparing to respond is associated with modulation of event-related spectral activity as well as the CNV. Altogether, the impact of the experimental manipulation on both slow event-related potentials and oscillatory EEG activity may reflect coordinated dynamic changes in the excitability of distributed neural networks involved in preparation. PMID:23119040
Sensitivity improvement of a thermal convection-based tilt sensor using carbon nanotube
NASA Astrophysics Data System (ADS)
Han, Maeum; Kim, Jae-Keon; Bae, Gong-Myeong; Bang, Younghwan; Lee, Gil S.; Kang, Shin-Won; Jung, Daewoong
2017-06-01
This paper presents a thermal convection-based sensor, which is fabricated using carbon nanotube (CNT) yarn. The key element in this device is the non-symmetrically distributed, heated air medium around the heater, particularly when it experiences acceleration and/or changes in inclination. Therefore, it can withstand much higher accelerations/inclination than conventional sensors that use a proof mass. However, a major challenge for the design of this type of sensor is the high heating power (in the order of tens of milliwatts) required to facilitate thermal convection in a sealed chamber. In order to reduce the high heating power, CNTs are investigated as materials for both the heater and the temperature sensors. Moreover, this paper discusses experiments that were performed by varying several parameters, such as the heating power, distance between the heater and temperature sensors, the gas medium used, and air pressure.
Lee, Dong Kyu; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop
2018-03-01
The junction temperature of high-power LED lighting was reduced effectively using a lens plate made from a thermally-conductive plastics (TCP). TCP has an excellent thermal conductivity, approximately 5 times that of polymethylmethacrylate (PMMA). Two sets of high-power LED lighting were designed using a multi array LED package with a lens plate for thermal simulation. The difference between two models was the materials of the lens plate. The lens plates of first and second models were fabricated by PMMA (PMMA lighting) and TCP (TCP lighting), respectively. At the lens plate, the simulated temperature of the TCP lighting was higher than that of the PMMA lighting. Near the LED package, the temperature of the TCP lighting was 2 °C lower than that of the PMMA lighting. This was well matched with the measured temperature of the fabricated lighting with TCP and PMMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.
The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less
FELERION: a new approach for leakage power reduction
NASA Astrophysics Data System (ADS)
R, Anjana; Somkuwar, Ajay
2014-12-01
The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%-94% as compared to the conventional approach.
Hippophae leaf extract concentration regulates antioxidant and prooxidant effects on DNA.
Saini, Manu; Tiwari, Sandhya; Prasad, Jagdish; Singh, Surender; Kumar, M S Yogendra; Bala, Madhu
2010-03-01
Extracts from Hippophae leaves constitute some commonly consumed beverages such as tea and wine. We had developed an extract of Hippophae leaves (SBL-1), which was rich in quercetin, had antimutagenic effects, radioprotective effects, and countered radiation-induced gene conversion in Saccharomyces cerevisiae. This study was designed to investigate the action of SBL-1 on guanine cytosine (GC)-rich nascent and mouse genomic DNA in vitro. The human and mouse liver DNA have about 43% GC content. Our results showed that at small concentration SBL-1 protected nascent as well as genomic DNA, while at large concentration SBL-1 damaged both types of DNA. The concentration of SBL-1 that protected DNA also demonstrated higher free radical scavenging activity. The reducing power of SBL-1 was greater than its free radical scavenging activity. The greater reducing power may have reduced the trace metals present in the SBL-1, leading to generation of hydroxyl radicals via Fenton reaction. The increased proportion of unscavenged hydroxyl radicals with increase in SBL-1 concentration may have been responsible for DNA damage or prooxidant effect of SBL-1 in vitro. This study suggests that the dietary supplements prepared from Hippophae should have low metal content.
NASA Astrophysics Data System (ADS)
Nawayseh, Naser; Griffin, Michael J.
2010-07-01
Previous studies have quantified the power absorbed in the seated human body during exposure to vibration but have not investigated the effects of body posture or the power absorbed at the back and the feet. This study investigated the effects of support for the feet and back and the magnitude of vibration on the power absorbed during whole-body vertical vibration. Twelve subjects were exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random vertical vibration (0.25-20 Hz) while sitting on a rigid seat in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest. Force and acceleration were measured at the seat, the feet, and the backrest to calculate the power absorbed at these three locations. At all three interfaces (seat, feet, and back) the absorbed power increased in proportion to the square of the magnitude of vibration, with most power absorbed from vibration at the seat. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Supporting the feet with the footrest reduced the total absorbed power at the seat, with greater reductions with higher footrests. It is concluded that contact between the thighs and the seat increases the power absorbed at the seat whereas a backrest can either increase or decrease the power absorbed at the seat.
Design options for automotive batteries in advanced car electrical systems
NASA Astrophysics Data System (ADS)
Peters, K.
The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.
Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia
2011-08-01
A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Farkas, Z. D.
2002-03-01
The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.
Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors
NASA Astrophysics Data System (ADS)
He, Nanfei; Yildiz, Ozkan; Pan, Qin; Zhu, Jiadeng; Zhang, Xiangwu; Bradford, Philip D.; Gao, Wei
2017-03-01
Nowadays, the wide-spread adoption of supercapacitors has been hindered by their inferior energy density to that of batteries. Here we report the use of our pyrolytic-carbon-coated carbon nanotube foams as lightweight, compressible, porous, and highly conductive current collectors in supercapacitors, which are infiltrated with chemically-reduced graphene oxide and later compressed via mechanical and capillary forces to generate the active electrodes. The pyrolytic carbon coatings, introduced by chemical vapor infiltration, wrap around the CNT junctions and increase the surface roughness. When active materials are infiltrated, the pyrolytic-carbon coatings help prevent the π-stacking, enlarge the accessible surface area, and increase the electrical conductivity of the scaffold. Our best-performing device offers 48% and 57% higher gravimetric energy and power density, 14% and 23% higher volumetric energy and power density, respectively, and two times higher knee frequency, than the device with commercial current collectors, while the "true-performance metrics" are strictly followed in our measurements. We have further clarified the solution resistance, charge transfer resistance/capacitance, double-layer capacitance, and Warburg resistance in our system via comprehensive impedance analysis, which will shed light on the design and optimization of similar systems.
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2010-01-01
This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.
Effects of Rifaximin on Central Responses to Social Stress-a Pilot Experiment.
Wang, Huiying; Braun, Christoph; Enck, Paul
2018-04-30
Probiotics that promote the gut microbiota have been reported to reduce stress responses, and improve memory and mood. Whether and how antibiotics that eliminate or inhibit pathogenic and commensal gut bacteria also affect central nervous system functions in humans is so far unknown. In a double-blinded randomized study, 16 healthy volunteers (27.00 ± 1.60 years; 9 males) received either rifaximin (600 mg/day) (a poorly absorbable antibiotic) or placebo for 7 days. Before and after the drug intervention, brain activities during rest and during a social stressor inducing feelings of exclusion (Cyberball game) were measured using magnetoencephalography. Social exclusion significantly affected (p < 0.001) mood and increased exclusion perception. Magnetoencephalography showed brain regions with higher activations during exclusion as compared to inclusion, in different frequency bands. Seven days of rifaximin increased prefrontal and right cingulate alpha power during resting state. Low beta power showed an interaction of intervention (rifaximin, placebo) × condition (inclusion, exclusion) during the Cyberball game in the bilateral prefrontal and left anterior cingulate cortex. Only in the rifaximin group, a decrease (p = 0.004) in power was seen comparing exclusion to inclusion; the reduced beta-1 power was negatively correlated with a change in the subjective exclusion perception score. Social stress affecting brain functioning in a specific manner is modulated by rifaximin. Contrary to our hypothesis that antibiotics have advert effects on mood, the antibiotic exhibited stress-reducing effects similar to reported effects of probiotics (supported by NeuroGUT, a EU 7th Framework Programme ITN no. 607652; ClinicalTrials.gov identifier number NCT02793193).
Flapping foil power generator performance enhanced with a spring-connected tail
NASA Astrophysics Data System (ADS)
Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.
2017-12-01
The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.
Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer
NASA Astrophysics Data System (ADS)
Shu, Keliu
The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.
A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs
Xu, Xin; Yuan, Minjiao; Liu, Xiao; Cai, Zhiping; Wang, Tian
2018-01-01
In wireless sensor networks (WSNs), communication links are typically error-prone and unreliable, so providing reliable and timely data routing for loss- and delay-sensitive applications in WSNs it is a challenge issue. Additionally, with specific thresholds in practical applications, the loss and delay sensitivity implies requirements for high reliability and low delay. Opportunistic Routing (OR) has been well studied in WSNs to improve reliability for error-prone and unreliable wireless communication links where the transmission power is assumed to be identical in the whole network. In this paper, a Cross-layer Optimized Opportunistic Routing (COOR) scheme is proposed to improve the communication link reliability and reduce delay for loss-and-delay sensitive WSNs. The main contribution of the COOR scheme is making full use of the remaining energy in networks to increase the transmission power of most nodes, which will provide a higher communication reliability or further transmission distance. Two optimization strategies referred to as COOR(R) and COOR(P) of the COOR scheme are proposed to improve network performance. In the case of increasing the transmission power, the COOR(R) strategy chooses a node that has a higher communication reliability with same distance in comparison to the traditional opportunistic routing when selecting the next hop candidate node. Since the reliability of data transmission is improved, the delay of the data reaching the sink is reduced by shortening the time of communication between candidate nodes. On the other hand, the COOR(P) strategy prefers a node that has the same communication reliability with longer distance. As a result, network performance can be improved for the following reasons: (a) the delay is reduced as fewer hops are needed while the packet reaches the sink in longer transmission distance circumstances; (b) the reliability can be improved since it is the product of the reliability of every hop of the routing path, and the count is reduced while the reliability of each hop is the same as the traditional method. After analyzing the energy consumption of the network in detail, the value of optimized transmission power in different areas is given. On the basis of a large number of experimental and theoretical analyses, the results show that the COOR scheme will increase communication reliability by 36.62–87.77%, decrease delay by 21.09–52.48%, and balance the energy consumption of 86.97% of the nodes in the WSNs. PMID:29751589
A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs.
Xu, Xin; Yuan, Minjiao; Liu, Xiao; Liu, Anfeng; Xiong, Neal N; Cai, Zhiping; Wang, Tian
2018-05-03
In wireless sensor networks (WSNs), communication links are typically error-prone and unreliable, so providing reliable and timely data routing for loss- and delay-sensitive applications in WSNs it is a challenge issue. Additionally, with specific thresholds in practical applications, the loss and delay sensitivity implies requirements for high reliability and low delay. Opportunistic Routing (OR) has been well studied in WSNs to improve reliability for error-prone and unreliable wireless communication links where the transmission power is assumed to be identical in the whole network. In this paper, a Cross-layer Optimized Opportunistic Routing (COOR) scheme is proposed to improve the communication link reliability and reduce delay for loss-and-delay sensitive WSNs. The main contribution of the COOR scheme is making full use of the remaining energy in networks to increase the transmission power of most nodes, which will provide a higher communication reliability or further transmission distance. Two optimization strategies referred to as COOR(R) and COOR(P) of the COOR scheme are proposed to improve network performance. In the case of increasing the transmission power, the COOR(R) strategy chooses a node that has a higher communication reliability with same distance in comparison to the traditional opportunistic routing when selecting the next hop candidate node. Since the reliability of data transmission is improved, the delay of the data reaching the sink is reduced by shortening the time of communication between candidate nodes. On the other hand, the COOR(P) strategy prefers a node that has the same communication reliability with longer distance. As a result, network performance can be improved for the following reasons: (a) the delay is reduced as fewer hops are needed while the packet reaches the sink in longer transmission distance circumstances; (b) the reliability can be improved since it is the product of the reliability of every hop of the routing path, and the count is reduced while the reliability of each hop is the same as the traditional method. After analyzing the energy consumption of the network in detail, the value of optimized transmission power in different areas is given. On the basis of a large number of experimental and theoretical analyses, the results show that the COOR scheme will increase communication reliability by 36.62⁻87.77%, decrease delay by 21.09⁻52.48%, and balance the energy consumption of 86.97% of the nodes in the WSNs.
Cultivation of E. coli in single- and ten-stage tower-loop reactors.
Adler, I; Schügerl, K
1983-02-01
E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.
Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J; Daw, C Stuart
2014-01-01
We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends inmore » the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.« less
NASA Astrophysics Data System (ADS)
Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas
2010-01-01
The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.
NASA Astrophysics Data System (ADS)
Bobinaite, V.; Konstantinaviciute, I.
2018-04-01
The paper aims at demonstrating the relevance of financing instruments, their terms and financing strategies in relation to the cost of wind power production and the ability of wind power plant (PP) to participate in the electricity market in Lithuania. The extended approach to the Levelized Cost of Energy (LCOE) is applied. The feature of the extended approach lies in considering the lifetime cost and revenue received from the support measures. The research results have substantiated the relevance of financing instruments, their terms and strategies in relation to their impact on the LCOE and competitiveness of wind PP. It has been found that financing of wind PP through the traditional financing instruments (simple shares and bank loans) makes use of venture capital and bonds coming even in the absence of any support. It has been estimated that strategies consisting of different proportions of hard and soft loans, bonds, own and venture capital result in the average LCOE of 5.1-5.7 EURct/kWh (2000 kW), when the expected electricity selling price is 5.4 EURct/kWh. The financing strategies with higher shares of equity could impact by around 6 % higher LCOE compared to the strategies encompassing higher shares of debt. However, seeking to motivate venture capitalists, bond holders or other new financiers entering the wind power sector, support measures (feed-in tariff or investment subsidy) are relevant in case of 250 kW wind PP. It has been estimated that under the unsupported financing strategies, the average LCOE of 250 kW wind PP will be 7.8-8.8 EURct/kWh, but it will reduce by around 50 % if feed-in tariff or 50 % investment subsidy is applied.
In Space Nuclear Power as an Enabling Technology for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.; Houts, Michael
2000-01-01
Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably reach the outer planets for scientific exploration.
Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts
NASA Astrophysics Data System (ADS)
Delle Monache, L.; Shahriari, M.; Cervone, G.
2017-12-01
We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.
Development of Advanced Stirling Radioisotope Generator for Space Exploration
NASA Technical Reports Server (NTRS)
Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.
2007-01-01
Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.
Analyzing endosonic root canal file oscillations: an in vitro evaluation.
Lea, Simon C; Walmsley, A Damien; Lumley, Philip J
2010-05-01
Passive ultrasonic irrigation may be used to improve bacterial reduction within the root canal. The technique relies on a small file being driven to oscillate freely within the canal and activating an irrigant solution through biophysical forces such as microstreaming. There is limited information regarding a file's oscillation patterns when operated while surrounded by fluid as is the case within a canal root. Files of different sizes (#10 and #30, 27 mm and 31 mm) were connected to an ultrasound generator via a 120 degrees file holder. Files were immersed in a water bath, and a laser vibrometer set up with measurement lines superimposed over the files. The laser vibrometer was scanned over the oscillating files. Measurements were repeated 10 times for each file/power setting used. File mode shapes are comprised of a series of nodes/antinodes, with thinner, longer files producing more antinodes. The maximum vibration occurred at the free end of the file. Increasing generator power had no significant effect on this maximum amplitude (p > 0.20). Maximum displacement amplitudes were 17 to 22 microm (#10 file, 27 mm), 15 to 21 microm (#10 file, 31 mm), 6 to 9 microm (#30 file, 27 mm), and 5 to 7 microm (#30, 31 mm) for all power settings. Antinodes occurring along the remaining file length were significantly larger at generator power 1 than at powers 2 through 5 (p < 0.03). At higher generator powers, energy delivered to the file is dissipated in unwanted vibration resulting in reduced vibration displacement amplitudes. This may reduce the occurrence of the biophysical forces necessary to maximize the technique's effectiveness. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A non-volatile flip-flop based on diode-selected PCM for ultra-low power systems
NASA Astrophysics Data System (ADS)
Ye, Yong; Du, Yuan; Gao, Dan; Kang, Yong; Song, Zhitang; Chen, Bomy
2016-10-01
As the process technology is continuously shrinking, low power consumption is a major issue in VLSI Systems-on-Chip (SoCs), especially for standby-power-critical applications. Recently, the emerging CMOS-compatible non-volatile memories (NVMs), such as Phase Change Memory (PCM), have been used as on-chip storage elements, which can obtain non-volatile processing, nearly-zero standby power and instant-on capability. PCM has been considered as the best candidate for the next generation of NVMs for its low cost, high density and high resistance transformation ratio. In this paper, for the first time, we present a diode-selected PCM based non-volatile flip-flop (NVFF) which is optimized for better power consumption and process variation tolerance. With dual trench isolation process, the diode-selected PCM realizes ultra small area, which is very suitable for multi-context configuration and large scale flip-flops matrix. Since the MOS-selected PCM is hard to shrink further due to large amount of PCM write current, the proposed NVFF achieves higher power efficiency without loss of current driving capability. Using the 40nm manufacturing process, the area of the cell (1D1R) is as small as 0.016 μm2. Simulation results show that the energy consumption during the recall operation is 62 fJ with 1.1 standard supply voltage, which is reduced by 54.9% compared to the previous 2T2R based NVFF. When the supply voltage reduces to 0.7 V, the recall energy is as low as 17 fJ. With the great advantages in cell size and energy, the proposed diode-selected NVFF is very applicable and cost-effective for ULP systems.
Callands, Tamora A.; Magriples, Urania; Divney, Anna; Kershaw, Trace
2014-01-01
Intimate partner violence (IPV) victimization and perpetration and power imbalances in parenting partners may result in poor outcomes for parents and children. Previous work in this area has focused on the maternal experiences, neglecting to examine paternal effects. The present study aimed to elucidate the role of IPV, power, and equity in parenting and child outcomes in an urban sample of adolescent parents. 159 male and 182 female parents in a relationship were recruited through university-affiliated hospitals. Power, equity, and IPV were measured at 6 months post-partum and were used as predictors for parenting and child outcomes 12 months post-partum using general estimating equations. Gender interactions and mediation effects of depression were also assessed. Higher perceived relationship equity was related to better infant temperament (B = 0.052, SE = 0.023, p = 0.02) whereas higher partner power was related to poorer social development (B = −0.201, SE = 0.088, p = 0.02) and fine motor development (B = −0.195, SE = 0.078, p = 0.01). IPV victimization was associated with poor infant temperament (B = −2.925, SE = 1.083, p = 0.007) and lower parenting competence (B = −3.508, SE = 1.142, p = 0.002). Depression mediated the relationship between IPV and parenting and IPV and infant temperament. No gender effects were found. IPV, inequities, and power imbalances were disadvantageous for parenting and child outcomes. Our results suggest that these dynamics may negatively affect both males and females. Interventions to reduce violence in both partners and promote equity in relationships could benefit couples and their children. PMID:24781878
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.
2013-01-01
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524
Ruan, Ming; Young, Calvin K.; McNaughton, Neil
2017-01-01
Hippocampal (HPC) theta oscillations have long been linked to various functions of the brain. Many cortical and subcortical areas that also exhibit theta oscillations have been linked to functional circuits with the hippocampus on the basis of coupled activities at theta frequencies. We examine, in freely moving rats, the characteristics of diencephalic theta local field potentials (LFPs) recorded in the supramammillary/mammillary (SuM/MM) areas that are bi-directionally connected to the HPC through the septal complex. Using partial directed coherence (PDC), we find support for previous suggestions that SuM modulates HPC theta at higher frequencies. We find weak separation of SuM and MM by dominant theta frequency recorded locally. Contrary to oscillatory cell activities under anesthesia where SuM is insensitive, but MM is sensitive to medial septal (MS) inactivation, theta LFPs persisted and became indistinguishable after MS-inactivation. However, MS-inactivation attenuated SuM/MM theta power, while increasing the frequency of SuM/MM theta. MS-inactivation also reduced root mean squared power in both HPC and SuM/MM equally, but reduced theta power differentially in the time domain. We provide converging evidence that SuM is preferentially involved in coding HPC theta at higher frequencies, and that the MS-HPC circuit normally imposes a frequency-limiting modulation over the SuM/MM area as suggested by cell-based recordings in anesthetized animals. In addition, we provide evidence that the postulated SuM-MS-HPC-MM circuit is under complex bi-directional control, rather than SuM and MM having roles as unidirectional relays in the network. PMID:28955209
The Copernicus Complexio: a high-resolution view of the small-scale Universe
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Frenk, Carlos S.; Cautun, Marius; Bose, Sownak; Helly, John; Jenkins, Adrian; Sawala, Till; Cytowski, Maciej
2016-04-01
We introduce Copernicus Complexio (COCO), a high-resolution cosmological N-body simulation of structure formation in the ΛCDM model. COCO follows an approximately spherical region of radius ˜17.4 h-1 Mpc embedded in a much larger periodic cube that is followed at lower resolution. The high-resolution volume has a particle mass of 1.135 × 105 h-1 M⊙ (60 times higher than the Millennium-II simulation). COCO gives the dark matter halo mass function over eight orders of magnitude in halo mass; it forms ˜60 haloes of galactic size, each resolved with about 10 million particles. We confirm the power-law character of the subhalo mass function, overline{N}(>μ )∝ μ ^{-s}, down to a reduced subhalo mass Msub/M200 ≡ μ = 10-6, with a best-fitting power-law index, s = 0.94, for hosts of mass
Music enhances performance and perceived enjoyment of sprint interval exercise.
Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A
2015-05-01
Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.
High-Frequency ac Power-Distribution System
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Mildice, James
1987-01-01
Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.
NASA Astrophysics Data System (ADS)
Yıldırım, Nurdan; Bilgiçli, Ahmet T.; Alici, Esma Hande; Arabacı, Gulnur; Yarasir, M. Nilüfer
2017-09-01
The synthesis and characterization of peripherally tetra 4-(methylthio)phenoxy substituted metal-free(2), Zn(II) (3) and Co(II) (4) phthalocyanine derivatives were reported. These newly synthesized phthalocyanine derivatives showed the enhanced solubility in organic solvents and they were characterized by a combination of elemental analysis, FTIR, 1H NMR, 13C NMR, UV-vis and MALDI-TOF/MS spectral data. Their aggregation properties were investigated in THF by UV-vis and fluorescence. These metal-free and metallophthalocyanine compounds were also evaluated for their total antioxidant abilities by using three different antioxidant methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ferrous ion chelating and reducing power activity. All tested compounds showed radical scavenging activity. The highest radical scavenging activity was found from cobalt phthalocyanine (4) compound respectively. IC50 values of the compounds and standards (BHT and Trolox) were also determined. The results showed that the compound 4 had the highest antioxidant activity among all tested compounds including standards. The tested phthalocyanine compounds had ferrous ion chelating activity. In addition, they showed very high reducing power. All tested compounds had higher reducing power than the standards such as ascorbic acid and BHT. The present study shows that the synthesized tetra phthalocyanine [M: 2H(2), Zn(II)(3), Co(II)(4)] with four peripheral 4-(methylthio) phenoxy compounds have the effective antioxidant properties that can be used as antioxidant agents.
Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.; ...
2017-06-14
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less
RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI
Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less
Rahman, Md. Mominur; Habib, Md. Razibul; Hasan, Md. Anayet; Al Amin, Mohammad; Saha, Ayan; Mannan, Adnan
2014-01-01
Background: Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens are medicinal plants commonly used as traditional medicine for the treatment of various diseases. The present study was designed to investigate the antioxidant activities of Ethanolic extract of A. bilimbi, G. sylvestre and C. frutescens. Materials and Methods: The antioxidant activity of the extracts were evaluated using total phenolic and flavonoid contents, ferric reducing power and the free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). Results: Total phenolic and flavonoid contents were higher in G. sylvestre (53.63636 ± 0.454545 mg/g gallic acid equivalent) and C. frutescens (26.66667 ± 2.081666 mg/g quercetin equivalent) respectively. Reducing power of the crude ethanol extracts increased with the concentrations of the extracts and all the extracts showed moderate free radical scavenging activity against DPPH. The plant extract displayed moderate phenolic and flavonoid contents compared to gallic acid and quercetin equivalent respectively, whereas also exhibited significant scavenging of DPPH radical and reducing power compared with ascorbic acid as standard. Conclusion: Our study suggests that G. sylvestre has significant antioxidant activity. The antioxidant compound of this plant might be a therapeutic candidate against oxidative stress related diseases. Different sub-fraction of A. bilimbi and C. frutescens should be studied further to assess the effect. Further study is necessary for isolation and characterization of the active antioxidant agents for better treatment. PMID:24497740
Hoben, John P; Lubner, Carolyn E; Ratzloff, Michael W; Schut, Gerrit J; Nguyen, Diep M N; Hempel, Karl W; Adams, Michael W W; King, Paul W; Miller, Anne-Frances
2017-08-25
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential ( i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I and can be an indication of capacity for electron bifurcation.
ERIC Educational Resources Information Center
Delgado, Antonio
2012-01-01
Higher education is a distribution center of knowledge and economic, social, and cultural power (Cervero & Wilson, 2001). A critical approach to understanding a higher education classroom begins with recognizing the instructor's position of power and authority (Tisdell, Hanley, & Taylor, 2000). The power instructors wield exists…
Coaxial microwave electrothermal thruster performance in hydrogen
NASA Technical Reports Server (NTRS)
Richardson, W.; Asmussen, J.; Hawley, M.
1994-01-01
The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved coaxial MET when operating in nitrogen, helium, and hydrogen gases.
Gulf War Air Power Survey. Volume 2. Operations and Effects and Effectiveness
1993-01-01
press attacks home at lower altitudes, even with an accompanying higher risk. The cumulative effects of the bombing reduced the food , water, and...international study team that visited Iraqi during the period 23 August-5 September 1991 to survey the effects of the war on the health and welfare...detrimental health effects " of the war cited by Arkin was 111,000 (Beth Osborne Daponte, "Iraqi Casualties from the Persian Gulf War and Its
Hu, Lianmei; Yu, Wenlan; Li, Ying; Tang, Zhaoxin
2014-01-01
The antioxidant activities and protective effects of total phenolic extracts (TPE) and their major components from okra seeds on oxidative stress induced by carbon tetrachloride (CCl4) in rat hepatocyte cell line were investigated. The major phenolic compounds were identified as quercetin 3-O-glucosyl (1 → 6) glucoside (QDG) and quercetin 3-O-glucoside (QG). TPE, QG, and QDG from okra seeds exhibited excellent reducing power and free radical scavenging capabilities including α, α-diphenyl-β-picrylhydrazyl (DPPH), superoxide anions, and hydroxyl radical. Overall, DPPH radical scavenging activity and reducing power of QG and QDG were higher than those of TPE while superoxide and hydroxyl radical scavenging activities of QG and TPE were higher than those of QDG. Furthermore, TPE, QG, and QDG pretreatments significantly alleviated the cytotoxicity of CCl4 on rat hepatocytes, with attenuated lipid peroxidation, increased SOD and CAT activities, and decreased GPT and GOT activities. The protective effects of TPE and QG on rat hepatocytes were stronger than those of QDG. However, the cytotoxicity of CCl4 on rat hepatocytes was not affected by TPE, QG, and QDG posttreatments. It was suggested that the protective effects of TPE, QG, and QDG on rat hepatocyte against oxidative stress were related to the direct antioxidant capabilities and the induced antioxidant enzymes activities. PMID:24719856
NASA Astrophysics Data System (ADS)
Khan, S. T.; Nagao, Y.; Hiraishi, A.
2015-02-01
Strain NA10BT and other two strains of the denitrifying betaproteobacterium Diaphorobacter nitroreducens were studied for the performance of solid-phase denitrification (SPD) using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and some other biodegradable plastics as the source of reducing power in wastewater treatment. Sequencing-batch SPD reactors with these organisms and PHBV granules or flakes as the substrate exhibited good nitrate removal performance. Vial tests using cultures from these parent reactors showed higher nitrate removal rates with PHBV granules (ca. 20 mg-NO3-- N g-1 [dry wt cells] h-1) than with PHBV pellets and flakes. In continuous-flow SPD reactors using strain NA10BT and PHBV flakes, nitrate was not detected even at a loading rate of 21 mg-NO3-- N L-1 h-1. This corresponded to a nitrate removal rate of 47 mg-NO3-- N g-1 (dry wt cells) h-1. In the continuous-flow reactor, the transcription level of the phaZ gene, coding for PHB depolymerase, decreased with time, while that of the nosZ gene, involved in denitrificaiton, was relatively constant. These results suggest that the bioavailability of soluble metabolites as electron donor and carbon sources increases with time in the continuous-flow SPD process, thereby having much higher nitrate removal rates than the process with fresh PHBV as the substrate.
NASA Astrophysics Data System (ADS)
Naderi, Ali; Mohammadi, Hamed
2018-06-01
In this paper a novel silicon-on-insulator metal oxide field effect transistor (SOI-MESFET) with high- and low-resistance boxes (HLRB) is proposed. This structure increases the current and breakdown voltage, simultaneously. The semiconductor at the source side of the channel is doped with higher impurity than the other parts to reduce its resistance and increase the driving current as low-resistance box. An oxide box is implemented at the upper part of the channel from the drain region toward the middle of the channel as the high-resistance box. Inserting a high-resistance box increases the breakdown voltage and improves the RF performance of the device because of its higher tolerable electric field and modification in gate-drain capacitance, respectively. The high-resistance region reduces the current density of the device which is completely compensated by low-resistance box. A 92% increase in breakdown voltage and an 11% improvement in the device current have been obtained. Also, maximum oscillation frequency, unilateral power gain, maximum available gain, maximum stable gain, and maximum output power density are improved by 7%, 35%, 23%, 26%, and 150%, respectively. These results show that the HLRB-SOI-MESFET can be considered as a candidate to replace Conventional SOI-MESFET (C-SOI-MESFET) for high-voltage and high-frequency applications.
Lee, Sang Hoon; Oh, Seung Hee; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Woo, Shun Hee; Kim, Hong Sig; Lee, Junsoo; Jeong, Heon Sang
2016-06-01
This study was performed to evaluate and compare the antioxidant substance content and antioxidant activities of white (Superior) and colored (Hongyoung, Jayoung, Jasim, Seohong, and Jaseo) potatoes. The potatoes were extracted with 80% ethanol and were evaluated for the total polyphenol, flavonoid, and anthocyanin contents and for 1,1-diphenyl- 2-picrylhydrazyl (DPPH)/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, reducing power, and ferrous metal ion chelating effect. The total polyphenol, flavonoid, and anthocyanin contents of Hongyoung and Jayoung were higher than white and other colored potatoes. All colored potato extracts, except for Jaseo and Seohong, showed higher ABTS radical scavenging activities than the general white potato extract. Hongyoung and Jayoung had the highest ABTS and DPPH radical scavenging activities. Optical density values for the reducing power of Jayoung and Jaseo at concentration of 2 mg/mL were 0.148 and 0.090, respectively. All colored potato extracts had lower ferrous metal ion chelating effect than the white potato. A significant (P<0.05) positive correlation was observed between total polyphenol content and total flavonoid content (r=0.919), anthocyanin content (r=0.992), and ABTS radical scavenging activity (r=0.897). Based on these results, this research may be useful in developing the Hongyoung and Jayoung cultivars with high antioxidant activities.
Energetic consequences of an inducible morphological defence in crucian carp.
Pettersson, Lars B; Brönmark, Christer
1999-10-01
Crucian carp (Carassius carassius) increases in body depth in response to chemical cues from piscivores and the deeper body constitutes a morphological defence against gape-limited piscivores. In the field, deep-bodied individuals suffer a density-dependent cost when competing with shallow-bodied conspecifics. Here, we use hydrodynamic theory and swimming respirometry to investigate the proposed mechanism underlying this effect, high drag caused by the deep-bodied morphology. Our study confirms that drag is higher for deep-bodied crucian carp, both in terms of estimated theoretical drag and power curve steepness. However, deep-bodied fish swimming at the velocity associated with minimum cost of transport, U mc , did not experience higher costs of transport than shallow-bodied fish. Deep-bodied crucian carp had significantly lower standard metabolic rates, i.e. metabolic rates at rest, and also lower U mc , and the resulting costs of transport were similar for the two morphs. Nevertheless, when deep-bodied individuals deviate from U mc , e.g. when increasing foraging effort under competition, their steeper power curves will cause substantial energy costs relative to shallow-bodied conspecifics. Furthermore, there is evidence that reductions in standard metabolic rate incur costs in terms of lower stress tolerance, reduced growth rate, and life history changes. Thus, this work provides links between hydrodynamics, a cost-reducing mechanism, and a density-dependent fitness cost associated with an inducible defence.
Suggs, Jennifer A.; Melkani, Girish C.; Glasheen, Bernadette M.; Detor, Mia M.; Melkani, Anju; Marsan, Nathan P.; Swank, Douglas M.
2017-01-01
ABSTRACT Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro motility, reduced muscle power output and focal myofibrillar disorganization similar to that seen in individuals with IBM3. PMID:28258125
High-Performance Supercapacitors from Niobium Nanowire Yarns.
Mirvakili, Seyed M; Mirvakili, Mehr Negar; Englezos, Peter; Madden, John D W; Hunter, Ian W
2015-07-01
The large-ion-accessible surface area of carbon nanotubes (CNTs) and graphene sheets formed as yarns, forests, and films enables miniature high-performance supercapacitors with power densities exceeding those of electrolytics while achieving energy densities equaling those of batteries. Capacitance and energy density can be enhanced by depositing highly pseudocapacitive materials such as conductive polymers on them. Yarns formed from carbon nanotubes are proposed for use in wearable supercapacitors. In this work, we show that high power, energy density, and capacitance in yarn form are not unique to carbon materials, and we introduce niobium nanowires as an alternative. These yarns show higher capacitance and energy per volume and are stronger and 100 times more conductive than similarly spun carbon multiwalled nanotube (MWNT) and graphene yarns. The long niobium nanowires, formed by repeated extrusion and drawing, achieve device volumetric peak power and energy densities of 55 MW·m(-3) (55 W·cm(-3)) and 25 MJ·m(-3) (7 mWh·cm(-3)), 2 and 5 times higher than that for state-of-the-art CNT yarns, respectively. The capacitance per volume of Nb nanowire yarn is lower than the 158 MF·m(-3) (158 F·cm(-3)) reported for carbon-based materials such as reduced graphene oxide (RGO) and CNT wet-spun yarns, but the peak power and energy densities are 200 and 2 times higher, respectively. Achieving high power in long yarns is made possible by the high conductivity of the metal, and achievement of high energy density is possible thanks to the high internal surface area. No additional metal backing is needed, unlike for CNT yarns and supercapacitors in general, saving substantial space. As the yarn is infiltrated with pseudocapacitive materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), the energy density is further increased to 10 MJ·m(-3) (2.8 mWh·cm(-3)). Similar to CNT yarns, niobium nanowire yarns are highly flexible and show potential for weaving into textiles and use in wearable devices.
Honeycomb Betavoltaic Battery for Space Applications
NASA Astrophysics Data System (ADS)
Lee, Jin R.; Ulmen, Ben; Miley, George H.
2008-01-01
Radioisotopic batteries offer advantages relative to conventional chemical batteries for applications requiring a long lifetime with minimum maintenance. Thus, thermoelectric type cells fueled with Pu have been used extensively on NASA space missions. The design for a small beta battery using nickel-63 (Ni-63) and a vacuum direct collection method is described here. A honeycomb nickel wire structure is employed to achieve bi-directional direct collection by seeding Ni-63 onto honeycomb shaped wires that will provide structural support as well. The battery design is intended to power low power electronics and distribute power needs in space probes as well as space colonies. Ni-63 is chosen as the source emitter because it has a long half-life and ease of manufacturing. The use of vacuum is especially well mated to space use; hence, vacuum insulation is employed to gain a higher efficiency than prior beta batteries with a dielectric insulator. A unique voltage down-converter is incorporated to efficiently reduce the inherent output voltage from 17.4 kV to ~17.4 V. This converter operates like a ``reverse'' Marx circuit where capacitor charging occurs in series but the discharge is in parallel. The reference battery module described here is about 100 cm×100 cm×218 cm and has a power of ~10 W with a conversion efficiency of ~15.8%. These modules can be stacked for higher powers and are very attractive for various applications in space colonization due to their long life (half-life for Ni-63~100 yrs) and low maintenance.
A low-volume, low-mass, low-power UHF proximity micro-transceiver for Mars Exploration
NASA Technical Reports Server (NTRS)
Kuhn, William; Lay, Norman; Grigorian, Edwin
2005-01-01
UHF half-duplex micro-transceiver measuring 1 cubic centimeter, weighing less than 10 grams, and operating at 40 mW on receive and 50mW, 300mW, or 3W on transmit is described. The micro-transceiver is being designed for future Mars exploration missions, but can be adapted for other proximity links. It supports transmission rates up to 256 ksps and higher in BPSK or QPSK format for data return and receives command/control instructions at up to 8 ksps. In addition to its low mass/power features, temperature compensated circuit and system design and radiation tolerance allow operation outside of large shielded enclosures, further reducing the mass and complexity of exploration vehicles.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Control of the filamentation distance and pattern in long-range atmospheric propagation
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Louzon, Einat; Katzir, Yiftach; Palchan, Tala; Zigler, Arie; Sivan, Yonatan; Fibich, Gadi
2007-03-01
We use the double-lens setup [10, 11] to achieve a 20-fold delay of the filamentation distance of non-chirped 120 fs pulses propagating in air, from 16m to 330m. At 330m, the collapsing pulse is sufficiently powerful to create plasma filaments. We also show that the scatter of the filaments at 330m can be significantly reduced by tilting the second lens. To the best of our knowledge, this is the longest distance reported in the Literature at which plasma filaments were created and controlled. Finally, we show that the peak power at the onset of collapse is significantly higher with the double-lens setup, compared with the standard negative chirping approach.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
Core Noise - Increasing Importance
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2011-01-01
This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.
NASA Astrophysics Data System (ADS)
Khankari, Goutam; Karmakar, Sujit
2017-06-01
This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable boiling temperature of NH3-H2O binary mixture in KCS11 and resulting in less irreversibility during the process of heat transfer. Levelized Cost of Electricity (LCoE) generation and the cost of implementation of ORC integrated power plant is about Rs.1.767/- per kWh and Rs. 2.187/- per kg of fuel saved, respectively whereas, the LCoE for KCS11 based combined power plant is slightly less than the ORC based combined cycle power plant and estimated as about Rs.1.734 /- per kWh. The cost of implementation of KCS11 based combined cycle power plant is about Rs. 0.332/- per kg of fuel saved. Though the energy and exergy efficiencies of ORC is better than KCS11 but considering the huge investment for developing the combined cycle power plant based on ORC in comparison with KCS11 below the operating pressure of 14 bar, KCS11 is superior than NH3 based ORC.
Potential impacts of electric vehicles on air quality in Taiwan.
Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May
2016-10-01
The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.
Reducing power consumption during execution of an application on a plurality of compute nodes
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Peters, Amanda E [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2012-06-05
Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: executing, by each compute node, an application, the application including power consumption directives corresponding to one or more portions of the application; identifying, by each compute node, the power consumption directives included within the application during execution of the portions of the application corresponding to those identified power consumption directives; and reducing power, by each compute node, to one or more components of that compute node according to the identified power consumption directives during execution of the portions of the application corresponding to those identified power consumption directives.
Janve, Bhaskar; Yang, Wade; Sims, Charles
2015-06-01
Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P < 0.05) and ΔE was lower (P < 0.05) for fried and L, °h were significantly (P < 0.05) higher for baked chips produced from ultra-sonication as compare to traditional. Baked chips texture for ultra-sonication was significantly higher (P < 0.05) on BFG, BPD, PFF, and FD. Fried tortilla chips texture were higher significantly (P < 0.05) in BFG and PFF for ultra-sonication than traditional processing. However, the instrumental differences were not detected in sensory analysis, concluding possibility of power ultrasound as potential tortilla chips processing aid. © 2015 Institute of Food Technologists®
Kuo, Yu-Ming; Fukushima, Yasuhiro
2009-03-01
To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.
Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard
2011-10-07
Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.
Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator
NASA Technical Reports Server (NTRS)
Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen;
2016-01-01
Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.
Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses
Liu, Ruijie; Holik, Aliaksei Z.; Su, Shian; Jansz, Natasha; Chen, Kelan; Leong, Huei San; Blewitt, Marnie E.; Asselin-Labat, Marie-Liesse; Smyth, Gordon K.; Ritchie, Matthew E.
2015-01-01
Variations in sample quality are frequently encountered in small RNA-sequencing experiments, and pose a major challenge in a differential expression analysis. Removal of high variation samples reduces noise, but at a cost of reducing power, thus limiting our ability to detect biologically meaningful changes. Similarly, retaining these samples in the analysis may not reveal any statistically significant changes due to the higher noise level. A compromise is to use all available data, but to down-weight the observations from more variable samples. We describe a statistical approach that facilitates this by modelling heterogeneity at both the sample and observational levels as part of the differential expression analysis. At the sample level this is achieved by fitting a log-linear variance model that includes common sample-specific or group-specific parameters that are shared between genes. The estimated sample variance factors are then converted to weights and combined with observational level weights obtained from the mean–variance relationship of the log-counts-per-million using ‘voom’. A comprehensive analysis involving both simulations and experimental RNA-sequencing data demonstrates that this strategy leads to a universally more powerful analysis and fewer false discoveries when compared to conventional approaches. This methodology has wide application and is implemented in the open-source ‘limma’ package. PMID:25925576
Increasing the efficiency of the condensing boiler
NASA Astrophysics Data System (ADS)
Zaytsev, O. N.; Lapina, E. A.
2017-11-01
Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.
New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications
NASA Astrophysics Data System (ADS)
Razavi, S. M.; Tahmasb Pour, S.; Najari, P.
2018-06-01
New AlGaN/GaN high electron mobility transistors (HEMTs) that their barrier layers under the gate are divided into two regions horizontally are presented in this work. Upper region is Si3N4 (SI-HEMT) or un-doped AlGaN (UN-HEMT) and lower region is AlGaN with heavier doping compared to barrier layer. Upper region in SI-HEMT and UN-HEMT reduces peak electric field in the channel and then improves breakdown voltage considerably. Lower region increases electron density in the two dimensional electron gas (2-DEG) and enhances drain current significantly. For instance, saturated drain current in SI-HEMT is about 100% larger than that in the conventional one. Moreover, the maximum breakdown voltage in the proposed structures is 65 V. This value is about 30% larger than that in the conventional transistor (50 V). Also, suggested structure reduces short channel effect such as DIBL. The maximum gm is obtained in UN-HEMT and conventional devices. Proposed structures improve breakdown voltage and saturated drain current and then enhance maximum output power density. Maximum output power density in the new structures is about 150% higher than that in the conventional.
Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion
NASA Technical Reports Server (NTRS)
Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher
2003-01-01
Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.
Thermoelectric properties of higher manganese silicide/multi-walled carbon nanotube composites.
Truong, D Y Nhi; Kleinke, Holger; Gascoin, Franck
2014-10-28
Composites made of Higher Manganese Silicide (HMS)-based compound MnSi1.75Ge0.02 and multi-walled carbon nanotubes (MWCNTs) were prepared by an easy and effective method including mechanical milling under mild conditions and reactive spark plasma sintering. SEM compositional mappings show a homogeneous dispersion of MWCNTs in the HMS matrix. Electronic and thermal transport properties were measured from room temperature to 875 K. While power factors are virtually unchanged by the addition of MWCNTs, the lattice thermal conductivity is significantly reduced by about 30%. As a consequence, the maximum figure of merit for the composites with 1 wt% MWCNTs is improved by about 20% compared to the MWCNT free HMS-based sample.
Post Irradiation Examination for Advanced Materials at Burnups Exceeding the Current Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
John H. Strumpell
2004-12-31
Permitting fuel to be irradiated to higher burnups limits can reduce the amount of spent nuclear fuel (SNF) requiring storage and/or disposal and enable plants to operate with longer more economical cycle lengths and/or at higher power levels. Therefore, Framatome ANP (FANP) and the B&W Owner's Group (BWOG) have introduced a new fuel rod design with an advanced M5 cladding material and have irradiated several test fuel rods through four cycles. The U.S. Department of Energy (DOE) joined FANP and the BWOG in supporting this project during its final phase of collecting and evaluating high burnup data through post irradiationmore » examination (PIE).« less
Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.
2009-01-01
Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1
NASA Astrophysics Data System (ADS)
Azoumah, Y.; Yamegueu, D.; Py, X.
2012-02-01
Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.
Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs).
Choi, Woo Young; Lee, Hyun Kook
2016-01-01
The steady scaling-down of semiconductor device for improving performance has been the most important issue among researchers. Recently, as low-power consumption becomes one of the most important requirements, there have been many researches about novel devices for low-power consumption. Though scaling supply voltage is the most effective way for low-power consumption, performance degradation is occurred for metal-oxide-semiconductor field-effect transistors (MOSFETs) when supply voltage is reduced because subthreshold swing (SS) of MOSFETs cannot be lower than 60 mV/dec. Thus, in this thesis, hetero-gate-dielectric tunneling field-effect transistors (HG TFETs) are investigated as one of the most promising alternatives to MOSFETs. By replacing source-side gate insulator with a high- k material, HG TFETs show higher on-current, suppressed ambipolar current and lower SS than conventional TFETs. Device design optimization through simulation was performed and fabrication based on simulation demonstrated that performance of HG TFETs were better than that of conventional TFETs. Especially, enlargement of gate insulator thickness while etching gate insulator at the source side was improved by introducing HF vapor etch process. In addition, the proposed HG TFETs showed higher performance than our previous results by changing structure of sidewall spacer by high- k etching process.
NASA Astrophysics Data System (ADS)
Hitaj, Claudia
In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations with the bias in the Tobit estimates remaining at or below 5 percent. Under severe censoring (1 percent uncensored observations), large biases appear in the estimated standard errors and marginal effects. These are generally reduced as the sample size increases in both N and T.
High Performance Power Module for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.
2002-01-01
Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
Salas, Antonio; Amigo, Jorge
2010-05-03
The high levels of variation characterising the mitochondrial DNA (mtDNA) molecule are due ultimately to its high average mutation rate; moreover, mtDNA variation is deeply structured in different populations and ethnic groups. There is growing interest in selecting a reduced number of mtDNA single nucleotide polymorphisms (mtSNPs) that account for the maximum level of discrimination power in a given population. Applications of the selected mtSNP panel range from anthropologic and medical studies to forensic genetic casework. This study proposes a new simulation-based method that explores the ability of different mtSNP panels to yield the maximum levels of discrimination power. The method explores subsets of mtSNPs of different sizes randomly chosen from a preselected panel of mtSNPs based on frequency. More than 2,000 complete genomes representing three main continental human population groups (Africa, Europe, and Asia) and two admixed populations ("African-Americans" and "Hispanics") were collected from GenBank and the literature, and were used as training sets. Haplotype diversity was measured for each combination of mtSNP and compared with existing mtSNP panels available in the literature. The data indicates that only a reduced number of mtSNPs ranging from six to 22 are needed to account for 95% of the maximum haplotype diversity of a given population sample. However, only a small proportion of the best mtSNPs are shared between populations, indicating that there is not a perfect set of "universal" mtSNPs suitable for all population contexts. The discrimination power provided by these mtSNPs is much higher than the power of the mtSNP panels proposed in the literature to date. Some mtSNP combinations also yield high diversity values in admixed populations. The proposed computational approach for exploring combinations of mtSNPs that optimise the discrimination power of a given set of mtSNPs is more efficient than previous empirical approaches. In contrast to precedent findings, the results seem to indicate that only few mtSNPs are needed to reach high levels of discrimination power in a population, independently of its ancestral background.
Salas, Antonio; Amigo, Jorge
2010-01-01
Background The high levels of variation characterising the mitochondrial DNA (mtDNA) molecule are due ultimately to its high average mutation rate; moreover, mtDNA variation is deeply structured in different populations and ethnic groups. There is growing interest in selecting a reduced number of mtDNA single nucleotide polymorphisms (mtSNPs) that account for the maximum level of discrimination power in a given population. Applications of the selected mtSNP panel range from anthropologic and medical studies to forensic genetic casework. Methodology/Principal Findings This study proposes a new simulation-based method that explores the ability of different mtSNP panels to yield the maximum levels of discrimination power. The method explores subsets of mtSNPs of different sizes randomly chosen from a preselected panel of mtSNPs based on frequency. More than 2,000 complete genomes representing three main continental human population groups (Africa, Europe, and Asia) and two admixed populations (“African-Americans” and “Hispanics”) were collected from GenBank and the literature, and were used as training sets. Haplotype diversity was measured for each combination of mtSNP and compared with existing mtSNP panels available in the literature. The data indicates that only a reduced number of mtSNPs ranging from six to 22 are needed to account for 95% of the maximum haplotype diversity of a given population sample. However, only a small proportion of the best mtSNPs are shared between populations, indicating that there is not a perfect set of “universal” mtSNPs suitable for all population contexts. The discrimination power provided by these mtSNPs is much higher than the power of the mtSNP panels proposed in the literature to date. Some mtSNP combinations also yield high diversity values in admixed populations. Conclusions/Significance The proposed computational approach for exploring combinations of mtSNPs that optimise the discrimination power of a given set of mtSNPs is more efficient than previous empirical approaches. In contrast to precedent findings, the results seem to indicate that only few mtSNPs are needed to reach high levels of discrimination power in a population, independently of its ancestral background. PMID:20454657
NASA Astrophysics Data System (ADS)
Kuo, Pei-Hsuan; Tsuang, Ben-Jei; Chen, Chien-Jen; Hu, Suh-Woan; Chiang, Chun-Ju; Tsai, Jeng-Lin; Tang, Mei-Ling; Chen, Guan-Jie; Ku, Kai-Chen
2014-10-01
Based on recent understanding of PM2.5 health-related problems from fossil-fueled power plants emission inventories collected in Taiwan, we have determined the loss of life expectancy (LLE) and the lifetime (75-year) risks for PM2.5 health-related mortalities as attributed to the operation of the world's largest coal-fired power plant; the Taichung Power Plant (TCP), with an installed nominal electrical capacity of 5780 MW in 2013. Five plausible scenarios (combinations of emission controls, fuel switch, and relocation) and two risk factors were considered. It is estimated that the lifetime (75-y) risk for all-cause mortality was 0.3%-0.6% for males and 0.2%-0.4% for females, and LLE at 84 days in 1997 for the 23 million residents of Taiwan. The risk has been reduced to one-fourth at 0.05%-0.10% for males and 0.03%-0.06% for females, and LLE at 15 days in 2007, which was mainly attributed to the installation of desulfurization and de-NOx equipment. Moreover, additional improvements can be expected if we can relocate the power plant to a downwind site on Taiwan, and convert the fuel source from coal to natural gas. The risk can be significantly reduced further to one-fiftieth at 0.001%-0.002% for males and 0.001% for females, and LLE at 0.3 days. Nonetheless, it is still an order higher than the commonly accepted elevated-cancer risk at 0.0001% (10-6), indicating that the PM2.5 health-related risk for operating such a world-class power plant is not negligible. In addition, this study finds that a better-chosen site (involving moving the plant to the leeward side of Taiwan) can reduce the risk significantly as opposed to solely transitioning the fuel source to natural gas. Note that the fuel cost of using natural gas (0.11 USD/kWh in 2013) in Taiwan is about twice the price of using coal fuel (0.05 USD/kWh in 2013).
A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking
Malcolm, Philippe; Derave, Wim; Galle, Samuel; De Clercq, Dirk
2013-01-01
Background Even though walking can be sustained for great distances, considerable energy is required for plantarflexion around the instant of opposite leg heel contact. Different groups attempted to reduce metabolic cost with exoskeletons but none could achieve a reduction beyond the level of walking without exoskeleton, possibly because there is no consensus on the optimal actuation timing. The main research question of our study was whether it is possible to obtain a higher reduction in metabolic cost by tuning the actuation timing. Methodology/Principal Findings We measured metabolic cost by means of respiratory gas analysis. Test subjects walked with a simple pneumatic exoskeleton that assists plantarflexion with different actuation timings. We found that the exoskeleton can reduce metabolic cost by 0.18±0.06 W kg−1 or 6±2% (standard error of the mean) (p = 0.019) below the cost of walking without exoskeleton if actuation starts just before opposite leg heel contact. Conclusions/Significance The optimum timing that we found concurs with the prediction from a mathematical model of walking. While the present exoskeleton was not ambulant, measurements of joint kinetics reveal that the required power could be recycled from knee extension deceleration work that occurs naturally during walking. This demonstrates that it is theoretically possible to build future ambulant exoskeletons that reduce metabolic cost, without power supply restrictions. PMID:23418524
Simulation and Optimization of an Astrophotonic Reformatter
NASA Astrophysics Data System (ADS)
Anagnos, Th; Harris, R. J.; Corrigan, M. K.; Reeves, A. P.; Townson, M. J.; MacLachlan, D. G.; Thomson, R. R.; Morris, T. J.; Schwab, C.; Quirrenbach, A.
2018-05-01
Image slicing is a powerful technique in astronomy. It allows the instrument designer to reduce the slit width of the spectrograph, increasing spectral resolving power whilst retaining throughput. Conventionally this is done using bulk optics, such as mirrors and prisms, however more recently astrophotonic components known as PLs and photonic reformatters have also been used. These devices reformat the MM input light from a telescope into SM outputs, which can then be re-arranged to suit the spectrograph. The PD is one such device, designed to reduce the dependence of spectrograph size on telescope aperture and eliminate modal noise. We simulate the PD, by optimising the throughput and geometrical design using Soapy and BeamProp. The simulated device shows a transmission between 8 and 20 %, depending upon the type of AO correction applied, matching the experimental results well. We also investigate our idealised model of the PD and show that the barycentre of the slit varies only slightly with time, meaning that the modal noise contribution is very low when compared to conventional fibre systems. We further optimise our model device for both higher throughput and reduced modal noise. This device improves throughput by 6.4 % and reduces the movement of the slit output by 50%, further improving stability. This shows the importance of properly simulating such devices, including atmospheric effects. Our work complements recent work in the field and is essential for optimising future photonic reformatters.
Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming
NASA Astrophysics Data System (ADS)
Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; van Vliet, M. T. H.; Bréon, F.-M.
2018-04-01
The electricity sector is currently considered mainly on the emission side of the climate change equation. In order to limit climate warming to below 2 °C, or even 1.5 °C, it must undergo a rapid transition towards carbon neutral production by the mid-century. Simultaneously, electricity generating technologies will be vulnerable to climate change. Here, we assess the impacts of climate change on wind, solar photovoltaic, hydro and thermoelectric power generation in Europe using a consistent modelling approach across the different technologies. We compare the impacts for different global warming scenarios: +1.5 °C, +2 °C and +3 °C. Results show that climate change has negative impacts on electricity production in most countries and for most technologies. Such impacts remain limited for a 1.5 °C warming, and roughly double for a 3 °C warming. Impacts are relatively limited for solar photovoltaic and wind power potential which may reduce up to 10%, while hydropower and thermoelectric generation may decrease by up to 20%. Generally, impacts are more severe in southern Europe than in northern Europe, inducing inequity between EU countries. We show that a higher share of renewables could reduce the vulnerability of power generation to climate change, although the variability of wind and solar PV production remains a significant challenge.
Population gratings in saturable optical fibers with randomly oriented rare-earth ions
NASA Astrophysics Data System (ADS)
Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.
2015-07-01
Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.
The rate of lactate removal after maximal exercise: the effect of intensity during active recovery.
Riganas, C S; Papadopoulou, Z; Psichas, N; Skoufas, D; Gissis, I; Sampanis, M; Paschalis, V; Vrabas, I S
2015-10-01
The aim of the present investigation was to determine the greater rate of lactate removal after a maximal rowing test using different intensities during active recovery. Thirty elite male rowers performed a simulated incremental exercise protocol on rowing ergometer to determine their maximal oxygen uptake and they divided into three equal sized group according to the type of the recovery that followed the assessment. The first group (N.=10) subjected to 20 min of passive recovery, while the second (N.=10) and the third (N.=10) groups performed 20 min of active recovery using the 25% and the 50% of each individual’s maximal power output, respectively. During the recovery period, every two min were performed measurements for the assessment of blood lactate, oxygen consumption and heart rate (HR). It was found that after 10 min of active recovery at 50% and 25% of maximal power output lactate concentration reduced by 43% and 15%, respectively, while during passive recovery lactate concentration found to be slightly elevated by 1%. It was also found that during recovery period, HR, oxygen consumption and pulmonary ventilation was significant elevated at higher exercise intensity compared to lower exercise intensity and passive recovery. It is concluded that in elite male rowers the active recovery provided higher rate of lactate removal compared to passive recovery. Moreover, active recovery at 50% of maximal power output had better results in lactate clearance compared to the active recovery of lower intensity (25% of maximal power output).
Spacecraft computer technology at Southwest Research Institute
NASA Technical Reports Server (NTRS)
Shirley, D. J.
1993-01-01
Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.
High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets.
Qiu, Yongcai; Zhang, Xinfeng; Yang, Shihe
2011-07-21
Thermal nitridation of reduced graphene oxide sheets yields highly conductive (∼1000-3000 S m(-1)) N-doped graphene sheets, as a result of the restoration of the graphene network by the formation of C-N bonded groups and N-doping. Even without carbon additives, supercapacitors made of the N-doped graphene electrodes can deliver remarkable energy and power when operated at higher voltages, in the range of 0-4 V. This journal is © the Owner Societies 2011
2015-02-18
tends to resurge when the cost of petroleum rises as it did during the energy crisis of the 1970’s. Wind turbines are divided into two categories that...include horizontal axis and vertical axis. Horizontal-axis wind turbines have a main rotor driving an electrical generator on... turbines . They convert significantly more power in medium and higher winds than drag blades. Blades are attached directly to a hub just like on a
Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films
Al-Jumaili, Ahmed; Bazaka, Kateryna
2017-01-01
Bacterial colonisation of biomedical devices demands novel antibacterial coatings. Plasma-enabled treatment is an established technique for selective modification of physicochemical characteristics of the surface and deposition of polymer thin films. We investigated the retention of inherent antibacterial activity in geranium based plasma polymer thin films. Attachment and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was significantly reduced on the surfaces of samples fabricated at 10 W radio frequency (RF) power, compared to that of control or films fabricated at higher input power. This was attributed to lower contact angle and retention of original chemical functionality in the polymer films fabricated under low input power conditions. The topography of all surfaces was uniform and smooth, with surface roughness of 0.18 and 0.69 nm for films fabricated at 10 W and 100 W, respectively. Hardness and elastic modules of films increased with input power. Independent of input power, films were optically transparent within the visible wavelength range, with the main absorption at ~290 nm and optical band gap of ~3.6 eV. These results suggest that geranium extract-derived polymers may potentially be used as antibacterial coatings for contact lenses. PMID:28902134
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Kim, Jong-Yul
2013-11-01
Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.
Lifetime laser damage performance of β -Ga2O3 for high power applications
NASA Astrophysics Data System (ADS)
Yoo, Jae-Hyuck; Rafique, Subrina; Lange, Andrew; Zhao, Hongping; Elhadj, Selim
2018-03-01
Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.
Overview of Proposed ISRU Technology Development
NASA Technical Reports Server (NTRS)
Linne, Diane; Sanders, Jerry; Starr, Stan; Suzuki, Nantel; O'Malley, Terry
2016-01-01
ISRU involves any hardware or operation that harnesses and utilizes in-situ resources (natural and discarded) to create products and services for robotic and human exploration: Assessment of physical, mineral chemical, and volatile water resources, terrain, geology, and environment (orbital and local). Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources. Civil engineering, infrastructure emplacement, and structure construction using materials produced from in situ resources. Radiation shields, landing pads, roads, berms, habitats, etc. Generation and storage of electrical, thermal, and chemical energy with in situ derived materials. Solar arrays, thermal wadis, chemical batteries, etc. ISRU is a disruptive capability: Enables more affordable exploration than todays paradigm. Allows more sustainable architectures to be developed. Understand the ripple effect in the other Exploration Elements: MAV: propellant selection, higher rendezvous altitude (higher DV capable with ISRU propellants). EDL: significantly reduces required landed mass. Life Support: reduce amount of ECLSS closure, reduce trash mass carried through propulsive maneuvers. Power: ISRU drives electrical requirements, reactant and regeneration for fuel cells for landers, rovers, and habitat backup. Every Exploration Element except ISRU has some flight heritage (power, propulsion, habitats, landers, life support, etc.) ISRU will require a flight demonstration mission on Mars before it will be included in the critical path. Mission needs to be concluded at least 10 years before first human landed mission to ensure lessons learned can be incorporated into final design. ISRU Formulation team has generated a (still incomplete) list of over 75 technical questions on more than 40 components and subsystems that need to be answered before the right ISRU system will be ready for this flight demo.
Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H
2016-10-03
Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R 2 =0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
NASA Astrophysics Data System (ADS)
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
For missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical propulsion systems and propellants that may constitute more than 50 percent of the spacecraft mass. This impact can be substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher specific impulse. Studies performed for NASA's Human Exploration and Operations Mission Directorate and Science Mission Directorate have demonstrated that a 50kW-class SEP capability can be enabling for both near term and future architectures and science missions. A high-power SEP element is integral to the Evolvable Mars Campaign, which presents an approach to establish an affordable evolutionary human exploration architecture. To enable SEP missions at the power levels required for these applications, an in-space demonstration of an operational 50kW-class SEP spacecraft has been proposed as a SEP Technology Demonstration Mission (TDM). In 2010 NASA's Space Technology Mission Directorate (STMD) began developing high-power electric propulsion technologies. The maturation of these critical technologies has made mission concepts utilizing high-power SEP viable.
Effect of lensing non-Gaussianity on the CMB power spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Pratten, Geraint, E-mail: antony@cosmologist.info, E-mail: geraint.pratten@gmail.com
2016-12-01
Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. Assuming no primordial non-Gaussianity, the lowest-order result gives ∼ 0.3% corrections to the BB and EE polarization spectra on small-scales. However we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing,more » rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the peaks and troughs of the power spectrum).« less
Material Challenges and Opportunities for Commercial Electric Aircraft
NASA Technical Reports Server (NTRS)
Misra, Ajay
2014-01-01
Significant reduction in carbon dioxide emission for future air transportation system will require adoption of electric propulsion system and more electric architectures. Various options for aircraft electric propulsion include hybrid electric, turboelectric, and full electric system. Realization of electric propulsion system for commercial aircraft applications will require significant increases in power density of electric motors and energy density of energy storage system, such as the batteries and fuel cells. In addition, transmission of MW of power in the aircraft will require high voltage power transmission system to reduce the weight of the power transmission system. Finally, there will be significant thermal management challenges. Significant advances in material technologies will be required to meet these challenges. Technologies of interest include materials with higher electrical conductivity than Cu, high thermal conductivity materials, and lightweight electrically insulating materials with high breakdown voltage, high temperature magnets, advanced battery and fuel cell materials, and multifunctional materials. The presentation will include various challenges for commercial electric aircraft and provide an overview of material improvements that will be required to meet these challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuramochi, Eiichi, E-mail: kuramochi.eiichi@lab.ntt.co.jp; Nozaki, Kengo; Shinya, Akihiko
2015-11-30
An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 ofmore » the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.« less
Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Volino, Ralph J.
2005-01-01
Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...
2016-04-01
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less
Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi
2014-05-01
Tributyltin (TBT) is a potent biocide and commonly used in various industrial sectors. Humans are mainly exposed through the food chain. We have previously demonstrated tin accumulation in brain following TBT-chloride (TBTC) exposure. In this study, effect of TBTC on dissociated cells from different brain regions was evaluated. Cytotoxicity assay (MTT), mode of cell death (Annexin V/PI assay), oxidative stress parameters (ROS and lipid peroxidation), reducing power of the cell (GSH), mitochondrial membrane potential (MMP) and intracellular Ca(2+) were evaluated to ascertain the effect of TBTC. Expression of glial fibrillary acidic protein (GFAP) was measured to understand the effect on astroglial cells. TBTC as low as 30 nM was found to reduce GSH levels, whereas higher doses of 300 and 3000 nM induced ROS generation and marked loss in cell viability mainly through apoptosis. Striatum showed higher susceptibility than other regions, which may have further implications on various neurological aspects. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.
2004-01-01
Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer chemistry.
Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H
2016-01-05
We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.
Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung
2017-10-01
[Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.
Average power scaling of UV excimer lasers drives flat panel display and lidar applications
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer
2012-03-01
Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.
Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.
2016-01-01
We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.
Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.
Wiggermann, Neal
2017-01-01
Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p < 0.05) lower for all tasks, and below psychophysical limits. Powered drive reduced peak forces between 38% (maneuvering into elevator) and 94% (descending ramp). Powered drive also reduced stopping distance by 55%. When maneuvering, the integral of hand force was 34% lower with powered drive, but average forces during straight-line pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.
A high gain energy amplifier operated with fast neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubbia, C.
1995-10-01
The basic concept and the main practical considerations of an Energy Amplifier (EA) have been exhaustively described elsewhere. Here the concept of the EA is further explored and additional schemes are described which offer a higher gain, a larger maximum power density and an extended burn-up. All these benefits stem from the use of fast neutrons, instead of thermal or epithermal ones, which was the case in the original study. The higher gain is due both to a more efficient high energy target configuration and to a larger, practical value of the multiplication factor. The higher power density results frommore » the higher permissible neutron flux, which in turn is related to the reduced rate of {sup 233}Pa neutron captures (which, as is well known, suppress the formation of the fissile {sup 233}U fuel) and the much smaller k variations after switch-off due to {sup 233}Pa decays for a given burn-up rate. Finally a longer integrated burn-up is made possible by reduced capture rate by fission fragments of fast neutrons. In practice a 20 MW proton beam (20 mA @ 1 GeV) accelerated by a cyclotron will suffice to operate a compact EA at the level of {approx} 1 GW{sub e}. The integrated fuel burn-up can be extended in excess of 100 GW d/ton, limited by the mechanical survival of the fuel elements. Radio-Toxicity accumulated at the end of the cycle is found to be largely inferior to the one of an ordinary Reactor for the same energy produced. Schemes are proposed which make a {open_quotes}melt-down{close_quotes} virtually impossible. The conversion ratio, namely the rate of production of {sup 233}U relative to consumption is generally larger than unity, which permits production of fuel for other uses. Alternatively the neutron excess can be used to transform unwanted {open_quotes}ashes{close_quotes} into more acceptable elements.« less
Modular, Reconfigurable, High-Energy Systems Stepping Stones
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Mankins, John C.
2005-01-01
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Hurrell, Michael J.
2017-01-01
Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.
Drought Resilience of Water Supplies for Shale Gas Extraction and Related Power Generation in Texas
NASA Astrophysics Data System (ADS)
Reedy, R. C.; Scanlon, B. R.; Nicot, J. P.; Uhlman, K.
2014-12-01
There is considerable concern about water availability to support energy production in Texas, particularly considering that many of the shale plays are in semiarid areas of Texas and the state experienced the most extreme drought on record in 2011. The Eagle Ford shale play provides an excellent case study. Hydraulic fracturing water use for shale gas extraction in the play totaled ~ 12 billion gallons (bgal) in 2012, representing ~7 - 10% of total water use in the 16 county play area. The dominant source of water is groundwater which is not highly vulnerable to drought from a recharge perspective because water is primarily stored in the confined portion of aquifers that were recharged thousands of years ago. Water supply drought vulnerability results primarily from increased water use for irrigation. Irrigation water use in the Eagle Ford play was 30 billion gallons higher in the 2011 drought year relative to 2010. Recent trends toward increased use of brackish groundwater for shale gas extraction in the Eagle Ford also reduce pressure on fresh water resources. Evaluating the impacts of natural gas development on water resources should consider the use of natural gas in power generation, which now represents 50% of power generation in Texas. Water consumed in extracting the natural gas required for power generation is equivalent to ~7% of the water consumed in cooling these power plants in the state. However, natural gas production from shale plays can be overall beneficial in terms of water resources in the state because natural gas combined cycle power generation decreases water consumption by ~60% relative to traditional coal, nuclear, and natural gas plants that use steam turbine generation. This reduced water consumption enhances drought resilience of power generation in the state. In addition, natural gas combined cycle plants provide peaking capacity that complements increasing renewable wind generation which has no cooling water requirement. However, water savings related to power generation is not collocated with water used for shale gas extraction. Analysis of drought impacts on water energy interdependence should consider both water for energy extraction and power generation to assess net impacts.
Low-Dimensional Feature Representation for Instrument Identification
NASA Astrophysics Data System (ADS)
Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin
For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.
Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.
Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma
2011-09-01
In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.
GaAs VLSI for aerospace electronics
NASA Technical Reports Server (NTRS)
Larue, G.; Chan, P.
1990-01-01
Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.
Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng
2016-06-01
The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.
Liu, Feng; Liu, Wenhui; Tian, Shuge
2014-09-01
A combination of an orthogonal L16(4)4 test design and a three-layer artificial neural network (ANN) model was applied to optimize polysaccharides from Althaea rosea seeds extracted by hot water method. The highest optimal experimental yield of A. rosea seed polysaccharides (ARSPs) of 59.85 mg/g was obtained using three extraction numbers, 113 min extraction time, 60.0% ethanol concentration, and 1:41 solid-liquid ratio. Under these optimized conditions, the ARSP experimental yield was very close to the predicted yield of 60.07 mg/g and was higher than the orthogonal test results (40.86 mg/g). Structural characterizations were conducted using physicochemical property and FTIR analysis. In addition, the study of ARSP antioxidant activity demonstrated that polysaccharides exhibited high superoxide dismutase activity, strong reducing power, and positive scavenging activity on superoxide anion, hydroxyl radical, 2,2-diphenyl-1-picrylhydrazyl, and reducing power. Our results indicated that ANNs were efficient quantitative tools for predicting the total ARSP content. Copyright © 2014 Elsevier B.V. All rights reserved.
Baseband pulse shaping for pi /4 FQPSK in nonlinearly amplified mobile channels
NASA Astrophysics Data System (ADS)
Subasinghe-Dias, Dileeka; Feher, Kamilo
1994-10-01
We apply baseband pulse shaping techniques for pi /4 QPSK in order to reduce the spectral regeneration of the bandlimited carrier after nonlinear amplification. These Feher's patented techniques, namely, pi /4 FQPSK (superposed QPSK) and pi /4 CTPSK (controlled transition PSK), may also be noncoherently demodulated. Application of these techniques is in fast fading, power efficient channels, typical of the mobile radio environment. Patents related to FQPSK are described. Computer simulation and experimental studies demonstrate that with these baseband waveshaping techniques, carrier envelope fluctuations are significantly reduced, and the out-of-band power after nonlinear amplification is suppressed by up to 20 dB compared to pi /4 QPSK. In frequency noninterleaved land or satellite mobile radio systems operating in a nonlinear, fading and ACI (adjacent channel interference) environment, these techniques may achieve 20%-50% higher spectral efficiency compared to pi /4 QPSK. In mobile cellular systems using pi /4 QPSK, such as the new North American and the Japanese digital cellular systems, the application of these baseband pulse shapes may allow more convenient and less costly amplifier linearization.
Silicon Alignment Pins: An Easy Way to Realize a Wafer-to-Wafer Alignment
NASA Technical Reports Server (NTRS)
Jung-Kubiak, Cecile; Reck, Theodore J.; Lin, Robert H.; Peralta, Alejandro; Gill, John J.; Lee, Choonsup; Siles, Jose; Toda, Risaku; Chattopadhyay, Goutam; Cooper, Ken B.;
2013-01-01
Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers. Silicon micromachining technology is naturally suited for making these submillimeter and terahertz components, where precision and accuracy are essential. Waveguide and channel cavities are etched in a silicon bulk material using deep reactive ion etching (DRIE) techniques. Power amplifiers, multiplier and mixer chips are then integrated and the silicon pieces are stacked together to form a supercompact receiver front end. By using silicon micromachined packages for these components, instrument mass can be reduced and higher levels of integration can be achieved. A method is needed to assemble accurately these silicon pieces together, and a technique was developed here using etched pockets and silicon pins to align two wafers together.
Jiang, Shengjuan; Wang, Yuliang; Zhang, Xiaolong
2016-07-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention.
JIANG, SHENGJUAN; WANG, YULIANG; ZHANG, XIAOLONG
2016-01-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention. PMID:27347087
Two-stage collaborative global optimization design model of the CHPG microgrid
NASA Astrophysics Data System (ADS)
Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng
2017-06-01
With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.
Johnson Noise Thermometry for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton Jr, Charles L; Roberts, Michael; Bull, Nora D
Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less
Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles
Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc
2012-01-01
A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638
Berry, Keith R; Russell, Aaron G; Blake, Phillip A; Keith Roper, D
2012-09-21
Optical and thermal activity of plasmon-active nanoparticles in transparent dielectric media is of growing interest in thermal therapies, photovoltaics and optoelectronic components in which localized surface plasmon resonance (LSPR) could play a significant role. This work compares a new method to embed gold nanoparticles (AuNPs) in dense, composite films with an extension of a previously introduced method. Microscopic and spectroscopic properties of the two films are related to thermal behavior induced via laser excitation of LSPR at 532 nm in the optically transparent dielectric. Gold nanoparticles were incorporated into effectively nonporous 680 μm thick polydimethylsiloxane (PDMS) films by (1) direct addition of organic-coated 16 nm nanoparticles; and (2) reduction of hydrogen tetrachloroaurate (TCA) into AuNPs. Power loss at LSPR excitation frequency and steady-state temperature maxima at 100 mW continuous laser irradiation showed corresponding increases with respect to the mass of gold introduced into the PDMS films by either method. Measured rates of temperature increase were higher for organic-coated NP, but higher gold content was achieved by reducing TCA, which resulted in larger overall temperature changes in reduced AuNP films.
Moyo, B; Oyedemi, S; Masika, P J; Muchenje, V
2012-08-01
The study investigated antioxidant potency of Moringa oleifera leaves in different in vitro systems using standard phytochemical methods. The antioxidative effect on the activities of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO) and reduced glutathione (GSH) were investigated in goats supplemented with M. oleifera (MOL) or sunflower seed cake (SC). The acetone extract had higher concentrations of total flavonoids (295.01 ± 1.89 QE/g) followed by flavonols (132.74 ± 0.83 QE/g), phenolics (120.33 ± 0.76 TE/g) and then proanthocyanidins (32.59 ± 0.50 CE/g) than the aqueous extract. The reducing power of both solvent extracts showed strong antioxidant activity in a concentration dependent manner. The acetone extract depicted higher percentage inhibition against DPPH, ABTS and nitric oxide radicals which were comparable with reference standard antioxidants (vitamin C and BHT). MOL increased the antioxidant activity of GSH (186%), SOD (97.8%) and catalase (0.177%). Lipid peroxidation was significantly reduced by MOL. The present study suggests that M. oleifera could be a potential source of compounds with strong antioxidant potential. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bótas, Paulo Charles Pimentel; Huisman, Jeroen
2012-01-01
This article explores how power relations are constructed in the governance of higher education institutions. It examines and deconstructs, from a Foucauldian perspective, power relations and mechanisms in the relationship between the state and higher education institutions, and between academic and management staff. This research article…
Systematic adaptation of data delivery
Bakken, David Edward
2016-02-02
This disclosure describes, in part, a system management component for use in a power grid data network to systematically adjust the quality of service of data published by publishers and subscribed to by subscribers within the network. In one implementation, subscribers may identify a desired data rate, a minimum acceptable data rate, desired latency, minimum acceptable latency and a priority for each subscription and the system management component may adjust the data rates in real-time to ensure that the power grid data network does not become overloaded and/or fail. In one example, subscriptions with lower priorities may have their quality of service adjusted before subscriptions with higher priorities. In each instance, the quality of service may be maintained, even if reduced, to meet or exceed the minimum acceptable quality of service for the subscription.
The design of dapog rice seeder model for laboratory scale
NASA Astrophysics Data System (ADS)
Purba, UI; Rizaldi, T.; Sumono; Sigalingging, R.
2018-02-01
The dapog system is seeding rice seeds using a special nursery tray. Rice seedings with dapog systems can produce seedlings in the form of higher quality and uniform seed rolls. This study aims to reduce the cost of making large-scale apparatus by designing models for small-scale and can be used for learning in the laboratory. Parameters observed were soil uniformity, seeds and fertilizers, soil looses, seeds and fertilizers, effective capacity of apparatus, and power requirements. The results showed a high uniformity in soil, seed and fertilizer respectively 92.8%, 1-3 seeds / cm2 and 82%. The scattered materials for soil, seed and fertilizer were respectively 6.23%, 2.7% and 2.23%. The effective capacity of apparatus was 360 boxes / hour with 237.5 kWh of required power.
NASA Astrophysics Data System (ADS)
Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta
2017-07-01
We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.